Analytic Trigonometry: Odd and Even Identities, Sum and Difference Formula,Double Angle Formula, Half Angle Formula

sunnygomerry1100 32 views 67 slides Oct 04, 2024
Slide 1
Slide 1 of 67
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67

About This Presentation

Trigonometry, presents the odd even identities, sum and difference formula and how it is derived, double angle formula and it's origin, half angle formula and how it was derived.


Slide Content

ANALYTIC TRIGONOMETRY

TRIGONOMETRIC IDENTITIES

WHAT IS AN IDENTITY ? Presentation title 3

Example of Identities Presentation title 4

Example of Conditional Equation Presentation title 5

Trigonometric Identities Presentation title 6

EXAMPLE Simplify Trigonometric Expressions: Presentation title 7

SOLUTION Presentation title 8

SOLUTION Presentation title 9

ESTABLISH IDENTITIES Presentation title 10

ESTABLISH IDENTITIES Presentation title 11

EXAMPLE Presentation title 12

EXAMPLE Presentation title 13

SOLUTION Presentation title 14

SOLUTION Presentation title 15

SOLUTION Presentation title 16

SOLUTION Presentation title 17

SOLUTION Presentation title 18

SOLUTION Presentation title 19

SUM AND DIFFERENCE FORMULA

Presentation title 21 sin(A + B) = sinA cosB + cosA sinB . sin(A - B) = sinA cosB - cosA sinB . cos(A + B) = cosA cosB - sinA sinB . cos(A - B) = cosA cosB + sinA sinB . tan(A + B) = ( tanA + tanB ) / (1 - tanA tanB ) tan(A - B) = ( tanA - tanB ) / (1 + tanA tanB ) Six Sum and Difference Formulas in Trigonometry

22 Solve using the Sum Formula Verify the identity: = cot x cot y + 1   cot x cot y + 1 = Expand using cos(A - B) = cosA cosB + sinA sinB .   cot x cot y + 1 = + ][   cot x cot y + 1 = cot x cot y +   = +  

Presentation title 23 Solve using the Difference Formula Solve 3 sin(x-∏) = 3 in the interval [0, 2 ∏ ]   sin x cos ∏ - cos x sin ∏ = 1 sin x (-1) – cos x(0) = 1 -sin x = 1 First, get sin (x- ∏) by itself, divide both side by 3 Sin (x- ∏) = 1   Expand the left side using sin(A - B) = sinA cosB - cosA sinB Then sin x = -1 when x is  

Presentation title 24 Find all the solutions for  2cos 2 ⁡(x+ )=1  in the interval  [0,2 ) . Solution:   2cos 2 ⁡(x+ ) = 1 Divide each term by 2     cos 2 ⁡(x+ ) = Take the square root     cos⁡(x+ ) = =  

Presentation title 25 use the  cosine sum formula cos(A + B) = cosA cosB - sinA sinB   to expand and solve cos⁡(x+ ) =   cos⁡xcos – sinx sin =   cos⁡x (0)– sinx (1)=   – sinx (1)=   sinx = -   sin x = - is in Quadrants III and IV, so x = and  

Presentation title 26 find  sin⁡( + ) , use the  sine sum formula sin(A + B) = sinA cosB + cosA sinB   sin⁡( + ) = sin cos + cos sin   = (-1) ( )+ (0) ( ) = -  

27 Solve for all values of x between [0,2 ) for 2tan 2 ⁡(x+ )+1=7.   2tan 2 (x + ) + 1 = 7 Transpose 1 to the right side   2tan 2 (x + ) = 6 Multiple each side by   tan 2 (x + ) = 3 Take the square root     tan (x + ) = ±   First, solve for tan (x + )   SOLUTION:

28 Use tan sum formula tan(A + B) =   =   =   =   = =   =   tan (x + ) = ±  

29 = transposing terms   =   =   =   tan x = is true when x = and   =  

30 Find all solutions to  sin⁡(x+ )=sin⁡(x - ) , when  x  is between  [0,2 ) .   SOLUTION: E xpand all sides sin⁡(x+ ) = sin⁡(x -   sin ⁡x cos + cos ⁡x sin = sin⁡ x cos - cos x sin   sin ⁡x( )+ cos x ⁡( = sin⁡ x - cos x Set the two sides equal   + ⁡( = sin⁡ x - cos x Multiply all terms by 2   + = sin⁡ x - cos x Transpose to join similar terms  

31 + = sin⁡ x - cos x Transpose to join similar terms   = - cos x -   = cos x (- – 1)   = cos x (- – 1)   =   . =   -  

Presentation title 32 EXERCISES

Presentation title 33 Double Angle Formulas of Sin, Cos and Tan sin 2A = 2 sin A cos A ( or )  = (2 tan A) / (1 + tan 2 A) cos 2A = cos 2 A - sin 2 A ( or ) = 2cos 2 A - 1 ( or ) = 1 - 2sin 2 A ( or ) = (1 - tan 2 A) / (1 + tan 2 A) tan 2A = (2 tan A) / (1 - tan 2 A)

Presentation title 34 Derivation of the Double Angle Formulas of sin, cos and tan Double Angle Formulas of Sin The sum formula of sine function is, sin (A + B) = sin A cos B + cos A sin B When A = B, the above formula becomes, sin (A + A) = sin A cos A + cos A sin A sin 2A = 2 sin A cos A

35 Let us derive an alternate formula for sin 2A in terms of tan using the Pythagorean identity sec 2 A = 1 + tan 2 A. sin2 A =2sin A cos A multiply with   sin2 A =   =   =2tan A ⋅   =  

Presentation title 36 Double Angle Formulas of Cos The sum formula of cosine function is, cos (A + B) = cos A cos B - sin A sin B When A = B, the above formula becomes, cos (A + A) = cos A cos A - sin A sin A cos 2A = cos 2 A - sin 2 A

Presentation title 37 Let us use this as a base formula to derive two other formulas of cos 2A sin 2 A + cos 2 A = 1.  cos 2A = cos 2 A − (1 − cos 2 A) = cos 2 A − 1 + cos 2 A =2cos 2 A - 1 using the Pythagorean identity sin 2 A + cos 2 A = 1 transposing sin 2 A = 1 - cos 2 A substituting to the equation below: cos 2A = cos 2 A - sin 2 A (i) cos 2A = 2cos 2 A - 1 ( ii ) cos 2A = 1 - 2sin 2 A

Presentation title 38 Let us use this as a base formula to derive two other formulas of cos 2A sin 2 A + cos 2 A = 1.  cos 2A = (1 − sin 2 A) - sin 2 A =  1 - sin 2 A − + sin 2 A = 1 – 2sin 2 A using the Pythagorean identity sin 2 A + cos 2 A = 1 transposing cos 2 A = 1 - sin 2 A substituting to the equation below: cos 2A = cos 2 A - sin 2 A (i) cos 2A = 2cos 2 A - 1 ( ii ) cos 2A = 1 - 2sin 2 A

Presentation title 39 we will derive the formula of cos 2A in terms of tan using the base formula cos2 A =cos 2 A −sin 2 A =cos 2 A (1 -   =   =   =   double angle formulas of the cosine function are : cos 2A = cos 2 A - sin 2 A ( or ) = 2cos 2 A – 1 ( or ) = 1 - 2sin 2 A ( or ) =  

Presentation title 40 Double Angle Formulas of Tan tan (A + B) = (tan A + tan B) / (1 - tan A tan B) When A = B, the above formula becomes, tan (A + A) =   Thus, the double angle formula of tan function is, t an 2A =  

Presentation title 41 =   Examples Using Double Angle Formulas If tan A = 3 / 4, find the values of sin 2A, cos 2A, and tan 2A. Solution: Since the value of tan A is given, we use the double angle formulas for finding each of sin 2A, cos 2A, and tan 2A in terms of tan. a) sin2 A =   =   =  

Presentation title 42 Examples Using Double Angle Formulas If tan A = 3 / 4, find the values of sin 2A, cos 2A, and tan 2A. Solution: Since the value of tan A is given, we use the double angle formulas for finding each of sin 2A, cos 2A, and tan 2A in terms of tan. b ) cos2 A =   =   =  

Presentation title 43 Examples Using Double Angle Formulas If tan A = 3 / 4, find the values of sin 2A, cos 2A, and tan 2A. Solution: Since the value of tan A is given, we use the double angle formulas for finding each of sin 2A, cos 2A, and tan 2A in terms of tan. c ) tan2 A =   =   =   Answer:  sin 2A =  , cos 2A =  , and tan 2A =   

Presentation title 44 Prove the following identity  =tan 2 x   Solution: The double angle formula of cos i s cos 2A = 2cos 2 A - 1 (or) 1 - 2sin 2 A = =     =   =   =tan 2 x

Presentation title 45 Use the double angle formulas to derive the formula for sin 3x. Solution : sin (3x) = sin (2x + x ) ( using sin (A + B) = sin A cos B + cos A sin B) = ( sin 2x cos x) + cos2x sinx ( Using double angle formulas sin 2A = 2 sin A cos A cos 2A = 1 - 2sin 2 A = 2 sin x cos 2 x + sin x - 2 sin 3 x ( apply pythagorian ) = 2 sin x ( 1 - sin 2 x ) + sin x - 2 sin 3 x ( distributive property ) = 2 sin x - 2 sin 3 x + sin x - 2 sin 3 x = (2 sin x + sin x) + (-2 sin 3 x - 2 sin 3 x) = 3 sin x - 4 sin 3 x = ( 2 sin x cos x ) cos x + (1 - 2 sin 2 x) sin x ( Simplify ; distributive property )

Presentation title 46 Half Angle Formulas of Sin, Cos and Tan the values of the trigonometric functions (sin, cos , tan, cot, sec, cosec) for the angles like 0°, 30°, 45°, 60°, and 90° from the  trigonometric identities table. to know the exact values of sin 22.5°, tan 15°, etc , the half angle formulas are extremely useful half angle formulas are * Derived from the double angle formulas * helpful in proving several trigonometric identities

Presentation title 47 Half angle formula of sin:  sin = ±   cos = ±   tan = ± or   Half angle formula of cos :  Half angle formula of tan:  tan = ± or   tan = ± or   Half Angle Formulas of Sin, Cos and Tan

48 Derivation of Half Angle Formulas of Sin, Cos and Tan From the double angle Formula: cos 2x = 1 -2 sin 2 x Replace x with   2 sin 2 ( ) = ; multiply by ½ sin 2 ( ) = sin ( ) = ±   cos 2 ( ) = 1 -2 sin 2 ( ) cos A = 1 -2 sin 2 ( ) Transposing  

49 Derivation of Half Angle Formulas of Sin, Cos and Tan From the double angle Formula: cos 2x =  2 cos 2 x - 1 Replace x with   cos 2( ) = 2 cos 2 ( ) – 1 cos A = 2 cos 2 ( ) - 1 : transpose   2 cos 2 ( ) = 1 + cos A; multiply by ½ cos 2 ( ) = ( ) Cos ( ) = ±  

50 Derivation of Half Angle Formulas of Sin, Cos and Tan From the double angle Formula: tan 2x = Replace x with   tan 2 ( ) = From the half angle formulas of sin and cos   tan = tan =  (1 - cos A) / sin A  

Presentation title 51 use the half angle formula.  1. Solve the trigonometric equation  sin 2 ⁡𝜃=2sin 2 ⁡ over the interval  [0,2𝜋) .   sin 2 𝜃 =2sin 2 ⁡ ⁡sin 2 𝜃 = 2 ( ⁡ ) Half angle identity   = Pythagorian identity = 0   = 0 Then = 0 or 1- = 0, w/c is =1   = 0,  

Presentation title 52 Solve  2cos 2 ⁡ =1  for  0≤𝑥<2𝜋   2 cos 2 ⁡ = 1 isolate cosine by multiplying it by 1/2   cos 2 ⁡ = then use half angle formula   = Cos x = 1-1 cos x = 0 when ⁡ =  

Presentation title 53 Solve  tan ⁡ = 4  for  0 ≤ a < 360º   tan⁡ = 4 use half angle formula   = 4 squaring both sides   = 16 cross multiply   17 cos a = -15 cos a = when a = 152º , 208º     cos a + = 1 - 16  

Presentation title 54 Solve  sin 22.5 º Sin 22.5 º = sin ⁡ = 1 use half angle formula   Sin 22.5 º = =   =   =   =  

Presentation title Find the exact value of cos 11 2.5 º cos 112.5 º = cos ⁡ = use half angle formula   cos 112.5 º = - =   cos 112.5 º = -   = -   -   = -  

Presentation title 56 tan = tan . use half angle formula   Find the exact value of tan   = = multiply with = = +   =   = =  

Presentation title 57 Use half angle identities to find the exact value of each expression. tan⁡15 º tan⁡22.5 º cot⁡75 º tan⁡67.5 º tan⁡157.5 º tan⁡112.5 º cos⁡105 º sin⁡112.5 º sec⁡15 º csc⁡22.5 º csc⁡75 º sec⁡67.5 º cot⁡157.5 º

Presentation title 58 Assignment/Exercises: Use the double angle formula and simplify sin 2x – sin x = 0 2. cos 2x – cos x = 0 3. Solve the equation sin = -1 for 0 ≤ x <  

Presentation title 59 - are mathematical equations that involve the trigonometric functions such as sine, cosine & tangent   T rigonometric E quations . - help us find values for the angles or sides that meet the specified criteria, and these angles are the solution of Trigonometric Equations - these equations create relationships between angles and sides of triangles. -Uses sin, cos & tan as the major trigonometric functions - require the use of  trigonometric identities  and specific angles

Presentation title 60   Solutions for T rigonometric E quations . Equations Solutions sin x = 0  x = n π cos x = 0 x = (n π + π /2) tan x = 0 x = n π sin x = 1 x = (2n π + π /2) = (4n+1) π /2 cos x = 1 x = 2n π sin x = sin θ x = n π + (-1) n θ, where θ ∈ [- π /2, π /2] Equations Solutions cos x = cos θ x = 2n π ± θ, where θ ∈ (0, π ] tan x = tan θ x = n π + θ, where θ ∈ (- π /2 , π /2] sin 2x = sin 2 θ x = n π ± θ cos 2x = cos 2 θ x = n π ± θ tan 2x = tan 2 θ x = n π ± θ cos x = cos θ x = 2n π ± θ, where θ ∈ (0, π ]

Presentation title 61   Problems Find the values of x 1. sin 2x – sin 4x + sin 6x = 0 Solution: sin 2x – sin 4x + sin 6x = 0 2sin4x.cos 2x – sin 4x = 0 sin 4x(2cos2x – 1) = 0 sin 4x = 0 or cos 2x = ½ 4x = n π or 2x = 2n π ± π/3 general solution: x = nπ/4 or nπ ± π/6

Presentation title 62 Solution: We already know that sin π/6 = 1/2 sin 5π/6 = sin (π – π/6) = sin π/6 = 1/2 Determine the primary solution to the equation sin x = 1/2 primary answers are x =π/6 and x = 5π/6.

Presentation title 63 Determine the answer to cos x = ½ . Solution: use the general solution of cos x = ½ . . From the wheel chart; cos  = ½ .   Equate the two equations ( i ) cos x = ½ .   (ii) cos = ½ . cos x = cos     x = 2n π + ( ), where n ∈ Z    As a result, cos x = ½ . has a generic solution of x = 2nπ + ( ), where n ∈ Z.   [With Cos θ = Cos α, the generic solution is θ = 2 n π + α, where n ∈ Z]

Presentation title 64 Determine the primary solutions to the trigonometric equation sin x =   Solution: sin x = , we know that   the primary solutions of sin x = are x = and .   sin = and sin (π – ) = sin = equating two equations sin = sin =  

Presentation title 65

Presentation title 66

Presentation title 67