Likelihood in General
In general, suppose the observed data(Y1,Y2, . . . ,Yn)have a joint
probability distribution with some parameter(s) calledθ
P(Y1=y1,Y2=y2, . . . ,Yn=yn)=f(y1,y2, . . . ,yn|θ)
Thelikelihood functionfor the parameterθis
ℓ(θ|data)=ℓ(θ|y1,y2, . . . ,yn)=f(y1,y2, . . . ,yn|θ).
•Note the likelihood function regards the probability as a
function of the parameterθrather than as a function of the
datay1,y2, . . . ,yn.
•If
ℓ(θ1|y1, . . . ,yn)> ℓ(θ2|y1, . . . ,yn),
thenθ1appears more plausible to be the true value ofθthan
θ2does, given the observed datay1, . . . ,yn.
15