analyticgeometry-hyperbola-111119062959-phpapp02.pdf

JosephMuez2 7 views 45 slides Jul 04, 2024
Slide 1
Slide 1 of 45
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45

About This Presentation

na


Slide Content

Hyperbola

A hyperbola is the set of points in a plane, the
absolute value of the difference of whose
distances from two fixed points, called foci, is
a constant.
F
2 F
1

F
2 F
1
d
1
d
2
P
d
2
– d
1
is always the
same.

F F
V V

F F
V V
C

F
F
V
V
C

The center is at the point (0, 0)
c
2
= a
2
+ b
2
c is the distance from the
center to a focus point.
The foci are at (c, 0) and (-c, 0)
1
2
2
2
2
=-
b
y
a
x

1
2
2
2
2
=-
b
y
a
x
The conjugate points are at (0, b)
and (0, -b)
The vertices are at (a, 0) and (-a, 0)
Length of the latus rectum is 2b
2
a

1
2
2
2
2
=-
b
y
a
x
Ends of the latus rectum:
÷
÷
ø
ö
ç
ç
è
æ
a
b
cL
2
1
, ÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
2
,
÷
÷
ø
ö
ç
ç
è
æ
--
a
b
cL
2
3
,
÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
4,

Horizontal
Hyperbola
Equation of the directrix
1
2
2
2
2
=-
b
y
a
x
a
bx
y±=

The center is at the point (0, 0)
c
2
= a
2
+ b
2
c is the distance from the
center to a focus point.
The foci are at (0, c) and (0, -c)
1
2
2
2
2
=-
b
x
a
y

1
2
2
2
2
=-
b
x
a
y
The conjugate points are at (b, 0)
and (-b, 0)
The vertices are at (0, a) and (0, -a)
Length of the latus rectum is 2b
2
a

1
2
2
2
2
=-
b
x
a
y
Ends of the latus rectum:
÷
÷
ø
ö
ç
ç
è
æ
c
a
b
L ,
2
1 ÷
÷
ø
ö
ç
ç
è
æ
-c
a
b
L ,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-- c
a
b
L ,
2
3 ÷
÷
ø
ö
ç
ç
è
æ
-c
a
b
L ,
2
4

Vertical
Hyperbola
Equation of the directrix
1
2
2
2
2
=-
b
x
a
y
b
ax
y±=

1
169
22
=-
yx
Example 1.
1
2
2
2
2
=-
b
y
a
x
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5

Example 1.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
V
1
(3, 0), V
2
(-3, 0)
F
1
(5, 0), F
2
(-5, 0)
Center at (0, 0)
Center at (0, 0)
V
1
(a, 0), V
2
(-a, 0)
F
1
(c, 0), F
2
(-c, 0)

Example 1.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
LR = 2b
2
= 2(4)
2
=32

a
Conjugate points
(0, 4), (0, -4)
3 3
Conjugate Points
(0, b), (0, -b)
LR = 2b
2
a

Example 1.
LR = 2b
2
= 32
a3
÷
÷
ø
ö
ç
ç
è
æ
a
b
cL
2
1
,
÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
2
,
÷
÷
ø
ö
ç
ç
è
æ
--
a
b
cL
2
3, ÷
÷
ø
ö
ç
ç
è
æ
-
a
b
cL
2
4
,
c
2
= 25; c = 5
Endpoints of LR
÷
ø
ö
ç
è
æ
3
16
,5
1
L ÷
ø
ö
ç
è
æ
-
3
16
,5
2
L
÷
ø
ö
ç
è
æ
--
3
16
,5
3
L ÷
ø
ö
ç
è
æ
-
3
16
,5
4L

Example 1.
Asymptotes
a
bx
y±=
c
2
= 25; c = 5
b
2
= 16; b = 4
a
2
= 9; a = 3
1
169
22
=-
yx
3
4x
y=
3
4x
y-=
034 =-yx
034 =+yx
Asymptotes

1
169
22
=-
yx
Example 1.
V
1
(3, 0), V
2
(-3, 0)
F
1
(5, 0), F
2
(-5, 0)
Center at (0, 0)
÷
ø
ö
ç
è
æ
3
16
,5
1L ÷
ø
ö
ç
è
æ
-
3
16
,5
2L
÷
ø
ö
ç
è
æ
--
3
16
,5
3L ÷
ø
ö
ç
è
æ
-
3
16
,5
4L
Conjugate points
(0, 4), (0, -4)
Endpoints of LR
Asymptotes
034 =-yx
034 =+yx
Symmetric at x-axis
0=y

1
169
22
=-
yx
Example 1.
4x + 3y = 0
4x – 3y = 0

1
169
22
=-
xy
Example 2.
1
2
2
2
2
=-
b
x
a
y
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5

Example 2.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
V
1
(0, 3), V
2
(0, -3)
F
1
(0, 5), F
2
(0, -5)
Center at (0, 0)
Center at (0, 0)
V
1
(0, a), V
2
(0, -a)
F
1
(0, c), F
2
(0, -c)

Example 2.
a
2
= 9; a = 3
b
2
= 16; b = 4
c
2
= 25; c = 5
LR = 2b
2
= 2(4)
2
=32

a
Conjugate points
(4, 0), (-4, 0)
3 3
Conjugate Points
(b, 0), (-b, 0)
LR = 2b
2
a

Example 2.
LR = 2b
2
= 32
a3
÷
÷
ø
ö
ç
ç
è
æ
c
a
b
L ,
2
1 ÷
÷
ø
ö
ç
ç
è
æ
- c
a
b
L ,
2
2
÷
÷
ø
ö
ç
ç
è
æ
-- c
a
b
L ,
2
3 ÷
÷
ø
ö
ç
ç
è
æ
-c
a
b
L ,
2
4
c
2
= 25; c = 5
Endpoints of LR
÷
ø
ö
ç
è
æ
5,
3
16
1
L ÷
ø
ö
ç
è
æ
-5,
3
16
2
L
÷
ø
ö
ç
è
æ
-- 5,
3
16
3
L ÷
ø
ö
ç
è
æ
-5,
3
16
4L

Example 2.
Asymptotes
b
ax
y±=
c
2
= 25; c = 5
b
2
= 16; b = 4
a
2
= 9; a = 3
1
169
22
=-
xy
4
3x
y=
4
3x
y-=
043 =-yx
043 =+yx
Asymptotes

1
169
22
=-
xy
Example 2.
V
1
(0, 3), V
2
(0, -3)
F
1
(0, 5), F
2
(0, -5)
Center at (0, 0)
÷
ø
ö
ç
è
æ
5,
3
16
1L ÷
ø
ö
ç
è
æ
-5,
3
16
2L
÷
ø
ö
ç
è
æ
-- 5,
3
16
3L ÷
ø
ö
ç
è
æ
-5,
3
16
4L
Conjugate points
(4, 0), (-4, 0)
Endpoints of LR
Asymptotes
043 =-yx
043 =+yx
Symmetric at y-axis
0=x

1
169
22
=-
xy
Example 2.
3x + 4y = 0
3x – 4y = 0

1
)()(
2
2
2
2
=
-
-
-
b
ky
a
hx
1
)()(
2
2
2
2
=
-
-
-
b
hx
a
ky
C (h, k)

)(hx
a
b
ky -=-
)(hx
a
b
ky --=-
÷
÷
ø
ö
ç
ç
è
æ
+-
a
b
kch
2
,
÷
÷
ø
ö
ç
ç
è
æ
--
a
b
kch
2
,
÷
÷
ø
ö
ç
ç
è
æ
++
a
b
kch
2
,
÷
÷
ø
ö
ç
ç
è
æ
-+
a
b
kch
2
,
Center (h, k)
F
1
(h+c, k)F
2
(h-c, k)
V
1
(h+a, k)
V
2
(h-a, k)

Example 1.
1
25
)1(
9
)2(
22
=
-
-
+ yx
1
25
)1(
9
)2(
22
=
-
-
+ yx

Graph: (x + 2)
2
(y – 1)
2

9 25
c
2
= 9 + 25 = 34
c = Ö34 = 5.83
Foci: (-7.83, 1) and (3.83, 1)
– = 1
Center: (-2, 1)
Horizontal hyperbola
Vertices: (-5, 1) and (1, 1)
Asymptotes: y = (x + 2) + 1
5
3
y = (x + 2) + 1
5
3
-

Example 2.
1
16
)1(
9
)2(
22
=
-
-
- xy
1
16
)1(
9
)2(
22
=
-
-
- xy

Properties of this Hyperbola
Center ((1,2)
525
16943
4;16
3;9
22
222
2
2
==
+=+=
+=
==
==
c
c
bac
bb
aa

Foci: (1,7), (1, -3)
Vertices: (1,5), (1, -1)

The hyperbola is vertical
Transverse
Axis: parallel to
y-axis

Properties of this Hyperbola
Asymptotes: ( )1
4
3
2 -±=- xy
01143
3384
0543
3384
)1(384
=-+
+-=-
=+-
-=-
-=-
yx
xy
yx
xy
xy

)3,
3
19
();52,
3
16
1('
)3,
3
13
();52,
3
16
1('
)7,
3
19
();52,
3
16
1(
)7,
3
13
();52,
3
16
1(
--+
----
++
-+-
R
L
R
L
Latera Recta

Ax
2
+ By
2
+ Cx + Dy + E = 0
1.Group the x terms together and y
terms together.
2.Complete the square.
3.Express in binomial form.
4.Divide by the constant term,
where the first term has a positive
sign.

Example 1.
9x
2
– 4y
2
– 18x – 16y + 29 = 0

(y – 1)
2
(x – 3)
2

4 9
c
2
= 9 + 4 = 13
c = Ö13 = 3.61
Foci: (3, 4.61) and (3, -2.61)
– = 1
Center: (3, 1)
The hyperbola is vertical
Graph: 9y
2
– 4x
2
– 18y + 24x – 63 = 0
9(y
2
– 2y + ___) – 4(x
2
– 6x + ___) = 63 + ___ – ___ 91 9 36
9(y – 1)
2
– 4(x – 3)
2
= 36
Asymptotes: y = (x – 3) + 1
2
3
y = (x – 3) + 1
2
3
-

Find the standard form of the
equation of a hyperbola given:
49 = 25 + b
2
b
2
= 24
Horizontal hyperbola
Foci: (-7, 0) and (7, 0)
Vertices: (-5, 0) and (5, 0)
10
8
F FV V
Center: (0, 0)
c
2
= a
2
+ b
2

(x – h)
2
(y – k)
2
a
2
b
2
– = 1
x
2
y
2
25 24
– = 1
a
2
= 25 and c
2
= 49 C

Center: (-1, -2)
Vertical hyperbola
Find the standard form equation of the
hyperbola that is graphed at the right
(y – k)
2
(x – h)
2
b
2
a
2
– = 1
a = 3 and b = 5
(y + 2)
2
(x + 1)
2
25 9
– = 1

M
2 M
1
An explosion is recorded by two microphones that are two
miles apart. M1 received the sound 4 seconds before M2.
assuming that sound travels at 1100 ft/sec, determine the
possible locations of the explosion relative to the locations
of the microphones.
(5280, 0)(-5280, 0)
E(x,y)
Let us begin by establishing a coordinate system
with the origin midway between the microphones
Since the sound reached M
2
4 seconds after it
reached M
1
, the difference in the distances from
the explosion to the two microphones must be
d
2
d
1
1100(4) = 4400 ft wherever E is
This fits the definition of an hyperbola with foci at M
1
and M
2
Since d
2
– d
1
= transverse axis, a = 2200
x
2
y
2
4,840,000 23,038,400
– = 1
x
2
y
2
a
2
b
2
– = 1
c
2
= a
2
+ b
2

5280
2
= 2200
2
+ b
2

b
2
= 23,038,400
The explosion must be on the
hyperbola
Tags