Antenna lecture course CHapter 2_(2)[1].pdf

AbrahamGadissa 88 views 64 slides May 25, 2024
Slide 1
Slide 1 of 64
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64

About This Presentation

read it


Slide Content

AsossaUniversity
Electrical and Computer Engineering Department
Post-Graduate Program
Advanced Antenna Systems
By: H/Maryam G.
Jan 18, 2023
14/22/2023

CHAPTER II
Antenna Parameters and Design Considerations
➢RadiationPattern
➢RadiationPowerDensityandRadiationIntensity
➢Beamwidth,DirectivityandGain
➢AntennaEfficiency
➢FRIISTransmissionEquation
➢RFRadiationHazardsandSolutions
24/22/2023

Antenna Radiation and Reception
➢Duetoabsenceoftransmissionlineconductors,thefieldlinesjointogetherandan
electromagneticwaveisgeneratedwithsphericalwavefrontwhosesourceisthesignal
generatorconnectedattheinputend.
34/22/2023

Field Regions
➢The field patterns generated by a radiating antenna vary with distance and
are associated with (i) radiating energy and (ii) reactive energy.
➢The space surrounding an antenna is subdivided into three regions:
1.Reactivenear-field
2.Radiatingnear-field(Fresnel)and
3.RadiatingFar-field(Fraunhofer).
➢Theboundariesoftheseregionsarenotdefinedpreciselybutareonly
approximations.
➢Althoughnoabruptchangesinthefieldconfigurationsarenotedasthe
boundariesarecrossed,therearedistinctdifferencesamongthem.
44/22/2023

➢Theboundariesseparatingtheseregionsarenotunique,althoughvariouscriteria
havebeenestablishedandarecommonlyusedtoidentifytheregions.
54/22/2023
▪Reactive near field??????≤??????
�
▪Radiating near field??????
&#3627409359;<??????≤??????
&#3627409360;
▪Radiating Far-field ??????>??????
&#3627409360;
where Dis the length of the largest element
in the antenna.

Reactivenear-fieldregion
➢Isportionofthenear-fieldregionimmediatelysurroundingtheantennawherein
thereactivefieldpredominates.
➢Formostantennas,theouterboundaryofthisregioniscommonlytakentoexist
atadistance:
whereλisthewavelength(meter)andDisthelargestdimensionoftheantenna(meter).
Radiatingnear-field(Fresnel)region
➢Isregionofthefieldofanantennabetweenthereactivenear-fieldregionandthe
far-fieldregionwhereinradiationfieldspredominateandwhereintheangular
fielddistributionisdependentuponthedistancefromtheantenna.
➢Iftheantennahasamaximumdimensionthatisnotlargecomparedtothe
wavelength,thisregionmaynotexist.
64/22/2023

➢Foranantennafocusedatinfinity,theradiatingnear-fieldregionissometimes
referredtoastheFresnelregion.Theboundaryforthisregion:
➢Inthisregionthefieldpatternis,ingeneral,afunctionoftheradialdistanceand
theradialfieldcomponentmaybesubstantial.
Far-field(Fraunhofer)region
➢Istheregionofthefieldofanantennawheretheangularfielddistribution
isessentiallyindependentofthedistancefromtheantenna.Itiscommonly
takentoexistatdistances.
➢Inthisregion,thefieldcomponentsareessentiallytransverseandtheangular
distributionisindependentoftheradialdistancewherethemeasurementsaremade.
➢Typicalchangesofantennaamplitudepatternshapefromreactivenearfieldtoward
thefarfield.
74/22/2023

84/22/2023

➢Theamplitudepatternofanantenna,astheobservationdistanceis
variedfromthereactivenearfieldtothefarfield,changesinshape
becauseofvariationsofthefields,bothmagnitudeandphase.
➢Atypicalprogressionoftheshapeofanantenna,withthelargest
dimensionD,isshowninfig,Itisapparentthatinthereactivenearfield
regionthepatternismorespreadoutandnearlyuniform,withslight
variations.
➢Astheobservationismovedtotheradiatingnear-fieldregion(Fresnel),
thepatternbeginstosmoothandformlobes.
➢Inthefar-fieldregion(Fraunhofer),thepatterniswellformed,usually
consistingoffewminorlobesandone,ormore,majorlobes.
94/22/2023

RadiationPatternLobes
➢Oncetheelectromagnetic(EM)energyleavestheantenna,theradiation
patterntellsushowtheenergypropagatesawayfromtheantenna.
➢Radiationpatternisdefinedasamathematicalfunctionoragraphical
representationoftheradiationpropertiesoftheantennaasafunctionofspace
coordinates.
➢Variouspartsofaradiationpatternarereferredtoaslobes.
➢Aradiationlobeisaportionoftheradiationpatternboundedbyregionsof
relativelyweakradiationintensity.
➢Itismaybeclassifiedintomajor(main)andminorlobes.Theminorlobefurther
classifiedassideandbacklobes.
➢Amajorlobealsocalledmainbeamisdefinedastheradiationlobecontaining
thedirectionofmaximumradiation.Infig.belowthemajorlobeispointinginthe
(&#3627409213;=&#3627409358;)direction.
➢Insomeantennas,suchassplit-beamantennas,theremayexistmorethanone
majorlobe.
104/22/2023

RadiationPatternLobes
➢Aminorlobeisanylobeexceptamajorlobe.Infigures(a)and(b)allthelobes
withtheexceptionofthemajorcanbeclassifiedasminorlobes.
➢Asidelobeisaradiationlobeinanydirectionotherthantheintendedlobe.
Usuallyasidelobeisadjacenttothemainlobeandoccupiesthehemispherein
thedirectionofthemainbeam.
➢Abacklobeisaradiationlobewhoseaxismakesanangleofapproximately
&#3627409359;??????&#3627409358;
??????
withrespecttothebeamofanantenna.Usuallyitreferstoaminorlobe
thatoccupiesthehemisphereinadirectionoppositetothatofthemajorlobe.
▪Fig:(a)demonstratesasymmetricalthreedimensionalpolarpattern
withanumberofradiationlobes.Someareofgreaterradiation
intensitythanothers,butallareclassifiedaslobes.
▪Fig:(b)illustratesalineartwo-dimensionalpatternwherethesame
patterncharacteristicsareindicated.
114/22/2023

124/22/2023
Fig.: (a) Radiation lobes and
beam widths of an antenna
3-D polar pattern

Fig: (b) Linear 2-D plot of power pattern and its associated lobes and beam widths.
134/22/2023

RadiationPatternLobes
144/22/2023
Figure: Normalized three-dimensional
amplitude field pattern( in linear scale)

RadiationPattern:
➢Inmostcases,theradiationpatternisdeterminedinthefar-field
(Fraunhofer)regionandisrepresentedasafunctionofthedirectional
coordinates.
➢Radiationpropertiesincludepowerdensity,radiationintensity,field
strength,directivity,phaseorpolarization.
➢Aconvenientsetofcoordinatesisshowninfig.below.Atraceofthe
receivedelectric(magnetic)fieldataconstantradiusiscalledthe
amplitudefieldpattern.
➢Theradiationpropertyofmostconcernisthetwo-orthreedimensional
spatialdistributionofradiatedenergyasafunctionoftheobserver’s
positionalongapathorsurfaceofconstantradius.
➢Ontheotherhand,agraphofthespatialvariationofthepowerdensity
alongaconstantradiusiscalledanamplitudepowerpattern.
154/22/2023

164/22/2023
Fig: Coordinate system for antenna analysis:

RadiationPattern:
➢Anyfieldpatterncanberepresentedinthreedimensionalsphericalcoordinatesas
infig.aboveorbyplanecutsthroughthemainlobeaxis.
➢Oftenthefieldandpowerpatternsarenormalizedwithrespecttotheirmaximum
value,resultinginnormalizedfieldandpowerpatterns.
➢Also,thepowerpatternisusuallyplottedonalogarithmicscaleormorecommonly
indecibels(dB).
➢Thenormalizedorrelativepatternswhicharedimensionlessquantitieswith
maximumvalueofunityareobtainedbydividingthepatterncomponentbyits
maximumvalue.
➢Atdistancesthatarelargecomparedtothesizeoftheantennaandthe
wavelength,theshapeofthefieldpatternisindependentofdistance.
➢Thepatternsofinterestareofthisfar-fieldcondition,sinceinpracticereceptionof
radiateantennaisinthefar-fieldregion.
➢Thenormalizedpowerpatterncanbeobtainedbydividingthecomponentof
powerperunitareacalledPoyntingvectortoitsmaximumvalue.
174/22/2023

184/22/2023
➢Weplaceanantennaatthecenter.The
electricfieldcomponentsare and
.
➢Theradiatedpowerwillbeinthe
directionofthePoyntingvectorP=EXH.
Powerpatternis .Thenormalized
powerpatternis.
Normalized field
pattern
Normalized power
pattern

Figure: Two-dimensional normalized (a) field pattern (in linear scale) (b) power pattern
(in linear scale), and (c) power pattern (in dB)
194/22/2023

RadiationPattern:
➢Amplitudefieldpattern:Atraceofthereceivedelectric/magneticfieldat
aconstantradius.
➢Amplitudepowerpattern:Agraphofthespatialvariationofthepower
densityalongaconstantradius.
A.Fieldpattern(inlinearscale):typicallyrepresentsaplotofthe
magnitudeoftheelectricormagneticfieldasafunctionoftheangular
space.
B.Powerpattern(inlinearscale):typicallyrepresentsaplotofthesquare
ofthemagnitudeoftheelectricormagneticfieldasafunctionofthe
angularspace.
C.Powerpattern(indB):representsthemagnitudeoftheelectricor
magneticfield,indecibels,asafunctionoftheangularspace.
204/22/2023

214/22/20232
|E|-pattern 2
|E|-pattern in dB scale |E|-pattern

Isotropic, Directional, and Omni-directional Patterns
224/22/2023
➢IsotropicAntenna:Ahypotheticallosslessantennapatternhavingequal
radiationinalldirections.
▪Ideal,notphysicallyrealizable.
▪Oftentakenasareferenceforexpressingthedirectivepropertiesofactualantennas.
➢DirectionalAntenna:isonehavingthepropertyofradiatingorreceiving
electromagneticwavesmoreeffectivelyinsomedirectionsthaninothers.
▪Examplesofantennaswithdirectionalradiationpatternsarehornantenna,dipole
antenna,etc.
➢Itisseenthatthepatterninfig.belowisnon-directionalintheazimuthplane
anddirectionalintheelevationplane.
➢ThistypeofapatternisdesignatedasOmni-directionalAntenna,anditis
definedasonehavinganessentiallynon-directionalpatterninagivenplaneand
adirectionalpatterninanyorthogonalplane.
▪AnOmni-directionalpatternisspecialtypeofadirectionalpattern.

234/22/2023
Nondirectional Pattern
Directional Pattern
Orthogonal Plane

244/22/2023
Fig: Sample of 2-D polar pattern.

RadianandSteradian
254/22/2023
➢Themeasureofaplaneangleisaradian.
Oneradianisdefinedastheplaneangle
withitsvertexatthecenterofacircleof
radiusrthatissubtendedbyanarcwhose
lengthisr.
➢Themeasureofasolidangleisasteradian.
Onesteradianisdefinedasthesolidangle
withitsvertexatthecenterofasphereof
radiusrthatissubtendedbyaspherical
surfaceareaequaltothatofasquarewith
eachsideoflengthr.
➢Agraphicalillustrationisshowninfig
below.

RadianandSteradian
➢Sincethecircumferenceofacircleofradius&#3627408479;is&#3627408438;=2??????&#3627408479;,thereare
2??????rad(2??????&#3627408479;/&#3627408479;)inafullcircle.Andsincetheareaofasphereofradius&#3627408479;
is&#3627408436;=4??????&#3627408479;
2
,thereare4??????sr(4??????&#3627408479;
2
/&#3627408479;
2
)inaclosedsphere.
➢Theinfinitesimalarea&#3627408465;&#3627408436;onthesurfaceofasphereofradiusr,shownin
figabove,isgivenby:
➢Therefore,theelementofsolidangle&#3627408465;??????ofaspherecanbewrittenas:
264/22/2023

RadiationPowerdensity
➢Electromagneticwavesareusedtotransportinformationthroughawireless
mediumoraguidingstructure,fromonepointtotheother.
➢Itisthennaturaltoassumethatpowerandenergyareassociatedwith
electromagneticfields.
➢Thequantityusedtodescribethepowerassociatedwithanelectromagnetic
waveistheinstantaneousPoyntingvectordefinedas:
S = E X H*
where:S=Instantaneouspowervector(W/m
2
)
E=instantaneouselectric-fieldintensity(V/m)
H=instantaneousmagnetic-fieldintensity(A/m)
➢SincethePoyntingvectorisapowerdensity,thetotalpowercrossingaclosed
surfacecanbeobtainedbyintegratingthenormalcomponentofthePoynting
vectorovertheentiresurface.
274/22/2023

➢For time-harmonic EM fields:
➢Poynting vector:
➢Time average Poynting vector (average power density or radiation density):
▪TheΤ
1
2factorappearsbecausetheEandHfieldsrepresentpeakvalues,andit
shouldbeomittedforRMSvalues:
➢So that an Average power radiated power becomes:
284/22/2023

Example: The average power density is given by:
The total radiated power becomes:
294/22/2023

RadiationIntensity
➢Radiationintensityinagivendirectionisdefinedas“thepowerradiated
fromanantennaperunitsolidangle.”
➢Theradiationintensityisafar-fieldparameter,anditcanbeobtainedby
simplymultiplyingtheradiationdensitybythesquareofthedistance.
➢Inmathematicalformitisexpressedas:
where:U=radiationintensity(W/unitsolidangle)
W
rad=radiationdensity(W/m
2
)
304/22/2023

Beamwidth
➢Itisdefinedastheangularseparationbetweentwoidenticalpointson
oppositesideofthepatternmaximum.Inanantennapattern,therearea
numberofbeamwidths.
➢OneofthemostwidelyusedbeamwidthsistheHalf-PowerBeamwidth
(HPBW),whichisdefinedbyIEEEas:“Inaplanecontainingthedirectionof
themaximumofabeam,theanglebetweenthetwodirectionsinwhichthe
radiationintensityisone-halfvalueofthebeam.”
➢Anotherimportantbeamwidthistheangularseparationbetweenthefirst
nullsofthepattern,anditisreferredtoastheFirst-NullBeamwidth
(FNBW).
➢BoththeHPBWandFNBWaredemonstratedforthepatterninFigure
However,inpractice,thetermbeamwidth,withnootheridentification,
usuallyreferstoHPBW.
314/22/2023

➢Thebeamwidthofanantennaisaveryimportantfigureofmeritandoften
isusedasatrade-offbetweenitandthesidelobelevel;Asthebeamwidth
decreases,thesidelobeincreasesandviceversa.
➢Themostcommonresolutioncriterionstatesthattheresolutioncapability
ofanantennatodistinguishbetweentwosourcesisequaltohalfthefirst-
nullbeamwidth(FNBW/2),whichisusuallyusedtoapproximatethehalf
powerbeamwidth(HPBW).
➢Thatis,twosourcesseparatedbyangulardistancesequalorgreaterthan
FNBW/2≈HPBWofanantennawithauniformdistribution.
➢Iftheseparationissmaller,thentheantennawilltendtosmooththe
angularseparationdistance.
➢Example:Referexample2.4inyourtextbook(ANTENNATHEORY,4
th
editionby:
ConstantineA.Balanis).
324/22/2023

Directivity
➢Directivityisameasureoftheantenna‘sabilitytofocustheenergyinoneor
morespecificdirections.
➢Directivityofanantennadefinedastheratiooftheradiationintensityina
givendirectionfromtheantennatotheradiationintensityaveragedover
alldirections.
➢Theaverageradiationintensityisequaltothetotalpowerradiatedbythe
antennadividedby4π.
➢Ifthedirectionisnotspecified,thedirectionofmaximumradiationintensity
isimplied.
➢Statedmoresimply,thedirectivityofanonisotropicsourceisequaltothe
ratioofitsradiationintensityinagivendirectionoverthatofanisotropic
source.
334/22/2023

➢Inmathematicalform,itcanbewrittenas:
➢Ifdirectionisnotmentioned,itimpliesthedirectionofmaximum
radiationintensity,maximumdirectivityisexpressedas:
where:
344/22/2023

Gain
➢Definedastheratiooftheintensity,inagivendirection,totheradiation
intensitythatwouldbeobtainedifthepoweracceptedbytheantennawere
radiatedisotopically.
➢Thegainoftheantennaiscloselyrelatedtothedirectivity,itisameasure
thattakesintoaccounttheefficiencyoftheantennaaswellasitsdirectional
capabilities.
➢Theradiationintensitycorrespondingtotheisotopicallyradiatedpoweris
equaltothepoweraccepted(input)bytheantennadividedby4π.In
equationformthiscanbeexpressedas:
354/22/2023

Bandwidth
➢Thebandwidthofanantennaisdefinedastherangeoffrequencieswithinwhich
theperformanceoftheantenna,withrespecttosomecharacteristic,conformsto
aspecifiedstandard.
➢Thebandwidthcanbeconsideredtobetherangeoffrequencies,oneithersideof
acentrefrequency(usuallytheresonancefrequencyforadipole),wherethe
antennacharacteristicsarewithinanacceptablevalueofthoseatthecentre
frequency.
▪Forbroadbandantennas,thebandwidthisusuallyexpressedastheratioofthe
upper-to-lowerfrequenciesofacceptableoperation.
▪Example:a10:1bandwidthindicates:upperfrequencyis10timesgreaterthanthelower.
➢Fornarrowbandantennas,thebandwidthisexpressedasapercentageofthe
frequencydifference(upperminuslower)overthecentrefrequencyofthe
bandwidth.
▪Example:a5%bandwidthindicatesthatthefrequencydifferenceofacceptableoperationis
5%ofthecentrefrequencyofthebandwidth.
364/22/2023

Polarization
➢Polarizationisdefinedasthe
propertyofanEMwavedescribing
thetime-varyingdirectionand
relativemagnitudeoftheE-field
vector.
➢Inotherwords,Polarizationof
radiatedwavedescribesthe
oscillationdirectionandrelative
magnitudeoftheelectricfield.
➢Specifically,thefiguretracedasa
functionoftimebytheextremity
ofthevectoratafixedlocationin
space,andthesenseinwhichitis
traced,asobservedalonggiven
direction.
374/22/2023
Fig: Polarization of EM waves

384/22/2023
(a) Linear polarization (b) Circular polarization and (c) Elliptical polarization
•Blue line : Electric field of a radiated/received wave
•Red and green line : Consisting of (one) two orthogonal, in-phase components
•Purple line : Polarized along a plane
(a) (b) (c)

➢Polarizationmaybeclassifiedaslinear,circular,orelliptical.
➢Ifthevectorthatdescribestheelectricfieldatapointinspaceasafunction
oftimeisalwaysdirectedalongaline,thefieldissaidtobelinearly
polarized.
➢Ingeneral,however,thefigurethattheelectricfieldtracesisanellipse,and
thefieldissaidtobeellipticallypolarized.
➢Linearandcircularpolarizationsarespecialcasesofelliptical,andtheycan
beobtainedwhentheellipsebecomesastraightlineoracircle,respectively.
➢Thefigureoftheelectricfieldistracedinaclockwise(CW)or
counterclockwise(CCW)sense.Clockwiserotationoftheelectric-fieldvector
isalsodesignatedasright-handpolarizationandcounterclockwiseasleft-
handpolarization.
394/22/2023

Input Impedance
➢Inputimpedanceisdefinedastheimpedancepresentedbyanantennaat
itsinputterminalsortheratioofthevoltagetocurrentatapairofinput
terminalsortheratiooftheappropriatecomponentsoftheelectricto
magneticfieldsatapoint.
Fig: Transmitting antenna and its equivalent circuits.
404/22/2023
Loss
resistance
Radiation
resistanceg g g
Z R jX=+
= Generator impedance (ohms)
= Resistance of generator impedance (ohms)
= Reactance of generator impedance (ohms)g
Z g
R g
X

➢Theratioofthevoltagetocurrentattheseterminals(designatedasa-b),
withnoloadattached,definestheimpedanceoftheantennaas:
&#3627408513;
??????=??????
??????+????????????
??????
Where:&#3627408461;
??????=antennaimpedanceatterminalsa–b,(Ω)
??????
??????=antennaresistanceatterminalsa–b,(Ω)
&#3627408459;
??????=antennareactanceatterminalsa–b,(Ω)
➢Inputimpedanceatapairofterminalswhicharetheinputterminalsof
theantenna.InFig.abovetheseterminalsaredesignatedasa−b.
414/22/2023

➢Tofindtheamountofpowerdeliveredto??????
??????forradiationandtheamount
dissipatedin??????
??????asheat.
424/22/2023( ) ( )
gg
g
t r L g A g
VV
I
Z R R R j X X
==
+ + + + 1
22
2
( ) ( )
g
g
r L g A g
V
I
R R R j X X
==
+ + + +
 2
2
22
1
22 ( ) ( )
g
r
r g r
r L g A g
V R
P I R
R R R j X X

==
+ + + +
 2
2
22
1
22 ( ) ( )
g
L
L g L
r L g A g
V R
P I R
R R R j X X

==
+ + + +

➢Power delivered to the antenna for radiation.
➢Power that dissipated as heat.
➢Maximum powerdelivered to the
antenna when conjugate matching.
➢Conjugate matching;r L g
R R R+= Ag
XX=−

434/22/202322
22
2 4( ) 8 ( )
gg
rr
r
r L r L
VV RR
P
R R R R
   
==
   
++
    2
2
8 ( )
g
L
L
rL
V R
P
RR

=

+
 2 2 2
2
1
8 ( ) 8 8
g g g g
g
r L r L g
V V VR
P
R R R R R
   
= = =
   
++
    22
22
8 ( ) 8 ( )
gg g rL
g r L
r L r L
VV R RR
P P P
R R R R
    +
= + = =
   
++
   
➢Powerthatdissipatedasheatintheinternalresistanceofthegenerator=powerfor
radiation+powerthatdissipatedasheatintheantenna.
➢Iftheantennaislosslessandmatchedtothetransmissionlinehalfofthetotalpowersuppliedbythe
generatorisradiatedbytheantennaduringconjugatematching,andtheotherhalfisdissipatedasheatin
thegenerator.1 ( 0)
r
cd L
rL
R
eR
RR

= = =

+


444/22/2023
➢Conjugate matching ( to remove imaginary components)r L T A T
R R R X X+ = = −
▪Power delivered to the load ??????
??????:
▪Power that scattered of (re-radiated):
▪Power that dissipated as heat through ??????
??????: 2 2 2
2
1
8 ( ) 8 8
T T T T
T
r L r L T
V V VR
P
R R R R R
   
= = =
   
++
    22
22
2 4( ) 8 ( )
TT rr
r
r L r L
VV RR
P
R R R R
   
==
   
++
    2
2
8 ( )
T L
L
rL
V R
P
RR

=

+

Which is collected or capturedPower

AntennaRadiationEfficiency
➢Theantennaefficiencythattakesintoaccountthereflection,conduction,
anddielectriclosses.
➢Theconductionanddielectriclossesofanantennaareverydifficultto
computeandinmostcasestheyaremeasured.
➢Evenwithmeasurements,theyaredifficulttoseparateandtheyareusually
lumpedtogethertoformthee
cdefficiency.
➢Theresistance??????
??????isusedtorepresenttheconduction-dielectriclosses.
➢Theconduction-dielectricefficiencye
cdisdefinedastheratioofthepower
deliveredtotheradiationresistance??????
??????tothepowerdeliveredto??????
??????and
??????
??????.Itisgivenby:
454/22/2023

Antenna Efficiency
➢Thepowerefficiencyofanantennaorantennaefficiencyistheratioofpowerradiatedto
totalpowerinputtotheantenna.Thus,iftheradiationresistance??????
??????andtheloss
resistance??????
??????isknown,theantennaefficiencycanexpressedas:
▪Here, I is the current flowing through the antenna terminals. Multiplying &#3627409212;
&#3627408514;by 100,
one may obtain the percentage antenna efficiency.
➢Thetotalantennaefficiencye
0isusedtotakeintoaccountlossesattheinput
terminalsandwithinthestructureoftheantenna.Suchlossesmaybedueto:
➢Reflections because of the mismatchbetween the transmission line and the antenna.
➢I
2
R losses (conduction anddielectric).
464/22/2023

Fig: Reference terminals and antenna losses.
474/22/2023
➢Ingeneral,theoverall
efficiencycanbewritten
as:
e
0=e
re
ce
d

FRIISTransmissionEquation
➢TheFRIISTransmissionEquationrelatesthepowerreceivedtothepower
transmittedbetweentwoantennasseparatedbyadistance:
.……………(far-fieldregion)
where:Disthelargestdimensionofeitherantenna.
48Prepared by: H/MARYAM G.08/05/2013 E.C

➢FRIISTransmissionEquationisexpressedby:
where: , is the gain of antenna (dimensionless)
, is power density (Τ&#3627408458;&#3627408462;&#3627408481;&#3627408481;&#3627408474;
2
)
,is total received power (Watt)
49Prepared by: H/MARYAM G.08/05/2013 E.C

Example
1.Thenormalizedradiationintensityofanantennaisrepresentedby:
&#3627408482;??????=&#3627408464;??????&#3627408480;
2
??????&#3627408464;??????&#3627408480;
2
3??????;(0 ≤ ??????≤ 90
0
,0≤??????≤360
0
)
a.FindHPBW(indegreesandradians)
b.FindFNBW(indegreesandradians)
2.Iftheimpedanceofahornantennais(&#3627408461;
&#3627408436;=20+??????30)Ωandthecharacteristics
impedanceof50Ω,thenevaluatevoltagereflectioncoefficientattheinput
terminaloftheantennaandcalculatetheoverallvoltagestandingwaveratio?
3.AGSM1800celltowerantennaistransmitting20Wofpowerinthefrequency
rangeof1840to1845MHz.Thegainoftheantennais17dB.Findthepower
densityatadistanceof(a)50mand(b)300minthedirectionofmaximum
radiation.
4.Thetransmittingandreceivingantennasareseparatedbyadistanceof200??????and
havedirectivegainsof25and18dB,respectively.If5mWofpoweristobe
received,calculatetheminimumtransmittedpower.
50Prepared by: H/MARYAM G.08/05/2013 E.C

Solution:
1.Ans: a) HPBW ≈0.5 rad; ≈28.65
0
b) FNBW ≈1.047 rad; ≈60
0
2.Ans: Γ= −0.206+??????0.517=0.56∠112
0
; VSWR = 3.55
3.Power density:
4.Minimum transmitted power:
Given that ??????
??????&#3627408465;&#3627408437;=25&#3627408465;&#3627408437;=10&#3627408473;????????????
10??????
??????;??????
??????=10
2.5
=316.23
Similarly, ??????
??????&#3627408465;&#3627408437;=18&#3627408465;&#3627408437;=10&#3627408473;????????????
10??????
??????;??????
??????=10
1.8
=63.1
Using the FRIIS equation, we have: ??????
??????=??????
????????????
??????
??????
4????????????
2
??????
??????;??????
??????=??????
??????
4????????????
??????
2
1
??????
????????????
??????
=&#3627409359;.????????????&#3627409361;&#3627408458;
51Prepared by: H/MARYAM G.08/05/2013 E.C

RF Hazards
524/22/2023

RF Hazards
534/22/2023

RF Hazards
544/22/2023

RF Hazards
554/22/2023

RF Hazards
564/22/2023

RF Hazards
574/22/2023

RF Hazards
584/22/2023

RF Hazards
594/22/2023

RF Hazards
604/22/2023

RF Hazards
614/22/2023

RF Hazards
624/22/2023

Potential Solutions
634/22/2023

Any Questions?
END !
644/22/2023
Tags