Analysis of Aerospace Structures_ azargoshasb.pdf

HamedAzarkeshb 35 views 142 slides Jul 23, 2024
Slide 1
Slide 1 of 142
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142

About This Presentation

Analysis of Aerospace Structures


Slide Content

Analysis of Aerospace Structures
Prov: H. Azargoshasb
Sharif University of Technology _ Aerospace Engineering Faculty

2Objective
The Purpose of the Course is to teach the Principles
of Solid and Structural Mechanics that can be used
to Design and Analyze Aerospace Structures, in
particular Aircraft Structures.

3TABLE OFCONTENTS
•Introduction
•Multi Disciplines Design Process, System Engineering, Phases of Aircraft Design Process
•Design Requirements, RFP Proposal, Design Project Planning _ Gantt Chart, Flow Chart
•Structure Design Steps, Structure Architecture, Standards and, Structure Design Cycle Process
•Chapter 0. Characteristics of Aircraft Structures and Materials
•Introduction
•Types of Aircraft Structures
•Basic Structural Elements in Aircraft Structure
•Definitions
•Aircraft Materials
•Chapter I. Pure Torsion
•Elastic, Inelastic, Homogeneous, and Nonhomogeneous Bars,
•Circular and Noncircular Cross Sections,
•Shear Flow, Shear Stress, Residual Stress, Power Transmission, and Angle of Twist

4TABLE OFCONTENTS
•Chapter II. Pure Bending
•Elastic, Inelastic, Homogeneous, and Nonhomogeneous Beams,
•Symmetric and Unsymmetric Bending, Neutral Axis Location, Deflection,
•Bending Stresses in Straight and Curved Beams
•Chapter III. Transverse Shear Loading of Beams With OPEN Cross Sections
•Elastic, Homogeneous Unstiffened and Stiffened Beams,
•Symmetric and Unsymmetric Cross Sections,
•Shear Center, Shear Flow, Shear and Bending Stresses, and Deflection
•Chapter IV. Transverse Shear Loading of Beams With CLOSED Cross Sections
•Elastic, Homogeneous Unstiffened and Stiffened Beams,
•Uniform and Tapered Beams, Symmetric and Unsymmetric Cross Sections,
•Shear Center, Shear Flow, Shear and Bending Stresses, and Deflection
•Chapter V. Combined Transverse Shear, Bending, and Torsion Loading
•Shear and Normal Stresses in Closed Thin-Walled Beams
•Chapter VI. Internal Pressure
•In-Plane Stresses in Monocoque and Semi-Monocoque Pressure Vessels

5Books on Aircraft Structures
•Sun, C.T., "Mechanics of Aircraft Structures," John Wiley & Sons, 1998; ISBN 0-471-17877-2
•Megson, T.H.G., "Aircraft Structures for Engineering Students," Third Edition, Arnold (also John Wiley & Sons),
1999; ISBN 0-470-34937-9
•Curtis, H.T., "Fundamentals of Aircraft Structural Analysis," Irwin, 1997; ISBN 0-256-19260-X
•Lomax, T.L., "Structural Loads Analysis for Commercial Transport Aircraft: Theory and Practice," AIAA
Education Series, AIAA, Inc., 1801 Alexander Bell Drive, Reston, VA 22091, 1996; ISBN 1-56347-114-0.
•Niu, M.C.Y., "Airframe Structural Design," CommilitPress LTD., 22/F, Sing Pao Building, 101 King's Road, North
Point, Hong Kong. U.S. order/inquiry: Technical Book Company, 2056 Westwood Blvd., Los Angeles, CA 90025,
1988; ISBN 962-7128-04-X.
•Allen, H.A. and Haisler, W.E., "Introduction to Aerospace Structural Analysis," John Wiley & Sons, Inc., 1985;
ISBN 0-471-88839-7.
•Peery, D.J. and Azar, J.J., "Aircraft Structures," McGraw-Hill, Inc., 1982; ISBN 0-07-049196-8.
•Bruhn, E.F., "Analysis and Design of Flight Vehicle Structures," S.R. Jacobs & Associates, Inc., 1973.
•Abraham, L.H., "Structural Design of Misslesand Spacecraft," McGaw-Hill, Inc., 1962.

6Books on Aircraft Structures
•Williams, D., "An Introduction to the Theory of Aircraft Structures," Edward Arnold (Publishers) LTD., London,
England, 1960.
•Kuhn, P., "Stresses in Aircraft and Shell Structures," McGraw-Hill Book Company, Inc., 1956.
•Gerard, G., "Minimum Weight Analysis of Compression Structures," New York University Press, 1956.
•Niles, A.S. and Newell, J.S., "Airplane Structures," Volume I, Fourth Edition, John Wiley & Sons, Inc., 1954.
•Shanley, F.R., "Weight-Strength Analysis of Aircraft Structures," The Rand Corporation, First Edition, 1952.
•Steinbacher, F.R. and Gerard, G., "Aircraft Structural Mechanics," Pitman Aeronautical Publications, 1952.
•Peery, D.J., "Aircraft Structures," McGraw-Hill BookkCompany, Inc., 1950.
•Barton, M.V., "Fundamentals of Aircraft Structures," Prentice-Hall, Inc., 1948.
•Mangurian, G.N. and Johnston, N.M., "Aircraft Structural Analysis," Prentice-Hall, Inc., 1947.
•Niles, A.S. and Newell, J.S., "Airplane Structures," Volume II, Third Edition, John Wiley & Sons, Inc., 1947.
•Sechler, E.E. and Dunn, L.G., "Airplane Structural Analysis and Design," John Wiley & Sons, Inc., 1942

7Grading
•Final Exam (6points)
•Homework (4points)
•Midterm, Quizizz (6points)
•Project (Report = 2.5and presentation = 1.5)
•Attendance In The Classroom(1+points)
•Class participation(1+points)

8Course software
•Abaqus or Another FEM software
•Matlabor Python
•Excel
•etc

9Introduction-Objective
✓Air vehicle design?
✓The position of design in the production of air vehicles?
✓Multidisciplinary design?
✓Systems engineering?
✓Different steps of the design process?
✓Design requirements?
✓Request for proposal? &Proposal?
✓Design Project Planning? &Gantt Chart, Flow Chart ?
✓The position of structural design in the design of air vehicles?
✓The position of structural analysis in the design of the air vehicle structure?
✓Architectural processes of an air vehicle?
✓Standards and guidelines?

1
0
Introduction-Multi Disciplines DesignProcess

1
1
Introduction-Multi Disciplines DesignProcess

* یسدنهم هخاش دنچ تلاماعت* نامزمه یسدنهم* یراک کرتشم مهف و نابز داجیا *مجسنم یمیت شلات داجیا
یدنمزاین لوصحم
کینویوا یسدنهم
کیلوردیه یسدنهم
هزاس یسدنهم
زا رگید یاه هزوح
یسدنهم
یا هخاش دنچ یسدنهم یاهدنیآرف
تاصخشم حطس
(Specification)
یحارط حطس
(Design)
ارجا و یزاس هدایپ حطس
(Implementation)
12Introduction-System Engineering

* هتفای راتخاس دنیآرف داجیا*فلتخم یاه هزوح رد مهافتءوس داجیا زا یریگولج
یدنمزاین لوصحممتسیس یسدنهم
کیلوردیه یسدنهم
هزاس یسدنهم
یسدنهم زا رگید یاه هزوح یسدنهم یاهدنیآرف
یا هخاش دنچ
تاصخشم حطس
(Specification)
یحارط حطس
(Design)
ارجا و یزاس هدایپ حطس
(Implementation)
کینویوا یسدنهم
هلئسم تاحیضوت
هدش دیدناک یاه لح
بولطم لح یبایزرا
هدش هدایپ لح
؟دراد یتاصخشم هچ و تسیچ هلئسم
لح شور دنچ(یحارط )؟درک باختنا ناوتیم هلئسم نیا یارب
یحارط نیرتهب
یحارط نیرتهب ساسارب ارجا
تامازلا اب هدش ارجا یحارط ایآ
؟دراد تقباطم
13Introduction-System Engineering

یدنمزاین لوصحممتسیس یسدنهم
تامازلا تیریدم
یدرکلمع لیلحت
یرامعم فیرعت
یقطنم
یکیزیف یحارط
یگچراپکی
دیئات و یسررب
و تیحلاص
یجنسرابتعا
هلئسم تاحیضوت
هدش دیدناک یاه لح
بولطم لح
یبایزرا
هدش هدایپ لح
لح هار
تاصخشم(Specification) یزاس هدایپ(Implementation)یحارط(Design)
دنیآرفیسدنهم
یا هخاشدنچ
دنیآرفیسدنهممتسیس
* شورRFLP هخرچ یحارط دنیآرف رب ینتبم روحم دنیآرف متسیس یسدنهم یعونVتسا.
1
4
Introduction-System Engineering

* غولب یاه هخرچ رتشیب هچ رهرارکتVدنک یم قبطنم یرتشم تامازلا اب ار لوصحم رتشیب ، .یدرکلمع تامازلا فیرعت هب طقف ،غولب لوا یاه هخرچ تسا نکممدسرب یتامدقم.
اه متسیس رتشیب هچ ره هیزجت
لوصحم رتشیب هچ ره ندش کیدزن
یرتشم تامازلا ساسارب
تامازلا تیریدم
یدرکلمع لیلحت
یرامعم فیرعت
یقطنم
یکیزیف یحارط
یگچراپکی
دیئات و یسررب
و تیحلاص
یجنسرابتعا
•Requirement (لوصحم حور)
یفیصوتینتمزاهیلکزلایتاماهک
رارقتساربیحارطودییاتملوصح
لامعادوش."هچ؟میزاسب!"
•Functional (لوصحم حور)
یا هعومجمزایتاصخشمهکهبیگنوگچدرکلمع
یاه متسیسلوصحمساساربتامازلا
دزادرپ یم.ربیحارطودییاتلوصحمعالام
دوش."هنوگچ؟میزاسب!"
•Logical(لوصحم مسج)
راتخاسیقطنمیاه متسیسلوصحم؟تسیچ"ابهچ
یراتخاس؟میزاسب!"(،تازیهجت،تاعطقطباراه...)
همزلاقلخ(یحارط)کیمتسیسهبتروصیف،یکیزداجیا
ییاه طیحممزلاهارمهبتاطابترانیبامساهنآت.
•Physical(لوصحم مسج )متسیس زا یلح هار( .یلاعف هب یعقاو کنیل ای یزاجم کنیلیراجت ت)
•Integration(مسج راتخاس رد نزاوت و یگچراپکی یبایزرالوصحم)
راتخاسیقطنمدیابهبیوحنداجیادوشهکردتخاسرایاه متسیس
لوصحمهنوگچیه،لخادتهچردکیتاتساوهچردکلمعدریکیمانید
دشابن.
•Verification(حم درکلمع و راتفر دیئات و یسرربلوص)
ابهدافتسازایزاس هیبشو،تستدرکلمعلوصحمدروم
یسرربرارقهتفرگوردتروص،یتسردیئاتددوش یم.
•Validation and Qualification
(زلا اب متسیس راتفر قابطنا یسرربیرتشم تاما)
ساساربتامازلا،یرتشمیسرربمدوش ی
هکایآدرکلمعحیحصیاه متسیسم،لوصح
یاهزاینیرتشمارهدروآربدنک یمیاریخ.
15Introduction-System Engineering

Sharif University of Technology
Aerospace Engineering Faculty
16Introduction-Phases of Aircraft Design Process

17Introduction-Design Requirements

18Introduction-RFP -Proposal

19Introduction-RFP -Proposal

20Introduction-Design Project Planning _ Gantt Chart, Flow Chart

•Geometry Design or Structure Architecture
•Determination of The Design Standard
•Loading
•Determination of Boundary Conditions
•Material Selection
•Structural Analysis
•Damage And Stability Analysis
•Documenting
A Different and Repeatable Process in Different Phases of Design
21Introduction-Structure Design Steps

22Introduction-Structure Architecture

23Introduction-Standards and Guidelines

✓ نامدتتتتتتیچ اتتتتتتفایرد
یاه ناملاهزاس یلصا
✓هزاس هیلوا یسدنه لدم
✓یراذگرابهزاس بلص
✓ باختنالایرتم
✓هزاس هیلوا نامدیچ
✓هزاس ییاهن هسدنه
✓ ییاهن لدمFEM
✓یراذگرابهزاس کیتسلاا
✓تایئزج یحارط اهج هدامآ
24Introduction-Preliminary Structure Design Cycle Process

2
5
Chapter 0.-Objective
✓Types of Air vehicle ?
✓Types of Aircraft Structures?
✓The difference between an air vehicle and a ground vehicle?
✓Airframe?
✓Basic Structural Elements in Aircraft Structure?
✓wing, fuselage, landing gears, tail units (horizontal and vertical stabilizers), canard, nacelle,
and control surfaces such as aileron, rudder, flap, slat, tabs and elevator?
✓Spar, rib, stringer, Bulkhead, skin, former, web, longeron, frame, cap, flange, joggle, ..?
✓truss, semimonocoque, and monocoque?
✓Aircraft Cutaway?
✓Aircraft Materials?
✓aluminum, titanium, and steel alloys, advanced fiber composites?

26
•An aircraft is a vehicle that is used for flight in the air
•vehiclelikethisistypicallybuiltbyassemblingmanycomponentstructuressuchaswing,fuselage,
landinggears,stabilizers,etc.
•Each component structure is typically built by assembling many substructures.
•Each substructure can be made out of different materials.
•Themaindifferencebetweenaircraftstructuresandmaterialsandcivilengineeringstructures
andmaterialsliesintheirweight.
•Themaindrivingforceinaircraftstructuraldesignandaerospacematerialdevelopmentisto
reduceweight.
•Ingeneral,materialswithhighstiffness,highstrength,andlightweightaremostsuitablefor
aircraftapplications.
•Atypicalaircraftdesigncycleinvolvesthreemajorsteps(i)conceptualdesign,(ii)preliminary
design,and(iii)detaildesign.
Chapter 0.-Introduction

27
•In any of these design stages, different factors such as aerodynamics, avionics, propulsion,
and structural integrity are simultaneously taken into account.
•Assuch,aircraftstructuresarenotdesignedforstructuralsafetyandintegrityonly;many
nonstructuralrequirementsimposeadditionalrestrictionsindesigningaircraftstructuralcomponents.
•Forinstance,anairfoilischosenaccordingtoaerodynamicliftanddragcharacteristics.
•Assuch,thesizeandshapeofanaircraftstructuralcomponentareusuallypredetermined.
•Suchrestrictionssignificantlylimitthenumberofsolutionsforstructuralproblemsintermsofglobal
configurations.
•Often,thesolutionsresorttotheuseofspecialmaterialsdevelopedforapplicationsinaerospace
vehicles.
•Thenonstructuralandweight‐savingdesignrequirementsgenerallyleadtotheuseofshell‐like
structures(monocoqueconstructions)andstiffenedshellstructures(semimonocoque
constructions).
Chapter 0.-Introduction

28
•The geometrical details of aircraft structures are much more complicated than those of civil
engineering structures. They usually require the assemblage of thousands of parts.
•Technologies for joining the parts are especially important for aircraft construction.
•Because of their highstiffness/weightand strength/weightratios, aluminumand titaniumalloys
have been the dominant aircraft structural materials for many decades.
•However, the recent advent of advanced fiber‐reinforced composites has changed the outlook.
•Composites may now achieve weight savings of 30-40% over aluminum or titanium counterparts.
•As a result, composites have been used increasingly in aircraft structures.
Chapter 0.-Introduction

29
•Most aircraft are built as fixed‐wing vehicles and are commonly known as airplanes.
•Other categories include rotorcrafts, glider, lighter‐than‐airvehicles, etc.
•Presence of air is essential for generating lift on thesevehicles.
•Assuch,structuraldesignofsuchvehiclesdependsonhowairloadistransmittedtothestructural
elements.
•Fixed‐WingAircraft
•Afixed‐wingaircraftisakindofairvehiclethatisheavier‐than‐airbutcanflyintheairby
generatingliftusingthewings.
•Anaircraftwithapoweredengineisgenerallycalledanairplane.
•Theunpoweredversionoffixed‐wingaircraftiscalledgliders.
Chapter 0.-Types of Aircraft Structures

30
•Rotorcraft
•Arotorcraftorrotary‐wingaircraftisaheavier‐than‐airvehiclethatgeneratesliftusingrotarywings
orrotorblades,whichrevolvearoundarotor.
•Dependingonhowrotorbladesfunction,rotorcraftsarecategorizedashelicopters,autogyros
(gyrocopter),orgyrodynes(VTOL).
•Recently,small‐scalemultirotorrotorcraftsarewidelyusedforsurveillanceorvideo‐capturing
purposes.
•Designingbladesfortherotorcraftisfarmorecomplexthandesigningafixed‐wingaircraftbecause
ofthecomplexaerodynamicforces.
Chapter 0.-Types of Aircraft Structures

31
•Lighter‐than‐Air Vehicles
•Aircraftsuchasballoons(hot‐airballoon),nonrigidblimps,andairships(alsoknownasdirigibles)
aredesignedtocontainsufficientamountoflighter‐than‐airgases(typicallyhelium)sothatliftcan
begeneratedfromtheliftinggas.
Chapter 0.-Types of Aircraft Structures

32
•Drones
•Dronesaresmall‐scaleairvehiclesthatcanbefixed‐wingtypeorrotary‐wingtype.
•Thesizeofadroneissignificantlysmallerthanatypicalairplaneorrotorcraft.
•Assuch,mostdronesarepoweredbyelectricalsources.
•Otherthantheirsize,theliftingmechanismofadroneissimilartotheconventionalfixed‐wingor
rotary‐wingvehicles.
Chapter 0.-Types of Aircraft Structures

33
•BASIC STRUCTURAL ELEMENTS IN AIRCRAFT STRUCTURE
•Anaircrafthasmanyintegratedparts,asshowninFigures.
•Ingeneral,thesepartscanbecategorizedintobasicstructuralelementssuchaswing,fuselage,
landinggears,tailunits(horizontalandverticalstabilizers),andcontrolsurfacessuchas
aileron,rudder,andelevator.
Chapter 0.-Basic Structural Elements in Aircraft Structure

34
•Fuselage
•Thefuselageisthemainstructuralelementofafixed‐wingaircraft.
•Itprovidesspaceforcargo,controlsystemandpilots,passengersandcabincrews,andother
accessoriesandequipment.
•Insingle‐engineaircraft,thefuselagealsocarriesthepowerplant.
•AsshowninFigure,afuselagecanbeconstructedinvariousconfigurationssuchastruss,
semimonocoque,andmonocoque.
Chapter 0.-Basic Structural Elements in Aircraft Structure

35
•VariousConfigurations
OfFuselage
Chapter 0.-Basic Structural Elements in Aircraft Structure

36Chapter 0.-Basic Structural Elements in Aircraft Structure

37
•Wing
•Themainfunctionofthewingistopickuptheairandpowerplantloadsandtransmitthemtothe
fuselage.
•Thewingcross‐sectiontakestheshapeofanairfoil,whichisdesignedbasedonaerodynamic
considerations.
•Ingeneral,wingsareconstructedbasedonmonospar,multispar,orboxbeamconfigurations,as
showninFigures.
Chapter 0.-Basic Structural Elements in Aircraft Structure

38
•WingConfigurations
•Thesethreedesignconfigurationsareconsideredasthebasicdesigns,andaircraftmanufacturers
mayadoptamodifiedconfiguration.
•Inthemonosparwingconfiguration,onlyonemainspanwisememberispresent.Ribsorbulkheads
areusedtoprovidethenecessaryaerodynamiccontourorshapetotheairfoil.
•Themultisparwingconfigurationhasmorethanonemainlongitudinalmemberinits
construction.Toattainthedesiredaerodynamicshape,ribsorbulkheadsareoftenincluded.
•Theboxbeamwingconfigurationhastwomainlongitudinalmembersandconnectingbulkheads
toattaintherequiredairfoilcontour.
Chapter 0.-Basic Structural Elements in Aircraft Structure

39
•تامازلا ساسارب لاب عاونا
•هفيظويلصالاباميپاوهنيماتشخبمظعايآربدرومزاينياربزاورپاسا.
•اه لابهتسبهبتامازلاهطوبرمردلاكشانوگانوگهتخاسيمدنوش.
Chapter 0.-Basic Structural Elements in Aircraft Structure

40
• تاصخشميسدنهلاب مهم
• لاب احاسم(:(Sلااب زا امن رد لاب احاسم.
• هناهد(نپسا ) لاب(:(b هلصافميقتسمكون زا اسار لابكونپچ لاب.
• رتو(درُك ) لاب(c:) هلصافميقتسمرظن دروم عطقم رد لاب رارف هبل ات هلمح هبل.درُک
یا هزاس و لاب یاتسار رب دومعدرُکیکیمانیدورئآ نایرج یاتسار رددشاب یم .هک هیواز
نیباه نآ هیواز نامه اقیقح رد ،پیئوسدشاب یم.
• ابسنيرظن
َ
م(:(AspectR لاب هناهد روذجمميسقتنآ احاسم رب .
??????
2
??????
=
??????
ҧ??????
•بیرضیرغلا(:(TaperRابسنلاب هشیر رتو لوط هب لاب کون رتو لوط .
????????????
????????????
• اماخض ابسن:(TicknessR)رظندروم عطقم رد نآ رتو لوط هب لاب اماخض ابسن.
??????
??????
•هيوازپييوس(?????? :) نياهيواز ردياه ايعقوميفلتخم لاب رتو زافيرعتدوش يمهك
نيرت فورعماه نآهيوازپييوس ردكياسا رتو مراهچ.
•هيواز دروخربايهيواز لاب بصن(??????
� :)هيوازنيب رتوهشير لحم رد قفا طخ و لاب
هندب هب لاب لاصتا
Chapter 0.-Basic Structural Elements in Aircraft Structure

41
• تاصخشميسدنهلاب مهم
• هیوازشچيپ(?????? :)هيوازنيب رتو طخكون رتو طخ اب لابهشيرنآ.
•هيوازلاردهياد(??????
�):هيوازنيبلاباميپاوهوطخقفارديامنوربور.مزلاهبركذاساهكنياهيوازيمدناوتابثم
(لابليامتمهبلااب)واييفنم(لابليامتمهبنيياپ)دشاب.رديتلاحهكنياهيوازيفنماساهبنآهيوازلاردهنا
زينيمدنيوگ.
Chapter 0.-Basic Structural Elements in Aircraft Structure

42
• لكشيا هزاسهندب هب نآ لاصتا و لاب
• لكش هب لابريت :يزاين زا هدافتسا هبياضعايا هزاسرگيديارب راهماه نآدرادن دوجو.
• لابدسيرب :اه لاب هبيياهنتناكما لمحتياهراب زا دنرادن ار دوخ رب دراواه لباك وياه هليميدلاوفياربيوقتا
اه نآ هدافتسايمدوش.
Chapter 0.-Basic Structural Elements in Aircraft Structure

43
• ايعقوميريگرارقلاب:
•لااب لاب
•طسو لاب
• لابنيياپ
Chapter 0.-Basic Structural Elements in Aircraft Structure

44
•لاب یلصا ءاضعا:
•اهراپسا ،هكياضعايلصا هزاسياه لابيزورما و دنتسهنيرتشيب لمحت ار لاب هب هدراو رابيمدننك.
•اهرگنيرتسا ،هك ردياتسار لاب هناهدهديشكيمدنوش.
•اه بير ورگيدياه هزاس ،هدنهد لكشهك ردياتسار لاب رارف هبل ات هلمح هبل زا رتوهديشكدنا هدش.
• ،لاب هتسوپهك هباه بير واهرگنيرتسا شخب دوخ و اسا هدش لصتميكچوك لمحت ار لاب هب دراو راب زايمدنك.
Chapter 0.-Basic Structural Elements in Aircraft Structure

45
• راتخاسيساساياربنامديچياضعا هزاسيالاب:
•راتخاسكتهراپسا،
•ردنياراتخاساهنتكيراپساهبناونعهزاسيلصاهدننك لمحترابردلوطهناهدلابهديشكدوش يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure

46
• راتخاسيساساياربنامديچياضعا هزاسيالاب:.
•راتخاسدنچهراپسا،
•ردنياراتخاسزاودايدنچراپساهبناونعياه هزاسيلصاهدننك لمحتبرارد
لابهدافتسادوش يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure

47
• راتخاسيساساياربنامديچياضعا هزاسيالاب:.
•راتخاسهبعج،ریت
•ردنيا،راتخاس الاومعمزاودراپسايلصاردهزاسلابهدافتساهدشدوش يم.
•ابلاصتاياه بيريلصاهبرگيدكيامواقملابشيازفاهتفاياسا.
•زاياه هقروراد جومنيبياه بيريلصاوزينزاهتسوپفاصينوريبياربلمحترتهبياهرابيششكويراشف
هدافتسادوش یم.
•رديضعبزادراومزاياه هدننك ايوقترت يوقياج هبنياياه هقروراد جومياربلاصتااه بيرمه هبهدافتساگ يمددر.
•ردياهاميپاوهيربرفاسم الاومعمنياعونراتخاسياربهزاسلابراك هبيمدور.
Chapter 0.-Basic Structural Elements in Aircraft Structure

48
•راپسا
•راپسانيرت يلصاوضعهزاسلابوهدننك لمحتشخبمظعارابهدراوهبنآاساهكردلوطهناهدلابهديشكشهدورد
هشيرلابهبهزاسهندبلصتمدوش يم.
•هتسبهبطيارشوياهرايعميحارط،اهراپسا،يزلف،يبوچواييتيزوپماكدنتسه.
•هزورمارتشيبناگدنزاساميپاوهزاياهراپسايموينيمولآابعطاقمهچراپكيوايدنچهكتهدافتسادننك يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure

49
•راپسا
Chapter 0.-Basic Structural Elements in Aircraft Structure
نامدیچ زا ییامناه هیلایتیزوپماک راپسا کی عطقم حطس رد
ییاه لکشیزلف راپسا زا
حطسعطقمیاهراپسایبوچ

50
•راپسا
Chapter 0.-Basic Structural Elements in Aircraft Structure
ایلپ ناج(بو ) اب راپسایاه هدننک ایوقتیدومع راپساییاپرخ
راپسا کیFail Safe اببوهدش چرپ اب راپسا کیایلپبوراد جوم(یسونیس)

51
•بیر
•اه بیرياضعايا هزاسدنتسههكردياتساررتولاب
رارقهتفرگوابلاصتاهباهراپساواهرگنيرتسا،سراتخا
يلكلابارليكشتيمدنهد.
•هفيظواه بيرنداد لكشهبهتسوپلابوزيناقتنالرابزا
هتسوپهباهرگنيرتساواهراپسااسا.
•زااه بيررداه مُدوحوطسيلرتنكزينهدافتساش يمدو.
•اه بير الاومعمزابوچوايزلفهتخاسدنوش يم.
•ياهاميپاوهيارادياهراپسايبوچدنناوت يمزا
ياه بيريبوچواييزلفهدافتسادننكامااهاميپاوهي
يارادياهراپسايزلف اامومعزابيرياهيزلفهرهب
دنرب يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure
زا يا هنومنياه بيريبوچيياپرخ و
يا هيلا هيلايزاس كبسهدش

52Chapter 0.-Basic Structural Elements in Aircraft Structure

53Chapter 0.-Basic Structural Elements in Aircraft Structure
•لِگاج ردبیر
•لاومعمردلحملاصتاجنلفبیرابپَک،راپساکییگتفرورفردبیراهجداجیایحطس مه(هبروظنمیگرارقیرهتسوپ
ربیوراهنآ)،داجیادوش یمهکهبنآ ااحلاطصالِگاجهتفگدوش یم.

54Chapter 0.-Basic Structural Elements in Aircraft Structure
• حرطبیریا هزاس وبیریکیمانیدورئآ لاب ردکَب اپئوس

55
•لاب هتسوپ
•ردياهاميپاوهنرد
ُ
ميزورما،هفيظوهتسوپلابلمحتشخبيكچوكزارابيلامعاهبنآولاقتناشخبمظعانآهب
ياضعايا هزاسرگيددنناماهرگنيرتساواه بيراسا.
•روط هبلومعمردیياه لابابيحارطرسكيريگردهكياراداه ميسوياه هليمهدننك راهميلخادواييجراخنتسيند،مزلا
اساهتسوپلابيمكايوقتدوشاتيياناوتلمحتياهرابيلامعاارهتشاددشاب.
Chapter 0.-Basic Structural Elements in Aircraft Structure
لابياراد هبعج راتخاسريت اب وناكمايزاس هريخذ
راتخاسيا هزاس لابيزلفياراد هتسوپهدننك لمحت

56
• ژانپمِا /رزیلابَتسِا
•روظنمزاژانپمِاهكرديخربزاعجارمزانآهبناونعمُدایهدننکرادیاپ(رزیلابَتسِا)زيندايدوش يم،هعومجم ُدياه ميقفاو
يدومعرارقهتفرگردياهتناياهاميپاوهلوادتماسا.نیااه مُدیراتخاسهیبشلابدنراد.
• لحميريگرارق دادعت وياه مديقفا واييدومعزيندناوت يمدشاب توافتم.
•ياه شخبيلصاژانپمِا طورخم ،يمد(tail (Rear) Cone) حوطس ،يكيمانيدورئآ حوطس و اباثيكيمانيدورئآكرحتم.
Chapter 0.-Basic Structural Elements in Aircraft Structure
يخرب زاياهراتخاس موسرمياربژانپمِا فلتخم ياه الاحيريگرارقاه مُد

57
•ياه شخب رد ژانپمِا فلتخميياميپاوهلوادتم راتخاس اب
•دنراد لاب هیبش یراتخاس اه مُد.
Chapter 0.-Basic Structural Elements in Aircraft Structure
یدومع هدننک رادیاپ( هیبشمُد ) راتخاس ورِدار

58
•دراناک
•دراناککیحطس(هچلاب)یقفاویورهندباساهکردیولجلابیلصارارقدراداتتابثولرتنکیلوطارفمهاردنک.
هتسبهبعون،بصننکمماساکیحطسیسدنه،اباثکرحتمایریغتمدشابونکمماساحوطسنکیلرتاررد
دوخیاجدهدبایدهدن.
Chapter 0.-Basic Structural Elements in Aircraft Structure

59
• حوطسلرتنك
•هفيظوحوطسيلرتنكاميپاوه،ايادهنآردتاهج
بولطمردنيح،اساخربزاورپواياسشناسا.
•نيا،حوطس الاومعمتروصبييلاولهبياه شخب
فلتخملصتميمدنوش.
•نياحوطسهبروطيلكهبودهتسدهدمعيسقتم
دنوش يم:حوطسلرتنكيلصاوحوطسلرتنككيكم.
Chapter 0.-Basic Structural Elements in Aircraft Structure

60
• حوطسلرتنكيلصا
•حوطسيلرتنكيلصادنترابعزانورليااه،اهروتيولاوردار.
•لحمبصناهروتيولاوردارهببيترتردهبلرارفياه مد
يقفاويدومعاسا.
•اه نورلياروط هبلومعمردهبلرارفاه لاببصندنوش يمو
ناكماناروداميپاوهلوحروحميلوطهندبارمهارف
دننك يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure
هنومن دنچ يامننورليا ردياه لابفلتخم

61
• حوطس عاونالرتنكامیپاوه یکمک
Chapter 0.-Basic Structural Elements in Aircraft Structure

62
• حوطسلرتنك يكمك-پلف
Chapter 0.-Basic Structural Elements in Aircraft Structure
هنومنيزاس هنيهب هدشپلفرلواف پلفهلمح هبل

63
• حوطسلرتنك يكمك-اَلسِا
Chapter 0.-Basic Structural Elements in Aircraft Structure

64
• حوطسلرتنك يكمك-رلیوپسا
Chapter 0.-Basic Structural Elements in Aircraft Structure
رليوپسا ؛يورلابرليوپسا ؛يورهندب

65
• حوطسلرتنك يكمكبت
•ييوريندراوهدشردنيحزاورپزابناجنايرجاوههبحوطسيلرتنك،ثعابدوش يمهكيخربعقاومنابلخدناوتنبيتحار ه
نياحوطساراكرحدهد.نينچمهنكمماساهبليلاديفلتخميكيزاحوطسيلرتنكشيبزادحهبنيمارفبلخنا
ساسحدشاب.ياربلحنياتلاكشمزايحوطسهبمانبتهدافتسايمدوش.
Chapter 0.-Basic Structural Elements in Aircraft Structure

66
• حوطسلرتنك يكمكبت
Chapter 0.-Basic Structural Elements in Aircraft Structure

67
• حوطسلرتنكيكمك- هنومنيا بت زاميرت هتفرگ رارقيورردار

Chapter 0.-Basic Structural Elements in Aircraft Structure

68
• حوطسلرتنكيكمك- اهج سنلااب بتكمك هباكرح حطسيلرتنك
Chapter 0.-Basic Structural Elements in Aircraft Structure

69
• حوطسلرتنكيكمك- هدافتسا دروم يوورس بتياربكمك هباكرح حطسيلرتنك
Chapter 0.-Basic Structural Elements in Aircraft Structure

70
• حوطسلرتنكيكمك- سنلااب دض بتاي دضوورس
Chapter 0.-Basic Structural Elements in Aircraft Structure

71
• حوطسلرتنكيكمك-یرنف بت
Chapter 0.-Basic Structural Elements in Aircraft Structure

72
• دورف هبارا(ریگنیدنَل)
•هفيظوهبارادورفندروآ مهارفناكمااسشنواكرح
نميااميپاوهيورنيمزوايدنابياهوانرباميپاوهاسا.
يخربزااهاميپاوهزينناكمااسشنواساخربزاطسح
بآاردنراد.
•ياه هبارادورفديابهبيردقمكحتسمويوقدنشابكه
دنناوتبياهرابيلامعاهباميپاوهردهظحلدورفارحتلم
هدركونامزمهيارادنزويمكزیندنشاب.زانياوررد
اخاسنآاهزاداوميفلتخمنوچ،دلاوفموينيمولآو
مويزينمهدافتسايمدوش.
•كيتسلاياههبارادورفزينزاداوميارادماكحتسالاابرد
رباربكاكطصاهتخاسيمدنوش.
•هباراياهدورف الاومعمزاياه متسيسهدننك بذجبرضه
ياربندرك يثنخياهرابيلامعازينهدافتسادننك يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure

73
• هزاسهدنراد هگنروتوم/لِسان
•ياه فلاغيا هتسبدنتسههكروتومولعتمتاق
نآرداه نآياجدنريگ يم.
•روط هبلومعمياربشهاكاسپردنيااه هزاس
ياراديراتخاسينحنملكشدنتسه.
•ردبلغاياهاميپاوهكتهروتومنيااه هزاس
ردولجوايبقعهندبرارقهداددنوش يم.
•ردياهاميپاوهدنچهروتومنيااه شخبهب
اه لابوايژانپمِالصتمدنوش يم.
•كيلِسانلماشروتوموتاقلعتم،نآهياپياه
،روتومياضعايا هزاس،فلتخمهراويدمواقمرد
رباربترارحوهتسوپينوريباسا.
•رديخربدراومزااه لِسانياربیریگ رارقهبارا
دورفزينهدافتسادوش يم.
Chapter 0.-Basic Structural Elements in Aircraft Structure

74Chapter 0.-Basic Structural Elements in Aircraft Structure
رد ترارح ربارب رد مواقم هراويدلسان(لاوریاف)
ياه ياپهدنراد هگنروتوم
روتوم لوادتم یاه ششوپ

75Chapter 0.-Basic Structural Elements in Aircraft Structure

76
•Aircraft Cutaway
Chapter 0.-Definitions

77Chapter 0.-Definitions

78Chapter 0.-Basic Structural Elements in Aircraft Structure

79Chapter 0.-Definitions
•Airframe

80
•General Function of Aircraft Structures
•The structures of most flight vehicles are thin walled structures (shells)
•Resistsappliedloads(Aerodynamicloadsactingonthewingstructure)
•Providestheaerodynamicshape
•Protectsthecontentsfromtheenvironment
Chapter 0.-Definitions
•Primary structure
•Acriticalload-bearingstructureonanaircraft.Ifthisstructureisseverelydamaged,the
aircraftcannotfly.
•Secondary structure
•Structuralelementsmainlytoprovideenhancedaerodynamics.Fairings,forinstance,are
foundwherethewingmeetsthebodyoratvariouslocationsontheleadingortrailing
edgeofthewing.

81Chapter 0.-Definitions
•Monocoque structure
•Unstiffenedshells.mustberelativelythicktoresistbending,
compressive,andtorsionalloads.
•Semi -Monocoque structure
•Constructionswithstiffeningmembersthatmayalsoberequired
todiffuseconcentratedloadsintothecover.Moreefficienttypeof
constructionthatpermitsmuchthinnercoveringshell.

82
•WING LAYOUT
Chapter 0.-Definitions

83
•Function of Skin
•Reactstheappliedtorsionandshearforces
•transmitsaerodynamicforcestothelongitudinalandtransversesupportingmembers
•actswiththelongitudinalmembersinresistingtheappliedbendingandaxialloads
•actswiththetransversemembersinreactingthehoop,orcircumferential,loadwhenthe
structureispressurized.
•Function of Spar
•resistbendingandaxialloadsandformthewingboxforstabletorsionresistance
•Function of Stiffener or Stringers
•resistbendingandaxialloadsalongwiththeskin
•dividetheskinintosmallpanelsandtherebyincreaseitsbucklingandfailingstresses
•actwiththeskininresistingaxialloadscausedbypressurization
Chapter 0.-Definitions

84Chapter 0.-Definitions

85
•Simplifications
•Thebehaviorofthesestructuralelementsisoftenidealizedtosimplifytheanalysisoftheassembled
component.
•Severallongitudinalmaybelumpedintoasingleeffectivelongitudinaltoshortencomputations.
•Thewebs(skinandsparwebs)carryonlyshearingstresses.
•Thelongitudinalelementscarryonlyaxialstress.
•Thetransverseframesandribsarerigidwithintheirownplanes,sothatthecrosssectionis
maintainedunchangedduringloading.
Chapter 0.-Definitions

86
•Traditionalmetallicmaterialsusedinaircraftstructuresarealuminum,titanium,andsteelalloys.
•Inthepastthreedecades,applicationsofadvancedfibercompositeshaverapidlygainedmomentum.
•Todate,somenewcommercialjets,suchastheBoeing787,alreadycontaincompositematerialsupto
50%oftheirstructuralweight.
•Selectionofaircraftmaterialsdependsonmanyconsiderationsthatcan,ingeneral,be
categorizedascostandstructuralperformance.
•Costincludesinitialmaterialcost,manufacturingcost,andmaintenancecost.
•Thekeymaterialpropertiesthatarepertinenttomaintenancecostandstructuralperformance
areasfollows:
•Density(weight),Stiffness(Young'smodulus),Strength(ultimateandyieldstrengths),Durability
(fatigue),Damagetolerance(fracturetoughnessandcrackgrowth),Corrosion.
•Seldomisasinglematerialabletodeliveralldesiredpropertiesinallcomponentsoftheaircraftstructure.A
combinationofvariousmaterialsisoftennecessary.
Chapter 0.-Aircraft Materials

87Chapter 0.-Aircraft Materials
Mechanical properties of metals at room temperature in aircraft structures

88
•AluminumAlloys
•Aluminumalloyshaveplayedadominantroleinaircraftstructuresformanydecades.
•Theyoffergoodmechanicalpropertieswithlowweight.
•Amongthealuminumalloys,the2024and7075alloysareperhapsthemostused.
•The2024alloys(2024‐T3,T42)haveexcellentfracturetoughnessandslowcrackgrowthrateaswellas
goodfatiguelife.
•ThecodenumberfollowingTforeachaluminumalloyindicatestheheattreatmentprocess.
•The7075alloys(7075‐T6,T651)havehigherstrengththanthe2024butlowerfracturetoughness.
•The2024‐T3isusedinthefuselageandlowerwingskins,whicharepronetofatigueduetoapplications
ofcyclictensilestresses.
•Fortheupperwingskins,whicharesubjectedtocompressivestresses,fatigueislessofaproblem,and
7075‐T6isused.
•Therecentlydevelopedaluminumlithiumalloysofferimprovedpropertiesoverconventionalaluminum
alloys.Theyareabout10%stifferand10%lighterandhavesuperiorfatigueperformance.
Chapter 0.-Aircraft Materials

89
•TitaniumAlloys
•TitaniumsuchasTi-6Al-4V(thenumberindicatestheweightpercentageofthealloying
element)withadensityof4.5g/cm3islighterthansteel(7.8g/cm3)butheavierthan
aluminum(2.7g/cm3).
•Itsultimateandyieldstressesarealmostdoublethoseofaluminum7075‐T6.
•Itscorrosionresistanceingeneralissuperiortobothsteelandaluminumalloys.
•Whilealuminumisusuallynotforapplicationsabove350°F,titanium,ontheotherhand,
canbeusedcontinuouslyupto1000°F.
•Titaniumisdifficulttomachine,andthusthecostofmachiningtitaniumpartsishigh.
•Nearnetshapeformingisaneconomicwaytomanufacturetitaniumparts.
•Despiteitshighcost,titaniumhasfoundincreasinguseinmilitaryaircraft.Forinstance,
theF‐15contained26%(structuralweight)titanium.
Chapter 0.-Aircraft Materials

90
•Fiber‐ReinforcedComposites
•Materialsmadeintofiberformscanachievesignificantlybettermechanicalpropertiesthantheir
bulkcounterparts.Anotableexampleisglassfiberversusbulkglass.Thetensilestrengthofglass
fibercanbetwoordersofmagnitudehigherthanthatofbulkglass.
•Inthiscentury,fibersciencehasmadegiganticstrides,andmanyhigh‐performancefibershave
beenintroduced.
•Fibersalonearenotsuitableforstructuralapplications.Toutilizethesuperiorpropertiesof
fibers,theyareembeddedinamatrixmaterialthatholdsthefiberstogethertoformasolid
bodycapableofcarryingcomplexloads.
•Matrixmaterialsthatarecurrentlyusedforformingcompositesincludethreemajorcategories:
polymers,metals,andceramics.Theresultingcompositesareusuallyreferredtoaspolymer
matrixcomposites(PMCs),metalmatrixcomposites(MMCs),andceramicmatrixcomposites
(CMCs).
Chapter 0.-Aircraft Materials

91Chapter 0.-Aircraft Materials
Mechanical properties of fibers

92
•Fiber‐ReinforcedComposites
•Therangeofservicetemperatureofacompositeisoftendeterminedbyitsmatrixmaterial.
•PMCsareusuallyforlowertemperature(lessthan300°F)applications,andCMCsare
intendedforapplicationsinhot(higherthan1500°F)environments,suchasjetengines.
•Fibercompositesarestiff,strong,andlightandarethusmostsuitableforaircraftstructures.
•Theyareoftenusedintheformoflaminatesthatconsistofanumberofunidirectional
laminaewithdifferentfiberorientationstoprovidemultidirectionalloadcapability.
•Compositelaminateshaveexcellentfatiguelife,damagetolerance,andcorrosionresistance.
•Laminateconstructionsofferthepossibilityoftailoringfiberorientationstoachieveoptimal
structuralperformanceofthecompositestructure.
Chapter 0.-Aircraft Materials

93Chapter 0.-Aircraft Materials
Longitudinal mechanical properties of fiber composites.

94
✓analysisofstructuralmembersunderpuretorsion
✓reviewofmechanicsofmaterials
✓torsionofmemberswithcircularcrosssections
✓elasticandinelasticstressstatesareconsideredforbothhomogeneousandnon-homogeneousmembers
✓elastictorsionalanalysisofmemberswithsolidorhollownon-circularcrosssections
✓elastictorsionalanalysisofthin-walledmemberswithopencrosssections
✓torsionalanalysisofthin-walledstructureswithclosedcrosssections
✓torsionalanalysisofmulti-cell,thin-walledstiffenedmembers,typicalofwingandfuselagestructures
Chapter 1.-objectives
PURETORSION

•Applications
•RotatingMachinery
•Propellershaft
•Driveshaft
•StructuralSystems
•Landinggearstrut
•Flapdrivemechanism
•Characteristic of Circular Bars
•Whenacircularbaristwisted,itscrosssectionremainsplaneandcircular.Thischaracteristicisdueto
axisymmetricshapeofthecrosssection,andappliestocircularbarsthatareeithersolidorhollow,
homogeneousornon-homogeneous,elasticorinelastic.
•AXISYMMETRICSECTION:Asectionisconsideredaxisymmetricifitsappearance-whenviewedfroma
fixedposition-remainsthesameasitisrotatedaboutitsaxisthroughanarbitraryangle.
Torsional Loads on Circular Shafts
95Chapter 1.-Torsion of Circular Bars

96Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•ShaftDeformations
✓Fromobservation,theangleoftwistoftheshaftisproportionalto
theappliedtorqueandtotheshaftlength;
✓Whensubjectedtotorsion,everycross-sectionofacircularshaft
remainsplaneandundistorted.
✓Cross-sectionsforhollowandsolidcircularshaftsremainplainand
undistortedbecauseacircularshaftisaxisymmetric.
✓Cross-sectionsofnoncircular(non-axisymmetric)shaftsaredistorted
whensubjectedtotorsion.
??????∝??????,??????∝�

97Chapter 1.-Torsion of Circular Bars
•Rule of Thumb
•Thetorsion-inducedshearstrainisalwaysa
linearfunctionofrwiththemaximumvalueat
theedgeofthecrosssection.
•Thisistrueforallpossibleconditions,whether
thebariselasticorinelastic,homogeneousor
non-homogeneousasshownintheseexamples.
•Shear Strain Calculation
•Basedonthecharacteristicstatedabove,theshear
strainvariationislinear,andisdescribedbythe
equation: ,whereristheradialposition
measuredfromthecenterofthecrosssectionandcis
theradiusofthecrosssection.

98Chapter 1.-Torsion of Circular Bars
•Shear Stress and Angle of Twist Calculations
•Fourpossiblescenariosareconsideredforshearstressandangleoftwistcalculations.
•Ineachcasetheequationsusedforthesecalculationsareexplicitlydescribed.
•Itshouldbeobviousthatinallofthesecalculationswearedealingwithmembershavingcircularcross
sections.
•Asyouwillseethedegreeofcomplexityintheanalysisgrowsasweproceedinthefollowingsequence
•ElasticandHomogeneous
•ElasticandNon-homogeneous
•InelasticandHomogeneous
•InelasticandNon-homogeneous
•ResidualStressDistribution
•PowerTransmission
•Restriction:Theappliedtorque(s)mustbeinaplane(s)perpendiculartotheaxisofthebar.

99Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
✓Torqueappliedtoshaftproducesshearingstressesonthefacesperpendiculartotheaxis.
✓Conditionsofequilibriumrequiretheexistenceofequalstressesonthefacesofthetwoplanes
containingtheaxisoftheshaft
✓Theexistenceoftheaxialshearcomponentsisdemonstratedbyconsideringashaftmadeup
ofaxialslats.
✓Theslatsslidewithrespecttoeachotherwhenequalandoppositetorquesareappliedtothe
endsoftheshaft.

100Chapter 1.-Torsion of Circular Bars
•ELASTIC,INELASTIC
•Ifthestraininducedinamaterialbytheapplicationofagivenloaddisappearswhenthe
loadisremoved,thematerialissaidtobehaveelastically.Thelargestvalueofthestress
forwhichthematerialbehaveselasticallyiscalledtheelasticlimit.Ifthematerialis
stressedbeyondthislimit,thenitbehavesinelastically(i.e.,uponremovaloftheloadthe
strainwillnotgotozero).
•ISOTROPICMATERIAL
•Amaterialisconsideredisotropicifitsphysicalandmechanicalpropertiesatagiven
pointareindependentofdirection.Mostmetalsareconsideredtobeisotropic.Fibrous
compositematerialstypicallyhavepropertieswhicharedirectiondependent,assuch
theyaregenerallyconsideredtobeanisotropic.

101Chapter 1.-Torsion of Circular Bars
•Homogeneous and Non-Homogeneous Bars
•Inthecaseofcircularbars,homogeneousornon-homogeneousreferstoradialmaterial
compositionofthematerial.Ifthematerialvariesalongtheradius,thebarissaidtobe
non-homogeneous.Ifitdoesn'tvarythenitishomogeneous.
•Below are two examples of a homogeneous and non-homogeneous circular shaft.
Homogeneous
Non-homogeneous

102Chapter 1.-Torsion of Circular Bars
•PROPORTIONAL LIMIT
•Proportionallimitisthepointonthestress-straindiagramwherethecurvebecomesnonlinear.The
proportionallimitstressisthevalueofstresscorrespondingtotheelasticlimitofthematerial.Forstrain
levelsbelowtheelasticlimitstrain,Hooke'slawmaybeusedtorelatestresstostrain.Theproportionallimit
iscommonlyassumedtocoincidewiththeyieldpointunlessotherwisestatedintheproblemstatement.
This is a typical shear
stress-strain diagram
Thisisanidealstress-straindiagramwheretheproportionallimit
andtheyieldpointcoincideandstressremainsconstantbeyond
theelasticlimit.Thistypeofmaterialisknownaselasto-plastic.

103Chapter 1.-Torsion of Circular Bars
•ELASTOPLASTIC MATERIAL
•Amaterialisconsideredelastoplastic(orelastic-perfectlyplastic)whentheinelasticregionofthestress-
straindiagramisidealizedasastraightline.Ifthematerialbehaveslinearlyintheelasticrange,thenthe
stress-straindiagramconsistsoftwostraightlinesintheelasticandinelasticregionswithdifferentslopes.
•Aslongasthestressislessthantheyieldvalue,Hooke'slaw
maybeusedwhenthematerialbehaveslinearlyelastic.
Whenthestressreachestheyieldstress,thematerialstarts
toyieldandkeepsdeformingplasticallyataconstantstress
level.Iftheloadisremovedatanypointalongthestress-
straindiagram,thentheunloadingpathwillbealonga
straightlinesegmentCDparalleltotheinitialportionAYof
theloadingcurve.Thefactthattheunloadingcurveis
linearisbecausethematerialislinearlyelastic.

104Chapter 1.-Torsion of Circular Bars
•Elastic and Homogeneous
•Thetorsion-inducedshearstressvariationinanelastic,homogeneous,andisotropicbarisdetermined
by:
•whereTistheinternaltorqueatthesectiontheshearstressisbeingcalculated,ristheradial
positionofthepointonthecrosssectiontheshearstressissolvedfor,andJisthepolarmomentof
inertiaoftheentirecrosssection.Forsolidbars0<r<candforhollowbarsci<r<co.
•Theaboveshearstressequationisknownastheelastictorsionformula,andwecallitEl-Hocir.This
acronymhelpsustoeasilyrememberunderwhatconditionswecanusetheelastictorsionformula,viz,
elastic,homogeneous,andcircular.
•Theshearstressequationshowsthatforanelasticbar(i.e.,whenthemaximumshearstressislessthan
theproportionallimitshearstressofthematerial),thestressvarieslinearlywithradialposition.Thus,
themaximumshearstressinthiscasewouldbeattheedgeofthecrosssection(i.e.,atthefarthest
distancefromthecenter).

105Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•Elastic and Homogeneous
•Herearesomeexamplesofelasticandinelasticstress
variationsforhomogeneousandnon-homogeneous
circularbarsmadeofelastoplasticmaterials.

106Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•NetTorqueDuetoInternalStresses
✓Netoftheinternalshearingstressesisaninternaltorque,equal
andoppositetotheappliedtorque,
✓Althoughthenettorqueduetotheshearingstressesisknown,the
distributionofthestressesisnot
✓Distributionofshearingstressesisstaticallyindeterminatemust
considershaftdeformations
✓Unlikethenormalstressduetoaxialloads,thedistributionof
shearingstressesduetotorsionalloadscannotbeassumed
uniform.
??????=න&#3627409222;&#3627408517;&#3627408493;=න&#3627409222;(??????&#3627408517;&#3627408488;)

107Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•ShearingStrain
✓Consideraninteriorsectionoftheshaft.Asatorsionalload
isapplied,anelementontheinteriorcylinderdeformsinto
arhombus.
✓Sincetheendsoftheelementremainplanar,theshear
strainisequaltoangleoftwist.
✓Itfollowsthat:
✓Shearstrainisproportionaltotwistandradius
??????
&#3627408526;??????&#3627408537;=
&#3627408516;??????
&#3627408499;
and??????=
&#3627409222;
&#3627408516;
??????
&#3627408526;??????&#3627408537;
&#3627408499;??????=&#3627409222;??????or??????=
&#3627408499;??????
&#3627409222;
or??????=
&#3627409222;??????
&#3627408499;

108Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous4
2
1
cJ= ( )
4
1
4
2
2
1
ccJ −=
•StressesinElasticRange
✓Multiplyingthepreviousequationbytheshearmodulus,
✓FromHookesLaw, ,so:
✓Theshearingstressvarieslinearlywiththeradialpositioninthesection.
✓Recallthatthesumofthemomentsfromtheinternalstressdistributionis
equaltothetorqueontheshaftatthesection,
✓Theresultsareknownastheelastictorsionformulas,
&#3627408494;??????=
&#3627409222;
&#3627408516;
&#3627408494;??????
&#3627408526;??????&#3627408537;
??????=&#3627408494;????????????=
&#3627409222;
&#3627408516;
??????
&#3627408526;??????&#3627408537;
??????=׬&#3627409222;??????&#3627408517;&#3627408488;=
??????
&#3627408526;??????&#3627408537;
&#3627408516;
׬&#3627409222;
&#3627409360;
&#3627408517;&#3627408488;=
??????
&#3627408526;??????&#3627408537;
&#3627408516;
??????
??????
&#3627408526;??????&#3627408537;=
??????&#3627408516;
??????
and??????=
??????&#3627409222;
??????

109Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SampleProblem2-1
ShaftBCishollowwithinnerandouter
diametersof90mmand120mm,respectively.
ShaftsABandCDaresolidofdiameterd.For
theloadingshown,determine:
✓(a)theminimumandmaximum
shearingstressinshaftBC,
✓(b)therequireddiameterdofshaftsAB
andCDiftheallowableshearingstress
intheseshaftsis65MPa.

110Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-1
I.CutsectionsthroughshaftsABandBCandperformstaticequilibriumanalysistofind
torqueloadings
෍&#3627408500;
&#3627408537;=&#3627409358;=&#3627409364;kN⋅&#3627408422;−??????
&#3627408488;&#3627408489;
??????
&#3627408488;&#3627408489;=&#3627409364;kN⋅&#3627408422;=??????
&#3627408490;&#3627408491;
෍&#3627408500;
&#3627408537;=&#3627409358;=&#3627409364;kN⋅&#3627408526;+&#3627409359;&#3627409362;kN⋅&#3627408526;−??????
&#3627408489;&#3627408490;
??????
&#3627408489;&#3627408490;=&#3627409360;&#3627409358;kN⋅&#3627408526;

111Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-1
II.ApplyelastictorsionformulastofindminimumandmaximumstressonshaftBC
??????=
&#3627409221;
&#3627409360;
&#3627408516;
&#3627409360;
&#3627409362;
−&#3627408516;
&#3627409359;
&#3627409362;
=
&#3627409221;
&#3627409360;
&#3627409358;.&#3627409358;&#3627409364;&#3627409358;
&#3627409362;
−&#3627409358;.&#3627409358;&#3627409362;&#3627409363;
&#3627409362;
=&#3627409359;&#3627409361;.&#3627409367;&#3627409360;×&#3627409359;&#3627409358;
−&#3627409364;
&#3627408526;
&#3627409362;
??????
&#3627408526;??????&#3627408537;=??????
&#3627409360;=
??????
&#3627408489;&#3627408490;∗&#3627408516;
&#3627409360;
??????
=
&#3627409360;&#3627409358;kN⋅??????&#3627409358;.&#3627409358;&#3627409364;&#3627409358;??????
&#3627409359;&#3627409361;.&#3627409367;&#3627409360;×&#3627409359;&#3627409358;
−&#3627409364;
??????
4
=&#3627409366;&#3627409364;.&#3627409360;MPaMPa7.64
MPa2.86
min
max
=
=


??????&#3627408526;??????&#3627408527;
??????&#3627408526;??????&#3627408537;
=
&#3627408516;&#3627409359;
&#3627408516;&#3627409360;

??????&#3627408526;??????&#3627408527;
&#3627409366;&#3627409364;.&#3627409360;MPa
=
&#3627409362;&#3627409363;&#3627408526;&#3627408526;
&#3627409364;&#3627409358;&#3627408526;&#3627408526;
??????
&#3627408526;??????&#3627408527;=&#3627409364;&#3627409362;.&#3627409365;MPa

112Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-1
III.Givenallowableshearingstressandappliedtorque,inverttheelastictorsionformulato
findtherequireddiameter
??????
&#3627408422;??????&#3627408433;=
????????????
??????
=
????????????
??????
&#3627409360;
??????
&#3627409362;
⇒ &#3627409364;&#3627409363;MPa=
&#3627409364;kN⋅&#3627408422;
??????
&#3627409360;
??????
&#3627409361;
&#3627408517;=&#3627409360;&#3627408516;=&#3627409365;&#3627409365;.&#3627409366;"&#3627408526;&#3627408526;"
&#3627408516;=&#3627409361;&#3627409366;.&#3627409367;×&#3627409359;&#3627409358;
−&#3627409361;
&#3627408526;

113Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•Angle of Twist in Elastic Range
•Recallthattheangleoftwistandmaximumshearingstrainare
related,
•Intheelasticrange,theshearingstrainandsheararerelatedby
HookesLaw,
•Equatingtheexpressionsforshearingstrainandsolvingfortheangle
oftwist,
•Ifthetorsionalloadingorshaftcross-sectionchangesalongthe
length,theangleofrotationisfoundasthesumofsegment
rotations,
??????
&#3627408422;??????&#3627408433;=
&#3627408516;??????
&#3627408499;
??????
&#3627408422;??????&#3627408433;=
??????&#3627408422;??????&#3627408433;
&#3627408494;
=
??????&#3627408516;
??????&#3627408494;
??????=
??????&#3627408499;
??????&#3627408494;
??????=෍
??????
??????
??????&#3627408499;
??????
??????
??????&#3627408494;
??????

114Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•the relative twist angle
•The angle of twist at one section relative to another can be found in two ways:
or
•Inthefirstequationweareusinggeometricrelationshipbetweenangleof
twistandshearstrain.Thisisaverypowerfulequationasittellsusthatwe
don'tneedtoknowthetorqueortheresultingshearstressinorderto
calculatetherelativetwistangle.Ifweknowthemaximumshearstrainat
sectionBandknowthedistanceLbetweensectionsAandB,thenwecan
calculatetherelativetwistangleusingthisformula.Noticethatthis
equationcanalsobewrittenintermsofshearstrainatanyradialposition.
Whatisneededisthevalueofranditscorrespondingshearstrain.
•Thesecondequationisusefulwhenwedon'tknowtheshearstrain,butwe
doknowtheinternaltorqueatsectionB.Thenusingthisequationwecan
determinetherelativeangleoftwist.
•Total angle of twist at section B is determined by:
??????∝??????
??????∝&#3627408499;

115Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•Solution of Sample Problem 2-2: Statically Indeterminate Shafts
Giventheshaftdimensionsandtheappliedtorque,wewouldliketofind
thetorquereactionsatAandB.
•From a free-body analysis of the shaft,
✓which is not sufficient to find the end torques. The problem is
statically indeterminate.
•Dividetheshaftintotwocomponentswhichmusthavecompatible
deformations,
•Substituteintotheoriginalequilibriumequation,
??????
&#3627408488;+??????
&#3627408489;=&#3627409367;&#3627409358;lb⋅ft
??????=??????
&#3627409359;+??????
&#3627409360;=
??????
&#3627408488;&#3627408499;
&#3627409359;
??????
&#3627409359;&#3627408494;

??????
&#3627408489;&#3627408499;
&#3627409360;
??????
&#3627409360;&#3627408494;
=&#3627409358;⇒??????
&#3627408489;=
&#3627408499;
&#3627409359;??????
&#3627409360;
&#3627408499;
&#3627409360;??????
&#3627409359;
??????
&#3627408488;
??????
&#3627408488;+
&#3627408499;
&#3627409359;??????
&#3627409360;
&#3627408499;
&#3627409360;??????
&#3627409359;
??????
&#3627408488;=&#3627409367;&#3627409358;lb⋅ft

116Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SampleProblem2-3
Twosolidsteelshaftsareconnectedbygears.
Knowingthatforeachshaft??????=11.2∗10
6
psi
andthattheallowableshearingstressis8ksi,
determine:
✓(a)thelargesttorque??????
0
thatmaybe
appliedtotheendofshaftAB,
✓(b)thecorrespondinganglethrough
whichendAofshaftABrotates.

117Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-3
I.Applyastaticequilibriumanalysisonthetwoshaftstofindarelationshipbetween
??????
CD
and??????
0
෍&#3627408500;
&#3627408489;=&#3627409358;=&#3627408493;&#3627409358;.&#3627409366;&#3627409365;&#3627409363;in.−??????
&#3627409358;
෍&#3627408500;
&#3627408490;=&#3627409358;=&#3627408493;&#3627409360;.&#3627409362;&#3627409363;in.−??????
&#3627408490;&#3627408491;
??????
&#3627408490;&#3627408491;=&#3627409360;.&#3627409366;??????
&#3627409358;

118Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-3
II.Applyakinematicanalysistorelatetheangularrotationsofthegears;
&#3627408531;
&#3627408489;??????
&#3627408489;=&#3627408531;
&#3627408490;??????
&#3627408490;
??????
&#3627408489;=
&#3627408531;
&#3627408490;
&#3627408531;
&#3627408489;
??????
&#3627408490;=
&#3627409360;.&#3627409362;&#3627409363;in.
&#3627409358;.&#3627409366;&#3627409365;&#3627409363;in.
??????
&#3627408490;
??????
&#3627408489;=&#3627409360;.&#3627409366;??????
&#3627408490;

119Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-3
III.Findthe??????
0
forthemaximumallowabletorqueoneachshaftchoosethesmallest( )
( )
( )
( )
in.lb561
in.5.0
in.5.08.2
8000
in.lb663
in.375.0
in.375.0
8000
0
4
2
0
max
0
4
2
0
max
=
==
=
==
T
T
psi
J
cT
T
T
psi
J
cT
CD
CD
AB
AB



120Chapter 1.-Torsion of Circular Bars, Elastic and Homogeneous
•SolutionofSampleProblem2-3
IV.FindthecorrespondingangleoftwistforeachshaftandthenetangularrotationofendA
??????
&#3627408384;/&#3627408385;=
??????
&#3627408384;&#3627408385;??????
??????
&#3627408384;&#3627408385;??????
=
&#3627409363;&#3627409364;&#3627409359;lb⋅in.&#3627409360;&#3627409362;??????&#3627408423;.
??????
&#3627409360;
&#3627409358;.&#3627409361;&#3627409365;&#3627409363;in.
&#3627409362;
&#3627409359;&#3627409359;.&#3627409360;×&#3627409359;&#3627409358;
&#3627409364;
psi
=&#3627409358;.&#3627409361;&#3627409366;&#3627409365;rad=2.22
&#3627408424;
??????
&#3627408386;/&#3627408387;=
??????
&#3627408386;&#3627408387;??????
??????
&#3627408386;&#3627408387;??????
=
&#3627409360;.&#3627409366;&#3627409363;&#3627409364;&#3627409359;lb⋅in.&#3627409360;&#3627409362;??????&#3627408423;.
??????
&#3627409360;
&#3627409358;.&#3627409363;in.
&#3627409362;
&#3627409359;&#3627409359;.&#3627409360;×&#3627409359;&#3627409358;
&#3627409364;
psi
=&#3627409358;.&#3627409363;&#3627409359;&#3627409362;rad=&#3627409360;.&#3627409367;&#3627409363;
&#3627408424;
??????
&#3627408385;=&#3627409360;.&#3627409366;??????
&#3627408386;=&#3627409360;.&#3627409366;&#3627409360;.&#3627409367;&#3627409363;
&#3627408424;
=&#3627409366;.&#3627409360;&#3627409364;
&#3627408424;
??????
&#3627408384;=??????
&#3627408385;+??????
&#3627408384;/&#3627408385;=&#3627409366;.&#3627409360;&#3627409364;
&#3627408424;
+2.22
&#3627408424;
??????
&#3627408384;=&#3627409359;&#3627409358;.&#3627409362;&#3627409366;
&#3627408424;

121Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous
•Elastic and Non-Homogeneous
•Thelinearstrainvariationisvalidasstatedbefore;
•however,sincethebarisnon-homogeneous,i.e.,madeoftwoormorematerials,
•wecannotuseEl-Hocir.Thisproblemisstaticallyindeterminateinthesensethatwedon'tknowhow
muchofthetorqueisbeingcarriedbyeachmaterial.
•Thegeneraltorqueformulainitsintegralformmustbebrokenupintotwoormorepartsdependingon
thematerialmakeupofthebar.
•Also,sincethebaristotallylinearlyelastic(i.e.,stressesarebelowtheproportionallimit),Hooke'slaw
maybeusedtorelatestresstostrainineachrespectiveregioninthecrosssection.
•Hereiswhatthetorqueequationlookslikeforabarmadeoftwomaterials:
•Where0and1limitsinthefirstintegraldenotetheradialboundariesofthecorematerial,while1and2denote
thosefortheshellmaterial.Thesubscripts'C'and'S'correspondtothecoreandshellmaterials,respectively.
,

122
•Elastic and Non-Homogeneous
•Knowingthemaximumshearstrain,wecanusetheaboveequationtosolveforthetorqueata
givensection,orviceversa.
•Noticethatweusedthesamelinearequationforstress-strainrelationsinbothintegralswith
shearmodulusbeingtheonlydifference.
•Examiningthisequationmorecarefully,werealizethatwhilemaximumshearstrainalways
occursatthefarthestdistancefromthecenterofthebar,itisnotnecessaryformaximumshear
stresstobeatthesamelocation.
•Thedifferencebetweentheshearmoduliofthecoreandtheshellcouldbesuchthattheshear
stressinthecoreattheinterfaceoftheshellandcoremightbehigherthanthatattheedgeof
thebarnearitsoutsidesurface.
,
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

123
•Rule of Thumb:
•Maximum shear strain occurs atr = cregardless of
whether the shell material has higher or lower
shear rigidity.
•Maximum shear stress occurs in the material with
the highest shear rigidity regardless of its location.
•Here are some examples:
•Since the core and the shell are assumed to be
perfectly attached at the interface, the angle of
twist is the same for both materials; therefore;
??????
&#3627408516;=??????
&#3627408532;⇒ቇ
??????&#3627408499;
??????&#3627408494;
&#3627408516;
=ቇ
??????&#3627408499;
??????&#3627408494;
&#3627408532;
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

124
•SampleProblem2-4
SteppedbarABCismadeofAluminumalloywithsectionABfilledwithsteel.Usethepropertiesgiventodothefollowing:
(a)determinethemaximumelastictorquethatcanbeappliedatthefreeend
(b)determinethecorrespondingangleoftwistatthefreeend
(c)determineandsketchtheshearstressdistributionontheshaftcrosssectionforAB
(d)determineandsketchtheshearstressdistributionontheshaftcrosssectionforBC
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

125
•SolutionofSampleProblem2-4_a
✓Thisproblemisanexampleofcircularshaftswithmaterialand/orgeometric
discontinuitiesalongtheaxis.
✓Suchaxialdiscontinutiesrequirethattheshaftbebrokenupintoseveralpartssuchthat
ineachpartwehaveuniformaxialpropertiesandconstantloading.
✓Inthisexamplewehavematerialandgeometricdiscontinutiesbutnotloading
discontinuityastorqueisequaltoTeverywherealongtheshaft.
✓NoticealsowhileportionBCishomogeneous(madeofaluminumonly),portionABisnot.
Thus,toanalyzethisproblemweuseelastictorsionformulaforportionBCandthe
generaltorsionformula(integralform)forportionAB.
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

126
•SolutionofSampleProblem2-4_a
✓First,wefindthemaximumelastictorquethat
portionBCcancarry.
✓Itwillcorrespondtothemaximumelasticshear
stressandmaximumshearstraininthissection-
bothatthesurfaceinthiscase.
✓Fromthestress-straincurveinthefigure,weknow
themaximumelasticshearingstressforaluminum
is8000psi.UsingHooke'slaw,themaximum
elasticshearstrain(thestrainatradius'c')canbe
found.
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

127
•SolutionofSampleProblem2-4_a
✓Nowusingtheelastictorsionformula,themaximumelastictorqueforsectionBCis
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

128
•SolutionofSampleProblem2-4_a
✓Noticethatthisisnotthefinal
answeryetbecausethistorquemay
begreaterthatthemaximum
elastictorqueforportionAB.
✓Nowfindmaximum allowable
torqueforportionAB.The
maximumstrainwillbeatthe
surfaceasbefore.Sincetheshellis
aluminum,themaximumstrain
willbethesameasabove
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

129
•SolutionofSampleProblem2-4_a
✓Usingthetorqueequationabove,themaximumallowabletorqueforportionABis:
✓Therefore,themaximumelastictorquefortheshaftsothatbothportionsABand
BCremainelasticwillbe:
✓Pleasenotethattheunitfortorqueshouldbein-lbinsteadofpsi.
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

130
•SolutionofSampleProblem2-4_b
✓Theangleoftwistatthefreeendisfoundbyusing:
✓ThetorqueTforeachportionisfoundtobeTmax.
✓Theaboveequationforangleoftwistisvalidforhomogeneousshafts.
✓TobeabletousethisequationinportionAB,weneedtoknowhowmuchofthetorqueiscarriedbysteel
coreandhowmuchiscarriedbythealuminumshell.
✓This,however,hasbeendeterminedpreviouslybyexaminingtheintegralequationfortorqueinportion
AB;thatis,thefirstintegralcorrespondstothetorqueinthecorewhilethesecondintegralcorresponds
tothetorqueintheshell.
✓Thesetorquescanalsobeobtainedbasedonthefactthattheangleoftwistforthesteelandaluminumis
thesameinportionAB.
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

131
•Thesetorques:
•Theangleoftwistatthefreeendis:
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

132
•SolutionofSampleProblem2-4_c-d
✓Tosketchtheshearstressdistributionineachsection,themaximumshearstressmustbefoundforeach
section.Theyare:
Chapter 1.-Torsion of Circular Bars, Elastic and Non-Homogeneous

133Chapter 1.-Torsion of Circular Bars, Inelastic and Homogeneous
•Plastic Deformations
•Withtheassumptionofalinearlyelasticmaterial,
•If the yield strength is exceeded or the material has a nonlinear
shearing-stress-strain curve, this expression does not hold.
•Shearing strain varies linearly regardless of material properties.
Application of shearing-stress-strain curve allows determination of
stress distribution.
•The integral of the moments from the internal stress distribution is
equal to the torque on the shaft at the section,
??????
&#3627408526;??????&#3627408537;=
??????&#3627408516;
??????
??????=න
&#3627409358;
&#3627408516;
&#3627409222;??????&#3627409360;&#3627409221;&#3627409222;&#3627408517;&#3627409222;=&#3627409360;&#3627409221;න
&#3627409358;
&#3627408516;
&#3627409222;
&#3627409360;
??????&#3627408517;&#3627409222;

134
•Elastoplastic Materials
•Atthemaximumelastictorque,
•As the torque is increased, a plastic region;
( ) develops around an elastic core ( )
•As , the torque approaches a limiting value,
??????
??????=
??????
&#3627408516;
??????
??????=
&#3627409359;
&#3627409360;
&#3627409221;&#3627408516;
&#3627409361;
??????
??????;??????
??????=
&#3627408499;??????
??????
&#3627408516;
??????=??????
??????
??????=
&#3627409222;
&#3627409222;
??????
??????
??????
??????=
&#3627409360;
&#3627409361;
&#3627409221;&#3627408516;
&#3627409361;
??????
??????&#3627409359;−
&#3627409359;
&#3627409362;
&#3627409222;
??????
&#3627409361;
&#3627408516;
&#3627409361;
=
&#3627409362;
&#3627409361;
??????
??????&#3627409359;−
&#3627409359;
&#3627409362;
&#3627409222;
??????
&#3627409361;
&#3627408516;
&#3627409361;
??????=
&#3627409362;
&#3627409361;
??????
??????&#3627409359;−
&#3627409359;
&#3627409362;
??????
??????
&#3627409361;
??????
&#3627409361;
&#3627409222;
??????=
&#3627408499;??????
??????
??????
&#3627409222;
??????→&#3627409358;
??????
??????=
&#3627409362;
&#3627409361;
??????
??????=&#3627408529;&#3627408525;??????&#3627408532;&#3627408533;??????&#3627408516;&#3627408533;&#3627408528;&#3627408531;&#3627408530;&#3627408534;&#3627408518;
Chapter 1.-Torsion of Circular Bars, Inelastic and Homogeneous

135Chapter 1.-Torsion of Circular Bars, Inelastic and Homogeneous
•InelasticandHomogeneous
oAsmentionedearlier,theshearstrainpatternis
lineareventhoughthememberhasbeenstressed
beyondtheelasticlimitandintotheinelastic
range.
oForalinearlyelasticmaterial,shearstress
variationislinearuptotheradialdistance
correspondingtotheelasticrimshowninthe
figuresbelow.
oBeyondthisdistance,Hooke'slawcanNOTbe
usedtorelatestresstostrainvariation.Once
againthematerialisassumedtobeelasto-plastic.

136Chapter 1.-Torsion of Circular Bars, Inelastic and Homogeneous
oLet'sseehowtorsionalanalysisisperformedforacircularbarastheinternaltorqueisincreased
fromzerotothatcorrespondingtothefully-plasticbar.
oNoticethatweareexaminingonlyonesection(slice)ofthebaralongitslength.Therefore,
dependingonwhichsectionweconsidertheinternaltorquemaybedifferent.
▪Ifatthesectionofinterestthemaximumshearstrainisbelowtheelastic-limitshearstrainof
thematerial,thenthebarisfullyelasticandthecorrespondingtorquecanbeobtainedas
shownin(1).
▪Ifthemaximumshearstrainreachestheelasticshearstrain,thenthebarhasreachedthe
elasticlimitstate,andthetorquecalculatedaccordingto(2)isreferredtoasthe"elastic-limit
torque".

137Chapter 1.-Torsion of Circular Bars, Inelastic and Homogeneous
▪Asthetorqueisincreasedbeyondtheelastic-limittorque,theinternalshearstressmovesintothe
inelasticrange.Inthatcasewemustfirstlocatetheelasticrimbycalculatingre.Oncethatdistanceis
known,thenwecancalculatetheinternaltorquecorrespondingtothespecifiedmax.shearstrain
accordingto(3).
▪Notethatinthiscase,thematerialisassumedtobeelasto-plastic,whichimpliesthatbeyondthe
elasticlimit,stressremainsconstantattheelasticlimitvalue.inelasticrange,thenthemaximum
inelasticorfully-plastictorqueisfoundaccordingto(4).
oTheangleoftwistatagivensectioninaninelasticcircularbarisfoundby
▪whichcorrespondstotheangleoftwistattheonsetofyield(whentheelasticradius=radiusofbar,c).
Or where

138Chapter 1.-Torsion of Circular Bars, Inelastic and Non-Homogeneous
•InelasticandNon-Homogeneous
oHere,wearedealingwithacircularbarthatismadeoftwoormultiple
materialsdistributedintheradialdirection.
oThebaristwistedbeyondtheelasticlimitofatleastoneofthematerials.
oItisnotnecessaryforallmaterialstobestressedbeyondtheirrespectiveelastic
limits.
oInthiscase,theshearstrainvariationisstilllinearandthetorqueequationis
brokenupatthematerialinterfaceandatthepointwherethetransitionfrom
elastictoinelasticregiontakesplace.

139Chapter 1.-Torsion of Circular Bars, Inelastic and Non-Homogeneous
•InelasticandNon-Homogeneous
oLet'sconsiderthecasewherethebariscomposed
oftwodifferentmaterials.Thereareseveral
possibilitiesthatneedtobeinvestigated:
▪(1)Theinnermaterial(core)maybecomeinelastic
whiletheoutershellisstillelastic;
▪(2)theoutershellmaybecomefullyplasticwhilethe
coreremainsfarbelowitsproportionallimit;etc.
oHereisanexampleofanon-homogeneouscircular
barinastateofinelasticstressandstrain.

140Chapter 1.-Torsion of Circular Bars, Inelastic and Non-Homogeneous
oItisobviousthattheanalysisofthistypeofproblemrequiresmorerigorthanthosedealingwithelastic
torsion.
oAnalysisProcedure:
oAnalysisofcircularnon-homogeneousbarsinwhichmax.shearstrainisspecified.Noticethatthisisa
staticallyindeterminateproblemaswedon'tknowwhatpercentageoftheresultanttorqueisbeing
carriedbyeachmaterial.
1.Knowingthatthemax.shearstrainoccursatthefarthestdistancefromthecenterofcircularcross
section,wecalculatetheactualshearstrainatthematerialinterfaceusingthelinearequation.
Nowweknowthemax.shearstrainineachmaterial.
2.Next,wecalculatetheelastic-limitshearstrainofeachmaterialfromthestrain-stressdiagramor
materialpropertiesprovidedintheproblem,andcompareitwiththecorrespondingactualshear
strain.Forinelastictorsionproblem,themax.shearstraininoneofthematerialsmustexceedits
correspondingelasticlimitvalue.

141Chapter 1.-Torsion of Circular Bars, Inelastic and Non-Homogeneous
3.Withthisinformation,wecanproceedwithplottingthestressvariationacrossthecrosssectionofthebar.This
givesusamapthatwecanusetosetuptheintegralformofthetorqueequation.Theintegralwouldbesplit
intoseveralsegmentsdependingonthevariationsofstressesandmaterials.
4.Firstweconsiderthecore.Basedonthestressvariationinthecore,wemayneeduptotwoseparateintegrals.
Then,weexaminetheshell.Again,dependingonthestressvariation,wemayneeduptotwoseparate
integrals-onefortheelasticpartandanotherfortheinelasticpart.
5.Onceweidentifythelimitsoneachintegral,andcorrectlywritetheintegrandineachcase,wecanproceed
withtheintegrationtofindthetorquethatcorrespondstothespecifiedmax.shearstrainintheproblem
statement.
6.Noticethattheintegralscorrespondtotheportionoftheresultanttorquecarriedbythecoreandtheshell.So
oncewehavecalculatedthesevalues,wecandeterminethepercentageoftorquecarriedbyeachconstituent.
7.Theangleoftwistiscalculatedinthesamemannerspecifiedintheprevioussection.Themainassumptionis
thatthetwomaterialsareperfectlybondedattheinterface

142Chapter 1.-Torsion of Circular Bars, Residual Stress Distribution
Tags