Analisis Prediktif ( Regresi ) Regresi Logistik -> memprediksi variable kategorik berdasarkan beberapa variable bebas Regresi logistik biner , memprediksi nilai kategorik yang terdiri dari dua nilai yang berbeda , contoh : Lulus/ tidak lulus import pandas as pd import numpy as np import statsmodels.api as sm from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score , classification_report # Contoh Data data = { ‘ Niai_kuis ’: [52, 45, 87, 92, 76, 76, 70, 62, 23, 30], ‘ Nilai_ujian ’: [65, 70, 70, 80, 90, 85, 55, 62, 50, 40], ‘ Kelulusan ': [0, 0, 1, 1, 1, 1, 1, 1, 0, 0] } df = pd.DataFrame (data) # Variabel independen (X) dan dependen (y) X = df [[‘ Nilai_kuis ', ‘ Nilai_ujian ']] y = df [‘ Kelulusan '] # Split data X_train , X_test , y_train , y_test = train_test_split (X, y, test_size =0.2, random_state =42) # Model Regresi Logistik model = LogisticRegression () model.fit ( X_train , y_train ) # Prediksi y_pred = model.predict ( X_test ) # Evaluasi print(" Akurasi :", accuracy_score ( y_test , y_pred )) print( classification_report ( y_test , y_pred ))