Analytic Trigonometry: Odd and Even Identities, Sum and Difference Formula,Double Angle Formula, Half Angle Formula
sunnygomerry1100
32 views
67 slides
Oct 04, 2024
Slide 1 of 67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
About This Presentation
Trigonometry, presents the odd even identities, sum and difference formula and how it is derived, double angle formula and it's origin, half angle formula and how it was derived.
Size: 3.34 MB
Language: en
Added: Oct 04, 2024
Slides: 67 pages
Slide Content
ANALYTIC TRIGONOMETRY
TRIGONOMETRIC IDENTITIES
WHAT IS AN IDENTITY ? Presentation title 3
Example of Identities Presentation title 4
Example of Conditional Equation Presentation title 5
Trigonometric Identities Presentation title 6
EXAMPLE Simplify Trigonometric Expressions: Presentation title 7
SOLUTION Presentation title 8
SOLUTION Presentation title 9
ESTABLISH IDENTITIES Presentation title 10
ESTABLISH IDENTITIES Presentation title 11
EXAMPLE Presentation title 12
EXAMPLE Presentation title 13
SOLUTION Presentation title 14
SOLUTION Presentation title 15
SOLUTION Presentation title 16
SOLUTION Presentation title 17
SOLUTION Presentation title 18
SOLUTION Presentation title 19
SUM AND DIFFERENCE FORMULA
Presentation title 21 sin(A + B) = sinA cosB + cosA sinB . sin(A - B) = sinA cosB - cosA sinB . cos(A + B) = cosA cosB - sinA sinB . cos(A - B) = cosA cosB + sinA sinB . tan(A + B) = ( tanA + tanB ) / (1 - tanA tanB ) tan(A - B) = ( tanA - tanB ) / (1 + tanA tanB ) Six Sum and Difference Formulas in Trigonometry
22 Solve using the Sum Formula Verify the identity: = cot x cot y + 1 cot x cot y + 1 = Expand using cos(A - B) = cosA cosB + sinA sinB . cot x cot y + 1 = + ][ cot x cot y + 1 = cot x cot y + = +
Presentation title 23 Solve using the Difference Formula Solve 3 sin(x-∏) = 3 in the interval [0, 2 ∏ ] sin x cos ∏ - cos x sin ∏ = 1 sin x (-1) – cos x(0) = 1 -sin x = 1 First, get sin (x- ∏) by itself, divide both side by 3 Sin (x- ∏) = 1 Expand the left side using sin(A - B) = sinA cosB - cosA sinB Then sin x = -1 when x is
Presentation title 24 Find all the solutions for 2cos 2 (x+ )=1 in the interval [0,2 ) . Solution: 2cos 2 (x+ ) = 1 Divide each term by 2 cos 2 (x+ ) = Take the square root cos(x+ ) = =
Presentation title 25 use the cosine sum formula cos(A + B) = cosA cosB - sinA sinB to expand and solve cos(x+ ) = cosxcos – sinx sin = cosx (0)– sinx (1)= – sinx (1)= sinx = - sin x = - is in Quadrants III and IV, so x = and
Presentation title 26 find sin( + ) , use the sine sum formula sin(A + B) = sinA cosB + cosA sinB sin( + ) = sin cos + cos sin = (-1) ( )+ (0) ( ) = -
27 Solve for all values of x between [0,2 ) for 2tan 2 (x+ )+1=7. 2tan 2 (x + ) + 1 = 7 Transpose 1 to the right side 2tan 2 (x + ) = 6 Multiple each side by tan 2 (x + ) = 3 Take the square root tan (x + ) = ± First, solve for tan (x + ) SOLUTION:
28 Use tan sum formula tan(A + B) = = = = = = = tan (x + ) = ±
29 = transposing terms = = = tan x = is true when x = and =
30 Find all solutions to sin(x+ )=sin(x - ) , when x is between [0,2 ) . SOLUTION: E xpand all sides sin(x+ ) = sin(x - sin x cos + cos x sin = sin x cos - cos x sin sin x( )+ cos x ( = sin x - cos x Set the two sides equal + ( = sin x - cos x Multiply all terms by 2 + = sin x - cos x Transpose to join similar terms
31 + = sin x - cos x Transpose to join similar terms = - cos x - = cos x (- – 1) = cos x (- – 1) = . = -
Presentation title 32 EXERCISES
Presentation title 33 Double Angle Formulas of Sin, Cos and Tan sin 2A = 2 sin A cos A ( or ) = (2 tan A) / (1 + tan 2 A) cos 2A = cos 2 A - sin 2 A ( or ) = 2cos 2 A - 1 ( or ) = 1 - 2sin 2 A ( or ) = (1 - tan 2 A) / (1 + tan 2 A) tan 2A = (2 tan A) / (1 - tan 2 A)
Presentation title 34 Derivation of the Double Angle Formulas of sin, cos and tan Double Angle Formulas of Sin The sum formula of sine function is, sin (A + B) = sin A cos B + cos A sin B When A = B, the above formula becomes, sin (A + A) = sin A cos A + cos A sin A sin 2A = 2 sin A cos A
35 Let us derive an alternate formula for sin 2A in terms of tan using the Pythagorean identity sec 2 A = 1 + tan 2 A. sin2 A =2sin A cos A multiply with sin2 A = = =2tan A ⋅ =
Presentation title 36 Double Angle Formulas of Cos The sum formula of cosine function is, cos (A + B) = cos A cos B - sin A sin B When A = B, the above formula becomes, cos (A + A) = cos A cos A - sin A sin A cos 2A = cos 2 A - sin 2 A
Presentation title 37 Let us use this as a base formula to derive two other formulas of cos 2A sin 2 A + cos 2 A = 1. cos 2A = cos 2 A − (1 − cos 2 A) = cos 2 A − 1 + cos 2 A =2cos 2 A - 1 using the Pythagorean identity sin 2 A + cos 2 A = 1 transposing sin 2 A = 1 - cos 2 A substituting to the equation below: cos 2A = cos 2 A - sin 2 A (i) cos 2A = 2cos 2 A - 1 ( ii ) cos 2A = 1 - 2sin 2 A
Presentation title 38 Let us use this as a base formula to derive two other formulas of cos 2A sin 2 A + cos 2 A = 1. cos 2A = (1 − sin 2 A) - sin 2 A = 1 - sin 2 A − + sin 2 A = 1 – 2sin 2 A using the Pythagorean identity sin 2 A + cos 2 A = 1 transposing cos 2 A = 1 - sin 2 A substituting to the equation below: cos 2A = cos 2 A - sin 2 A (i) cos 2A = 2cos 2 A - 1 ( ii ) cos 2A = 1 - 2sin 2 A
Presentation title 39 we will derive the formula of cos 2A in terms of tan using the base formula cos2 A =cos 2 A −sin 2 A =cos 2 A (1 - = = = double angle formulas of the cosine function are : cos 2A = cos 2 A - sin 2 A ( or ) = 2cos 2 A – 1 ( or ) = 1 - 2sin 2 A ( or ) =
Presentation title 40 Double Angle Formulas of Tan tan (A + B) = (tan A + tan B) / (1 - tan A tan B) When A = B, the above formula becomes, tan (A + A) = Thus, the double angle formula of tan function is, t an 2A =
Presentation title 41 = Examples Using Double Angle Formulas If tan A = 3 / 4, find the values of sin 2A, cos 2A, and tan 2A. Solution: Since the value of tan A is given, we use the double angle formulas for finding each of sin 2A, cos 2A, and tan 2A in terms of tan. a) sin2 A = = =
Presentation title 42 Examples Using Double Angle Formulas If tan A = 3 / 4, find the values of sin 2A, cos 2A, and tan 2A. Solution: Since the value of tan A is given, we use the double angle formulas for finding each of sin 2A, cos 2A, and tan 2A in terms of tan. b ) cos2 A = = =
Presentation title 43 Examples Using Double Angle Formulas If tan A = 3 / 4, find the values of sin 2A, cos 2A, and tan 2A. Solution: Since the value of tan A is given, we use the double angle formulas for finding each of sin 2A, cos 2A, and tan 2A in terms of tan. c ) tan2 A = = = Answer: sin 2A = , cos 2A = , and tan 2A =
Presentation title 44 Prove the following identity =tan 2 x Solution: The double angle formula of cos i s cos 2A = 2cos 2 A - 1 (or) 1 - 2sin 2 A = = = = =tan 2 x
Presentation title 45 Use the double angle formulas to derive the formula for sin 3x. Solution : sin (3x) = sin (2x + x ) ( using sin (A + B) = sin A cos B + cos A sin B) = ( sin 2x cos x) + cos2x sinx ( Using double angle formulas sin 2A = 2 sin A cos A cos 2A = 1 - 2sin 2 A = 2 sin x cos 2 x + sin x - 2 sin 3 x ( apply pythagorian ) = 2 sin x ( 1 - sin 2 x ) + sin x - 2 sin 3 x ( distributive property ) = 2 sin x - 2 sin 3 x + sin x - 2 sin 3 x = (2 sin x + sin x) + (-2 sin 3 x - 2 sin 3 x) = 3 sin x - 4 sin 3 x = ( 2 sin x cos x ) cos x + (1 - 2 sin 2 x) sin x ( Simplify ; distributive property )
Presentation title 46 Half Angle Formulas of Sin, Cos and Tan the values of the trigonometric functions (sin, cos , tan, cot, sec, cosec) for the angles like 0°, 30°, 45°, 60°, and 90° from the trigonometric identities table. to know the exact values of sin 22.5°, tan 15°, etc , the half angle formulas are extremely useful half angle formulas are * Derived from the double angle formulas * helpful in proving several trigonometric identities
Presentation title 47 Half angle formula of sin: sin = ± cos = ± tan = ± or Half angle formula of cos : Half angle formula of tan: tan = ± or tan = ± or Half Angle Formulas of Sin, Cos and Tan
48 Derivation of Half Angle Formulas of Sin, Cos and Tan From the double angle Formula: cos 2x = 1 -2 sin 2 x Replace x with 2 sin 2 ( ) = ; multiply by ½ sin 2 ( ) = sin ( ) = ± cos 2 ( ) = 1 -2 sin 2 ( ) cos A = 1 -2 sin 2 ( ) Transposing
49 Derivation of Half Angle Formulas of Sin, Cos and Tan From the double angle Formula: cos 2x = 2 cos 2 x - 1 Replace x with cos 2( ) = 2 cos 2 ( ) – 1 cos A = 2 cos 2 ( ) - 1 : transpose 2 cos 2 ( ) = 1 + cos A; multiply by ½ cos 2 ( ) = ( ) Cos ( ) = ±
50 Derivation of Half Angle Formulas of Sin, Cos and Tan From the double angle Formula: tan 2x = Replace x with tan 2 ( ) = From the half angle formulas of sin and cos tan = tan = (1 - cos A) / sin A
Presentation title 51 use the half angle formula. 1. Solve the trigonometric equation sin 2 𝜃=2sin 2 over the interval [0,2𝜋) . sin 2 𝜃 =2sin 2 sin 2 𝜃 = 2 ( ) Half angle identity = Pythagorian identity = 0 = 0 Then = 0 or 1- = 0, w/c is =1 = 0,
Presentation title 52 Solve 2cos 2 =1 for 0≤𝑥<2𝜋 2 cos 2 = 1 isolate cosine by multiplying it by 1/2 cos 2 = then use half angle formula = Cos x = 1-1 cos x = 0 when =
Presentation title 53 Solve tan = 4 for 0 ≤ a < 360º tan = 4 use half angle formula = 4 squaring both sides = 16 cross multiply 17 cos a = -15 cos a = when a = 152º , 208º cos a + = 1 - 16
Presentation title 54 Solve sin 22.5 º Sin 22.5 º = sin = 1 use half angle formula Sin 22.5 º = = = = =
Presentation title Find the exact value of cos 11 2.5 º cos 112.5 º = cos = use half angle formula cos 112.5 º = - = cos 112.5 º = - = - - = -
Presentation title 56 tan = tan . use half angle formula Find the exact value of tan = = multiply with = = + = = =
Presentation title 57 Use half angle identities to find the exact value of each expression. tan15 º tan22.5 º cot75 º tan67.5 º tan157.5 º tan112.5 º cos105 º sin112.5 º sec15 º csc22.5 º csc75 º sec67.5 º cot157.5 º
Presentation title 58 Assignment/Exercises: Use the double angle formula and simplify sin 2x – sin x = 0 2. cos 2x – cos x = 0 3. Solve the equation sin = -1 for 0 ≤ x <
Presentation title 59 - are mathematical equations that involve the trigonometric functions such as sine, cosine & tangent T rigonometric E quations . - help us find values for the angles or sides that meet the specified criteria, and these angles are the solution of Trigonometric Equations - these equations create relationships between angles and sides of triangles. -Uses sin, cos & tan as the major trigonometric functions - require the use of trigonometric identities and specific angles
Presentation title 60 Solutions for T rigonometric E quations . Equations Solutions sin x = 0 x = n π cos x = 0 x = (n π + π /2) tan x = 0 x = n π sin x = 1 x = (2n π + π /2) = (4n+1) π /2 cos x = 1 x = 2n π sin x = sin θ x = n π + (-1) n θ, where θ ∈ [- π /2, π /2] Equations Solutions cos x = cos θ x = 2n π ± θ, where θ ∈ (0, π ] tan x = tan θ x = n π + θ, where θ ∈ (- π /2 , π /2] sin 2x = sin 2 θ x = n π ± θ cos 2x = cos 2 θ x = n π ± θ tan 2x = tan 2 θ x = n π ± θ cos x = cos θ x = 2n π ± θ, where θ ∈ (0, π ]
Presentation title 61 Problems Find the values of x 1. sin 2x – sin 4x + sin 6x = 0 Solution: sin 2x – sin 4x + sin 6x = 0 2sin4x.cos 2x – sin 4x = 0 sin 4x(2cos2x – 1) = 0 sin 4x = 0 or cos 2x = ½ 4x = n π or 2x = 2n π ± π/3 general solution: x = nπ/4 or nπ ± π/6
Presentation title 62 Solution: We already know that sin π/6 = 1/2 sin 5π/6 = sin (π – π/6) = sin π/6 = 1/2 Determine the primary solution to the equation sin x = 1/2 primary answers are x =π/6 and x = 5π/6.
Presentation title 63 Determine the answer to cos x = ½ . Solution: use the general solution of cos x = ½ . . From the wheel chart; cos = ½ . Equate the two equations ( i ) cos x = ½ . (ii) cos = ½ . cos x = cos x = 2n π + ( ), where n ∈ Z As a result, cos x = ½ . has a generic solution of x = 2nπ + ( ), where n ∈ Z. [With Cos θ = Cos α, the generic solution is θ = 2 n π + α, where n ∈ Z]
Presentation title 64 Determine the primary solutions to the trigonometric equation sin x = Solution: sin x = , we know that the primary solutions of sin x = are x = and . sin = and sin (π – ) = sin = equating two equations sin = sin =