A hyperbola is the set of points in a plane, the
absolute value of the difference of whose
distances from two fixed points, called foci, is
a constant.
F
2 F
1
F
2 F
1
d
1
d
2
P
d
2
– d
1
is always the
same.
F F
V V
F F
V V
C
F
F
V
V
C
The center is at the point (0, 0)
c
2
= a
2
+ b
2
c is the distance from the
center to a focus point.
The foci are at (c, 0) and (-c, 0)
1
2
2
2
2
=-
b
y
a
x
1
2
2
2
2
=-
b
y
a
x
The conjugate points are at (0, b)
and (0, -b)
The vertices are at (a, 0) and (-a, 0)
Length of the latus rectum is 2b
2
a
1
2
2
2
2
=-
b
y
a
x
Ends of the latus rectum:
÷
÷
ø
ö
ç
ç
è
æ
a
b
cL
2
1
, ÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
2
,
÷
÷
ø
ö
ç
ç
è
æ
--
a
b
cL
2
3
,
÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
4,
Horizontal
Hyperbola
Equation of the directrix
1
2
2
2
2
=-
b
y
a
x
a
bx
y±=
The center is at the point (0, 0)
c
2
= a
2
+ b
2
c is the distance from the
center to a focus point.
The foci are at (0, c) and (0, -c)
1
2
2
2
2
=-
b
x
a
y
1
2
2
2
2
=-
b
x
a
y
The conjugate points are at (b, 0)
and (-b, 0)
The vertices are at (0, a) and (0, -a)
Length of the latus rectum is 2b
2
a
1
2
2
2
2
=-
b
x
a
y
Ends of the latus rectum:
÷
÷
ø
ö
ç
ç
è
æ
c
a
b
L ,
2
1 ÷
÷
ø
ö
ç
ç
è
æ
-c
a
b
L ,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-- c
a
b
L ,
2
3 ÷
÷
ø
ö
ç
ç
è
æ
-c
a
b
L ,
2
4
Vertical
Hyperbola
Equation of the directrix
1
2
2
2
2
=-
b
x
a
y
b
ax
y±=
1
169
22
=-
yx
Example 1.
1
2
2
2
2
=-
b
y
a
x
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
Example 1.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
V
1
(3, 0), V
2
(-3, 0)
F
1
(5, 0), F
2
(-5, 0)
Center at (0, 0)
Center at (0, 0)
V
1
(a, 0), V
2
(-a, 0)
F
1
(c, 0), F
2
(-c, 0)
Example 1.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
LR = 2b
2
= 2(4)
2
=32
a
Conjugate points
(0, 4), (0, -4)
3 3
Conjugate Points
(0, b), (0, -b)
LR = 2b
2
a
Example 1.
LR = 2b
2
= 32
a3
÷
÷
ø
ö
ç
ç
è
æ
a
b
cL
2
1
,
÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
2
,
÷
÷
ø
ö
ç
ç
è
æ
--
a
b
cL
2
3, ÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
4
,
c
2
= 25; c = 5
Endpoints of LR
÷
ø
ö
ç
è
æ
3
16
,5
1
L ÷
ø
ö
ç
è
æ
-
3
16
,5
2
L
÷
ø
ö
ç
è
æ
--
3
16
,5
3
L ÷
ø
ö
ç
è
æ
-
3
16
,5
4L
Example 1.
Asymptotes
a
bx
y±=
c
2
= 25; c = 5
b
2
= 16; b = 4
a
2
= 9; a = 3
1
169
22
=-
yx
3
4x
y=
3
4x
y-=
034 =-yx
034 =+yx
Asymptotes
1
169
22
=-
yx
Example 1.
V
1
(3, 0), V
2
(-3, 0)
F
1
(5, 0), F
2
(-5, 0)
Center at (0, 0)
÷
ø
ö
ç
è
æ
3
16
,5
1L ÷
ø
ö
ç
è
æ
-
3
16
,5
2L
÷
ø
ö
ç
è
æ
--
3
16
,5
3L ÷
ø
ö
ç
è
æ
-
3
16
,5
4L
Conjugate points
(0, 4), (0, -4)
Endpoints of LR
Asymptotes
034 =-yx
034 =+yx
Symmetric at x-axis
0=y
1
169
22
=-
yx
Example 1.
4x + 3y = 0
4x – 3y = 0
1
169
22
=-
xy
Example 2.
1
2
2
2
2
=-
b
x
a
y
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
Example 2.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
V
1
(0, 3), V
2
(0, -3)
F
1
(0, 5), F
2
(0, -5)
Center at (0, 0)
Center at (0, 0)
V
1
(0, a), V
2
(0, -a)
F
1
(0, c), F
2
(0, -c)
Example 2.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
LR = 2b
2
= 2(4)
2
=32
a
Conjugate points
(4, 0), (-4, 0)
3 3
Conjugate Points
(b, 0), (-b, 0)
LR = 2b
2
a
Example 2.
LR = 2b
2
= 32
a3
÷
÷
ø
ö
ç
ç
è
æ
c
a
b
L ,
2
1 ÷
÷
ø
ö
ç
ç
è
æ
- c
a
b
L ,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-- c
a
b
L ,
2
3 ÷
÷
ø
ö
ç
ç
è
æ
-c
a
b
L ,
2
4
c
2
= 25; c = 5
Endpoints of LR
÷
ø
ö
ç
è
æ
5,
3
16
1
L ÷
ø
ö
ç
è
æ
-5,
3
16
2
L
÷
ø
ö
ç
è
æ
-- 5,
3
16
3
L ÷
ø
ö
ç
è
æ
-5,
3
16
4L
Example 2.
Asymptotes
b
ax
y±=
c
2
= 25; c = 5
b
2
= 16; b = 4
a
2
= 9; a = 3
1
169
22
=-
xy
4
3x
y=
4
3x
y-=
043 =-yx
043 =+yx
Asymptotes
1
169
22
=-
xy
Example 2.
V
1
(0, 3), V
2
(0, -3)
F
1
(0, 5), F
2
(0, -5)
Center at (0, 0)
÷
ø
ö
ç
è
æ
5,
3
16
1L ÷
ø
ö
ç
è
æ
-5,
3
16
2L
÷
ø
ö
ç
è
æ
-- 5,
3
16
3L ÷
ø
ö
ç
è
æ
-5,
3
16
4L
Conjugate points
(4, 0), (-4, 0)
Endpoints of LR
Asymptotes
043 =-yx
043 =+yx
Symmetric at y-axis
0=x
1
169
22
=-
xy
Example 2.
3x + 4y = 0
3x – 4y = 0
1
)()(
2
2
2
2
=
-
-
-
b
ky
a
hx
1
)()(
2
2
2
2
=
-
-
-
b
hx
a
ky
C (h, k)
)(hx
a
b
ky -=-
)(hx
a
b
ky --=-
÷
÷
ø
ö
ç
ç
è
æ
+-
a
b
kch
2
,
÷
÷
ø
ö
ç
ç
è
æ
--
a
b
kch
2
,
÷
÷
ø
ö
ç
ç
è
æ
++
a
b
kch
2
,
÷
÷
ø
ö
ç
ç
è
æ
-+
a
b
kch
2
,
Center (h, k)
F
1
(h+c, k)F
2
(h-c, k)
V
1
(h+a, k)
V
2
(h-a, k)
)3,
3
19
();52,
3
16
1('
)3,
3
13
();52,
3
16
1('
)7,
3
19
();52,
3
16
1(
)7,
3
13
();52,
3
16
1(
--+
----
++
-+-
R
L
R
L
Latera Recta
Ax
2
+ By
2
+ Cx + Dy + E = 0
1.Group the x terms together and y
terms together.
2.Complete the square.
3.Express in binomial form.
4.Divide by the constant term,
where the first term has a positive
sign.
Find the standard form of the
equation of a hyperbola given:
49 = 25 + b
2
b
2
= 24
Horizontal hyperbola
Foci: (-7, 0) and (7, 0)
Vertices: (-5, 0) and (5, 0)
10
8
F FV V
Center: (0, 0)
c
2
= a
2
+ b
2
(x – h)
2
(y – k)
2
a
2
b
2
– = 1
x
2
y
2
25 24
– = 1
a
2
= 25 and c
2
= 49 C
Center: (-1, -2)
Vertical hyperbola
Find the standard form equation of the
hyperbola that is graphed at the right
(y – k)
2
(x – h)
2
b
2
a
2
– = 1
a = 3 and b = 5
(y + 2)
2
(x + 1)
2
25 9
– = 1
M
2 M
1
An explosion is recorded by two microphones that are two
miles apart. M1 received the sound 4 seconds before M2.
assuming that sound travels at 1100 ft/sec, determine the
possible locations of the explosion relative to the locations
of the microphones.
(5280, 0)(-5280, 0)
E(x,y)
Let us begin by establishing a coordinate system
with the origin midway between the microphones
Since the sound reached M
2
4 seconds after it
reached M
1
, the difference in the distances from
the explosion to the two microphones must be
d
2
d
1
1100(4) = 4400 ft wherever E is
This fits the definition of an hyperbola with foci at M
1
and M
2
Since d
2
– d
1
= transverse axis, a = 2200
x
2
y
2
4,840,000 23,038,400
– = 1
x
2
y
2
a
2
b
2
– = 1
c
2
= a
2
+ b
2
5280
2
= 2200
2
+ b
2
b
2
= 23,038,400
The explosion must be on the
hyperbola