AsossaUniversity
Electrical and Computer Engineering Department
Post-Graduate Program
Advanced Antenna Systems
By: H/Maryam G.
Jan 18, 2023
14/22/2023
CHAPTER II
Antenna Parameters and Design Considerations
➢RadiationPattern
➢RadiationPowerDensityandRadiationIntensity
➢Beamwidth,DirectivityandGain
➢AntennaEfficiency
➢FRIISTransmissionEquation
➢RFRadiationHazardsandSolutions
24/22/2023
Antenna Radiation and Reception
➢Duetoabsenceoftransmissionlineconductors,thefieldlinesjointogetherandan
electromagneticwaveisgeneratedwithsphericalwavefrontwhosesourceisthesignal
generatorconnectedattheinputend.
34/22/2023
Field Regions
➢The field patterns generated by a radiating antenna vary with distance and
are associated with (i) radiating energy and (ii) reactive energy.
➢The space surrounding an antenna is subdivided into three regions:
1.Reactivenear-field
2.Radiatingnear-field(Fresnel)and
3.RadiatingFar-field(Fraunhofer).
➢Theboundariesoftheseregionsarenotdefinedpreciselybutareonly
approximations.
➢Althoughnoabruptchangesinthefieldconfigurationsarenotedasthe
boundariesarecrossed,therearedistinctdifferencesamongthem.
44/22/2023
➢Theboundariesseparatingtheseregionsarenotunique,althoughvariouscriteria
havebeenestablishedandarecommonlyusedtoidentifytheregions.
54/22/2023
▪Reactive near field??????≤??????
�
▪Radiating near field??????
�<??????≤??????
�
▪Radiating Far-field ??????>??????
�
where Dis the length of the largest element
in the antenna.
RadiationPowerdensity
➢Electromagneticwavesareusedtotransportinformationthroughawireless
mediumoraguidingstructure,fromonepointtotheother.
➢Itisthennaturaltoassumethatpowerandenergyareassociatedwith
electromagneticfields.
➢Thequantityusedtodescribethepowerassociatedwithanelectromagnetic
waveistheinstantaneousPoyntingvectordefinedas:
S = E X H*
where:S=Instantaneouspowervector(W/m
2
)
E=instantaneouselectric-fieldintensity(V/m)
H=instantaneousmagnetic-fieldintensity(A/m)
➢SincethePoyntingvectorisapowerdensity,thetotalpowercrossingaclosed
surfacecanbeobtainedbyintegratingthenormalcomponentofthePoynting
vectorovertheentiresurface.
274/22/2023
➢For time-harmonic EM fields:
➢Poynting vector:
➢Time average Poynting vector (average power density or radiation density):
▪TheΤ
1
2factorappearsbecausetheEandHfieldsrepresentpeakvalues,andit
shouldbeomittedforRMSvalues:
➢So that an Average power radiated power becomes:
284/22/2023
Example: The average power density is given by:
The total radiated power becomes:
294/22/2023
384/22/2023
(a) Linear polarization (b) Circular polarization and (c) Elliptical polarization
•Blue line : Electric field of a radiated/received wave
•Red and green line : Consisting of (one) two orthogonal, in-phase components
•Purple line : Polarized along a plane
(a) (b) (c)
Input Impedance
➢Inputimpedanceisdefinedastheimpedancepresentedbyanantennaat
itsinputterminalsortheratioofthevoltagetocurrentatapairofinput
terminalsortheratiooftheappropriatecomponentsoftheelectricto
magneticfieldsatapoint.
Fig: Transmitting antenna and its equivalent circuits.
404/22/2023
Loss
resistance
Radiation
resistanceg g g
Z R jX=+
= Generator impedance (ohms)
= Resistance of generator impedance (ohms)
= Reactance of generator impedance (ohms)g
Z g
R g
X
➢Tofindtheamountofpowerdeliveredto??????
??????forradiationandtheamount
dissipatedin??????
??????asheat.
424/22/2023( ) ( )
gg
g
t r L g A g
VV
I
Z R R R j X X
==
+ + + + 1
22
2
( ) ( )
g
g
r L g A g
V
I
R R R j X X
==
+ + + +
2
2
22
1
22 ( ) ( )
g
r
r g r
r L g A g
V R
P I R
R R R j X X
==
+ + + +
2
2
22
1
22 ( ) ( )
g
L
L g L
r L g A g
V R
P I R
R R R j X X
==
+ + + +
➢Power delivered to the antenna for radiation.
➢Power that dissipated as heat.
➢Maximum powerdelivered to the
antenna when conjugate matching.
➢Conjugate matching;r L g
R R R+= Ag
XX=−
434/22/202322
22
2 4( ) 8 ( )
gg
rr
r
r L r L
VV RR
P
R R R R
==
++
2
2
8 ( )
g
L
L
rL
V R
P
RR
=
+
2 2 2
2
1
8 ( ) 8 8
g g g g
g
r L r L g
V V VR
P
R R R R R
= = =
++
22
22
8 ( ) 8 ( )
gg g rL
g r L
r L r L
VV R RR
P P P
R R R R
+
= + = =
++
➢Powerthatdissipatedasheatintheinternalresistanceofthegenerator=powerfor
radiation+powerthatdissipatedasheatintheantenna.
➢Iftheantennaislosslessandmatchedtothetransmissionlinehalfofthetotalpowersuppliedbythe
generatorisradiatedbytheantennaduringconjugatematching,andtheotherhalfisdissipatedasheatin
thegenerator.1 ( 0)
r
cd L
rL
R
eR
RR
= = =
+
444/22/2023
➢Conjugate matching ( to remove imaginary components)r L T A T
R R R X X+ = = −
▪Power delivered to the load ??????
??????:
▪Power that scattered of (re-radiated):
▪Power that dissipated as heat through ??????
??????: 2 2 2
2
1
8 ( ) 8 8
T T T T
T
r L r L T
V V VR
P
R R R R R
= = =
++
22
22
2 4( ) 8 ( )
TT rr
r
r L r L
VV RR
P
R R R R
==
++
2
2
8 ( )
T L
L
rL
V R
P
RR
=
+
Which is collected or capturedPower
Antenna Efficiency
➢Thepowerefficiencyofanantennaorantennaefficiencyistheratioofpowerradiatedto
totalpowerinputtotheantenna.Thus,iftheradiationresistance??????
??????andtheloss
resistance??????
??????isknown,theantennaefficiencycanexpressedas:
▪Here, I is the current flowing through the antenna terminals. Multiplying �
�by 100,
one may obtain the percentage antenna efficiency.
➢Thetotalantennaefficiencye
0isusedtotakeintoaccountlossesattheinput
terminalsandwithinthestructureoftheantenna.Suchlossesmaybedueto:
➢Reflections because of the mismatchbetween the transmission line and the antenna.
➢I
2
R losses (conduction anddielectric).
464/22/2023
Fig: Reference terminals and antenna losses.
474/22/2023
➢Ingeneral,theoverall
efficiencycanbewritten
as:
e
0=e
re
ce
d
➢FRIISTransmissionEquationisexpressedby:
where: , is the gain of antenna (dimensionless)
, is power density (�����
2
)
,is total received power (Watt)
49Prepared by: H/MARYAM G.08/05/2013 E.C