An introduction the Amino Acid Biosynthesis.ppt

NaumanAzeemi 21 views 69 slides Aug 27, 2024
Slide 1
Slide 1 of 69
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69

About This Presentation

The Amino Acid Biosynthesis


Slide Content

Amino Acid Biosynthesis
Introduction

Essential and Non-essential
Amino Acids
•Essential (10)
–Arginine
–Histidine
–Isoleucine
–Leucine
–Lysine
–Methionine
–Phenylalanine
–Threonine
–Tryptophan
–Valine
•Non-essential
–Alanine
–Asparagine
–Aspartate
–Cysteine
–Glutamate
–Glutamine
–Glycine
–Proline
–Serine
–Tyrosine

Importance of Balanced Diet
•Milk: proper balance of amino acids
•Beans: lysine rich; methionine poor
•Wheat: methionine rich; lysine poor
•Bioengineered Wheat: high lysine
content

Nitrogen Acquisition
•Nitrogen Fixation
•Nitrate Assimilation
•Ammonium Assimilation

Nitrogen Fixation
(few strains of bacteria)
N2 + 8H
+
+ 8e

+ 16ATP + 16 H2O
2NH
3 + H
2 + 16ADP + 16P
i
Nitrogenase

Nitrifying Bacteria
N H
3
N O
3

"O xidation"

Nitrate Assimilation
(Green plants, some fungi and bacteria)
NO
3

+ NADH + H
+
NO
2

+ H
2
O + NAD
+
Nitrate Reductase
NO
2

+ 8H
+
+ 6e

NH
4
+
+ 2H
2
O
Nitrite Reductase

Ammonium Assimilation (1)
(Carbamyl Phosphate Synthetase)
H
2
N C
O
O P
2A T P 2A D P + P
i
N H
3
+ H C O
3

Ammonium Assimilation (2)
(Biosynthetic Glutamate Dehydrogenase)
and/or
(Glutamine Synthetase)
N H
3
G lutam ate
N H
3
G lutam ine

Microbial Nitrogen Acquisition
(Metabolic Sources of Organic Nitrogen)

Microbial Ammonium Assimilation
(High NH
3
)
+
H
3
N C COO

CH
2
CH
2
COO

H
Glutamate
NH
3
+ NADPH NADP
+
"Biosynthetic"
Glutamate Dehydrogenase
O
C COO

CH
2
CH
2
COO

α -Ketoglutarate
+
H
3
N C COO

CH
2
CH
2
COO

H
Glutamate
ATP + NH
3
ADP + P
i
Glutamine Synthetase
+
H
3
N C COO

CH
2
CH
2
C
H
O NH
2
Glutamine

Mechanism of Glutamine Synthetase
+
H
3
N C COO

CH
2
CH
2
COO

H
Glutamate
ATP ADP
Glutamine
Synthetase
+
H
3
N C COO

CH
2
CH
2
COO P
H
NH
3
P
i
Glutamine
Synthetase
+
H
3
N C COO

CH
2
CH
2
C
H
O NH
2
Glutamine
γ-Glutamyl-P

Microbial Ammonium Assimilation
(Low NH
3
)
Glutamine Synthetase
Glutamate Synthase
(Glutamate Oxoglutarate Aminotransferase, GOGAT)
Glutamine + α-ketoglutarate + NADPH > 2——— Glutamate + NADP
+

Microbial Ammonium Assimilation
•High [NH
3]
–“Biosynthetic” Glutamate Dehydrogenase
–Glutamine Synthetase
•Low [NH
3]
–Glutamine Synthetase
–Glutamate Synthase (Glutamate Oxoglutarate
Aminotransferase, GOGAT)

Microbial Ammonium Assimilation
(High NH
3
)
OCCOO

CH
2
CH
2
COO

+
H
3NCCOO

CH
2
CH
2
COO

H
NH
3 + NADPH NADP
+
"Biosynthetic"
Glutamate Dehydrogenase
α-Ketoglutarate Glutamate
+
H
3NCCOO

CH
2
CH
2
COO

H
+
H
3NCCOO

CH
2
CH
2
C
H
O NH
2
ATP + NH
3 ADP + P
i
Glutamine Synthetase
Glutamate Glutamine

Microbial Ammonium Assimilation
(Low NH
3
)
+
H
3NCCOO

CH
2
CH
2
COO

H
+
H
3NCCOO

CH
2
CH
2
C
H
O NH
2
ATP + NH
3
ADP + P
i
Glutamine Synthetase
Glutamate Glutamine
+
H
3NCCOO

CH
2
CH
2
C
H
O NH
2
OCCOO

CH
2
CH
2
COO

NADPH NADP
+
+
H
3NCCOO

CH
2
CH
2
COO

H
Glutamine α-Ketoglutarate Glutamate
+
Glutamate Synthase

Role of Glutamate
(Nitrogen Donor)
Glu αKG
R RNH
2

Role of Glutamine
(Nitrogen Donor)
Gln Glu
R RNH
2

Specific Products of Glutamine
•Histidine
•Tryptophan
•Carbamyl Phosphate (CPSII)
•Glucosamine
•ATP
•CTP

Regulation of Glutamine
Synthetase

Pathways of Nitrogen
Incorporation
Glu Gln
"Nitrogen"
CompoundsGS

Feedback Inhibition
(Nitrogen-sufficient conditions)
•Products
–Histidine
–Tryptophan
–Carbamyl-P
–Glucosamine
–ATP
–CTP
•Nitrogen Status
–Alanine
–Serine
–Glycin

Modulation of Enzyme Activity
Sensitivity to [NH
3]
Importance of
Glutamine/-ketoglutarate
Ratio

Control of Enzyme Activity
(Escherichia coli Enzyme)
P
II OH
Adenylyltransferase

P
II OUMP
Adenylyltransferase

UTP
PP
i
UMP
H
2
O
ATP PP
i
Glutamine Synthetase
OH
Glutamine Synthetase
OAMP
(More Active)
No Feedback Inhibition
(Less Active)
Sensitive to fbi
Uridylyl
Transferase
Uridylyl
Removing
Enzyme
ADP P
i
Nitrogen-limited
Growth Conditions
Nitrogen-Rich
Growth Conditions
Role = NH
3 Assimilation
and Anabolism
Role = Glutamine Synthesis
for Anabolism
(+) α-KGGlutamine (+)

Control of Gene Expression
P
1
P
2
glnA ntrBntrC
P
internal
rho-independent terminator
GlnA = Glutamine Synthetase
NtrB = Autokinase
NtrC = Transcription Factor

Control of Gene Expression
(NtrC Transcription Factor)
P
II OH
NtrC–P NtrC
UTP
PP
i
UMP
H
2
O
P
II OUMP
ATP ADP
(Active)
(Inactive)
Uridylyl
Transferase
Uridylyl
Removing
Enzyme
H
2
O P
i
Nitrogen-limited
Growth Conditions
Nitrogen-Rich
Growth Conditions
Transcription from P
2
using
RNA Polymerase (σ
54
)
Anabolism
(+) α-KG
Glutamine (+)
NtrB
°
NtrB-P
Basal Transcription from P
1
using
RNA Polymerase (σ
70
)
Anabolism
NH
3
Assimilation
NtrB
Autophosphorylation

Nitrogen Sufficiency (Rich)
(Low Expression of Glutamine Synthesis)
•Basal expression from P
1
(weak promoter)
•Termination at rho-independent terminator
•Basal expression from P
internal
•RNA polymerase (
70
)

Control of Gene Expression
(Nitrogen Sufficiency)
P
1
P
2
glnA ntrBntrC
P
internal
rho-independent terminator
mRNAs

Nitrogen Limitation
(Ammonia Assimilation = High Expression)
•Expression from P
2 (strong promoter)
–Requires NtrC–P (binds to enhancer)
–RNA polymerase (
54
)
•Reads through terminator
–Upregulation of ntrB and ntrC

Control of Gene Expression
(Nitrogen Limitation)
P
1
P
2
glnA ntrBntrC
P
internal
rho-independent terminator
mRNA

Two Component Sensor-Response
Regulator System
NtrB and NtrC

Two Component Sensor-Response
Regulator Systems
•Autokinase Sensor Proteins (NtrB)
(autophosphorylation of histidine residue)
–Sensor domain
–Transmitter domain (C-terminus)
•Response Regulators (NtrC)
–N-terminal receiver domain
–Cross-regulation

NtrC
ADP + P
i
Receiver
Domain
Transcriptional
Activation
DNA
Binding
ATP
Binding Motif
ATP

Other NtrC-Sensitive Operons
•Direct effect of NtrC-P
(e.g. hut operon)
•Indirect effect of NtrC-P

Conclusion
Complex regulation of
glutamine synthetase confirms
important role in nitrogen
metabolism

Biosynthesis of Non-essential
Amino Acids
Simple Pathways

Alanine
+
H
3
N C
H
CH
3
COO

H
3
C C COO

O
Alanine
Pyruvate
Amino
Acid
α -Keto
Acid
Aminotransferase

Aspartate and Asparagine
+
H
3
N C COO

CH
2
COO

H
Aspartate
O
C COO

CH
2
COO

Oxaloacetate
Amino
Acid
α -Keto
Acid
Aminotransferase
Asparagine
Synthetase
Gln
+
ATP
Glu
+
AMP + PP
i
+
H
3
N C COO

CH
2
C
H
O NH
2
Asparagine

Glutamate and Glutamine
OCCOO

CH
2
CH
2
COO

+
H
3
NCCOO

CH
2
CH
2
COO

H
+
H
3NCCOO

CH
2
CH
2
C
H
O NH
2Amino
Acid
α-Keto
Acid
α-Ketoglutarate Glutamate
Aminotransferase
ATP + NH
3 ADP + P
i
Glutamine Synthetase
Glutamine

Proline
+
H
3
N C COO

CH
2
CH
2
COO

H
Glutamate
ATP ADP
+
H
3
N C COO

CH
2
CH
2
COO P
H
+
H
3
N C COO

CH
2
CH
2
C
H
H O
Glutamate-5-P Glutamate--5-
Semialdehyde
γ-Glutamyl
Kinase
γ-Glutamyl-P
Reductase
NAD(P)H
+
H
+
NAD(P)
+
+
P
i

Proline (continued)
+
H
3
N C COO

CH
2
CH
2
C
H
H O
Glutamate--5-
Semialdehyde
Nonenzymatic
N
H
COO

Pyrroline-5-Carboxylate
Reductase
N
COO

H
2
Pyrroline-5-Carboxylate
Proline
NAD(P)H + H
+
NAD(P)
+
H
2
O

Arginine
(N-Acetylglutamate Synthase)
+
H
3
N C COO

CH
2
CH
2
COO

H
Glutamate
Acetyl–CoA CoASH
N-Acetylglutamate
Synthase
N
H
C COO

CH
2
CH
2
COO

H
C
O
H
3
C
N -Acetylglutamate

Arginine (continued)
(Acetylglutamate Kinase)
ATP ADP
N
H
C COO

CH
2
CH
2
COO

H
C
O
H
3
C
N -Acetylglutamate
Acetylglutamate
Kinase
N
H
C COO

CH
2
CH
2
C
H
C
O
H
3
C
O O P
O
O

O

N -Acetylglutamate-5-P

Arginine (continued)
(N-Acetyl--glutamyl-P Reductase)
N
H
C COO

CH
2
CH
2
COO P
H
C
O
H
3
C
N -Acetylglutamate-5-P
NAD(P)
+
+
P
i
N-Acetyl- γ-glutamyl P
Reductase
N
H
C COO

CH
2
CH
2
C
H
C
O
H
3
C
H O
N -Acetylglutamate-5-
Semialdehyde
NAD(P)H
+
H
+

Arginine (continued)
(N-Acetylornithine -Aminotransferase)
N
H
C COO

CH
2
CH
2
C
H
C
O
H
3
C
H O
N -Acetylglutamate-5-
Semialdehyde
Glu α KG
N-Acetylornithine
γ-Aminotransferase
N
H
C COO

CH
2
CH
2
CH
2
H
C
O
H
3
C
NH
3
+
N -Acetylornithine

Arginine (continued)
(Acetylornithine Deacetylase)
N
H
C COO

CH
2
CH
2
CH
2
H
C
O
H
3
C
NH
3
+
N -Acetylornithine
Acetylornithine
Deacetylase
H
2
O CH
3
COO

+
H
3
N C COO

CH
2
CH
2
CH
2
H
NH
3
+
Ornithine

Arginine (continued)
(Acetylornithine:Glutamate Acetyltransferase)
N
H
C COO

CH
2
CH
2
CH
2
H
C
O
H
3
C
NH
3
+
N -Acetylornithine
Acetylornithine:
Glutamate
Acetyltransferase
Glu Acetylglutamate
+
H
3
N C COO

CH
2
CH
2
CH
2
H
NH
3
+
Ornithine

Arginine (continued)
(Ornithine Transcarbamylase)
H
2
NC
O
OP
+
H
3
NCCOO

H
(CH
2
)
3
NH
3
+
+
H
3
NCCOO

H
(CH
2
)
3
NH
C
ONH
2
Ornithine
+
P
i
Citrulline
Carbamyl P
Non-standard amino acids
(not present in proteins)

Arginine (continued)
(Argininosuccinate Synthetase)
+
H
3
N C COO

H
(CH
2
)
3
NH
C
O NH
2
Citrulline
+ C
+
H
3
N COO

H
H
2
C COO

Aspartate
ATP AMP + PP
i
+
H
3
N C COO

H
(CH
2
)
3
NH
C
H
2
N
H
N C
H
COO

H
2
C COO

Argininosuccinate

Arginine (continued)
(Argininosuccinase)
+
H
3
N C COO

H
(CH
2
)
3
NH
C
H
2
N
H
N C
H
COO

H
2
C COO

Argininosuccinate
+
H
3
N C COO

H
(CH
2
)
3
NH
C
H
2
N
NH
2
Arginine
Fumarate
C C
COO

H
H

OOC

Arginine Catabolism
(Microorganisms)
+
H
3NCCOO

H
(CH
2)
3
NH
C
H
2
N NH
2
+
H
3NCCOO

H
(CH
2)
3
NH
3
+
+
H
3NCCOO

H
(CH
2)
2
CHO
+
H
3NCCOO

H
(CH
2)
2
COO

H
2
O Urea
Arginase
Ornithine
Arginine
aKG Glu
Ornithine-δ-
Aminotransferase
Glutamate-5-
Semialdehyde
NAD(P)
+
+ H
2
O
NAD(P)H + H
+
Glutamate
Glutamate
Semialdehyde
Dehydrogenase

Regulation of Arginine
Metabolism

Arginine Metabolism in Microorganisms
(Linear Biosynthetic Pathway)
AcGSA AcOrn Orn Cit
CAP
CPS
OTC
AcGluPAcGlu
OTC
Glu
AcCoACoA
ASA Arg
Biosynthetic Steps
Enzymes
Arginine
AGK

Arginine Metabolism in Microorganisms
(Cyclic Biosynthetic Pathway)
AcGSA AcOrn Orn Cit ASA Arg
CAP
CPS
OTC
AcGluP
OTC
AcGluGlu
AGS
AGK
Biosynthetic Steps
Enzymes
Arginine
AOGAT

Arginine Metabolism in Microorganisms
(Polyamines)
ADCAUH
Cit ASA Arg
OTC
ODC
Orn
CAP
CPS
AcOrnAcGSAAcGluP
OTC
AcGluGlu
AGS
AGK
Biosynthetic Steps
Enzymes
Arginine
AOGAT
Polyamines

Arginine Metabolism in Microorganisms
(Catabolism)
ADCAUH
Cit ASA Arg
OTC
AGA
ODC
Orn
CAP
CPS
AcOrnAcGSA
P5CA
AcGluP
OTC
AcGluGlu
AGS AGK
Biosynthetic Steps
Enzymes
Arginine
AOGAT
PolyaminesGSA
Catabolic Steps
OTAP5CADH

Control of Arginine
Metabolism
Patterns of Regulation

Arginine Metabolism in Escherichia coli
(Properties)
•Scattered genes (arginine regulon)
•Linear biosynthetic pathway
–Acetylglutamate synthase (AGS)
–Acetylornithinase (AO)
•No catabolic pathway
•Single Carbamyl-P synthetase (CPS)
•Alternative pathway for polyamine synthesis
–Ornithine Decarboxylase (ODC) or
–Arginine Decarboxylase (ADC) and Agmatine Ureohydrolase (AUH)

Arginine Metabolism in Escherichia coli
(Reactions)
ODC
AcGSA AcOrn Orn Cit
CAP
CPS
OTC
Asp
ATC
AcGluPAcGlu
OTC
Glu
AcCoACoA
H
2
OAcOH
ASA
UMP (UTP, CTP)
AUH
Arg
ADC
Polyamines
AGS AGK
Pyrimidines
Biosynthetic Steps
Catabolic Steps
Enzymes
Arginine
AO

Regulation of Enzyme Amount
(long-term regulation)
•Biosynthetic enzymes: repression by
arginine
•CPS: cumulative repression (tandem
promoters)
–Arginine
–Pyrimidines
•ADC and AUH: induction by arginine

Regulation of Enzyme Activity
(short-term regulation)
•Ornithine synthesis: fbi AGS
(no ornithine)
•CAP synthesis (CPS)
–Feedback inhibition by UMP
–Activation by ornithine
•OTC (no control): no ornithine
•Polyamines: ADH and AUH

Arginine Metabolism in Bacillus subtilis
(Properties)
•Linear pathway
•Inducible “arginase” pathway
(no urease)
•Two CPS’s

Arginine Metabolism in B. subtilis
(Reactions)
ODC
AcGSA AcOrn Orn Cit ASA Arg
CAP
CPS-A
CPS-P
OTC
Asp UMP (UTP, CTP)
ATC
AcGluPAcGlu
OTC
Glu
Polyamines
AGA
AGS AGK
Pyrimidines
GSA
Biosynthetic Steps
Catabolic Steps
Enzymes
Arginine

Regulation of Enzyme Amount
(long-term regulation)
•Biosynthetic enzymes: repression by
arginine
•CPS
–Repression of CPS-A by arginine
–Repression of CPS-P by pyrimidines
•Arginase: induction by arginine
–Inducer = arginine
–Nitrogen catabolite repression

Regulation of Enzyme Activity
(short-term regulation)
•Ornithine synthesis: fbi of AGS
•CAP synthesis (CPS-A and CPS-P)
–Feedback inhibition of CPS-P by UMP
–Feedback inhibition of CPS-A by Arg
•OTC: inhibition by arginase (+arg)
•Polyamines: Ornithine Decarboxylase
(ODC)

Arginine Metabolism in Pseudomonas aeruginosa
(Properties)
•Cyclic pathway
•Inducible “arginase” pathway
•Single CPS

Arginine Metabolism in Pseudomonas aeruginosa
(Reactions)
ODC
AcGSA AcOrn Orn Cit ASA Arg
CAP
CPS
OTC
Asp UMP (UTP, CTP)
ATC
AcGluP
OTC
AcGluGlu
Polyamines
AGA
AGS AGK
Pyrimidines
GSA
Biosynthetic Steps
Catabolic Steps
Enzymes
Arginine

Regulation of Enzyme Amount
(long-term regulation)
•Biosynthetic enzymes: repression by
arginine
•CPS: cumulative repression by arginine
and pyrimidines
•Catabolic enzymes: induction by
arginine

Regulation of Enzyme Activity
(short-term regulation)
•Ornithine synthesis: fbi of AGS and AGK
•CAP synthesis (CPS)
–Inhibition by UMP
–Activation by ornithine
•OTC: inhibition by arginine
•Polyamines: Ornithine Decarboxylase (ODC)
Tags