ADVANCED TECHNIQUES TO INCREASE NUTRIENT USE EFFICIENCY
shantanujadhav2
3,408 views
50 slides
May 11, 2020
Slide 1 of 50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
About This Presentation
Nutrient use efficiency (NUE) is a critically important concept in the evaluation of crop production systems. Many agricultural soils of the world are deficient in one or more of the essential nutrients to support healthy and productive plant growth. Efficiency can be defined in many ways and easily...
Nutrient use efficiency (NUE) is a critically important concept in the evaluation of crop production systems. Many agricultural soils of the world are deficient in one or more of the essential nutrients to support healthy and productive plant growth. Efficiency can be defined in many ways and easily increased food production could be achieved by expanding the land area under crops and by increasing yields per unit area through intensive farming. Environmental nutrient use efficiency can be quite different than agronomic or economic efficiency and maximizing efficiency may not always be effective. Worldwide, elemental deficiencies for essential macro and micro nutrients and toxicities by Al, Mn, Fe, S, B, Cu, Mo, Cr, Cl, Na, and Si have been reported.
Size: 1.6 MB
Language: en
Added: May 11, 2020
Slides: 50 pages
Slide Content
WELCOME
Seminar on
ADVANCED TECHNIQUES TO INCREASE NUTRIENT USE EFFICIENCY
Presentation by
SHETE VIKRAM SHIVAJI
(REG.NO. 2018A/M115)
Research guide
Dr . S. L. Waikar
Seminar incharge
Dr. Syed Ismail
Head
Department of Soil Science and Agril. Chemistry
VNMKV, Parbhani.
Contents:
Introduction
Nutrient use efficiency
Definition
Classification
1. Agronomic efficiency
2.Physiological efficiency
3.Apparent recovery efficiency
Importance
Nutrient use efficiency of different nutrients
Techniques to increase nutrient use efficiency
1) Fertigation
2) Nano-technology
3) Nutrient briquettes
4) Seed priming
5) Use of nutrients
6) Use of amendments
7) Water management
Fertilizer use efficiency can be optimized by fertilizer management practices that apply
nutrients at the right rate, time and place.
Nutrient use efficiency is a critically important concept for evaluating crop production
systems and is greatly impacted by fertilizer management as well as soil and plant-water
relationships.
Nutrient use efficiency can be expressed several ways:
Four agronomic indices commonly used to describe nutrient use efficiency are: Partial
factor productivity, Agronomic efficiency, Apparent recovery efficiency and Physiological
efficiency (Baligaret al., Communications in Soil Science and Plant Analysis).
•NutrientUseEfficiency:Nutrientuseefficiencyisdefinedastheamountofdrymatter
producedperunitofnutrientappliedorabsorbed.
•NutrientUseEfficiency:PhysiologicalefficiencyXApparentrecoveryefficiency
•ClassificationofNUE:
1.AgronomicEfficiency:Itisdefinedastheeconomicproductionobtainedperunitofnutrient
applied.Itiscalculatedbythefollowingequation:
(Grainyieldoffertilizedcropinkg)-(Grainyieldofunfertilizedcropinkg)
AgronomicEfficiency= _________________________________________________________________
(Quantityoffertilizerappliedinkg)
(Robert et al., Turkish Journal of Agriculture and
Forestry)
2. Physiological efficiency: It is defined as the biological production obtained per unit of
nutrient applied. It is calculated by the following equation:
(Total dry matter yield of (Total dry matter yield of
fertilized crop in kg) unfertilized crop in kg)
Physiological efficiency = _________________________________________________________________________
(Nutrient uptake by fertilized crop in kg) -(Nutrient uptake by unfertilized crop in kg)
3. Apparent recovery efficiency: It is defined as the quantity of nutrient absorbed per unit of
nutrient applied. It is calculated by the following equation:
•Apparent recovery efficiency = (Nutrient uptake by (Nutrient uptake by
fertilized crop) unfertilized crop)
____________________________________________________
(Quantity of fertilizer applied )
(Robert et al., Turkish Journal of Agriculture and
Forestry)
Importance of nutrient use efficiency:
•Toincreasetheoverallperformanceofcroppingsystems.
•Providingeconomicallyoptimumnourishmenttothecrop.
•Minimizingnutrientlossesfromthefieldand
•Supportingagriculturalsystemsustainabilitythroughcontributionstosoil
fertilityorothersoilqualitycomponents.
(Paul et al.,(2008) Nutrient/fertilizer use efficiency)
Nutrient use efficiency of different nutrients:
Nutrient Efficiency Cause of low efficiency
Nitrogen 30-50 % Immobilization, volatilization, de-nitrification ,
Leaching
Phosphorus 15-20% Fixation in soils Al –P, Fe –P, Ca –P
Potassium 70-80% Fixation in clay -lattices
Sulphur 8-10% Immobilization, Leaching with water
Micro-nutrients
(Zn, Fe, Cu, Mn, B)
1-2% Fixation in soils
https://www.researchgate.net/publication/286045815
Techniques to increase nutrient
use efficiency
(1)Fertigation:
Applicationoffertilizerthroughmicroirrigationwater.Thistechniquewasfirststarted
inIsrael.
Itispreciselyamethodofslowapplicationofwaterandfertilizerintheformof
discretecontinuousdrops,trickled/sprayedthroughamechanicaldevicecalledemitters
intotherootzoneoftheplantaccordingtoitsconsumptiveuseanddemand.
Fertigationinawaycanbecomparedwithspoonfeedingtoplants.Itensuressupply
ofplantnutrientstotherootzonealongwithmicroirrigationsystem.
(Patel et al .,(2017) Int. J. Curr. Microbiol. App. Sci)
Need of fertigation :
• Decline in crop response to fertilizers.
• Stagnation in fertilizer production.
• Weakening relationship between fertilizer use and food grain production.
• Increasing dependence on fertilizer imports.
(Senthilkumaret al.,(2017) Int. J. Curr. Microbiol. App. Sci)
Advantages of fertigation:
(i) Increase in crop yield by 25–30%.
(ii) Savings in fertilizers by about 30%.
(iii) Precise application and uniform distribution of fertilizers.
(iv) Nutrients can be applied as per plant requirements.
(v) Increases nutrient use efficiency by minimizing loss of nutrients.
(vi) Exact concentration of fertilizers can be injected as per requirement of crops.
(vii) Cost effective technique due to saving of time, labour and energy.
(Patel et al, (2017) Int. J. Curr. Microbiol. App. Sci)
Foliar Application:
•Foliar application refers to the spraying of fertilizer solution on foliage (leaves) of growing plants.
Normally, these solutions are prepared in low concentrations (2–3%) either to supply any one plant
nutrient or a combination of nutrients.
1. Advantages:
•Foliarsprayingisusefultocorrectthenutrientdeficiencygrowingcrops.
•Inextremelydryweatherconditionwheretheplantsarenotabletotakeupnutrientsfromsoil
becauseoflowmoisturecontentsofsoil,foliarsprayisuseful.
•Whenquickresponseoffertilizer(especiallynitrogenousfertilizer)isrequired.
2.Disadvantages:
•Marginalleafburnsorscorching,mayoccurifstrongsolutionsareused.
•Asasolutionoflowconcentration,onlyasmallquantityofnutrientscanbesuppliedatatime.
.•Itcannotberecommendedasasolemethodofapplicationoffertilizer.
•Onlyureaandmicronutrientscanbeappliedthroughthismethod.
(Das et al., (2015). PFDCs research finding on
fertigation)
Types of Nano-fertilizers:
A. Macronutrient Nano-fertilizers:
Macronutrientnano-fertilizersarechemicallycomposedofoneormore
macronutrientelementssuchasnitrogen(N),phosphorus(P),
potassium(K),magnesium(Mg),andcalcium(Ca),thusbeingableto
supplyoneormoreoftheseessentialelementstoplants.
B. Micronutrient Nano-fertilizers:
Micronutrientnano-fertilizersarechemicallycomposedofoneormore
micronutrientelementsinnanoformsuchaszinc(Zn)iron(Fe),
copper(Cu),silicon(Si),nickel(Ni)etc.
(Ramprasadetal.,2017)
WHY TO USE NANO -FERTILIZERS:
Nano-fertilizers are more beneficial as compared to chemical fertilizers.
(i)Three-timesincreaseinNutrientUseEfficiency(NUE)
(ii)80-100timeslessrequirementofchemicalfertilizers
(iii)10timesmorestresstolerantbythecrops
(iv)Completebio-source,soeco-friendly
(v)30%morenutrientmobilizationbytheplants.
(vi)17-54%improvementinthecropyield.
(Qureshiet al ., 2018 . Int.J.Microbial.App.Sci.7(2)
(3)Use of Amendments:
•Soilamendments:-
Soilamendmentsareorganicorinorganicmatteraddedtothesoiltoimprove
texture,waterretention,drainageoraeration.
(1)Gypsum(CaSO4.2H2O):
Gypsumisthebestsoilamendmentforreclamationofthesodicsoil.
•Anadditionofgypsumimprovesphysicalconditionsofsoil.Soilsbecomeflocculated
anddrainageimproves,pHislowereddowntoadesirablelevel.
•Besidesgypsum,ironpyriteisalsousedoncalcareoussodicsoil.
(Patil et al., Fundamentals of Soil Science)
(4) Nutrient briquettes:
•Briquettingisthemethodusedtoconvertloosebiomassintohigh-densitysolidblocks,
whileduringpelletization,thefineparticlerawmaterialiscompactedtopelletsunder
pressure.
•Thebriquettesareauniquefertilizerconceptapartfromtheconventionalfertilizersin
whichthefertilizerismanufacturedintoabriquetteapproximatelyasthesizeoftheend
ofone`sfinger(about2.75gm)asopposedtothemorecommongranularprillsized
fertilizersorliquidfertilizers.
(Sunilet al., International Journal of Plant & Soil Science (2018)
•Thelandapplicationofbriquetteisalsouniqueinthatitisbandedbelowthesoil
surfacebetweenplantedrows.
•Surfaceappliedureaisreportedtoreachnitrogenlossashighas35%however;
buriedbriquettesonlyloseapproximately4%ofitsnitrogen,whichisa
considerableimprovementinnitrogenuseefficiency
(Patil et al.,(2018)International Journal of Plant and Soil Science)
(5)Seed priming:
•Seedprimingisthecontrolledhydrationtechniqueinwhichseedsare
soakedinwaterorlowosmoticpotentialsolutiontoapointwherethe
germinationrelatedmetabolicactivitiesbeginintheseedsbutradical
emergencedoesnotoccur.
•Seedprimingprocess:
•Primingallowssomeofthemetabolicprocessesnecessaryforgermination
tooccurwithoutgerminationtakeplace.
•Thispreventstheseedsfromabsorbinginenoughwaterforradical
protrusion,thussuspendingtheseedsinthelagphase.
•Thishydrationissufficienttopermitpre-germinativemetaboliceventsbut
insufficienttoallowradicleprotrusionthroughtheseedcoat.
(Javid et al.,(2013) International Journal of Agriculture and Crop Sciences)
Seed Priming Methods:
There are four common methods utilized for priming seeds:
(1) Hydro-priming
(2) Osmotic priming
(3) Solid matrix priming
(4) Bio-priming
(Javidet al., (2013).International Journal of Agriculture and Crop Sciences)
1) Hydro-priming:
•Hydro-priminginvolvessoakingtheseedsinwaterbeforesowingandmay
ormaynotbefollowedbyair-dryingoftheseeds.
•Although,soakingseedsinwateranddryingbeforesowingistheeasiest
waytoachievehydration.
•Effect of Hydro-priming on Wheat Seed:
Hydro-primingofwheatseedimproves:
(1)Vigor
(2)Germinationpercentage
(3)SeedlingsEstablishments
(4)UniformGrowth
(5)Wateruseefficiency
(6)Grainyield
(Javidetal.,2013InternationalJournalofAgricultureandCropSciences)
(2) Osmotic priming:
•Osmotic priming is the soaking of seeds in solutions containing chemicals
such as:
1) Mannitol
2) Potassium nitrate (KNO3)
3) Potassium chloride (KCl)
4) Polyethylene glycol (PEG)
5) Sodium chloride (NaCl)
(Javidet al., 2013. International Journal of Agriculture and Crop Sciences)
(7)Nitrogen use efficiency:
Practices for improving nitrogen use efficiency
Variousstrategiesforimprovingnitrogenuseefficiencywillbediscussedbelow:
1)SITESPECIFICNITROGENMANAGEMENT (SSNM):
SSNMisaconceptwhichinvolvesfieldspecificNmanagementstrategiesthatincludes
quantitativeknowledgeoffieldspecificvariabilityincropNrequirementandexpectedsoilN
supplyingpower.
2)INTEGRATEDNITROGENMANAGEMENT (INM):
INMinvolvesoptimumuseofindigenousNcomponentsi.e.cropresidues,organic
manure,biologicalNfixationaswellaschemicalfertilizerandtheircomplementaryinteractionsto
increasesNrecovery.
3)Slowreleasefertilizers:
Neemcoated urea is widely used and demonstrated for slow release N fertilizer in India.
(Yadavet al., Agricultural Reviews, 38 (1) 2017 )
Table 1: Effect of fertigation and conventional method of fertilizer application on growth
parameter of banana (Av. Of 3 years) location: Jalgaon
Sr.No Treatments
Plant height
(cm)
Stem girth
(cm)
Days to
flower
Days to
harvest
T
1
100%RD-NK through
drip
185 73.0 282 388
T
2 75%RD-NK through drip 181 70.8 284 393
T
3 50%RD-NK through drip 176 69.4 289 402
T
4
100%RD-NK through
soil
180 69.7 291 398
T
5 75%RD-NK through soil 175 68.6 293 406
T
6 50%RD-NK through soil 170 67.2 299 416
S.E± 1.67 0.74 4.01 4.10
C.D.(=0.05) 5.27 2.32 NS 12.91
(Bhalerao et al., 2010. An Asian journal of soil science.Vol.4 No.2:220-224)
TABLE 2: Effect of fertigation and conventional method of fertilizer application on yield
parameter of banana location: Jalgaon
Sr. No Treatments Hands bunch
-1
Fingers
bunch
-1
Bunch weight
(kg)
Yield (t ha
-1
)
T
1
100%RD NK through
drip
8.7 151 20.6 91.4
T
2
75%RD-NK through
drip
8.3 144 20.0 88.8
T
3
50%RD-NK through
drip
7.9 138 17.9 78.5
T
4
100%RD-NK through
soil
8.2 140 18.8 83.7
T
5
75%RD-NK through
soil
7.8 132 17.5 77.8
T
6
50%RD-NK through
soil
7.5 126 15.4 68.4
S.E± 0.12 2.38 0.30 1.04
C.D.(=0.05) 8.7 7.48 0.95 3.27
(Bhalerao et al., 2010. An Asian journal of soil science. Vol.4 No.2:220-224)
Table 3: Effect of fertigation and conventional method of fertilizer application on nutrient
uptake by banana (Av. of 3 years) (110: 35 : 330 NPK Kg ha
-1
) location: Jalgaon
Sr.
No
Treatments
Kg ha
-1
Kg t
-1
N P K N P K
T1
100 % RD-NK through
drip
685 127 1275 7.63 1.40 14.0
T2
75 % RD-NK through
drip
634 118 1193 7.21 1.32 13.4
T3
50 % RD-NK through
drip
561 104 1051 7.13 1.30 13.2
T4
100 % RD-NK through
soil
606 111 1135 7.32 1.33 13.6
T5
75 % RD-NK through
soil
550 99 1033 7.13 1.28 13.3
T6
50 % RD-NK through
soil
465 82 888 6.84 1.18 13.0
S.E. + 19.02 2.5 20.4 0.22 0.04 0.16
C.D. (P=0.05) 59.9 7.9 64.1 NS NS 0.50
Bhalerao et al.,2010. An Asian journal of soil science. Vol.4 No.2:220-224
Table 4: Seed cotton yield as influenced by various treatments (100:50:50 NPK Kg ha
-1
)
Treatment
Seed cotton (q ha
-1
) Pooled
mean
Cotton stalk (q ha
-1
) Pooled
mean
2009-10 2010-11 2011-12 2009-10 2010-11 2011-12
T
1 -100% RD through drip
(WSF)
16.45 17.58 16.01 16.68 36.78 38.80 38.07 37.88
T
2-75% RD through drip
(WSF)
14.90 15.43 14.74 15.02 36.42 36.78 33.75 35.65
T
3 -100% RD soil application 15.80 15.00 14.19 15.00 38.66 36.00 35.78 36.81
T
4 -100% RD + Zn (4 kg ha
-1
)
+ Fe (5 kg ha
-1
) through drip
(WSF)
18.10 18.69 17.78 18.19 42.40 43.08 40.21 41.89
T
5-75% RD + Zn (3 kg ha
-1
) +
Fe (3.75 kg Fe ha
-1
) through
drip (WSF)
16.50 17.63 16.85 16.99 39.30 41.30 37.86 39.49
T
6-100% RD + Zn (4 kg ha
-1
) + Fe
(5 kg ha
-1
) soil application
17.50 16.12 14.56 16.06 41.48 35.92 33.44 36.94
T
7 -75% RD through drip (Urea,
Phosphoric acid, MOP)
14.00 14.45 13.72 14.05 34.67 33.14 29.45 32.42
SE (m) ± 1.20 0.75 0.77 0.70 1.73 1.71 1.99 1.72
CD at 5% 3.57 2.24 2.28 2.09 4.87 5.08 5.93 5.11
C.V 14.87 9.21 9.99 9.01 9.10 11.16
(Mangare et al., International journal of chemical studies (2018)) location: Akola
Table 5: Soil fertility status (kg ha
-1
) of soil after harvest of cotton as influenced by various treatments (2011-12)
Treatments
Available nutrients (kg ha
-1
)
Nitrogen Phosphorous Potassium
T
1–100 % RD through drip(WSF) 227.2 16.15 416.9
T
2–75 % RD through drip (WSF) 220.1 13.32 398.7
T
3–100 % RD soil application (Urea, DAP, MOP) 225.2 15.19 403.4
T
4–100 % RD through drip+ Zn(4 kg Zn ha
-1
)+Fe (5 kg Fe ha
-
1
) through drip (WSF)
229.0 18.00 429.9
T
5–75 % RD through drip+ Zn (3 kg Zn ha
-1
)+ Fe (3.75 kg Fe ha
-
1
) through drip (WSF)
221.3 13.95 400.6
T
6–100 % RD soil application + soil application of Zn (4 kg Zn ha
-
1
) + Fe (5 kg Fe ha
-1
) (Urea, DAP, MOP)
231.0 19.22 406.1
T
7–75 % RD through drip (Urea, Phosphoric acid, MOP) 211.1 10.91 342.3
SE (m) ± 3.43 0.31 7.94
CD at 5 % 10.51 0.94 23.61
Initial status 189.3 15.88 338.32
Treatment
Available nutrient kg ha-1
Mangare et al., 2018. International journal of chemical studies .6(2):42-46. location: Akola
Table 7. Nano phosphate recovery in Aridosol after 15 days
Sr. No. Nano P
fertilizer added
(mg kg
-1
)
Recovery of P (%) from
Nano RP KH
2PO
4
1. 2.5 45.0 29.8
2. 5.0 40.8 42.2
3. 7.5 32.3 44.6
4. 10.0 24.2 59.2
(Kundu et al.,(2010) Journal of ISSS ; 59(4)) location: Jodhpur
Table 8. Extent of P solubilization of nano rock phosphate by Pseudomonas stiata
Substrate % P solubilized
24 h 48 h 72 h
0.1% TCP Powder-control 5.44 10.23 12.84
0.1% TCP Powder-inoculated 41.94 75.77 82.61
0.1% BRP (nano RP 100nm) control 9.83 14.20 16.23
0.1% BRP (nano RP 100nm) inoculated11.45 33.73 36.15
0.1% BRP ( 125 um) control 5.38 6.56 6.83
0.1% BRP ( 125 um) inoculated 8.56 10.49 14.50
(Kundu et al.,(2010) Journal of ISSS ; 59(4)) location: Jodhpur
Table 9 : Available potassium of soil after nanofertilizer applications at different
incubation days.
Incubation
Days
Available potassium (mg/kg)
Control Conventional
fertilizer
Nano fertilizer
K-nf
0 0.19 1.06 1.51
15 0.12 0.82 1.33
30 0.09 0.48 0.70
Source: Rajonee et al., (2017).Advances in Nano particles 6; 62-74 location: Udaipur
Table 10 : Effect of nano-materials on nutrient use efficiency of wheat under different fertilizer doses
Treatment
Recovery efficiency (%) Agronomic efficiency
(kg grain/ kg nutrient applied)
N P K N P K
50 % RDF 88.3 32.3 340.5 0.33 0.83 1.25
100 % RDF 61.6 22.8 218.0 0.22 0.55 0.83
50 % RDF +
NM
104.8 43.3 380.5 0.49 0.97 1.45
100 % RDF +
NM
42.5 22.7 153.0 0.19 0.47 0.70
(Kumar et al., 2014)
RDF:150:60:40 kg/ ha NM :3 kg /ha (NM of gypsum and nanofertilizer)
Table 12. Effects of briquettes on movement of available nitrogen (kg/ha) in soil%
DAS-Days after sowing, G.M-Grand mean, SE(m)-Standard error mean, C.D-Critical difference at 5
Treatments30DASdepth(cm) 60DASdepth(cm) Atlastpickingdepth(cm)
15-15 15-30 30-15 30-30 15-15 15-30 30-15 30-30 15-15 15-30 30-15 30-30
T
1 Absolute
Control
159.15 165.06 166.91 165.23 163.91 161.50 154.89 182.20 202.94 179.53 168.12 191.58
T
2
NPK120:60:60
OF Soil Aplication
166.99 173.31 170.91 167.77 167.77 155.21 164.40 187.86 205.75 189.72 159.93 195.99
T
3
RDF
80:40:40
193.64 208.91 193.64 168.23 165.23 181.83 187.44 189.00 204.48 163.07 187.72 198.26
T
4
120:60:60
NPK
177.96 196.95 190.51 165.51 168.23 176.42 183.44 183.70 206.93 217.16 187.72 194.29
T
5
120:60:60+20
Zn
177.96 190.96 168.56 170.91 170.91 155.40 155.20 184.01 205.49 164.64 170.56 193.86
G.M 177.50 187.03 178.18 163.91 163.91 166.01 169.07 185.35 205.12 173.89 171.85 194.79
S.E ± 6.62 5.80 5.75 7.18 7.19 5.77 5.40 5.23 5.90 7.55 5.80 5.98
CD at 5% 19.9417.8917.31 22.13 22.15 17.79 18.79 16.65 18.19 22.73 17.46 18.03
(PATIL et al.,(2015) International Journal of plant and soil Science 24(2)
Table.13 Effects of treatments on seed cotton yield (q ha-1) and Stalk yield (q ha-1) at various
growth stages of Bt-cotton
Treatment Treatment details Seed cottonyield q/ha Stalk yieldq/ha
T1 Absolute control 10.74 54.35
T2 RDF 12.15 63.50
T3 Soluble fertizers 15.59 74.84
T4 NPK briquettes 11.6 65.14
T5 NPK + Zn briquettes 14.11 65.64
Grandmean 12.85 64.69
SEm(±) 0.173 0.51
CD at 5% 0.539 1.54
(Sunil et al., Int .J . Curr. Microbiol .App. Sci(2017) )
Table 14: Effects of treatments on plant height (cm) at various growth stages of Bt-
cotton
Treatments Treatment details
Plant height (cm)
30 DAS 60 DAS Boll formation Last picking
T
1
Absolute Control(Drip
irrigation)
21.80 58.10 65.28 84.05
T
2 RDF(Soil) 31.68 59.55 70.47 86.65
T
3
Soluble(fertigation)
Fertilizers
35.50 70.0 85.51 101.50
T
4 NPK Briqueteswith Drip 33.15 69.55 76.86 95.15
T
5
NPK + Zn Briquettes with
Drip
35.45 70.80 83.33 99.25
Grand mean 31.51 65.60 76.29 93.32
S.Em (±) 0.334 0.278 0.223 0.563
CD at 5% 1.042 0.865 0.696 1.754
Sunilet al., Int .J . Curr. Microbiol .App. Sci (2017) 6(11
Fig-Effects of treatments on plant height (cm) at various growth stages of Bt-
cotton
Sunil et al., Int .J . Curr. Microbiol .App. Sci(2017) 6(11
Table.15 Effects of treatments on total no of boll/plant (No.) and boll weight (gm) at
various growth stages of Bt-cotton
Treatments Treatment details Total no of boll/plant (No.) Boll weight(gm)
T
1 Absolute Control 44.88 4.37
T
2 RDF 47.87 5.19
T
3 Soluble Fertilizers 51.83 5.75
T
4 NPK Briquettes 51.63 5.25
T
5 NPK + Zn Briquettes 51.77 5.55
Grand mean 49.59 5.22
SEm(±) 0.432 0.15
CD at 5% 1.345 0.469
(Sunil et al., Int .J . Curr. Microbiol .App. Sci(2017) )
Sunil et al., Int .J . Curr. Microbiol .App. Sci(2017) 6(11
Fig-Effects of treatments on total no of boll/plant (No.) and boll weight (gm) at various
growth stages of Bt-cotton