An Introduction to HDTV Principles-Part 1

mohieddin.moradi 563 views 177 slides Jan 22, 2021
Slide 1
Slide 1 of 240
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240

About This Presentation

An Introduction to HDTV Principles-Part 1


Slide Content

Dr. Mohieddin Moradi
[email protected]
Dream
Idea
Plan
Implementation
1

2
https://www.slideshare.net/mohieddin.moradi/presentations

−SDTV Overview
−HDTV Standards and Definitions
−Genlockand Synchronization
−The Color Bars Test Signal Specifications and Applications
−Up, Down & Cross Converting
−Sampling, Fourier Transform, Aliasing and MoirePattern
−Interlacing and De-interlacing
−Video Scaling and Edge Enhancement
−Frame Rate Conversion
−Signal Quality in HDTV Production and Broadcast Services
−HD Cables and Connectors, Some Production Issues
Outline
3

4

Field, Frame, Progressive, Interlace
−Continuousscaniscalledaprogressivescan.
−Progressivescanstendtoflickerfor25fps.
−Televisionsplitseachframeintotwoscans.
•Onefortheoddlinesandanotherfortheevenlines.
•Eachinterlacedscancalledafield.
•Thereforeoddlines(oddfield)+evenlines(evenfield)=1frame.
−Thisiscalledaninterlacedscan.
Interlacebenefits:
I.Theneededbandwidthforoddlines(oddfield)+evenlines(evenfield)isequaltotheneededbandwidthforoneframe
(ex:50i/25p).
II.Interlacedscansflickeralotlessthanprogressivescans(ex:50i/25p).
5
1
st
field: odd field 2
nd
field: even field
One frame
Interlace Scanning

Standard Monochrome Signals
6
CRT
t
–Theterm'monochrome'describes'one-colour',butin
videothetermmeans'nocolour',or'blackandwhite'.
−Firstcommercialstandardswere60lines.
−Original‘highdefinition’is405linesmonochrome.
−Televisionistransmittedandrecordedasframes.
•Similartofilm.
−Eachframeisscannedinthecameraorcamcorder.
•Thisiscalledarasterscan.
•Rasterscanscanslinebylinefromtoptobottom.
•Eachlineisscannedfromlefttoright.
−SDstandardswere525and625lines.
•Halfthenumberoflinesineachfield.
•Signalis“zero”forblack.
•Signalincreasesasthebrightnessincreases.
Raster (Odd lines)

Standard Monochrome Signals
7t
A line:
Horizontal blanking + Active line
•Horizontal blanking: the horizontal flybacklines
•Active line: active picture (vision line, TV line)
A field (frame):
Horizontal blanking +Active picture +Vertical blanking
•Active picture: active lines within the picture
•Vertical blanking: flybacklines that are not seen
CRT
Raster (Odd lines)
Trace ⇒ Active Line
Retrace ⇒Horizontal flybackLine, Horizontal blanking (interval)
Start of
a line
End of
a line
Vertical flybackLine
(Vertical blanking interval)
(Field blanking)

Standard Monochrome Signals
8
624
625
21
1
22
23
2
313
335
334
314
Vertical blanking interval
lines
before field
1
Vertical blanking
interval
lines before
field
2
623
311
312
(Active Lines)
(Active Lines)
21
24
1
22
23
310
311
313
335
336
623
624
625
2
309
312
334
337
622
314
Field 2
Field 1
Field 2 Vertical Blanking Interval
Field 1 Vertical Blanking Interval

621
308 309 310 311 312 313 314 315 316 317 318 319 320 333 334 335 336 337 338
622 623 624 625 1 2 3 4 5 6 7 8 21 22 23 24 26259
Field 2 Field 1
Field 1 Field 2
Field blanking
Field blanking
20
Y
video
signal
Line number
Y
video
signal
Line number 332321 9
0 V
Standard Monochrome Signals
0 V

Synchronization Pulses (Sync Pulses)
10
V-sync pulse
V-sync pulse
H-sync pulse
H-sync pulse
−Horizontal sync in the horizontal blanking interval locks the picture horizontally
−Vertical sync in the vertical blanking interval locks the picture vertically
Camera TV

621
308 309 310 311 312 313 314 315 316 317 318 319 320 333 334 335 336 337 338
622 623 624 625 1 2 3 4 5 6 7 8 21 22 23 24 26259
Field 2 Field 1
Field 1 Field 2
Field blanking
Field blanking
20
Y
video
signal
Line number
Y
video
signal
Line number 332321 11
0 V
0 V
Synchronization Pulses (Sync Pulses)
Horizontal Synchronizing Pulse
(H-sync pulse)

621
308 309 310 311 312 313 314 315 316 317 318 319 320 333 334 335 336 337 338
622 623 624 625 1 2 3 4 5 6 7 8 21 22 23 24 26259
Field 2 Field 1
Field 1 Field 2
Field blanking
Field blanking
20
Y
video
signal
Line number
Y
video
signal
Line number 332321 12
0 V
0 V
Synchronization Pulses (Sync Pulses)
Horizontal Synchronizing Pulse
(H-sync pulse)
Vertical Synchronizing Pulse Sequence
(V-sync pulse)

21
24
Vertical Blanking, Digital SDTV
1
22
23
310
311
313
335
336
623
624
625
2
309
312
334
337
622
314
Field 2
Field 1
13
SDI Field Line 525 Line 625 Line
Active Video 1 20-236 23-310
Field Blanking 1 4-19, 264-265 1-22,311-312
Active Video 2 283-526 336-623
Field Blanking 2 1-3, 266-282 624-625, 313-335

End of Active Video (EAV) & Start of Active Video (SAV) in Digital SDTV
14
Header : 3FFh, 000h,000h
EAV SAV
Start of new line
End of previous line621
308 309 310 311 312 313 314 315 316 317 318 319 320 333 334 335 336 337 338
622 623 624 625 1 2 3 4 5 6 7 8 21 22 23 24 26259
Field 2 Field 1
Field 1 Field 2
Field blanking
Field blanking
20
Y
video
signal
Line number
Y
video
signal
Line number 332321
Start of new line
End of previous line

15
Header : 3FFh, 000h,000h
NTSC Waveform
Black Level (Set up)
7.5 IRE
Color Bust Location
(9 Cycles)
Horizontal timing
reference in NTSC.
Mid point of leading
edge of H sync
SDI
Line
Start
NTSC
Line
Start
SDI Waveform
Black Level (Set up)
040 Hex
SDI Data
Horizontal Timing
Reference in SDI
Negative pulse caused by failing
to Black Clip the luminance
H Ancillary period.
Embedded audio
location.
(none shown)
EAV SAV
End of Active Video (EAV) & Start of Active Video (SAV) in Digital SDTV

Timing Reference Signal (TRS) Codes in Digital SDTV
16
Header : 3FFh, 000h,000h
E
A
V
S
A
V
−The“xyz”wordisa10-bitwordwiththetwoleastsignificantbitssettozero
tosurvivean8-bitsignalpath.Containedwithinthestandarddefinition
“xyz”wordarefunctionsF,V,andH,whichhavethefollowingvalues:
•Bit8–(F-bit):0forfieldoneand1forfieldtwo
•Bit7–(V-bit):1inverticalblankinginterval;0duringactivevideolines
•Bit6–(H-bit):1indicatestheEAVsequence;0indicatestheSAVsequence

17
Timing Reference Signal (TRS) Codes in Digital SDTV
SAV EAV

Timing Reference Signal (TRS) Codes
18
•Bit8–(F-bit):
0forfieldoneand1forfieldtwo
•Bit7–(V-bit):
1inverticalblankinginterval;0duringactive
videolines
•Bit6–(H-bit):
1indicatestheEAVsequence;0indicatesthe
SAVsequence

VANC
HANC
Ancillary (ANC) Data Space in Digital SDTV
19

VANC VANC
HANC HANC
Ancillary (ANC) Data Space in Digital SDTV
20

21

Why HD?
22

Why HD?
−SD and HD pictures looks similar on a small screen.
−how a HD picture looks on a big screen?
−how a SD picture looks on a big screen?
HD picture on a big screen SD picture on a big screen
23

Widescreen
16:9 aspect ratio
4:3 aspect ratio
Why HD?
24

Benefits of HD
−Higherresolution(4timesofStandardDefinitionTV).
−Widerpicture(Betteron-screenlook,Widescreen16:9aspectratio).
−Bettersound.(5.1-channelDolbyDigitalsurroundsound).
−Newrevenueopportunities.
−Significantcostsavingpotentialoverfilm.
•(Designedtobecomparableinqualitytoa16mmFilm).
−Additionaldata
−Easytointerfacewithcomputers.
−Widercolorgamut.
−Copyrightprotection.
−HDcontentcanbesharper.
−HDcontentcangreatercolordepth.
−TheimageinmanyHDcamerasstartsas12bitcolor(4096levelsofgrey-percolorchannel).
•TheStandardis8bitcolorontape(256levelsofgrey-percolorchannel).
−HDisgrateinsidetheoperating(surgery)area.
25

Worldwide HD Broadcasting
(EBU technical review –July 2004)
26
John Ive
Sony Europe –PSE

Worldwide HD Broadcasting
(EBU technical review –July 2004)
27
John Ive
Sony Europe –PSE

Spatial Resolution
28

Spatial Resolution
29

Spatial Resolution
30
SD
HD

Spatial Resolution
31

PAL: 720x576 = 414,720 Pixels/Frame HD: 1920x1080 = 2,073,600 Pixels/Frame
Spatial Resolution
32
When the lines get so thin that they can no longer be seen as individual lines then resolution has reached its limit.
0.4 MP 2 MP
33.5 cycles
per image width
6.5 cycles
per image width
1.5 cycles
per image width
33.5 cycles
per image height
6.5 cycles
per image height
1.5 cycles
per image height
HD: 1280x720 = 921,600 Pixels/Frame

ON
Spatial Resolution
33

Spatial Resolution
34

Viewing Angle Limit
ViewingAngleLimit,MinimumVisualAngle,MinimumAngleofResolution()
−Minimumangleinwhichhumaneyecandistinguishtwoisolatedpoints⇒about0.5to1minuteofarcforhealthyeye
⇒1minuteofarc(fornormalvisionandwithanappropriatebrightnessandcontrastvalues)
−Ex:3mdistance
35
??????= 1 arc minute=0.017 degrees
??????
1mm
3m
(1°= 60')
??????= 1 arc minute=0.017 degrees

−FundamentalTVResearchwasdoneattheJapanBroadcastingCorporation(NHK).
−Showedviewerspositionthemselvessothesmallestdetailsubtendsanangleofonearcminute(thelimitfornormal
vision).
−Closerthanthis,youcanseescanlines/pixels,furtherawayandthepicture’stoosmall.
−Takingthisresultasastartingpoint,itwaseasytocalculatetheoptimalviewingdistanceforanyscanningstandard.
36
Distance is 3 screen heights
HD
16
91080
lines
32 º
SD
4
3
Distance is 6 screen heights
13º
4K
Distance is 1.5 screen height
2160
lines
16
9 58 º
Minimum Visual Angle: ??????= 1 arc minute=0.017 degrees
Optimal Viewing Angle and Viewing Distance

−SD Television is traditionally 4:3
•Non-square pixels
−SD Widescreen Television is 16:9
•16x9 SD is a compromise
•Letterboxed image
•Anamorphic squeeze and stretch
−High Definition is always 16:9
•Square pixels.
Aspect Ratio
37

Aspect Ratio
38

Aspect ratio Description
1.33:1
35mmoriginalsilentfilmratio,commonlyknowninTVandvideoas4:3.AlsostandardratioforMPEG-2videocompression.
Itisthestandard16mmandSuper35mmratio.
1.37:1
35mmfull-screensoundfilmimage,nearlyuniversalinmoviesbetween1932and1953.
OfficiallyadoptedastheAcademyratioin1932byAMPAS.Rarelyusedintheatricalcontextnowadays,butoccasionallyused
forothercontext.
1.43:1
IMAXformat.Imaxproductionsuse70mmwidefilm(thesameasusedfor70mmfeaturefilms),butthefilmrunsthroughthe
cameraandprojectorsideways.Thisallowsforaphysicallylargerareaforeachimage.
1.50:1 Theaspectratioof35mmfilmusedforstillphotography.Usuallycalled3:2.AlsothenativeaspectratioofVistaVision.
1.56:1
Widescreenaspectratio14:9.Oftenusedinshootingcommercialsetc.asacompromiseformatbetween4:3(12:9)and16:9,
especiallywhentheoutputwillbeusedinbothstandardTVandwidescreen.
Whenconvertedtoa16:9frame,thereisslightpillarboxing,whileconversionto4:3createsslightletterboxing.
1.66:1
35mmOriginallyaflatratioinventedbyParamountPictures,nowastandardamongseveralEuropeancountries;nativeSuper
16mmframeratio.(5:3,sometimesexpressedmoreaccuratelyas"1.67".)
1.75:1 Early35mmwidescreenratio,primarilyusedbyMGMandWarnerBros.between1953and1955,andsinceabandoned.
1.78:1
Videowidescreenstandard(16:9),usedinhigh-definitiontelevision,oneofthreeratiosspecifiedforMPEG-2videocompression.
Alsousedinsomepersonalvideocameras.
1.85:1
35mmUSandUKwidescreenstandardfortheatricalfilm.
Usesapproximately3perforations("perfs")ofimagespaceper4perfframe;filmscanbeshotin3-perftosavecostoffilmstock.
Aspect Ratio
39

Aspect ratio Description
2.00:1
OriginalSuperScoperatio,alsousedinUnivisium.
UsedasaflatratioforsomeAmericanstudiosinthe1950s,abandonedinthe1960s,butrecentlypopularizedbytheRedOne
camerasystem.
2.20:1 70mmstandard.OriginallydevelopedforTodd-AOinthe1950s.2.21:1isspecifiedforMPEG-2butnotused.
2.35:1
35mmanamorphicpriorto1970,usedbyCinemaScope("'Scope")andearlyPanavision.
Theanamorphicstandardhassubtlychangedsothatmodernanamorphicproductionsareactually2.39,butoftenreferredtoas
2.35anyway,duetooldconvention.
(Notethatanamorphicreferstothecompressionoftheimageonfilmtomaximizeanareaslightlytallerthanstandard4-perf
Academyaperture,butpresentsthewidestofaspectratios.)
2.39:1
35mmanamorphicfrom1970onwards.Sometimesroundedupto2.40:1OftencommerciallybrandedasPanavisionformator
'Scope.
2.55:1
OriginalaspectratioofCinemaScopebeforeopticalsoundwasaddedtothefilmin1954.
ThiswasalsotheaspectratioofCinemaScope55.
2.59:1 Cineramaatfullheight(threespeciallycaptured35mmimagesprojectedside-by-sideintoonecompositewidescreenimage).
2.66:1
FullframeoutputfromSuper16mmnegativewhenananamorphiclenssystemhasbeenused.
Effectively,animagethatisoftheratio2.66:1issquashedontothenative15:9aspectratioofaSuper16mmnegative.
2.76:1
MGMCamera65(65mmwith1.25xanamorphicsqueeze).
Usedonlyonahandfuloffilmsbetween1956and1964,suchasBen-Hur(1959).
4.00:1 Polyvision,three35mm1.33imagesprojectedsidebyside.UsedonlyonAbelGance'sNapoléon(1927).
Aspect Ratio
40

PsF(Progressive segmented Frames)
41
Field 1
Field 2
Field 1
Field 2
Frame 1
Frame 2
Recording interlaced 25/i Recording progressive 25/p
Frame 1
Frame 2

PsF(Progressive segmented Frames)
42
Field 1
Field 2
Field 1
Field 2
Frame 1
Frame 2
Frame 1
Frame 2
Segment 1 Segment 2
Segment 1 Segment 2
Splitting the progressive frame into two segments

PsF(Progressive segmented Frames)
43
Field 1
Field 2
Field 1
Field 2
Frame 1
Frame 2
25/i
Transporting as
interlaced video
Frame 1
Frame 2
Segment 1
Segment 1
25 PsF
Transporting as
interlaced video
Segment 2
Segment 2
•Theprogressivevideois
transportedwithtwo
segmentsforeachframe.
•Bothsegmentsareparts
ofoneprogressiveframe,
recordedasthesame
time.
•Duringplayback both
segmentsarecombined
tooneprogressiveimage
again,node-interlacing
needed!

PsF(Progressive segmented Frames)
44
Field 1
Field 2
Field 1
Field 2
Frame 1
Frame 2
Frame 1
Frame 2
25/i 25 PsF
Playback as
interlaced video
Playback as
progressive video

−Progressive frame split into 2 segments.
•To avoid interlace issues half a frame is called a segment
•Can be shown on an interlaced monitor.
•Both segments have same image.
First segment has all the oddlines.
Second segment has all the evenlines.
−Segment rate is twice the frame rate
−Soot progressivebut record interlace
−What is recorded to tape is a segment
−Still playback from tape is a segment
−Hence: 24 Progressive segmented Frame (24PsF)
−Easier processing.
PsF(Progressive segmented Frames)

−Ithasbeenoriginatedtoretainthecompatibilityofprogressiveframeswithinterlacedsignalsrepresented
bythemajorHDTV/SDTVformatsemployed.
–Completeprogressivepictureframesfromacquisitiondevicesaredividedintotwosegmentsandtravel
throughtheHDSDIbasebandinterfaceinthesamemannerasaninterlacedsignal.
–Thesearethenreconstructedintofullprogressiveframesatthereceivingdevice.
–Althoughthesegmentedsignalstructureresemblesaninterlacedsignal,itshouldNOTbeconfusedwith
interlaceimages.
Justlikefilm
Same‘judder‘asfilm
Videoequivalentoffilm
PsF(Progressive segmented Frames)
46

47
PsF(Progressive segmented Frames)BT. 2-010709-A
Progressive capture Digital interface
Progressive
Active line 1 mapped to total line 42
Active line 1080 mapped to total line 1121
Segmented frame
Active line 1, 3.... 1079 mapped to
total line 21, 22.... 560
Active line 2, 4.... 1080 mapped to
total line 584, 585.... 1123
Progressive picture/image
information
24/25/30P frames/s
1920 1080 CIF
Progressive Capture Digital Interface
−Incaseswhereaprogressivecapturedimageistransportedasasegmentedframe,orasegmentedframesignalis
processedinaprogressiveformat,thefollowingrulesshallbeobserved:
•linenumberingfromthetopofthecapturedframetothebottomofthecapturedframeshallbesequential;
•activeline1andactiveline1080oftheprogressivecapturedimageshallbemappedontototalline42andtotalline1121,respectively,ofthe1125total
lines;
•oddactivelinesoftheprogressivecapturedimage(1,3,...,1079)shallbemappedontototallines21through560ofthesegmentedframeinterface;
•evenactivelinesoftheprogressivecapturedimage(2,4,...,1080)shallbemappedontototallines584through1123ofthesegmentedframeinterface.
−Withtheserules,segmentedframetransporthasthesamelinenumberingasthatofinterlacetransport.

There are three factors in defining High Definition formats
Resolution
1. 1920 ×1080
2. 1280 ×720
Scanning method (i/p)
1. Interlaced
2. Progressive
Frame rate (fps)
1. 23.98 (24)
2. 25
3. 29.97 (30)
4. 50
5. 59.94 (60)
High Definition Formats
48
Resolution
Scanning Method
Frame Rate

The 720 Standard (SMPTE 296M)
49

The 1080 Standard (SMPTE 274M)
50

The 1080/1250 standard (SMPTE 295M)
The 1035 standard (Analogue interface : SMPTE 240M) (Digital interface : SMPTE 260M)
The 1080 and 1035 Standards (SMPTE 259M, SMPTE 240M)
51

1080i vs. 1080p vs. 720p
1080i
–Widelyusedformatwhichisdefinedas1080lines,1920pixelsperline,interlacescan.
–The1080istatementalonedoesnotspecifythefieldorframeratewhichcanbe:
25or30fps
50or60fps
1080p
–1080x1920sizepictures,progressivelyscanned.Frameratescanbe:
24,25,30,50,or60fps
720p
–1280x720sizepictureprogressivelyscanned.
24,25,30,50,or60fps
−Progressivescanatahighpicturerefreshrate:wellportrayactionsuchasinsportingeventsforsmootherslowmotion
replays,etc.
In Displays
In Displays
52
Broadcast: HD

Four image formats –spectral limits relative to 1920 x 1080 x 50p
1080i vs. 1080p vs. 720p
53

Frames Rates
HD will work at many frame rates and modes
23.98 , 24 , 25 , 29.97 , 30 , 50 , 59.94 , 60
US Europe & ME Film
23.98p 25p 23.98p
29.97p 50i 24p
59.94i
24p is considered the universal mastering format.
54

Full HD Ready and HD Ready 1080 logos
The “HD Ready” logo
−Set up by domestic TV equipment manufacturers (Display, projectors, computer monitors).
−Guarantee of a minimum level of quality.
−The output should be 720p to get the HD Ready logo.
−HD Ready logo requires certain minimum specifications.
Display resolution ≥ 720 lines
Must have the following inputs
• 1080i / 50Hz & 60Hz
• 720p / 50Hz & 60Hz
Analogue & digital interfaces
• DVI or HDMI with HDCP for secure copy protection.
• Analogue component Y, Pr, Pb.
−Not entirely high definition, but a good step forward!
“Full HD Ready” or “HD Ready 1080” logos
−When the HD Ready logo was in popular use, new logos are proposed to let the public know if equipment exceeds the minimum
specification of the original logo.
TV Type
Display
Resolution
Pixels
SDTVs 720 H x 480 V
Less than 1
Million pixels
HD Ready TVs 1366 H x 768 V 1 Million pixels
Full HD TVs 1920 H x 1080 V2 Million pixels
55
The‘HDready’logoguarantees(amongst
otherthings)native16:9aspectratioanda
resolutionofaminimumof720lines.
The‘HDready1080p’logoguarantees
(amongstotherthings)native16:9aspect
ratioandaresolutionofaminimumof1080
lines.

Image Formats for High Definition
56

Basic Guidelines
1920x1080 50P,60p
Delivers best results
TV (Natural look)
Interlaced, 50i, 60i
Film look. Not necessary for Cinema
Progressive, 24p, 25p, 30p, 50p, 60p
Cinema release
24p
Fast action (Sports)
Progressive, 50p, 60p
When the target market is NTSC
23.98, 29.97, 59.94
57

40ms 40ms 40ms
58
20ms 20ms
20ms 20ms
Scanning TechniquesPros and Cons

40ms 40ms 40ms
59
Scanning TechniquesPros and Cons 1080/25p: Good resolution ,not sooth movement portrayal
720/50p :Low resolution ,good movement portrayal

40ms 40ms 40ms
60
Scanning TechniquesPros and Cons 1080/25p: Good resolution ,not sooth movement portrayal
720/50p :Low resolution ,good movement portrayal

Inter-fieldflicker
61
Scanning TechniquesPros and Cons

62
Scanning TechniquesPros and Cons
Inter-field flicker

Good motion capture and high
resolution but twice baseband
Band width.
63
Scanning TechniquesPros and Cons
In inter-frame
compressed video, we
have different situation

40ms
1080 progressive frame
•Thisframeisusedby1080/50pand1080/25p.
•1080/50poffers50fullresolutionframespersecondbutattwicethebandwidthofotherscan
types.
•1080/25poffers25fullresolutionframespersecond,savingbandwidthbyreducingthe
numberofframespersecond,andthusreducingmovementcapture.
1080 interlaced and segmented frames
•Thisframeisusedby1080/50iand1080/25psf.
•Althougheachframeisfullresolutionitismadeupfrom2fieldsorsegments.
•Eachfieldandsegmentcontainshalfthelinesofthewholeframe.
•1080/50ioffers50fields,25framespersecond.
•1080/25psfoffers50segmentsand25framespersecond.
720 progressive frame
•Thisframeisusedby720/50p.
•Althoughthereare50framespersecond,maintaininggoodmotioncapturesimilarto
1080/50p,bandwidthissavedbyreducingtheresolutionforeachframefrom1080linesto
720lines.
64
Scanning TechniquesPros and Cons

Scanning TechniquesPros and Cons
System 1080/50P 1080/25PsF 1080/50i 720/50P
Pros •Best system
•All the resolution
•All the action
•Very good for Movies
atchedto movie frame rate.
•Just Film-lock
•Same judder as film
•Best match for
‘normal’ television
•Good movement
portrayal, e.g. for
sport
Cons •Need twice as much
bandwidth, half as many
channels
•Not smooth movement
portrayal
•Fast action may
produceinter-field
flicker
•Not as high
resolution as
others.
65

66
Conversion of R'G'B' into Y', R'-Y', B'-Y'
(Bandwidth-Efficient Method)
700 mV
0 mV
650 mV
-650 mV
551 mV
-551 mV
??????

−??????

�

−??????

??????

700 mV
0 mV
700 mV
0 mV
700 mV
0 mV
??????

??????

�

Matrix

67
Y', R'-Y', B'-Y' Conversion to Y', P'b, P'r
700 mV
0 mV
650 mV
-650 mV
551 mV
551mV
??????

−??????

�

−??????

??????

700 mV
0 mV
350 mV
-350 mV
-350 mV
0 mV
350 mV
0 mV
??????

??????
??????

??????
�

Matrix
??????

�=0.5389(�′−??????′)
??????

�=0.6350(??????

−??????

)
??????

=0.2126??????

+0.7152??????

+0.0722�

ሖ??????

�=�
��=
ሖ�
�−ሖ�
??????
�.����
ሖ??????

�=�
�??????=
ሖ�
??????−ሖ�
??????
�.����

68
Conversion of Y', R'-Y‘, B'-Y‘into Y', C'b, C'r
700 mV
0 mV
650 mV
-650 mV
551 mV
-551 mV
??????

−??????

�

−??????

??????

700 mV
0 mV
350 mV
-350 mV
-350 mV
0 mV
350 mV
0 mV
??????

??????
??????

??????
�

700 mV
0 mV
700 mV
0 mV
350 mV
700 mV
0 mV
350 mV
??????

�
??????

�
�

??????=�������
??????

+���
�
�=������×�.����(�′−??????′)+���×�
�
�=������×�.����(??????′−??????′)+���×�
??????

�=0.5389(�′−??????′)
??????

�=0.6350(??????

−??????

)
CbY CrY CbY CrY Y
10 Parallel
Bits
74.25 MHz
37.125 MHz
37.125 MHz
10 Bit Parallel Samples at 148.5 MB/s

69
Conversion of Y', R'-Y‘, B'-Y‘into Y', C'b, C'r
700 mV
0 mV
650 mV
-650 mV
551 mV
-551 mV
??????

−??????

�

−??????

??????

700 mV
0 mV
700 mV
0 mV
350 mV
700 mV
0 mV
350 mV
??????

�
??????

�
�

700 mV
0 mV
350 mV
-350 mV
-350 mV
0 mV
350 mV
0 mV
??????

??????
??????

??????
�

??????=�������
??????

+���
�
�=������×�.����(�′−??????′)+���×�
�
�=������×�.����(??????′−??????′)+���×�
??????

�=0.5389(�′−??????′)
??????

�=0.6350(??????

−??????

)
CbY CrY CbY CrY Y
10 Parallel
Bits
74.25 MHz
37.125 MHz
37.125 MHz
10 Bit Parallel Samples at 148.5 MB/s

70
Conversion of Y', R'-Y‘, B'-Y‘into Y', C'b, C'r
700 mV
0 mV
700 mV
0 mV
700 mV
0 mV
??????

??????

�

700 mV
0 mV
650 mV
-650 mV
551 mV
-551 mV
??????

−??????

�

−??????

??????

??????=�������
??????

+���
�
�=������×�.����(�′−??????′)+���×�
�
�=������×�.����(??????′−??????′)+���×�
??????

�=0.5389(�′−??????′)
??????

�=0.6350(??????

−??????

)
CbY CrY CbY CrY Y
10 Parallel
Bits
74.25 MHz
37.125 MHz
37.125 MHz
10 Bit Parallel Samples at 148.5 MB/s
700 mV
0 mV
700 mV
0 mV
350 mV
700 mV
0 mV
350 mV
??????

�
??????

�
�

19
22
1
20
21
560
561
563
564
583
584
1123
1124
1125
2
559
562
582
585
1122
565
Field 2
Field 1
19
42
1
41
42
1121
1122
1124
2
1120
1123
Frame
1125
71
Active Lines and Vertical Blanking Interval (SMPTE 274M)

72
1124
1125
18
1
19
20
2
564
583
582
565
Vertical blanking interval
lines
before field
1
Vertical blanking
interval
lines before
field
2
562
563
(Active Lines)
(Active Lines)
Field 2 Vertical Blanking Interval
Field 1 Vertical Blanking Interval
19
22
1
20
21
560
561
563
564
583
584
1123
1124
1125
2
559
562
582
585
1122
565
Field 2
Field 1
561
Active Lines and Vertical Blanking Interval (SMPTE 274M)

73
Analog Representation of HorizontalBlanking Interval (SMPTE 274M)
Pb, Pr
Y

74
Analog Representation of Vertical Blanking Interval (SMPTE 274M)
15
16
0V
2
2
19
43
1
41
42
1121
1122
1124
2
1120
1123
Frame
1125

AnalogCompositeSignal
–TheHorizontalSyncSignaladjuststhescantimingofavideomonitorsotheinputvideosignalis
positionedcorrectlyonthedisplay.
–Analogsignaltransmissionbetweenvideoequipmentcanbesubjecttophenomenaknownas
•jitter
•signalattenuation
•noise
–TheHorizontalSyncSignalisalsosubjecttothesephenomena,whichcanintroducesynchronization
inaccuracies.
–Incompositesignals,thesesynchronizationinaccuraciesareobservedas:
GeometricDistortion
ShiftinthePicture’sPosition
Analog Composite Signal Synchronization
75
⇒Resultinginsignaldegradation

AnalogComponentSignal
–Inanalogcomponentsignals,mentioneddistortionsbecomeevenmorecritical.
–Componentsignalsconsistofthreesignals“Y,R-Y,B-Y”whichneedtobesynchronizedasonesignal
forcorrectdisplay.
–Colourregistration,thatistheoverlayingofthecoloursignals,mustbedoneaccuratelyifcolour
fringingistobeavoided.
–Ifaphaseshiftoccursbetweenthethreesignals⇒thecolorofthepicturewillbedistorted.
–WiththeconventionalH-SYNCsignal(Bi-levelSyncSystem)usedinSDvideo,itisdifficulttoavoidsuch
problems.
–Tosolvethis,theTri-levelSyncSystemwasdeveloped;eliminatingtheaffectsofdistortiontothesync
signal⇒accuratesynchronization
76
Tri-level Sync Signal

Tri-levelSyncSignal
−TheTri-levelSyncSignalreferstotheHorizontalSyncSignal(referto“SynchronizationSignal(Sync
Signal)”)usedinHDsignals.
77
Tri-level Sync Signal

Thefiguresshowanexampleofwhentheamplitude
ofthesyncsignalattenuates.
–WiththeBi-levelSyncSystem,thetimingof
thesyncsignal’slockpointcanslip.
–TheTri-levelSyncSystemusesasymmetrical
syncsignalandlocksthecenterofthesignal.
⇒Thisensuresthatthesamelockpointis
alwaysused,evenwhensignalattenuation
occurs.
–Thisfactisimportantinestablishingasync
systemaccurateenoughforHDvideosignals.
t
t
Tri-level Sync Signal
78

HDVideoSignal
–HigherhorizontalresolutionsrequiremuchfasterscanningspeedsoftheR,G,andBsignalstodisplay
animage.
–Thefasterthescanningspeed,themoredifficultitbecomestomaintainaccuratesynchronization
(extremelysensitive).
–HDsignalsusecomponentsignals,makingtheuseoftheTri-levelSyncSystemessential.
–However,theTri-levelSyncSignalremainstoplayanimportantrolesincedigitalvideodevicesstilluse
analogreferencesignals.
–Intoday’sdigitalinterfaces,includingthoseusedforbothSDandHD,thetimingsofthevideosignals
aredigitallylockedandautomaticallysynchronizedatthereceivingdevice.
–Thisrelievesthesystemanditsoperatorsfromconcernsaboutinaccuratesynchronization.
Tri-level Sync Signal
79

Wrap-up
−TheTri-levelsignalhasfastrisetimeedges
becauseoftheincreasedbandwidthofHD
providingaccuratetimingedges.
⇒Thesefactorsimprovejitterperformanceand
syncseparation.
−Easierextractionofsimplifiedfieldpulses
−Morerobusttosignalattenuation
−NotetheanalogHDtimingreferencepoint0His
measuredatthe50%pointofthepositiverising
edgeofthetri-levelsync.
80
Tri-level Sync Signal
0.593 µs
0.593 µs
0.593 µs
1.993 µs
3.77 µs (1080/60/i)

Sampling Frequency
74.25 MHz
37.125 MHz
37.125 MHz
148.5MHz (1080i)
Samples
Totals
4
2
2
10 Bit Wide
10 Bit Available
for Other Data
Spatial Sync
Codes
Blanking
Y
Cr
(R-Y)
Cr
(R-Y)
Cb
(B-Y)
E
A
V
S
A
V
E
A
V
1
1920
81
Review of HD-SDI Encoder (SMPTE 274M, 1080i)

EAV
SAV
HD-SDI Line Format
82
Start of new line
End of previous line
SMPTE 292 (HD-SDI) Horizontal Line

EAV
SAV
HD-SDI Line Format
83
–TherelativepositionsofEAVandSAVin
comparisontotheanaloghorizontalline
areshown.
–NotetheanalogHDtimingreferencepoint
0Hismeasuredatthe50%pointofthe
positiverisingedgeofthetri-levelsync.
50% point of the
positive rising edge
SMPTE 292 (HD-SDI) Horizontal Line

84
SMPTE 292 (HD-SDI) Horizontal Line

Timing Reference Signal (TRS) Codes
85
−The“xyz”wordisa10-bitwordwiththetwo
leastsignificantbitssettozerotosurvivean
8-bitsignalpath.
−Containedwithinthestandarddefinition
“xyz”wordarefunctionsF,V,andH,which
havethefollowingvalues:
•Bit8–(F-bit):
0forfieldoneand1forfieldtwo
•Bit7–(V-bit):
1inverticalblankinginterval;0duringactive
videolines
•Bit6–(H-bit):
1indicatestheEAVsequence;0indicatesthe
SAVsequence

VANC
HANC
Ancillary (ANC) Data Space
86

VANC VANC
HANC HANC
Ancillary (ANC) Data Space
87

Vertical Timing Information in Different Formats
Bit8
(F-bit)0forfieldoneand1forfieldtwo
Bit7
(V-bit)1inverticalblankinginterval;0duringactivevideo
lines
Bit6
(H-bit)1indicatestheEAVsequence;0indicatestheSAV
sequence
88

HD-SDI Data Stream Interleaving
Y D
1920
Y D
1921
Y D
1922
Y D
1923
Y D
2636
Y D
2637
Y D
2638
Y D
2639
Y D
1920
Y D
1921
Cb
D
960
Cb
D
961
Cb
D
960
Cb
D
1318 Cb
D
1398
Cr D
60
Cr D
961
Cr D
960
Cr D
1318
Cr D
1398
Y D
0
Y D
1
Y A
0
Y A
0
Cb
D
0
Cb
A
0
Cr A
0
Cr D
0
Y A
706
Y A
707
Cb
A
353
Cr A
353
Y D
1918
Y D
1919
Cb
D
959
Cr D
959
CV CV
Cb
D
959
Cr D
959
Cb
D
0
Cb
D
1
Cr D
0
Cr D
1
Y D
1918
Y D
1919
Y D
0
Y D
1
Y D
2
Y D
3
Y: 720 Cr, Cb: 360 Y: 1920 Cr, Cb: 960
Cb
D
959
Cr D
959
Y D
1918
Y D
1919
89

Header: 3FFh (all bits in the word set to 1), 000h (all 0’s), 000h (all 0’s)
–InHD,boththelumaandchromasignalshaveanEAVandSAVsequencethatismultiplexedtoform
atwenty-bitword.
–ThewidevarietyofHDformatshaveadditionalcodewordsaddedtotheEAVsequence.
–CodewordsLN0andLN1indicatethecurrentlinenumberoftheHDformat
–CodewordsCR0andCR1representacyclicredundancycode(CRC)ofeachHDline
–ThesecodewordsareaddedtoboththelumaandchromacomponentsafterEAV.
HD-SDI Data Stream Interleaving
90
Y D
0
Y D
1
Y A
0
Y A
0
Cb
D
0
Cb
A
0
Cr A
0
Cr D
0
Y A
706
Y A
707
Cb
A
353
Cr A
353
Y D
1918
Y D
1919
Cb
D
959
Cr D
959
CV CV

91
Analog and Digital Representation of HorizontalBlanking Interval (SMPTE 274M)
4 4 4

92
152
162
0V
TRS Codes in Vertical Blanking Interval (SMPTE 274M)

Analog HD Timing Parameters with Selected Digital Relationships in Different Formats
93

Analog HD Vertical Blanking Interval in Different Formats
94

Vertical Timing for Different HD Formats
95

96
G
A D
E
F
-300 mV
+300 mV
700 mV
Reference White
Blanking Level
484T
BC
0H
44T44T 148T
Digital Horizontal Blanking Digital Active Picture
4T 4T 4T
E-8T

6.518??????
9.697??????
35.555??????
25.858??????
720T
2640T
1920T
0.592??????
0.592??????1.993??????
??????=
�
��.����??????
=��.�����
0.05387?????? 9.589?????? 0.05387??????0.05387??????
Horizontal Blanking Interval in 1920×1080/50/I
EAV EAV
SAV
2.585??????7.111??????
9.696 µs
2.586 µs
7.084 µs
0.593 µs
0.593 µs
0.054 µs
35.555 µs
T
1�.����

97
G
D
E
F
700 mV
Reference White
484T
BC
0H
44T44T 148T
Digital Horizontal Blanking Digital Active Picture
4T 4TE-8T
3.259??????
4.848??????
17.777??????
12.929??????
720T
2640T
1920T
0.296??????
0.296??????0.996??????
-300 mV
+300 mV
0.0269?????? 4.795??????
0.0269??????
Horizontal Blanking Interval in 1920×1080/50/P
??????=
�
���.���??????
=�.�����
EAV SAV
1.293??????3.555?????? Frame Frequency
17.777 µs
4.848 µs
1.293 µs
3.55 µs
0.296 µs
0.296 µs
Frame Period
60 60
0.027 µs

4T
0.02��??????
EAV
A
Blanking Level
T
6.����

Horizontal Blanking Interval in Different HD Formats
–TheHDhorizontallineandtherelativetimingintervalsforthe
horizontalblankingintervalandactiveline.
–TherelativepositionsofEAVandSAVincomparisontothe
analoghorizontalline
98
G
A D
E
F
700 mV
Reference White
Blanking Level
BC
0H
Digital Horizontal Blanking Digital Active Picture
4T
E-8T
-300 mV
+300 mV
EAV SAV

EAV
4T 4T

99
BecauseofthewidevarietyofHD
formats,timingintervalscanbedifferent.
Horizontal Blanking Interval in Different HD Formats
A D
-300 mV
+300 mV
700 mV
Reference White
Blanking Level
BC
0H
HorizontalBlankingInterval

100
The Relative Timing Intervals for Different HD Formats

101
The Relative Timing Intervals for Different HD Formats

102
Line and Sampling Information for Different HD Formats

103
Line and Sampling Information for Different HD Formats

104
PAL and NTSC system horizontal interval
SECAM system horizontal interval
Recall, Horizontal Interval in PAL/NTSC and SECAM Systems

�=�.�
??????
??????<&#3627409359;
Itmapsanarrowrangeof
darkinputvaluesintoawide
rangeofoutputvaluesand
viceversa.
BrighterImage
??????>&#3627409359;
Itmapsanarrowrangeof
brightinputvaluesintoawide
rangeofoutputvaluesand
viceversa.
DarkerImage
105
r = [1 10 20 30 40 210 220 230 240 250 255]
s(=0.4) = [28 70 92 108 122 236 240 245 249 253 255]
s(= 2.5) = [0 0 0 1 2 157 176 197 219 243 255]
Gamma, CRT Characteristic
−Plotsofthegamma
equation&#3627408480;=&#3627408464;.&#3627408479;
??????
for
variousvaluesofg(c=
1inallcases).
−Eachcurvewasscaled
independentlysothat
allcurveswouldfitin
thesamegraph.
−Ourinteresthereison
theshapesofthe
curves,notontheir
relativevalues.

106
2.2
0.45
Gamma, CRT Characteristic

Gamma, CRT Characteristic
It is made darker
It is made brighter
107
Camera
Light
Light
Voltage
Voltage
Monitor
Monitor
look much brighter
look much darker

Gamma, CRT Characteristic
look much brighter
look much darker
It is made darker
It is made brighter
108
Camera
Monitor
Camera Monitor
Light
Light
Voltage
Voltage
Light
Light
Voltage
Voltage
Monitor
Monitor
Gamma
Correction
Light (camera)
Light (display)

CRT
Control
Grid
Output
Light
Input voltage
Outputlight
Ideal
Real
Dark areas of a signalBright areas of a signal
Gamma, CRT Characteristic
Itiscausedbythevoltage
tocurrentgrid-driveofthe
CRT(voltage-driven)and
notrelatedtothephosphor
(i.e.acurrent-drivenCRT
hasalinearresponse)
109
CRT Gamma
??????=??????
????????????
??????
??????=2.22
Voltage tocurrent grid-drive CRT
Camera
Light
Light
Voltage
Voltage
Monitor
Monitor
look much brighter
look much darker

CRT
Control
Grid
Light Input
Input voltage
Output light
Camera
O
ut
put
Light
Output voltage
Input light
Input light
Output light
Gamma, CRT Characteristic
Legacysystem-gamma(cascadedsystem)
isabout1.2tocompensate fordark
surroundviewingconditions(??????
&#3627408526;=&#3627409360;.&#3627409362;).
110
ITU-R BT.709 OETF
CRT Gamma
??????=??????
??????
??????
??????
??????=2.22
Camera Gamma
??????=??????
??????
??????
??????
&#3627408464;=0.45
??????
&#3627408516;??????
&#3627408526;=&#3627409359;

–IsitrelatedtoCRTDefect?No!
•Itiscausedbythevoltagetocurrent(grid-drive)of
theCRTandnotthephosphor.
–AmazingCoincidence!
•Thenonlinearityisroughlytheinverseofhuman
lightnessperception.
•CRTgammacurve(grid-drive)nearlymatcheshuman
lightnessresponse,sotheprecorrectedcamera
outputisclosetobeing‘perceptuallycoded’
•IfCRTTVshadbeendesignedwithalinearresponse,
wewouldhaveneededtoinventgammacorrection
anyway!
–Legacysystemgammaisabout1.2tocompensatefor
darksurroundviewingconditions.
–Althoughgamma correctionwasoriginallyintendedfor
compensatingfortheCRT’sgamma,today’scamerasoffer
uniquegammasettings(??????
&#3627408516;)suchasfilm-likegammato
createafilm-likelook.
111
0 0.5 1
0
1
CRT Gamma & SystemCurve
CRTV(k)
GammaCV(k)
0.5
GammaTV(k)
V(k)
CRT gamma (2.4)compared to total
system gamma(1.2).
BT.1886display
Gamma, CRT Characteristic

EOTF, OETF, OOTF
Optical
Electronic
OETF
The CRT EOTF is commonly
known as gamma
Optical
Electronic
EOTF
OOTF (Opto-Optical Transfer Function)
System (total) gamma to adjust the final look of displayed images
(Actual scene light to display luminance Transfer function)
Optical
(linear scene light )
Optical
(linear light output)
112
Same Look
–Opto-ElectronicTransferFunction(OETF):Scenelighttoelectricalsignal
–Electro-OpticalTransferFunction(EOTF):Electricalsignaltoscenelight

–CamerasconvertscenelighttoanelectricalsignalusinganOpto-ElectronicTransferFunction(OETF)
–DisplaysconvertanelectricalsignalbacktoscenelightusinganElectro-OpticalTransferFunction(EOTF)
(NonLinear)
Transmission Medium
Scene
Capture
Scene
Display
113
TheCRTEOTFis
commonlyknown
asgamma.
TheCameraOETFis
commonly known
asinversegamma.
EOTF, OETF, OOTF

Recommendation ITU-R BT.709 (Old) Recommendation ITU-R BT.1886 (In 2011)
Overall Opto-Electronic Transfer
Function at source (OETF)
??????=&#3627409359;.&#3627409358;&#3627409367;&#3627409367;&#3627408499;
&#3627409358;.&#3627409362;&#3627409363;
−&#3627409358;.&#3627409358;&#3627409367;&#3627409367;0.018 < L <1
??????=&#3627409362;.&#3627409363;&#3627409358;&#3627409358;&#3627408499;0 < L < 0.018
where:
L: luminance of the image 0 < L < 1
V: corresponding electrical signal
Reference Electro-Optical Transfer Function (EOTF)at Destination
&#3627408499;=&#3627408514;(&#3627408422;??????????????????+&#3627408515;,&#3627409358;)
??????
L:Screenluminanceincd/m
2
V:Inputvideosignallevel(normalized,blackatV=0,towhiteatV=1)
:Exponentofpowerfunction,γ=2.40
a:Variableforusergain(legacy“contrast”control)
b:Variableforuserblacklevellift(legacy“brightness”control)
Abovevariablesaandbarederivedbysolvingfollowingequations
??????=1??????????????????&#3627408466;&#3627408480;??????=??????
?????? &#3627408462;??????&#3627408465;??????=0??????????????????&#3627408466;&#3627408480;??????=??????
&#3627408437;:
L
W:Screenluminanceforwhite
L
B:Screenluminanceforblack
⇒??????
&#3627408437;=&#3627408462;.&#3627408463;
??????
&#3627408462;??????&#3627408465;??????
??????=&#3627408462;.(1+&#3627408463;)
??????
For content mastered per Recommendation ITU-R BT.709 , 10-bit digital code values “D”
map into values of V per the following equation:
V=(D–64)/876
BT.709
BT.1886
CRT’s already forced the camera
gamma became BT.709
•ITU-RBT.709explicitlyspecifiesareferenceOETFfunctionthatincombinationwithaCRTdisplayproducesagoodimage.
•ITU-RBT.1886in2011specifiestheEOTFofthereferencedisplaytobeusedforHDTVproduction;theEOTFspecificationis
basedontheCRTcharacteristicssothatfuturemonitorscanmimicthelegacyCRTinordertomaintainthesameimage
appearanceinfuturedisplays.
114
Gamma, CRT Characteristic

BT.709 HDTV System Architecture
EOTF
BT.1886
Reference Display
OETF
BT.709
Artistic AdjustCamera
EOTF
BT.1886
View
Reference Viewing Environment
8-10 bit Delivery
Cam Adj.
e.g. Iris
Sensor
Image
Display Adjust
Non-Ref
Display
Non-Reference Viewing Environment
EOTFofthereferencedisplayforHDTVproduction.
•Itspecifiestheconversionofthenon-linearsignalintodisplay
lightforHDTV.
•TheEOTFspecificationisbasedontheCRTcharacteristicsso
thatfuturemonitorscanmimicthelegacyCRTinorderto
maintainthesameimageappearanceinfuturedisplays.
Ex: Toe, Knee
115
(Reference OOTF is cascade of BT.709 OETF and BT.1886 EOTF)
OOTFSDR = OETF709 ×EOTF1886
Reference OETF that in
combination with a CRT
produces a good image

BT.709 HDTV System Architecture
EOTF
BT.1886
Reference Display
OETF
BT.709
Artistic AdjustCamera
EOTF
BT.1886
Creative Intent
View
Reference Viewing Environment
8-10 bit Delivery
Cam Adj.
e.g. Iris
Sensor
Image
Display Adjust
Non-Ref
Display
Non-Reference Viewing Environment
Ex: Toe, Knee
Ex: Knee
Artistic OOTF
If an artistic image “look” different from that produced by the
reference OOTF is desired, “Artistic adjust” may be used
116
OOTFSDR = OETF709 ×EOTF1886
−Thereistypicallyfurtheradjustment(displayadjust)tocompensateforviewingenvironment,displaylimitations,andviewerpreference;this
alterationmayliftblacklevel,effectachangeinsystemgamma,orimposea“knee”functiontosoftcliphighlights(knownasthe“shoulder”).
−InpracticetheEOTFgammaanddisplayadjustfunctionsmaybecombinedintoasinglefunction.
ActualOOTF=OETF(BT.709)+EOTF(BT.1886)+Artisticadjustments+Displayadjustments
EOTFofthereferencedisplayforHDTVproduction.
•Itspecifiestheconversionofthenon-linearsignalintodisplay
lightforHDTV.
•TheEOTFspecificationisbasedontheCRTcharacteristicsso
thatfuturemonitorscanmimicthelegacyCRTinorderto
maintainthesameimageappearanceinfuturedisplays.
Reference OETF that in
combination with a CRT
produces a good image

–Recommendation ITU-RBT.709explicitlyspecifiesareferenceOETFfunctionthatincombinationwithaCRT
displayproducesagoodimage.
–Recommendation ITU-RBT.1886in2011specifiestheEOTFofthereferencedisplaytobeusedforHDTV
production;theEOTFspecificationisbasedontheCRTcharacteristicssothatfuturemonitorscanmimic
thelegacyCRTinordertomaintainthesameimageappearanceinfuturedisplays.
–AreferenceOOTFisnotexplicitlyspecifiedforHDTV.
–ThereisnoclearlydefinedlocationofthereferenceOOTFinthissystem.
Reference OOTF = OETF (BT.709) + EOTF (BT.1886) (cascaded)
–Ifanartisticimage“look”differentfromthatproducedbythereferenceOOTFisdesiredforaspecific
program,“Artisticadjust”maybeusedtofurtheraltertheimageinordertocreatetheimage“look”thatis
desiredforthatprogram.(AnydeviationfromthereferenceOOTFforreasonsofcreativeintentmustoccur
upstreamofdelivery)
Actual OOTF = OETF (BT.709) + EOTF (BT.1886) + Artistic and display adjustments
BT.709 HDTV System Architecture
117

HDTV System with Square Pixel Common Image Format(ITU-R BT.709)
−Thecommonimageformat(CIF)isdefinedtohavecommonpictureparametervaluesindependentofthepicturerate.
−Picturesaredefinedforprogressive(P)captureandinterlace(I)capture.
−Progressivecapturedpicturescanbetransportedwithprogressive(P)transportorprogressivesegmentedframe(PsF)
transport.
−Interlacecapturedpicturescanbetransportedwithinterlace(I)transport.
118
??????= 1 arc minute=0.017 degrees
System Capture(Hz) Transport
60/P 60 or 60/1.001 progressive Progressive
30/P 30 or 30/1.001 progressive Progressive
30/PsF 30 or 30/1.001 progressive Segmented frame
60/I 30 or 30/1.001 interlace Interlace
50/P 50 progressive Progressive
25/P 25 progressive Progressive
25/PsF 25 progressive Segmented frame
50/I 25 interlace Interlace
24/P 24 or 24/1.001 progressive Progressive
24/PsF 24 or 24/1.001 progressive Segmented frame

Opto-electronicconversion
119
??????= 1 arc minute=0.017 degrees
Parameter System Values
Opto-electronic transfer characteristics before non-linear
pre-correction
Assumed linear
Overall opto-electronic transfer characteristics at
source
(1)
V=1.099L
0.45
–0.099 for1L0.018
V=4.500L for0.018>L0
where:
L:luminanceoftheimage0L1
V:correspondingelectricalsignal
Chromaticity coordinates(CIE, 1931) x y
Primary
–Red (R)
–Green (G)
–Blue (B)
0.640
0.300
0.150
0.330
0.600
0.060
Assumed chromaticity for equalprimary signals
(Reference white)
D
65
x y
E
R= E
G= E
B 0.3127 0.3290
(1)
Intypicalproductionpracticetheencodingfunctionofimagesourcesisadjustedsothatthefinalpicturehasthedesiredlook,as
viewed on a reference monitor having the reference decoding functionofRecommendation
ITU-RBT.1886,inthereferenceviewingenvironmentdefinedinRecommendationITU-RBT.2035.
HDTV System with Square Pixel Common Image Format

Picturecharacteristics
Offsetsampling(quincunxsampling)
−Spatialoffsetisamethodusedtoimprovetheluminancehorizontal
resolutionofCCDcameras.
−Obsoletescanningtechniqueinwhichthesamplesofonelineare
offsethorizontallybyone-halfthesamplepitchfromsamplesofthe
previouslineofthefield(orframe).
−Contrastedwithorthogonalsampling,whichisnowubiquitous.
Orthogonalsampling
−Adigitalvideosysteminwhichthesamplesofaframearearranged
spatiallyinarectangulararray.(Distinguishedfromoffsetsampling)
120
Parameter System Values
Aspectratio 16:9
Samplesperactiveline 1920
Samplinglattice Orthogonal
Activelinesperpicture 1080
Pixelaspectratio 1:1 (square pixels)
HDTV System with Square Pixel Common Image Format

121
Parameter System Values
Conceptual non-linear pre-correction of primary signals ??????=&#3627409358;.&#3627409362;&#3627409363;
Derivation of luminance signal ሖ&#3627408492;
??????=&#3627409358;.&#3627409360;&#3627409359;&#3627409360;&#3627409364;ሖ&#3627408492;
??????+&#3627409358;.&#3627409365;&#3627409359;&#3627409363;&#3627409360;ሖ&#3627408492;
&#3627408494;+&#3627409358;.&#3627409358;&#3627409365;&#3627409360;&#3627409360;ሖ&#3627408492;
&#3627408489;
Derivation of colour-difference signal (analogue coding)
ሖ&#3627408492;
&#3627408490;&#3627408489;=
ሖ&#3627408492;
&#3627408489;−ሖ&#3627408492;
??????
&#3627409359;.&#3627409366;&#3627409363;&#3627409363;&#3627409364;
=
−&#3627409358;.&#3627409360;&#3627409359;&#3627409360;&#3627409364;ሖ&#3627408492;
??????+&#3627409358;.&#3627409365;&#3627409359;&#3627409363;&#3627409360;ሖ&#3627408492;
&#3627408494;+&#3627409358;.&#3627409367;&#3627409360;&#3627409365;&#3627409366;ሖ&#3627408492;
&#3627408489;
&#3627409359;.&#3627409366;&#3627409363;&#3627409363;&#3627409364;
ሖ&#3627408492;
&#3627408490;??????=
ሖ&#3627408492;
??????−ሖ&#3627408492;
??????
&#3627409359;.&#3627409363;&#3627409365;&#3627409362;&#3627409366;
=
&#3627409358;.&#3627409365;&#3627409366;&#3627409365;&#3627409362;ሖ&#3627408492;
??????−&#3627409358;.&#3627409365;&#3627409359;&#3627409363;&#3627409360;ሖ&#3627408492;
&#3627408494;−&#3627409358;.&#3627409358;&#3627409365;&#3627409360;&#3627409360;ሖ&#3627408492;
&#3627408489;
&#3627409359;.&#3627409363;&#3627409365;&#3627409362;&#3627409366;
Quantization of RGB, luminance and colour-difference signals(1), (2) ሖ&#3627408491;
??????=&#3627408496;&#3627408501;??????[&#3627409360;&#3627409359;&#3627409367;ሖ&#3627408492;
??????+&#3627409359;&#3627409364;.&#3627409360;
&#3627408527;−&#3627409366;
]
ሖ&#3627408491;
&#3627408494;=&#3627408496;&#3627408501;??????[&#3627409360;&#3627409359;&#3627409367;ሖ&#3627408492;
&#3627408494;+&#3627409359;&#3627409364;.&#3627409360;
&#3627408527;−&#3627409366;
]
ሖ&#3627408491;
&#3627408489;=&#3627408496;&#3627408501;??????[&#3627409360;&#3627409359;&#3627409367;ሖ&#3627408492;
&#3627408489;+&#3627409359;&#3627409364;.&#3627409360;
&#3627408527;−&#3627409366;
]
ሖ&#3627408491;
??????=&#3627408496;&#3627408501;??????[&#3627409360;&#3627409359;&#3627409367;ሖ&#3627408492;
??????+&#3627409359;&#3627409364;.&#3627409360;
&#3627408527;−&#3627409366;
]
ሖ&#3627408491;
&#3627408490;&#3627408489;=&#3627408496;&#3627408501;??????[&#3627409360;&#3627409360;&#3627409362;ሖ&#3627408492;
&#3627408490;&#3627408489;+&#3627409359;&#3627409360;&#3627409366;.&#3627409360;
&#3627408527;−&#3627409366;
]
ሖ&#3627408491;
&#3627408490;??????=&#3627408496;&#3627408501;??????[&#3627409360;&#3627409360;&#3627409362;ሖ&#3627408492;
&#3627408490;??????+&#3627409359;&#3627409360;&#3627409366;.&#3627409360;
&#3627408527;−&#3627409366;
]
Derivation of luminance and colour-difference signals via quantized RGB signals ሖ&#3627408491;
??????=&#3627408496;&#3627408501;??????[&#3627409358;.&#3627409360;&#3627409359;&#3627409360;&#3627409364;ሖ&#3627408491;
??????+&#3627409358;.&#3627409365;&#3627409359;&#3627409363;&#3627409360;ሖ&#3627408491;
&#3627408494;+&#3627409358;.&#3627409358;&#3627409365;&#3627409360;&#3627409360;ሖ&#3627408491;
&#3627408489;]
ሖ&#3627408491;
&#3627408490;&#3627408489;=&#3627408496;&#3627408501;??????[−
&#3627409358;.&#3627409360;&#3627409359;&#3627409360;&#3627409364;
&#3627409359;.&#3627409366;&#3627409363;&#3627409363;&#3627409364;
ሖ&#3627408491;
??????−
&#3627409358;.&#3627409365;&#3627409359;&#3627409363;&#3627409360;
&#3627409359;.&#3627409366;&#3627409363;&#3627409363;&#3627409364;
ሖ&#3627408491;
&#3627408494;+
&#3627409358;.&#3627409367;&#3627409360;&#3627409365;&#3627409366;
&#3627409359;.&#3627409366;&#3627409363;&#3627409363;&#3627409364;
ሖ&#3627408491;
&#3627408489;.
&#3627409360;&#3627409360;&#3627409362;
&#3627409360;&#3627409359;&#3627409367;
+&#3627409360;
&#3627408527;−&#3627409359;
]
ሖ&#3627408491;
&#3627408490;??????=&#3627408496;&#3627408501;??????[−
&#3627409358;.&#3627409365;&#3627409366;&#3627409365;&#3627409362;
&#3627409359;.&#3627409363;&#3627409365;&#3627409362;&#3627409366;
ሖ&#3627408491;
??????−
&#3627409358;.&#3627409365;&#3627409359;&#3627409363;&#3627409360;
&#3627409359;.&#3627409363;&#3627409365;&#3627409362;&#3627409366;
ሖ&#3627408491;
&#3627408494;−
&#3627409358;.&#3627409358;&#3627409365;&#3627409360;&#3627409360;
&#3627409359;.&#3627409363;&#3627409365;&#3627409362;&#3627409366;
ሖ&#3627408491;
&#3627408489;.
&#3627409360;&#3627409360;&#3627409362;
&#3627409360;&#3627409359;&#3627409367;
+&#3627409360;
&#3627408527;−&#3627409359;
]
(1)“n” denotes the number of the bit length of the quantized signal.
(2)The operator INT returns the value of 0 for fractional parts in the range of 0 to 0.4999... and +1 for fractional parts in the range of0.5 to 0.9999..., i.e.it rounds up
fractions above 0.5.
Signalformat
HDTV System with Square Pixel Common Image Format
??????

&#3627408463;=0.5389(&#3627408437;′−??????′)ሖ=&#3627408492;
&#3627408490;&#3627408489;=
ሖ&#3627408492;
&#3627408489;−ሖ&#3627408492;
??????
&#3627409359;.&#3627409366;&#3627409363;&#3627409363;&#3627409364;
??????

&#3627408479;=0.6350??????

−??????

=ሖ&#3627408492;
&#3627408490;??????=
ሖ&#3627408492;
??????−ሖ&#3627408492;
??????
&#3627409359;.&#3627409363;&#3627409365;&#3627409362;&#3627409366;

122
Luminance Quantizing
Y

123
Color-difference Quantizing
CbCr
Pb
Pr

Signalformat
124
??????= 1 arc minute=0.017 degrees
Parameter System Values
Codedsignal R,G, Bor Y, C
B, C
R
Samplinglattice
–R,G,B,Y
Orthogonal,lineandpicturerepetitive
Samplinglattice
–C
B,C
R
Orthogonal, line and picture repetitive co-sited with each other and with alternate
(1)
Y
samples
Numberofactivesamplesperline
–R,G,B,Y
–C
B,C
R
1920
960
Codingformat Linear 8 or 10 bits/component
Quantizationlevels 8-bit coding 10-bit coding
–Black level
R, G, B, Y
–Achromatic
C
B, C
R
–Nominal peak
– R, G, B, Y
– C
B, C
R
16
128
235
16 and 240
64
512
940
64 and 960
Quantization level assignment 8-bit coding 10-bit coding
–Videodata
–Timing reference
1 through 254
0 and 255
4 through 1019
0-3 and 1020-1023
Filtercharacteristics
(2)
–R,G,B,Y
–C
B,C
R
See nextslides
(1)
Thefirstactivecolour-differencesamplesbeingco-sitedwiththefirstactiveluminancesample.
(2)
Thesefiltertemplatesaredefinedasguidelines.
HDTV System with Square Pixel Common Image Format

Filtertemplates
125
??????= 1 arc minute=0.017 degrees
HDTV System with Square Pixel Common Image Format
Guideline filter characteristics
for R, G, B and Y signals BT. 1-010709-A
I
n
s
e
r
t
io
n

lo
s
s
(
d
B
)
a) Template for insertion loss
Frequency (times )fs
I
n
s
e
r
t
io
n

lo
s
s
(
d
B
)
0.1 dB
b) Passband ripple tolerance
c) Passband group-delay
0.05
– 0.05
0.15 T0.22 T
Frequency (times )fs
G
r
o
u
p
d
e
la
y
(
)
T
– 0.110
0.075
– 0.075
0.27 0.40
0.40
0.400.500.60 0.73 1.00
Frequency (times )fs
0.110
50 dB
40 dB
12 dB
50
40
30
20
10
0
0
0
0
0
0
Note1–ƒsdenotesluminancesamplingfrequency,thevalueofwhichisgiven
innominalanaloguesignalbandwidths(MHz).
Note2–Rippleandgroupdelayarespecifiedrelativetothevalueat100kHz.

126
??????= 1 arc minute=0.017 degrees
HDTV System with Square Pixel Common Image FormatBT. A1-020709-
I
n
s
e
r
ti
o
n
l
o
s
s

(
d
B
)
a) Template for insertion loss
Frequency (times )fs
I
n
s
e
r
ti
o
n
l
o
s
s

(
d
B
)
0.1 dB
b) Passband ripple tolerance
c) Passband group-delay
0.05
– 0.05
0.15 T0.22 T
Frequency (times )fs
G
r
o
u
p
d
e
la
y
(
)
T
– 0.110
0.075
– 0.075
0.14 0.20
0.20
0.200.250.30 0.37 0.50
Frequency (times )fs
0.110
50 dB
40 dB
6 dB
50
40
30
20
10
0
0
0
0
0
0
Filtertemplates
Guideline filter characteristics
for CB and CR signals
Note1–ƒsdenotesluminancesamplingfrequency,thevalueofwhichisgiven
initemsamplingfrequency.
Note2–Rippleandgroupdelayarespecifiedrelativetothevalueat100kHz.

Picturescanningcharacteristics
127
??????= 1 arc minute=0.017 degrees
Parameter
System Values
60/P 30/P 30/PsF60/I50/P 25/P25/PsF50/I 24/P 24/PsF
Order of sample presentation
in a scanned system
Left to right, top to bottom
For interlace and segmented frame systems, 1
st
active line of field 1 at top of picture
Totalnumberoflines 1125
Field/frame/segment
frequency(Hz)
60,
60/1.001
30,
30/1.001
60, 60/1.001 50 25 50 24,
24/1.001
48,
48/1.001
Interlaceratio 1:1 2:1 1:1 2:1 1:1
Picturerate(Hz) 60,
60/1.001
30, 30/1.001 50 25 24, 24/1.001
Samplesperfullline
–R,G,B,Y
–C
B, C
R
2200
1100
2640
1320
2750
1375
Nominal analogue signal
bandwidths
(1)
(MHz)
60 30 60 30
Sampling frequency
–R, G, B, Y(MHz)
148.5,
148.5/1.001
74.25, 74.25/1.001 148.5 74.25 74.25, 74.25/1.001
Sampling frequency
(2)
–C
B, C
R(MHz)
74.25,
74.25/1.001
37.125, 37.125/1.001 74.25 37.125 37.125, 37.125/1.001
(1)
Bandwidthisforallcomponents.
(2)
C
B,C
Rsamplingfrequencyishalfofluminancesamplingfrequency.
HDTV System with Square Pixel Common Image Format

Levelandlinetimingspecification
128
??????= 1 arc minute=0.017 degrees
Symbol Parameter
System Values
60/P 30/P 30/PsF 60/I 50/P 25/P 25/PsF 50/I 24/P 24/PsF
T Referenceclockinterval(ms) 1/148.5,
1.001/148.5
1/74.25, 1.001/74.25 1/148.5 1/74.25 1/74.25,
1.001/74.25
a Negativelinesyncwidth
(1)
(T) 44 ±3
b Endofactivevideo
(2)
(T) 88 + 6
–0
528 + 6
–0
638 + 6
–0
c Positivelinesyncwidth(T) 44 ±3
d Clampperiod(T) 132 ±3
e Startofactivevideo(T) 192 + 6
–0
f Rise/falltime(T) 4 ±1.5
– Activelineinterval(T) 1920 + 0
–12
S
m Amplitude of negative
pulse(mV)
300 ±6
S
p Amplitude of positive
pulse(mV)
300 ±6
V Amplitudeofvideosignal(mV) 700
H Totallineinterval(T) 2200 2640 2750
g Halflineinterval(T) 1100 1320 1375
h Verticalsyncwidth(T) 1980 ±3 880 ±3 1980 ±3 880 ±3 1980 ±3880 ±3
k Endofverticalsyncpulse(T) 88 ±3 528 ±3 308 ±3 638 ±3363 ±3
(1)
“T” denotes the duration of a reference clock or the reciprocal of the clock frequency.
(2)
A “line” starts at line sync timing reference O
H(inclusive), and ends just before the subsequent O
H(exclusive).
HDTV System with Square Pixel Common Image Format

129BT. 020709-A
(The waveform exhibits symmetry with respect to pointT)
r
f f f
V
/2
S
m
S
m
/
2
S
p
V
/
2
b
a c
d
e
O
H
90%
10%
f
S
p
/
2
T
r BT. 20709-0B
Blanking interval
+700
+300
0
–300
+350
+300
0
–300
–350
O
H
mV
E
CB
,E
CR
E
R,E
G,E
B,E
Y Fig. 2A: Line synchronizingsignal waveform
Fig. 2B: Synclevelon component signals
(The waveform exhibits symmetry with respect to point Tr)
HDTV System with Square Pixel Common Image Format

Analoguetrilevelsyncsignal
130
??????= 1 arc minute=0.017 degrees
Parameter
System Values
60/P 30/P 30/PsF 60/I 50/P25/P25/PsF50/I 24/P 24/PsF
Nominal level(mV) Reference black: 0
Reference white: 700
(see Fig. 2B)
Nominal level(mV) ±350
(see Fig. 2B)
Form of synchronizing signal Tri-level bipolar
(see Fig. 2A)
Line sync timing reference O
H
(see Fig. 2A)
Sync level(mV) ±300 ±2%
Sync signal timing Sync on all components
(see Table 1, Figs 1 and 2)
Blanking interval (see Table 1, Figs 1 and 2)
HDTV System with Square Pixel Common Image Format
ሖ??????
??????,ሖ??????
??????, ሖ??????
&#3627408437;, ሖ??????
??????
ሖ??????
&#3627408438;
??????
,ሖ??????
&#3627408438;
??????

131
HDTV System with Square Pixel Common Image Format
Fig. 1A: Line synchronizingsignal waveform(The 1080 Standard (SMPTE 274M)
19
43
1
41
42
1121
1122
1124
2
1120
1123
Frame
1125

132
Fig.1B:Detailoffield/frame/segmentsynchronizingsignalwaveform
HDTV System with Square Pixel Common Image Format
(The 1080 Standard (SMPTE 274M)) &#3627408519;=??????&#3627408522;&#3627408532;&#3627408518;/&#3627408493;&#3627408514;&#3627408525;&#3627408525;??????&#3627408522;&#3627408526;&#3627408518;(&#3627409362;±&#3627409359;.&#3627409363;??????)

133

134
System Timing

Genlock
–VideocamerashaveinternaloscillatorsthatdeterminewhentoinsertaV-syncorH-syncintheoutput
videosignal.Thissystemiscalledthecamera’ssyncgenerator.
–Agenlockedcameraislikeaclockorwatchthatconstantlysynchronizesitselftoacertainstandardtime
(likeGreenwichMeanTime)soitssecond,minute,andhourindicationsarepreciselyincrementedafter
exactlyaone-second,one-minute,andone-hourduration.
Internal Oscillator
135
System Timing
Standard (Master) Time

Genlock
−Whencombiningvariousvideosourcestogether,
itisnecessarythatthesignalsbetimedtogether
toavoidpicturerolling,jumping,tearingor
incorrectcolors.
−Genlockingacamerameanstosynchronize
•V-sync
•H-sync
•Sub-carrier(incompositesignalsonly)
timingsofitsoutputwithavideosignal
designatedasthemasterclock.
−When detectingthissignal,thecamera
automaticallylocksthetimingofitsinternalsync
generatortothismastertiming.
136
System Timing
External Reference waveform display
Genlocked
Genlockenablesthefrequenciesandphasesofthe
V-sync,H-sync,andsub-carrieroftheoutputsignal
fromcameratobesynchronizedwithexternalsync.

SPG: Sync Pulse Generator
SPG: Sync Pulse Generator
ECO: Electronic Change Over
137
System Timing

138
Video Production Switcher
System Timing

139
Video Production Switcher
Loss of H-Sync
System Timing

140
Video Production Switcher
Loss of V-Sync
System Timing

141
Video Production Switcher
Vertical Blanking (25 Lines)
Vertical Blanking (25 Lines)
Loss of V-Sync
System Timing

142
Video Production Switcher
Loss of V-Sync
System Timing

EquipmentGenlockingbyReferenceSignal
–Incompositeswitchers,theprocessingforthecreationofeffectssuchasMIXandWIPEbasicallyonlyuses
theactivepictureareasoftheinputsignals.
–Thus,theH-syncandburstareremovedfromtheinputsignalsattheswitcherinput.
–Aftertheeffectisprocessed,theswitcheraddsanH-syncandburstsignalgeneratedfromitsownsync
generator.
System Timing
143
GenlockenablesthefrequenciesandphasesoftheV-sync,H-sync,andsub-carrieroftheoutput
signalsfromallcamerastobesynchronizedwitheachother.
Forthisreason,theinputsignalsmustalsobe
synchronizedwiththeswitcher’sinternalsyncgenerator.
Video Production Switcher

Sub-carrierPhaseandH-syncPhaseAdjustmentinDestination
–Sincethetwosignalsmustbecombinedintoone,theirsub-carrierphasesandH-syncphasesmustbe
perfectlymatchedbeforeeffectprocessingattheinputterminalsoftheswitcher.
–Thesub-carrierphaseandH-syncphaseofeachcameraoutputvariesduetothedifferentlengthsofthe
coaxialcablesusedbetweenthecameraandtheswitcher.
–Thisvariationinphasemustbecompensated.
–Thisisdoneonthecamera(orCCU)using
thehorizontalphasecontrol
thesub-carrierphasecontrol(SCtoHPhase)
System Timing
144
Video Production Switcher
BB reference signal
Input signal
∆??????
∆??????
Input signal

Sub-carrierPhaseandH-syncPhaseAdjustmentinDestination
–Sincethetwosignalsmustbecombinedintoone,theirsub-carrierphasesandH-syncphasesmustbe
perfectlymatchedbeforeeffectprocessingattheinputterminalsoftheswitcher.
–Thesub-carrierphaseandH-syncphaseofeachcameraoutputvariesduetothedifferentlengthsofthe
coaxialcablesusedbetweenthecameraandtheswitcher.
–Thisvariationinphasemustbecompensated.
–Thisisdoneonthecamera(orCCU)using
thehorizontalphasecontrol
thesub-carrierphasecontrol(SCtoHPhase)
System Timing
145
Video Production Switcher
BB reference signal
Input signal
∆??????
∆??????
Input signal
Typically,thepropagationdelaythrough1mofcableisapproximately5ns(SD-SDI)dependentonthetypeofcableused.
Thispropagationdelaycanbecomesignificantinlonglengthsofcable.
Eachbitofa10-bitwordinSD-SDIisonly3nswideandcablelengthinequalitiesintroducetimingskewsof5nspermeter.

Sub–carrier Phase Control/Horizontal Phase Control
146

147
System Timing

–Whencombiningvariousvideosourcestogether,itisnecessarythatthesignalsbetimedtogetherto
avoidpicturerolling,jumping,tearingorincorrectcolors.
1.AprecisionreferencefromaMasterSyncGenerator(SPG)isappliedappropriatelytoeachdeviceand
genlockedsothattheoutputoftheequipmentissynchronizedwiththetimingofthereference.
2.Inplanningthesystemtimingofthefacility,itisnecessarytoknow
I.theprocessingdelayoftheequipment
II.thepropagationdelayofthelengthsofcableneededtoconnecttheequipment
System Timing
148
Video Production Switcher
AVP
Reference Signal

FirstStep
–Itisimportanttoknow
I.thecablerunlengthsconnectingthe
equipment
II.theprocessingdelayoftheequipment
III.howtimingadjustmentscanbemadeonthe
equipment
–Inthisscenario
•thevideotaperecorders(VTR)haveTimeBase
Correctorsandallowoutputtimingadjustment
•thecharactergeneratorhasoutputtiming
adjustmentsviasoftware
•theCamera ControlUnitsrequiredelay
adjustmentinordertoguaranteesystemtiming.
System Timing
149
A basic system diagram shows some of the basic
factors to take into account when designing a system.

SecondStep
–Document thetimingofeachpieceof
equipment⇒thelongestdelaythroughthe
system.
–Camera1⇒thegreatestprocessingdelayand
cabledelay⇒thebasistotimeothersignals
–Wethereforeneedtoinsertappropriatedelay
intotheothercircuitssothateverythingis
synchronizedattheinputtotheswitcher.
–Thisisachievedbyusingfollowingstocreatethe
appropriatedelayforeachsignalpath.
•TimingadjustmentsoftheSPGforeachblackoutput
•Equipmentinternaltimingcapabilities
System Timing
150
The calculated delays through the system.
DelayAdvance
Time Zero
Switcher Input
Camera 1 Delay
700 ns
Everysignalshouldarriveatthe
switcheratthesametimeand
wecandefinethisasTimeZero.

System Timing
151
The calculated delays through the system.
DelayAdvance
Time Zero
Switcher Input
Camera 2 Delay
600 ns
Video Delay
100 ns
(by SPG, separate black)
Color Bar Delay
0 ns
Video Delay (by SPG)
700 ns
Switcher Program Output
200 ns
Camera 1 Delay
700 ns
Internal Adjustment
Inthiscase,aseparateblackoutputisusedforeach
CCUtoadjustthedelayappropriatelytoensure
correctsynchronizationattheinputtotheswitcher.

–ThecharactergeneratorandVTRseachhave
timingadjustmentssoaDistributionAmplifier
(DA)canbeusedtoprovidethesame
referencetoeachpieceofequipment,orif
theequipmentwasincloseproximitytoeach
other,thereferencesignalcouldbelooped
througheachpieceofequipment.
–NotethatbyusingaDAinthesystem,thiswill
alsointroduceasmallprocessingdelay.
–Theinternaladjustmentsofeachpieceof
equipmentcanthenbeusedtoensure
synchronizationtotheswitcher’sinput.
–Thecolorbarsinputtimingtotheswitchercan
beadjustedbytheSPG8000.
System Timing
152
The calculated delays through the system.
DelayAdvance
Time Zero
Switcher Input
Camera 2 Delay
600 ns
Video Delay
100 ns
(by SPG,
separate black)
Color Bar Delay
0 ns
Video Delay (by SPG)
700 ns
Switcher Program Output
200 ns
Camera 1 Delay
700 ns
Internal Adjustment

153
Luminance and Chrominance Information Luminance Information Chrominance Information
Two line display Two field display
System Timing
1Line
•Onehorizontallineisdisplayed.
•UsetheLineSelectfunctiontochooseonelineoutofafield
orframe.
2Line(Overlaylayoutmodeonly)
•Twoconsecutivehorizontallinesaredisplayed.
1Field
•Alllinesforonevideofieldaredisplayed.
2Field(Overlaylayoutmodeonly)
•Alllinesfortwovideofieldsaredisplayed.

154
Two line display, magnified
Two field display, magnified
System Timing
Two line display, with GAIN turned on
One field display

AnalogSystemTiming
–Analogsystemtimingadjustmentsaremadewithawaveformmonitorandvectorscopeconnectedtotheswitcher
output.
–Theexternalreferenceisselectedonthewaveformmonitorsothatthemeasurementunitaresynchronizedtoit.
System Timing
155
Basic Analog Video System
Vectorscope:
To ensure color burst
subcarrier phase
BlackBurstReference

Basic Analog Video System
Vectorscope:
To ensure color burst
subcarrier phase
BlackBurstReference
AnalogSystemTiming
–Theblackreferencesignalwillbethezerotimereferencetocomparetheothersignalsappliedtotheswitcher.
–Themeasurementsaremadeatthe50%pointoftheanalogsignalsleadingedge,otherwiseerrorscanoccurinthe
measurement.
System Timing
156
Bi-Level H-Sync
Burst (4.43 MHz)
50% point of the analog signals (Leading Edge)
H MAG (Horizontal MAGnification)

AnalogSystemTiming
I-AdjustingVerticalTimingbetweenInputSignals
–SelecttheblackreferencesignaltotheoutputoftheswitcherandselectanHMAG1fieldsweepmodetoshowthe
verticalintervalofthewaveformpositioned.
–Positionthewaveformsothattheline1field1isplacedatoneofthemajortickmarks.
–Alltheotherinputstotheswitchercanthenbecomparedwiththeblackreferencesignalandadjustedverticallysothat
thesignalsareintheexactsamepositionasthereference.
System Timing
157
F1 (field 1), F2 (field 2), or All.
One field display VM6000: Automated Video Measurement Set

AnalogSystemTiming
II-AdjustingHorizontalTimingbetweenInputSignals
–SelecttheblackreferencesignalattheswitcheroutputandselectanHMAG1linesweepmodeonthewaveform
displaysothatahorizontalsyncpulseisdisplayed.
–Positionthewaveformsothatthe50%pointoftheleadingedgeofsyncisatoneofthemajortickmarks.
–Alltheotherinputstotheswitchercanthenbecomparedwiththeblackreferencesignalandadjustedhorizontallyso
thatthesignalsareintheexactsamepositionasthereference.
System Timing
158
Asimilarprocedurecanbeperformed
onthevectorscopetoensurecolor
burstsubcarrierphase.
50% point of the analog signals (Leading Edge)
Bi-Level H-Sync
Burst (4.43 MHz)
50% point of the analog signals (Leading Edge)
H MAG (Horizontal MAGnification)

AnalogSystemTiming
–InPALsystemsthephaseoftheburstisswitchedonalternatelinesandliesatthe+135°and+225°asshowninFigure.
System Timing
159
Bi-Level H-Sync
Burst (4.43 MHz)
+Burst (+135°)
-Burst (+225°)
PAL Waveform and Vector. with SCH display.

160
PAL VectorscopeMAG display (The PAL burst can be magnified) PAL Vectorscopewith V axis switched (to simplify the display )
AnalogSystemTiming
–ThePALburstcanbemagnifiedsothatitliesalongthe135°axistotheouteredgeofthecompassrose,theVaxis
switchedcanbeselectedonthevectorscopetosimplifythedisplay.
–IfthevectorscopehasthecapabilitytomeasureS/CHphasethisshouldalsobemeasuredbetweenthereferencesignal
andtheotherinputsoftheswitcher.
System Timing

Component Video
I.Thisrequirestimingofthehorizontalandverticalsignals.
II.Thissystemrequiresappropriateinter-channeltimingofthreevideosignals(Y’,P’b,P’r)or(R’,G’,B’)per
distributionpath.
–Adigitalswitcherusuallyhaspartialautomatictimingoftheinputs,providedthatthesignaliswithina
specifiedtimingrange(30-150ms,dependingontheequipment).
–Itcanself-compensateforthetimingerror.
–However,carestillhastobetakenwhenensuringverticaltimingbecauseofthelargeprocessingdelays
ofsomeofthedigitalequipment.
System Timing
161
Analog black burst is still the predominant reference signal, although
a SDI Black signal can be used on some digital equipment.

System Timing
162
A basic system diagram shows some of the basic
factors to take into account when designing a system.
Timing within the Digital Domain
–ApplytheSDIsignalstoChannelAandChannelBofthe
waveformmonitorandexternallyreferenceofthewaveform
monitortoblackburstorTri-levelsyncasappropriate.
–Careneedstobetakentoterminateallsignalscorrectly.

Showing EAV and SAV on Waveform Monitor
–Intheconfigurationmenuofthewaveformmonitor,selectpassEAVandSAVmode.
–Thiswillallowthe3FF,000,000,XYZvaluestobedisplayedonthewaveformmonitor.
–Theluma(Y’)channelisselectedonthewaveformmonitorandispositionedtoshowtheHDEAVpulse.
–Thispulsecontainsthesequence3FFh,000h,000h,XYZ,LN0,LN1,YCR0,YCR1.
System Timing
163
Select pass EAV and SAV mode
XYZ pulse of Y channel with EAV/SAV
pass through selected on WFM.
Thetransitionfrom3FFto000
and000toXYZproduces
ringingonthedisplaywhen
passedthroughtheappropriate
SDorHDfilter.

Showing EAV and SAV on Waveform Monitor
–Intheconfigurationmenuofthewaveformmonitor,selectpassEAVandSAVmode.
–Thiswillallowthe3FF,000,000,XYZvaluestobedisplayedonthewaveformmonitor.
–TheHDSAVpulseissimplerthantheHDEAVpulse,containingonlythecodewords3FFh,000h,000h,XYZ.
–InHDformats,lumaandchromacontainEAVandSAVsequences.
System Timing
164
XYZ pulse of Y channel with EAV/SAV
pass through selected on WFM.
Select pass EAV and SAV mode
Thetransitionfrom3FFto000
and000toXYZproduces
ringingonthedisplaywhen
passedthroughtheappropriate
SDorHDfilter.

System Timing
165
XYZ pulse of Y channel with EAV/SAV
pass through selected on WFM.
Showing EAV and SAV on Waveform Monitor
–Datamodehasbeenselectedonthewaveformmonitor.
–Thelumaandchromasignalsaredisplayedontheleftsideand
thedatastructureoftheSDIsignalisshownontheright.
–Inthiscase,a1080i59.94Hzsignalhasbeenappliedtothe
instrumentandpositionedsothehexadecimalvaluesoftheEAV
signalaredisplayed.

System Timing
166
XYZ pulse of Y channel with EAV/SAV
pass through selected on WFM.
Showing EAV and SAV on Waveform Monitor
–ThewaveformmonitorissetuptoshowthesimplerSAVdata
fromthesamesignal.
–The“XYZ”wordis200h.
–ThisisbrokendownintoF=0,V=0&H=0,indicatingField1,Active
Video,andSAV.

System Timing
167
XYZ pulse of Y channel with EAV/SAV
pass through selected on WFM.
Showing EAV and SAV on Waveform Monitor
–ThewaveformmonitorissetuptoshowthesimplerSAVdata
fromthesamesignal.
–Inthisexample,bit8,7,and6indicatethexyzwordisinfieldone
ofaninterlacedformat,inalineofactivevideo,andinanEAV
sequence.
“xyz” word
binary display.
–Bit9–(Fixedbit)alwaysfixedat1
–Bit8–(F-bit)always0inaprogressivescansystem;0forfieldoneand1forfieldtwo
ofaninterlacedsystem
–Bit7–(V-bit)1inverticalblankinginterval;0duringactivevideolines
–Bit6–(H-bit)1indicatestheEAVsequence;0indicatestheSAVsequence
–Bits5,4,3,2–(Protectionbits)providealimitederrorcorrectionofthedataintheF,
V,andHbits
–Bits1,0–(Fixedbits)settozerotohaveidenticalwordvaluein10or8bitsystems
xyz =1001110100

Timing within the Digital Domain
–Intheconfigurationmenuofthewaveformmonitor,selectpassEAVandSAVmode.
–TheSAVorEAVpulsecanbeusedasatimingreferencewhenpositionedonamajortickmarkofthewaveform
display.
–Usingthistimingreferencepoint,comparisoncanthenbemadetotheotherSDIsignalstoensurethepositionofthe
pulseremainsinthesamelocation.
System Timing
168
XYZ pulse of Y channel with EAV/SAV
pass through selected on WFM.
Select pass EAV and SAV mode

Timing within the Digital Domain
–Withinthedigitaldomain,therearenoverticalpulsesanddigitalsystemsareexpectedtocalculatetheirvideoposition
basedonthevaluesofF,VandH.⇒Inordertomeasureverticaltimingweneedtodefineareferencepoint.
–Forsimplicity,thefirstlineofactivevideocanbeusedasthereference,sincetheverticalblankinglinesarenormally
blank.
System Timing
169
152
162
0V

Timing within the Digital Domain
–AusershouldsetLineSelectandsweepfora2-linemode.
–Then,selectField1andlineselectasfollowstodisplaythe
lastlineintheverticalintervalandthefirstlineofactive
signal.
–Thissettingshouldbeonlastlineinverticalblanking:
•Line20for1080InterlacedHDTV
•Line41for1080progressiveformats
•Line25for720progressive
•Line19for525interlace
•Line22for625interlace
–Ifnotdisplayedproperly,adjusttheverticaltimingofthe
sourceuntilcorrectlydisplayed.
–Next,selectchannelBandmakesurethelastverticaland
firstactivelinesaredisplayed.
System Timing
170
(Active Lines)
(Active Lines)
19
22
1
20
21
560
561
563
564
583
584
1123
1124
1125
2
559
562
582
585
1122
565
Field 2
Field 1
19
43
1
41
42
1121
1122
1124
2
1120
1123
Frame
1125
21
24
1
22
23
310
311
313
335
336
623
624
625
2
309
312
334
337
622
314
Field 2
Field 1

Timing within the Digital Domain
–VerticalTiming
•Adjustverticaltimingifneededtoalignbothverticalpositionstothestartofactive
video.
•Lastly,switchbacktochannelAandsetMAGtoON,notingtheamplitudeofthe
SAVpulses.
Iftheamplitudesofbothpulsesareidenticalthentheyareinthesamefield.
Differentamplitudesindicatethetwosignalsareinoppositefieldsandtiming
adjustmentsshouldbemadetomatchfieldsbetweenthesources.
−HorizontalTiming
•SwitchingtochannelAandsettingthewaveformmonitortosweeponeline,we
canstarttomeasuredigitalhorizontaltiming.
•UsingthehorizontalpositionknobtosettheSAVpulsetoamajorgraticuletick
mark,orusecursormodeandsetacursorontheSAVpulse.
•ComparisonoftimingtotheotherdigitalchannelBinputisachievedbyselecting
thechannelandadjustingthefinetimingcontrolstomatchthetimingpositionof
channelA.
System Timing
171
Select pass EAV and SAV mode
–Bit9–(Fixedbit)alwaysfixedat1
–Bit8–(F-bit)always0inaprogressivescansystem;0forfield
oneand1forfieldtwoofaninterlacedsystem
–Bit7–(V-bit)1inverticalblankinginterval;0duringactive
videolines
–Bit6–(H-bit)1indicatestheEAVsequence;0indicatesthe
SAVsequence
–Bits5,4,3,2–(Protectionbits)providealimitederror
correctionofthedataintheF,V,andHbits
–Bits1,0–(Fixedbits)settozerotohaveidenticalwordvaluein
10or8bitsystems

Timing Display
–TheTimingdisplayprovidesasimplegraphicalrectanglewindow,whichshowstherelativetimingbetweentheexternalreference
andinputsignal.
–Anexternalreferencesignalofblackburstortri-levelsynccanbeused.Therectangledisplayrepresents
oneframeforSDIinputsoracolorframeforcompositeinputs
–Measurementreadouts,inlinesandmicroseconds(μs)ofthedifferencebetweenthetwosignalsareprovided.
–Fieldtimingerrors,advancedordelayed,areshownasverticaldisplacementofthecircle,whilelinetimingerrors(Htiming)ofless
thanalineareshownashorizontaldisplacementofthecircle.
System Timing
172
Crosshair:
Zero Offset
Circle:
Timing of the Input Signal

Timing Display: Relative to.
The“Relativeto”boxindicatesthechosenzeropointreferenceforthetimingdisplay.
Setsthedefinitionforthezerotimingoffsettooneofthefollowing.
–Analog(DAC):
•MeansthetimingoffsetofSDandHDSDIinputsarecompensatedforthedelayofanominalDtoAconverter.
•SoafteraccountingfortheDAC,thedelaywillbeshownaszerowhenthetwosignalsaretimeddownatthetoppanelof
theinstrument.
–Serial(0H):
•Meansthetimingoffsetoftheserialstreamisconsideredtobezerowhenthe“0H”sampleofthescrambledserialstreamis
coincidentwiththeappropriatesyncedgeoftheanalogreferenceconnectedtotheinstrument.
•Thissettingisalsoallowedforcompositeinputswherethisselectionforzerotimingmeansthereferencesyncpointsofthe
twosignalswillbecoincidentatthetoppaneloftheinstrument.
–SavedOffset:
•Meansthatthetimingwillbeshownaszerooffsetwhentheinputsignalmatchesthetimingofthesignalthatwaspresent
whentheoffsetwassavedusingtheSaveOffsetmenuentry.
System Timing
173
Analog (DAC) Serial(0H) Saved Offset
Relative to: Relative to: Relative to:

Timing Display: Timing Measurement Using Analog (DAC)
–SDIvideooutputandwaveformmonitorwithanaloginput
–ThedefaultistheAnalog(DAC),thismeansthataDigitalto
AnalogConverter(DAC)isusedtoconvertthedigitalsignalinto
analogsothatitcanbedirectlycomparedtotheanalog
referencesignalandthedelayoftheDACneedstobe
accountedforinthemeasurement.
•ForSD-SDIDACadelayof4.6µSisassumed
•ForHD-SDIDACadelayof1.3µSisassumed
•For3Gb-SDIDACadelayof0.0uSisassumed
–The"0.0us"delayfor3Gb-SDImeanstheAnalog(DAC)and
Serial(0H)modesareequivalentfor3Gb/ssignals.
–InthiscasetheusershouldselecttheAnalog(DAC)fromthe
timingmeasurementmenu.
System Timing
174
Analog (DAC)
Waveform Monitor
Device
Under Test
(DUT)
DAC
DAC
Reference (Black Burst/Tri-Level Sync
SDI Test Signal
SPG

Timing Display: Timing Measurement using Serial (0H)
–SDIvideooutputandwaveformmonitorwithdigitalinput
–Thesynchronizationinformationcanbeobtaineddirectlyfrom
theSDIandcomparedtotheanalogreferenceinputby
extractingthehorizontalandverticaltiminginformationwithin
thedigitaldomain.
–InthiscasetheusershouldselecttheSerial(0H)fromthetiming
measurementmenuthe“Relativeto”displaywillthenshow
Serial(0H)withinthedisplay.
System Timing
175
Serial(0H)
Waveform Monitor
Device
Under Test
(DUT)
Reference (Black Burst/Tri-Level Sync
SDI Test Signal
SPG

System Timing
176
Timing Display showing timing offset.
Crosshair:
Zero Offset
Circle:
Timing of the Input Signal

Timing Display:Timing Measurement using Saved offset mode
–IntheSavedoffsetmode,youcansavethetimingfromoneoftheinputsignalsandthendisplaythetimingrelativetothis
“saved”offset.
–Thisisespeciallyusefulintimingtheinputstoarouter.
•Selectoneoftheinputstotherouterasthemasterrelativereferenceandapplythissignaltotheinputofthe
waveformmonitororrasterizer,alongwiththeexternalreferencesignalbeingusedbytherouter.
•Timingconfigurationmenu→SavedOffsetmenu→Selectbutton(savetheoffsetbetweentheinputsignalandthe
externalreference)
•Inthetimingconfigurationmenu,selectthe“Relativeto:”andchangetheselectionfromRearPaneltoSavedOffset.
System Timing
177

Timing Display:Timing Measurement using Saved offset mode
–Byroutingeachoftheotherrouterinputstothewaveformmonitoror
rasterizerthemeasurementwillshowtherelativeoffsetbetweenthe
masterrelativereferenceandtheothervideoinputs.
–Simplyadjustthehorizontalandverticaltimingcontrolsofeachinput
signaluntilthecircleandthecrosshairareoverlaidandthecircleturns
green.
System Timing
178
Saved Offset

System Timing
179
Timing Display showing “Relative To:” menu selection.

System Timing
180

181
•Normally,formatislandsarecreatedtoallowsignalstoremainina
singleformatwhilebeingprocessedinaspecificproductionarea.
•CareshouldbetakeninchoosingsuitableADCandDACtoensurethe
minimumnumberofformatconversionstoguaranteequalitythroughout
thesignalpath.
•TheMasterreferencesaresenttoappropriateareassuchasstudiosor
editssuiteswheretheyaregenlockedbyaslaveSPGusedwithinthat
area.
•Theslavereferencesarethenusedtotimeequipmentwithinthatarea.
Timing Across a Multi-Format Hybrid Facility
System TimingStudio1(Digital)
Studio2(Analog)

Timing Across a Multi-Format Hybrid Facility
–Insomecases,FrameSynchronizers(FSY)willbeusedwithinthefacilityforsynchronizingexternalsourcessuchassatellite
feeds.Areferenceisappliedtoallowtimingoftheseexternalsourceswithinthefacility.
–Howevercareshouldbetakenasthesedevicescanintroduceseveralfieldsofprocessingdelaywithinthevideopath.
–Theaudioassociatedwiththesevideosignalshassimplerprocessingandtakessignificantlylesstimetoprocessthanthe
video.⇒Audiodelayhastobeaddedinordertocompensateforthisvideoprocessingdelay.
–Varioustypesofdigitalequipmentmaysufferfromlargevideoprocessingdelaysandanaudiodelaymayneedtobe
insertedtoavoidlip-syncproblems.
System Timing
182
OutputVideo
OutputAudio(Delayed)

System Timing
SDI/EmbeddedAudioSynchronizer/ProcAmp(SFS-3901,HAARIS)
−The SFS-3901 is optimally designed to handle the ingest and timing of SDI video with embedded audio into
a digital facility.
⇒Cleanly handles hot switch on input for video and embedded audio
⇒SDI frame sync with up to 30 frames incremental delay
⇒Demultiplex/Remultiplexup to 2 groups embedded audio
⇒3 color space video procamp (Composite/YprPb/GBR)
⇒Selectable 16 / 20 / 24 bit audio processing
⇒Audio re-sampling for 32-108kHz AES inputs
⇒Re-sampling bypass for data over AES operation
⇒Incremental 1.3 seconds audio delay
⇒Audiochannelshufflerwithmute,phaseinvertandsumming
⇒C,U &V bit transparency
183

System Timing
SimultaneousSynchronizedGenerationofDifferentVideoFormats
–TheSPGoffersautomaticselectionofthreeframeresetstosupport
simultaneoussynchronizedgenerationofdifferentvideoformats.
–Thisisveryusefulforpost-productionfacilitiesthatneedtosupport
multipleformatse.g.525/625/HDstandards.
–Itoffersthreeframeresetstooutputsimultaneousdifferentvideo
formatsandsynchronizationofmultipleframerates.
–Forexample525/59.94,625/50and1080p/24canbegeneratedand
synchronizedsimultaneously.
–Frameresetautomaticallychangestoacommonfrequencymultipleto
provideappropriateframelock.TheSPGselectsthebestframereset
frequencyforaspecificvideoformatcombination.
–FrameReset2runsat6.250Hzandsupportstheintegersignalsystem
andisusedforPAL,625,HD/LTCformatswith50Hzor25Hzframerates.
184

Redundant Synchronization
–TwomasterreferenceSPGs(MasterandBackup)areusedwithanautomaticchangeoverunit(ECO).
–ThemasterSPGissetuptomeetthetimingrequirementsofthefacility.
–OncetheinstrumentisconfiguredthesettingsofthemastercanbeclonedtothebackupSPG(Backup/Restorefunction
andUSBdevice).
System Timing
185

A Global Positioning System (GPS)
–ItallowstheSGPtobegenlockedtoaGPStimingreferencesignalandprovidetimeofdayinformationand
synchronizedTimeCodesignals.
–LinearTimeCodeoutputscanbeusedtoprovidetimingreferencesignaltovariouspiecesofequipmentthroughoutthe
facility.
–ThetimeofdayinformationisobtainedfromtheGPSandcanbeusedtosynchronizethetimecodeoutputs.
–AdditionaltheSPGcanfunctionasaNTP(NetworkTimeProtocol)serverandprovidetimeofdayinformationtoPCand
otherdevices.
System Timing
186
(Continuous Wave)
Apulsepersecond(PPSor1PPS)isan
electricalsignalthathasawidthofless
thanonesecondandasharplyrising
orabruptlyfallingedgethataccurately
repeatsoncepersecond.

187
System Timing
https://www.youtube.com/watch?v=JbvTCA -WuOM&t=1s

188
System Timing
TheHCO-1822isa2x1HD/SD/ASIchange-overwhich
supports16channelsofembeddedaudioandmetadata.
TheHCO-1822 generates audio/video
fingerprintsforeachofthedifferentinputs.
Incombinationwithothercardsstreaming
fingerprintsforthesamesignals,anoptional
moduleiniControlcanmeasureandreportlip
syncerrorsthroughtheentirechainofa
broadcastfacility.
Video Electronic Change Over (ECO)

189
System Timing
https://www.youtube.com/watch?v=voBjXS 1OdKs&t=149s

190
System Timing
https://www.youtube.com/watch?v=ui9cjoGYrJU

Component ColourTiming by Bowtie
–Componentworkingrequirestimingtowhatiscalledmonochrometiming,andisbasedonanaccuracyof0.1μS(SD).
–UsingaspecialBowtietestsignalincomponentformat,youmakepreciseandaccuratemeasurementsofinter-channel
amplitudeandtiming(availableintheLightningdisplay).
System Timing
191

Component ColourTiming by Bowtie
−Markersgeneratedonafewlinesofthelumachannelserve
asanelectronicgraticuleformeasuringrelativetimingerrors.
−Thetallercentermarkerindicateszeroerror,andtheother
markersarespacedat20nsintervalswhenthe500kHzand
502kHzpacketfrequenciesareused.
−Otherfrequenciescouldbeusedtovarythesensitivityofthe
measurementdisplay.
−HigherpacketfrequenciesmaybechosenfortestingHD
componentsystems.
System Timing
192
Pr: 502 kHz sine-
wave packet
Pb: 502 kHz sine-
wave packet
Pr: 502 kHz sine-
wave packet
Pb: 502 kHz sine-
wave packet
SDTV
Y:
500
kHz
Timingmarkersat+/-5nSec
andatevery20nSec.
Y: 500 kHz sine-
wave packet

Component ColourTiming by Bowtie
System Timing
193
Ifthesignalsare
timedandofthe
sameamplitude,the
Bowtie waveform
results.
Y-PrY-Pb
•Theleftbowtieshowstheamplitudeandtimingrelationshipbetween
the1stand2ndcomponentsinthetestsignal.
•Therightbowtieshowstheamplitudeandtimingrelationship
betweenthe1stand3rdcomponentsinthetestsignal.
Y: 500 kHz sine-
wave packet
Pr: 502 kHz sine-
wave packet
Pb: 502 kHz sine-
wave packet
•BysubstractionY-CborY-Cr,a2KHzbeatfrequencyisproduced.
•Anullatthepointwherethetwocomponentsareexactlyinphase.

194
Y, Pr
Pbdelayed 55ns Pradvanced 50ns
System Timing
Y-PrY-Pb Y-PrY-Pb
Prgain error vs Y
•The delay difference between the components can be read off at the amplitude minimum.
•The null, regardless of where it’s located, is zero amplitude only if the amplitudes of the two sine-wave
packets are equal.
No Prgain error vs Y

195
•Eachsubtractionproducesanullatthepointwherethetwo
componentsareexactlyinphase(ideallyatthecenter).
•Thesharpnessofthenullsindicatesthatallthreechannelshave
thesamegain.
•Aninter-channelamplitudeproblemwidensthesignalatthe
centernullpositioninthebowtie.
•Anincompletenullcombinedwithanoffsetfromcenterindicates
bothamplitudeandtimingproblemsbetweenthechannelsbeing
compared.
System Timing
•Arelativeamplitudeerrormakesthenull
broader⇒difficulttimingevaluation
•Ifyouneedagoodtimingmeasurement,
firstadjusttheamplitudesofthe
equipmentundertest.
Y-PrY-Pb
•Thecenteringofthenullsindicatescorrectinterchanneltiming.
•Ifthedelaysofbothcomponentsarethesame,thezerocrossing
liesexactlyinthemiddleoftheactiveline(exactlyonthezero
measurementmarker).
•Aninterchanneltimingerrorwillmovethepositionofthenull
(shiftsthiscenternullposition).

Component ColourTiming by Bow Tie
–Thebowtietestsignalanddisplayofferstwobenefits;
•itprovidesbettertimingresolutionthanthewaveformandLightningmethods
•thedisplayisreadableatsomedistancefromthewaveformmonitorscreen
–Notethatthebowtietestsignalisaninvalidsignal,legalonlyincolor-differenceformat.
–ItbecomesillegalwhentranslatedtoRGBorcompositeformatsandcouldcreatetroublesomesideeffectsinequipment
thatprocessesinternallyinRGB.
System Timing
196

Audio Video Delay Measurement
AudioVideoDelay(AVD)Display(AVDOptiononTektronix,bothnumericandgraphicalformats)
197
TheoutputoftheTG700
maybesentaroundthe
facilityasanembedded
audiodatawithintheSDI
videosignal.
Insomecaseade-embedder
canbeusetoextracttheSDI
VideoandAESaudiosignalwhich
canthenberoutedonseparate
pathsthroughthesystem.
Alternativelythesystem
canre-embedtheaudio
andvideotogetherinthe
SDIsignalandthe
measurement canbe
made using the
embedded audioinput
configuration.
TheAESaudiosignalcanalsobeappliedtotheDolby
encoderandtheDolbystreamcanbesentdirectlytothe
instrument,orcanbedecodedbyaseparateDolbyE
decoderandappliedasanAESsignaltotheWFM/WVR.

Audio Video Delay Measurement
AudioVideoDelay(AVD)Display(AVDOptiononTektronix,bothnumericandgraphicalformats)
−AVD measures the duration that a video system advances or delays the audio signal relative to its correct temporal
position in the test signal of the lissajouschannel pairs.
−AVD measurements require an appropriate AVD sequence signal source(such as from a Tektronix TG700 signal generator).
−AVD supports digital and composite inputs, and the following audio inputs: embedded, AES, and analog.
198
−Audio/Video Delay Display
⇒AV Delay bar: Shows the timing relative to audio.
⇒Measured AV Delay: Shows the timing difference measurement.
⇒Manual Offset: Shows the manual offset value.
⇒Adjusted AV Delay: Shows the adjusted timing difference.
−Audio/Video Display Pop-Up Menu
⇒AV Delay Enable: Choose from On or Off.
⇒Clear Offset: Press the SEL button to clear the offset.
⇒Save Offset: Press the SEL button to save the offset.

Audio Video Delay Measurement
AudioVideoDelay(AVD)Display(AVDOptiononTektronix,bothnumericandgraphicalformats)
199

AV Timing Mode (TG700).
•Turns the output mode for an audio/video timing measurement on or off.
•The specified audio and video signals are synchronously on for 0.5 second
and off for 4.5 seconds.
•The following settings are recommended for the audio and video signals
when you use this mode:
⇒Audio signal (CH1 and CH2 of Group 1): 10000 Hz, -20 dBFS
⇒Video signal: 100% Flat Field
200
Audio Video Delay Measurement
AudioVideoDelay(AVD)Display(AVDOptiononTektronix,bothnumericandgraphicalformats)

201
Audio Video Delay Measurement

202
Audio Video Delay Measurement

Audio Video Delay Measurement
SxSERIES–AVDELAYandRxSERIES–AVDELAY(PHABRIX)
203
HDTV Version of EBU Tech 3305

Audio Video Delay Measurement
SxSERIES–AVDELAYandRxSERIES–AVDELAY(PHABRIX)
204
HDTV Version of EBU Tech 3305

205
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Note:Theprecisevalueof59.94is60/1.001;thisalsoappliestovaluessuchas29.97,23.98,and74.18.621
308 309 310 311 312 313 314 315 316 317 318 319 320 333 334 335 336 337 338
622 623 624 625 1 2 3 4 5 6 7 8 21 22 23 24 26259
Field 2 Field 1
Field 1 Field 2
Field blanking
Field blanking
20
Y
video
signal
Line number
Y
video
signal
Line number 332321
0 V
0 V
35??????&#3627408480;
25??????&#3627408480;
35??????&#3627408480;
25??????&#3627408480;
Switching Window
Switching Window
Horizontalreferencepoint≜The50%amplitudepointoftheleadingedgeofhorizontalsync.

206
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
SD-SDI (SMPTE 259)
HD-SDI (SMPTE 292 (1.5 Gb/s)
Dual Link 1.5 Gb/s (SMPTE 372)
3G-SDI (SMPTE 424)
Theswitchingareaisdefinedinword-clockcyclesfromthestartofactivevideo.
(Tclk=3.367ns)
(Tclk=1.684ns)
(Tclk=37ns)

207
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Theswitchingareaisdefinedinword-clockcyclesfromthestartofactivevideo.

−Progressivedigitalvideosystemshaveoneswitchinglineandswitchingareaperframe.
−Interlaceddigitalvideosystems(includingPsF)havetwoswitchinglinesandswitchingareasperframe,
oneforeachfield.
In current practice, both video and audio signals are switched with reference to Field 1 of an interlaced
referenceto allow ancillary signal sequences spanning two fields to be switched error-free.
208
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
⇒ExistingdevicesmayhavebeendesignedtoswitchoneitherfieldforInterlaceddigitalvideosystems.
⇒Newdigitalinterlacedvideodevicesshouldswitchusingtherecommended Field1line.

−Undercurrentconditions,forasystemwithbothinterlacedvideoataspecificframerateandprogressive
videoatdoublethatframerate,deviceshandlingtheprogressivevideoshouldbereferencedtoasignal
derivedfromaninterlacedformatattheinterlacedframerate.
−Havingestablishedthisreferencingrelationship,progressivevideodevicesshouldswitchusingthe
recommended lineduringField1ofthereferencesignal.
209
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Video Production Switcher
Reference Signal (1080i50)
(1080p50)
(1080p50)
(1080i50)
(1080i50)
(1080i50)

Signalalignmentfor1125-,750-and625-linesystems
−Thefirstlineofeachoftheverticalreferencesynctimingsignalsthatcorrespondtosystemswithdifferentnumbersof
scanlinesbutwhichhavethesameframerateshallallbecoincidentwitheachother.
210
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
In50-Hzframeratesystems,the
horizontalreferencepointsof
line1of1125-line,line1of750-
line,andline1of625-line
signalsshallbecoincident.

Signalalignmentfor1125-,750-and525-linesystems
−ThefirstlineofeachoftheverticalreferencesynctimingsignalsthatcorrespondtoHDsystemswithdifferentnumbersof
scanlinesbutwhichhavethesameframerateshallallbecoincidentwitheachother.
211
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
In59.94-Hzframeratesystems,
thehorizontalreferencepoints
ofline1of1125-line,line1of
750-line,andline4of525-line
signalsshallbecoincident.

Switchingpointrelationshipbetween1125-,750-,525-and625-linetelevisionsignals
−Insystemsdesigns,ananalogSDTVreferencesignalmaybeusedasthereferenceforHDTVdevices,suchasrouters.
−TablesprovideguidanceonthetimingrelationshipbetweentheSDTVreferenceandtheHDTVsignalsinorderthatthe
definedswitchingareamaybeachieved.
212
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Switching point relationship in 50Hz frame/field rate systems
Forexample,whenusingthese
referencesignals,theswitching
positionsof1125/50/I,750/50/P,
and625/50/Icanbeseenin
table.

Switchingpointrelationshipbetween1125-,750-,525-and625-linetelevisionsignals
−Insystemsdesigns,ananalogSDTVreferencesignalmaybeusedasthereferenceforHDTVdevices,suchasrouters.
−TablesprovideguidanceonthetimingrelationshipbetweentheSDTVreferenceandtheHDTVsignalsinorderthatthe
definedswitchingareamaybeachieved.
213
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Switching point relationship in 59.94 Hz frame/field rate systems

Timingrelationshipbetween1125/50/Iand625/50/I
−Thetimingrelationshipofanyline&#3627408526;andclockinterval&#3627408527;of1125/50/Iandline&#3627408500;of625/50/Iinfigureiscalculatedas
follows(samplesperfullline:
(&#3627408526;−&#3627409359;)×&#3627409360;&#3627409364;&#3627409362;&#3627409358;+(&#3627409359;&#3627409367;&#3627409360;+&#3627408527;)
&#3627409359;&#3627409359;&#3627409360;&#3627409363;×&#3627409360;&#3627409363;×&#3627409360;&#3627409364;&#3627409362;&#3627409358;
=
(&#3627408500;−&#3627409359;)×&#3627409359;&#3627409365;&#3627409360;&#3627409366;
&#3627409364;&#3627409360;&#3627409363;×&#3627409360;&#3627409363;×&#3627409359;&#3627409365;&#3627409360;&#3627409366;
−Therefore,
&#3627408500;=&#3627409359;+
(&#3627408526;−&#3627409359;)×&#3627409360;&#3627409364;&#3627409362;&#3627409358;+(&#3627409359;&#3627409367;&#3627409360;+&#3627408527;)
&#3627409362;&#3627409365;&#3627409363;&#3627409360;
−Eachswitchingpointof1125/50/Iislocatedatthefollowingpositionin625/50/I:
•&#3627408514;)&#3627408526;=&#3627409365;,&#3627408527;=&#3627409364;&#3627409360;&#3627409363;, &#3627408500;=&#3627409362;.&#3627409363;&#3627409358;&#3627409363;&#3627409361;
•&#3627408515;)&#3627408526;=&#3627409365;,&#3627408527;=&#3627409359;&#3627409358;&#3627409365;&#3627409358;,&#3627408500;=&#3627409362;.&#3627409363;&#3627409367;&#3627409367;&#3627409358;
•&#3627408516;)&#3627408526;=&#3627409363;&#3627409364;&#3627409367;,&#3627408527;=&#3627409364;&#3627409360;&#3627409363;, &#3627408500;=&#3627409361;&#3627409359;&#3627409364;.&#3627409365;&#3627409360;&#3627409365;&#3627409363;
•&#3627408517;)&#3627408526;=&#3627409363;&#3627409364;&#3627409367;,&#3627408527;=&#3627409359;&#3627409358;&#3627409365;&#3627409358;,&#3627408500;=&#3627409361;&#3627409359;&#3627409364;.&#3627409366;&#3627409360;&#3627409359;&#3627409359;
214
Vertical Interval Switching Point for Synchronous Video Switching (RP168)

Timingrelationshipbetween1125/50/Pand625/50/I
−Thetimingrelationshipofanyline&#3627408526;andclockinterval&#3627408527;of1125/50/Pandline&#3627408500;of625/50/Iinfigureiscalculatedas
follows(samplesperfullline:
(&#3627408526;−&#3627409359;)×&#3627409360;&#3627409364;&#3627409362;&#3627409358;+(&#3627409359;&#3627409367;&#3627409360;+&#3627408527;)
&#3627409359;&#3627409359;&#3627409360;&#3627409363;×&#3627409363;&#3627409358;×&#3627409360;&#3627409364;&#3627409362;&#3627409358;
=
(&#3627408500;−&#3627409359;)×&#3627409359;&#3627409365;&#3627409360;&#3627409366;×&#3627409360;
&#3627409364;&#3627409360;&#3627409363;×&#3627409363;&#3627409358;×&#3627409359;&#3627409365;&#3627409360;&#3627409366;
−Therefore,
&#3627408500;=&#3627409359;+
(&#3627408526;−&#3627409359;)×&#3627409360;&#3627409364;&#3627409362;&#3627409358;+(&#3627409359;&#3627409367;&#3627409360;+&#3627408527;)
&#3627409367;&#3627409363;&#3627409358;&#3627409362;
−Eachswitchingpointof1125/50/Pislocatedatthefollowingpositionin625/50/I:
•&#3627408514;)&#3627408526;=&#3627409365;,&#3627408527;=&#3627409364;&#3627409360;&#3627409363;, &#3627408500;=&#3627409360;.&#3627409365;&#3627409363;&#3627409360;&#3627409364;
•&#3627408515;)&#3627408526;=&#3627409365;,&#3627408527;=&#3627409359;&#3627409358;&#3627409365;&#3627409358;, &#3627408500;=&#3627409360;.&#3627409365;&#3627409367;&#3627409367;&#3627409362;
•&#3627408516;)&#3627408526;=&#3627409359;&#3627409359;&#3627409360;&#3627409363;+&#3627409365;,&#3627408527;=&#3627409364;&#3627409360;&#3627409363;, &#3627408500;=&#3627409361;&#3627409359;&#3627409363;.&#3627409360;&#3627409363;&#3627409360;&#3627409364;
•&#3627408517;)&#3627408526;=&#3627409359;&#3627409359;&#3627409360;&#3627409363;+&#3627409365;,&#3627408527;=&#3627409359;&#3627409358;&#3627409365;&#3627409358;, &#3627408500;=&#3627409361;&#3627409359;&#3627409363;.&#3627409360;&#3627409367;&#3627409367;&#3627409362;
215
Vertical Interval Switching Point for Synchronous Video Switching (RP168)

1125tri-levelanalogsync,525/59.94/Iand625/50/Iasexternalreferencesignals
−Bothtri-levelanalogsync,525/59.94/Ior625/50/Ianalogsynccanbeusedasexternalreferencesignals.
625/50/Ianalogsync
−The625/50/Ianalogsynccanbeusedasthereferencesignalfor1125/50/I,50/P,25/PsF,25/P,750/50/P,25/P,625/50/P,
and625/50/I.
−Itcouldcover1125/60/I,60/P,30/PsF,30/P,24/PsF,and24/Pwithsomelimitation.
525/59.94/Ianalogsync
−Ontheotherhand,the525/59.94/Ianalogsync,althoughitdoesnotcoveralltheframerates,canbeusedasa
referencesignalfor1125/59.94/I,59.94/P,29.97/PsF,29.97/P,750/59.94/P,29.97/P,525/59.94/P,and525/59.94/I.
−Italsocovers1125/23.98/PsFand23.98/Pwithsomelimitation.
216
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Tri-levelanalogsyncisusedbecauseitcoversallframerates.

1125tri-levelanalogsync,525/59.94/Iand625/50/Iasexternalreferencesignals
Notes:
−1.1125/50/Ptri-levelsynccannotsynchronize1080/50/I,25/PsF,25/P,24/Por24/PsFsignalsand1125/59.94/Ptri-levelsynccannotsynchronize
1080/59.94/I,29.97/PsF,29.97/P,23.98/PsFor23.98/Psignals.
−2.A525/59.94/Ior625/50/Ianalogsynccarryingverticalintervaltimecode(VITC)conformstoSMPTE318M-A.
−3.A525/59.94/Ianalogsynccarryingthe10-fieldreferencecodingconformstoSMPTE318M-B.
−4.TheVITCframecountofa625/50/IanalogsyncthatconformstoSMPTE318M-Awillprovideforalignmentof24-Hzvideosignalsat1sintervals,and30-Hz
and60-Hzvideosignalsat0.2sintervals.
217
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Coverage of various external reference signals

VandHsyncphaserelationshipbetween1125tri-levelsyncand625/50/Ianalogsync
218
Vertical Interval Switching Point for Synchronous Video Switching (RP168)

VandHsyncphaserelationshipbetween1125tri-levelsyncand525/59.94/Ianalogsync
219
Vertical Interval Switching Point for Synchronous Video Switching (RP168)

Phaserelationshipbetween1125/50/Iand625/50/I,videoandsyncsignals
−When1125/50/Iand625/50/Iequipmentisusedinthesamestudio,thefollowingfouroptionsareappliedtothephase
relationshipbetween1125/50/Iand625/50/I,videoandsyncsignals.
−Appropriateoptionofoperationwillbedeterminedbythestudiosystemarchitecture.
1)Samephasein1125/50/Iand625/50/I,videoandsyncsignals.
220
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
625and1125video
andsyncsignalsare
inphase.
Thehorizontalreference
pointofline1of1125/50/I
andline1of625/50/I,video
andsyncareinphase.
1 2 3
1 2 3
625624
625624
1
1125/50/I
625/50/I
1125/50/I
625/50/I
Reference Signal
(1080i50)
(625i50)
(1080i50)
(1080i50)
Reference Signal
(625i50)

Phaserelationshipbetween1125/50/Iand625/50/I,videoandsyncsignals
−When1125/50/Iand625/50/Iequipmentisusedinthesamestudio,thefollowingfouroptionsareappliedtothephase
relationshipbetween1125/50/Iand625/50/I,videoandsyncsignals.
−Appropriateoptionofoperationwillbedeterminedbythestudiosystemarchitecture.
2)625-linevideosignaldelayedby1framefromthe1125-linevideosignal.
221
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
1125-lineand625-line,videoand
synchavethesamewaveform
asshowninfigure,but625-line
videoisdelayedby1framefrom
the1125-linevideo.
625videosignaldelays
by1framefrom1125
videosignal.
1 2 3
1 2 3
625624
625624
1
1125/50/I
625/50/I
1125/50/I
625/50/I
Reference Signal
(1080i50)
(625i50)
(1080i50)
(1080i50)
Reference Signal
(625i50)

Phaserelationshipbetween1125/50/Iand625/50/I,videoandsyncsignals
−When1125/50/Iand625/50/Iequipmentisusedinthesamestudio,thefollowingfouroptionsareappliedtothephase
relationshipbetween1125/50/Iand625/50/I,videoandsyncsignals.
−Appropriateoptionofoperationwillbedeterminedbythestudiosystemarchitecture.
3)The1125-linevideosignalsynchronizedwithexternalreferencesignaland625-linevideosignaldelayedby90linesfrom
1125videosignal.
222
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
625videosignaldelayedby90
linesfrom1125videosignal
1 2 3 625624
1 574 575 625573
1125/50/I
625/50/I
1125/50/I
625/50/I
1125 video signal
synchronized with
externalreferencesignal.
Reference Signal
(1080i50)
(625i50)
(1080i50)
(1080i50)
Reference Signal
(625i50)

Phaserelationshipbetween1125/50/Iand625/50/I,videoandsyncsignals
−When1125/50/Iand625/50/Iequipmentisusedinthesamestudio,thefollowingfouroptionsareappliedtothephase
relationshipbetween1125/50/Iand625/50/I,videoandsyncsignals.
−Appropriateoptionofoperationwillbedeterminedbythestudiosystemarchitecture.
4)The625-linevideosignalsynchronizedwithexternalreferencesignaland1125-linevideosignaladvancedby90linesfrom
the625videosignal.
223
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
625 video signal
synchronized with
externalreferencesignal.
1 2 3 625624
625624 1 2 3
1125/50/I
625/50/I
1125/50/I
625/50/I
Reference Signal
(1080i50)
(625i50)
(1080i50)
(1080i50)
Reference Signal
(625i50)
1125 video signal
advancedby90lines
from625videosignal.

Toleranceofvideooutputphaseinthe1125/50/Isignal
−Thevideooutputphaseshouldsynchronizewiththeexternalreferencesync.
−Thetoleranceofvideooutputphaseshallbeasfollows.
&#3627408488;&#3627408527;&#3627408514;&#3627408525;&#3627408528;&#3627408520;??????&#3627408522;&#3627408517;&#3627408518;&#3627408528;&#3627408529;&#3627408521;&#3627408514;&#3627408532;&#3627408518;:±&#3627409358;.&#3627409359;??????&#3627408532;
&#3627408491;&#3627408522;&#3627408520;&#3627408522;&#3627408533;&#3627408514;&#3627408525;??????&#3627408522;&#3627408517;&#3627408518;&#3627408528;&#3627408529;&#3627408521;&#3627408514;&#3627408532;&#3627408518;∶±&#3627409359;.&#3627409366;??????&#3627408532;
−NOTE:±1.8μsindigitalvideophaseisabout1/10ofhalflineperiodfor1125/50/Isignal.
⇒Thisterm(Toleranceofvideooutputphase)isnotappliedtoroutersandothersimilarequipmentinwhichthe
externalreferencesyncisusedonlytotimetheswitching.
224
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Block diagram for video output phase measurement (HD-SDI video output and WFM with HD-SDI input)

Toleranceofvideooutputphaseinthe1125/59.94/Isignal
−Thevideooutputphaseshouldsynchronizewiththeexternalreferencesync.
−Thetoleranceofvideooutputphaseshallbeasfollows.
&#3627408488;&#3627408527;&#3627408514;&#3627408525;&#3627408528;&#3627408520;??????&#3627408522;&#3627408517;&#3627408518;&#3627408528;&#3627408529;&#3627408521;&#3627408514;&#3627408532;&#3627408518;:±&#3627409358;.&#3627409359;??????&#3627408532;
&#3627408491;&#3627408522;&#3627408520;&#3627408522;&#3627408533;&#3627408514;&#3627408525;??????&#3627408522;&#3627408517;&#3627408518;&#3627408528;&#3627408529;&#3627408521;&#3627408514;&#3627408532;&#3627408518;∶±&#3627409359;.&#3627409363;??????&#3627408532;
−NOTE:±1.5μsindigitalvideophaseisabout1/10ofhalflineperiodfor1125/59.94/Isignal.
⇒Thisterm(Toleranceofvideooutputphase)isnotappliedtoroutersandothersimilarequipmentinwhichthe
externalreferencesyncisusedonlytotimetheswitching.
225
Vertical Interval Switching Point for Synchronous Video Switching (RP168)
Block diagram for video output phase measurement (HD-SDI video output and WFM with HD-SDI input)

StandardVerticalIntervalRoutingSwitcher
–Allroutingswitchersrelyonavideoreferencesignaltodeterminewhererequestedsource-to-destinationswitcheswill
occurintheverticalinterval.
–Whenthereferenceindicatesaswitch-pointinastandardverticalintervalroutingswitcher,theswitchoccursirrespective
ofwhichlinethesourceison.
226
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
Reference Signal
152
True Switching Point
Wrong Switching Point
Switching Point
152

StandardVerticalIntervalRoutingSwitcher
–Ifthesourceisoutoftimewithrespecttotheothersourcesignalsandthereferencesignal⇒switchingintheactivepicture
⇒rollingofthevideosignal
⇒biterrors
⇒disturbanceofdownstreamequipmentthatisunabletoprocessanincompleteframeofdigitalvideo.
–Inastandardrouter,theoutputwilljumpbywhateverthetimingdifferencewasbetweenthetwosources.
–Alldigitalroutingswitcherswilldothis.
227
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
Reference Signal
15
Switching Point
152
152
Switching Point

StandardVerticalIntervalRoutingSwitcher
–TheSDIsignalshouldonlybethoughtofasadigitaldatastreamratherthanintermsofvideopictures.
–InpracticethedatafromtheswitchpointtothenextTRS(EAV,SAV)wordcanbeassumedtobecorruptedandshould
beignored.
228
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
AtoBSwitching:IfthiswerefedtoaSDI-to-RGBconvertor
todriveapicturemonitor,theanaloguewaveformwould
havetwolinesyncpulsesveryclosetogether.
BtoASwitching:IfthiswerefedtoaSDI-to-RGBconvertorto
driveapicturemonitor,theanaloguewaveformwould
havetwolinesyncpulsesveryfartogether.
Why downstream equipment responds differently, depending on the direction of the switch, is normally related to phase locked loop re-lock times.

Clean/QuietSwitchRoutingSwitcher
–Foramastercontrolswitcher,timingofallinputsourcesofacleanorclean/quietswitchisveryimportant.
–Itisofferingacontinuous,error-freedigitalvideosignaloutputwith“pop”-freeaudiowhenswitchingbetweensources.
–AClean/QuietSwitchroutersdeterminetheswitch-pointthesamewayasstandardverticalintervalroutingswitchers,
withtheexceptionthattwooftheoutputsontheseroutersfeaturebuilt-inlinebuffers.
⇒Thesebuffersaccommodate asinglelineofdelay(one-linebuffer)betweenthesources.
⇒Thebuilt-inlinebuffersservetosynchronizethevarioussourcesandprovidecleanswitchingbetweensignals.
⇒Thesourcesgoingintotheroutercanbemistimedwithrespecttoeachotherbyuptooneline.
⇒Whentheswitchismade,theoutputoftherouterwillalwaysprovideaconstant,frame-alignedoutput.
229
Vertical Interval vs. Clean/Quiet Switch Routing Switchers

Whyweneedtouseabufferingschemeifthesourcesarepre-alignedtobewithinonelineofeachother?
–Eveninthemostcarefullyplannedinstallations,withstrictattentionbeingpaidtomatchingcablelengthsandtiming,the
clockandsignalboundariesofthedigitalsourcesmustbepreciselyaligned.
–Theuseofbufferingnotonlyensuresthatcablelengths,slighttimingshiftsinsourceequipmentandvariationsinsource
materialareaccommodated ,butalsoensuresthattheclockandsignalboundariesarepreciselyaligned.
–Thisalignmentisnotpossibleinastandardverticalintervalroutingswitcherwhereswitchingbetweentwosourcescauses
alossorexcessofpixeldata.
230
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
If the clock and signal boundaries are not precisely aligned, switching
between two sources causes a loss or excess of pixel data.

Whyweneedtouseabufferingschemeifthesourcesarepre-alignedtobewithinonelineofeachother?
–Thisincorrectpixeldata(lossorexcessofpixeldata)willproduceanillegalsignaltothedownstreamsystem,whichcan
causeatotalpictureinterrupttosomedownstreamequipmentwithcompressionprocessing(i.e.,encoders,servers).
⇒Thispictureinterruptisnotunnoticedandoftenresultsinacompleteresetofthedownstreamequipmentaslocktothe
sourcesignalmustbere-attainedafteraswitchbetweensources.
⇒Furthermore,thebufferingelementallowsClean/QuietSwitchtoofferuniqueroutingfeaturessuchasvideoand/or
embeddedaudiotransitionswithselectabletransitionspeed;abilitytosimulcastHD-SDIandSD-SDIsourcesfromasingle
routingswitcher,eachwithdedicatedclean/quietoutputs;andconstantoutputsignalswithconsistentframestructures.
231
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
Reference Signal

232
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
Post2X1switchto
seamlesslytransfer
fromthecurrentinput
tothenewinputat
thereferencepoint.
Pre-select Matrix
Two Alignment Buffers
AandBoutputssignalsarede-serialized,placedintothetwobuffersforalignmentand
presentedtothesecondary2X1switchforseamlesstransferattheproperreferencepoint.
A
B

233
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
1
2
A
B

234
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
A
B
1
2

235
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
Inputsignalsmust be
synchronized and timed
withinonelineofeachother
forcleanswitchingtooccur.
A
B
1
2

236
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
Thebufferingofthesignalsensuresthat
theswitchbetweenthetwoinputsignals
isperfectlytimedtobeonaframe
boundary,therebyremovingvideo
bounce,glitches,andtheaudiopops
andclicksassociatedwithvertical
intervalroutingswitchers.
A
B
1
2

237
Vertical Interval vs. Clean/Quiet Switch Routing Switchers
–Theunitauto-sensestheinputsignaltypeduringtheauto-timingfunctionandautomaticallyselectsabuffersuitabletothe
inputsignaltype.
–Theauto-timingfunctioncollectstiminginformationabouteachinput.
–Afterthetiminginformationiscollected,theunitplacestheoutputsignalone-halfalineaftertheaveragetimeoftheinputs.
–Duringtheauto-timefunction,theauto-timingmanagerswitchestoeachinputandthenwaitsuntilthatinputislocked.
–Themanagerthenrecordsthetiminginformationforthatinput.
–Onceithasmonitoredthetimingforallinputs,theauto-timingmanagerselectsthebuffercenter.
–Ifacenterthatlieswithintheone-linebufferlimitscannotbefound,thenthoseinputsthatarefarthestfromthecenterare
removedfromthecalculation.
–Theprocessofgatheringinputtiminginformationisrepeatedwithouttheexcludedsource,andthebuffercenteris
determined.
–Thetimingbuffercentervalueisstoredinnon-volatilememorysothatitcanberestoredonpower-up.
LEATCH C&Q SW

238
Quiet Switching of Digital Audio
–Clean/QuietSwitchoffersquietswitchingofembedded audiocontent,providing“pop-free”audiowhenswitching
betweensources.
–Theaudiofromtwosourcesisalignedtoacommonclocksignalwithinan“elastic”buffertoensurethattheswitch
betweenthetwodigitalaudiosourcesoccursinproperphasealignmentandonanaudioframeboundary.
During the de-serialization process, the audio content is de-embedded
and bufferedin the same fashion as the video was buffered.

239
Quiet Switching of Digital Audio
–Theaudiosignalsdonotenjoytheluxuryprovidedtovideosignals—theverticalinterval.
–Glitchesdooccurinavideorouter,buttheyarehiddenfromtheviewerbeacauseofverticalinterval.
–Withanaudioswitch,thereisnoaudioverticalinterval,whichmeansthereisnoplacetohidethetransitionerrorfromthe
listener.
–Forabsolutequietdigitalaudioswitching,cross-fadeprocessingisrequired.
–Thisisespeciallytrueinlivechangesofsourcematerial,aswhenlocalfeedsarecutintonetworkprogrambreaksorfor
localnewsfeeds.

240
Quiet Switching of Digital Audio
−Therearenoinputtimingorauto-timing
requirementsfortheembeddedaudioportion
ofthevideosignals,astheembeddingprocess
takescareofsynchronizationoftheaudio
signaltothevideoreference.
−Unlikethecleanvideoinputsignalalignment
requirements,alldigitalaudiosourcesmust
simplybesynchronoustothehousereference
signal
⇒Thisensuresthatovertimethereisnota
slipinthetimingalignmentthatwillcause
aninconsistentnumberofsampleswithin
thedigitalaudioblockinformation.
Advanced Hybrid Processing (AHP)