Antennas and Wave Propagation

VenkataRatnam14 1,615 views 119 slides Oct 19, 2020
Slide 1
Slide 1 of 119
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119

About This Presentation

JNTUK -Unit - III Antenna Arrays


Slide Content

ANTENNA AND WAVE PROPAGATION
B.TECH (III YEAR –I SEM)
Prepared by:
Mr. P.Venkata Ratnam.,M.Tech., (Ph.D)
Associate Professor
Department of Electronics and Communication Engineering
RAJAMAHENDRI INSTITUTE OF ENGINEERING & TECHNOLOGY
(Affiliated to JNTUK, Kakinada, Approved by AICTE -Accredited by NAAC )
Bhoopalapatnam, Rajamahendravaram, E.G.Dt, Andhra Pradesh

Unit -III
ANTENNA ARRAYS
Introduction
2 Element arrays –different cases.
Principle of Pattern Multiplication.
N element Uniform Linear Arrays –
Broadside,
End-fire Arrays.
EFA with Increased Directivity.
Derivation of their characteristics and
comparison

Concept of Scanning Arrays.
Directivity Relations (no derivations).
Related Problems.
Binomial Arrays,
Effects of Uniform and Non-uniform
Amplitude Distributions.
Design Relations.
Arrays with Parasitic Elements
Yagi-Uda Arrays
Folded Dipoles and their characteristics.

Introduction :
Antennaarrayistheradiatingsysteminwhichseveral
antennasarespacedproperlysoastogetgreaterfield
strengthatafardistancefromtheradiatingsystemby
combiningradiationsatpointfromalltheantennasin
thesystem.
Ingeneral,thetotalfieldproducedbytheantenna
arrayatafardistanceisthevectorsumofthefields
producedbytheindividualantennasofthearray.
Theindividualelementisgenerallycalledelementof
anantennaarray.

Themainfunctionofanarrayistoproducehighly
directionalradiation.
Theantennaarrayissaidtolineariftheelementsof
theantennaarrayareequallyspacedalongastraight
line.
Thefieldisavectorquantitywithbothmagnitudeand
phase.
Therelativephasesofindividualfieldcomponents
dependontherelativedistanceoftheindividual
clement.

Array Configurations :
Broadly,arrayantennascanbeclassifiedintofour
categories:
(a) Broadside array
(b) End-fire array
(c) Collinear array
(d) Parasitic array

Broadside Array :
Thisisatypeofarrayinwhichthenumberofidentical
elementsisplacedonasupportinglinedrawn
perpendiculartotheirrespectiveaxes.
Thespacingbetweenanytwoelementsisdenotedby-d.
Alltheelementsarefedwithcurrentswithequal
magnitudeandsamephase.
The direction of maximum radiation is perpendicular to
the array axis and to the plane containing the array
clement.

Now consider two isotropic point sources spaced
equally with respect to the origin of the co-ordinate
system as shown in the Fig.

Consider that point P is far away from the origin.
Let the distance of point P from
origin be r.
The wave radiated by radiator
A2 will reach point P as
Compared to that radiated
by radiator A1.
Thisisduetothepathdifferencethatthewave
radiatedbyradiatorA1hastotravelextradistance.

Hence the path difference is given by,
Path difference = d cos ϕ
Thispathdifferencecanbeexpressedintermsofwave
lengthas
Path difference = d/λcos ϕ
Fromtheopticsthephaseangleis2πtimesthepath
difference.
Hence the phase angle is given by
Phase angle = ψ=2π x Path difference

Therefore the phase angle is given by
End Fire Array :
Theendfirearrayisverymuchsimilartothe
broadsidearrayfromthepointofviewofarrangement.
Butthemaindifferenceisinthedirectionof
maximumradiation.

Inbroadsidearray,thedirectionofthemaximum
radiationisperpendiculartotheaxisofarray.
Whileintheendfirearray,thedirectionofthe
maximumradiationisalongtheaxisofarray.

Thusintheendfirearraynumberofidentical
antennasarespacedequallyalongaline.
Alltheantennasarefedindividuallywithcurrentsof
equalmagnitudesbuttheirphasesvaryprogressively
alongtheline.
CollinearArray:
Inthecollineararray,theantennasarearrangedco-
axially.
Theantennasarearrangedendtoendalongasingle
lineasshownintheFig

Theindividualelementsinthecollineararrayarefed
withcurrentsequalinmagnitudeandphase.

This condition is similar to the broadside array.
Incollineararraythedirectionofmaximumradiation
isperpendiculartotheaxisofarray.
Sotheradiationpatternofthecollineararrayandthe
broadsidearrayisverymuchsimilar
Buttheradiationpatternofthecollineararrayhas
circularsymmetrywithmainlobeperpendicular
everywheretotheprincipleaxis.
Thusthecollineararrayisalsocalledomnidirectional
arrayorbroadcastarray.

Parasitic Arrays :
Insomewayitissimilartobroadsidearray,butonly
oneelementisfeddirectlyfromsource.
Otherelementarcelectromagneticallycoupled
becauseofitsproximitytothefeedelement.
Feedelementiscalleddrivenelementwhileother
elementsarecalledparasiticelements.
Aparasiticelementlengthenedby5%todriven
elementactasreflectorandanotherelementshorted
by5%actsasdirector

2 Element arrays –different cases :
Based on amplitude and phase conditions of isotropic
point sources, there are three types of arrays:
(a) Array with equal amplitude and phases
(b) Array with equal amplitude and opposite phases
(c) Array with unequal amplitude and opposite phases

Two Point Sources with Currents Equal in Magnitude
and Phase :
ConsidertwopointsourcesAlandA2separatedby
distancedasshownintheFigureoftwoelementarray.
Considerthatboththepointsourcesaresuppliedwith
currentsequalinmagnitudeandphase.
ConsiderpointPfarawayfromthearray.Letthe
distancebetweenpointPandpointsourcesAlandA2
ber1andr2respectively.

TheradiationfromthepointsourceA2willreach
earlieratpointPthanthatfrompointsourceAl
becauseofthepathdifference.
Theextradistanceistravelledbytheradiatedwave
frompointsourceAlthanthatbythewaveradiated
frompointsourceA2.

Hence the path difference is given by,
Path difference = d cos ϕ
Thispathdifferencecanbeexpressedintermsofwave
lengthas
Path difference = d/λcos ϕ
Fromtheopticsthephaseangleis2πtimesthepath
difference.
Hence the phase angle is given by
Phase angle = ψ=2π x Path difference

The phase angle is given by
Let E1be the far field at a distant point P due to point
source Al.
Similarly let E2be the far field at point P due to point
source A2.

ThenthetotalfieldatpointPbetheadditionofthe
twofieldcomponentsduetothepointsourcesA1and
A2.
RearrangingthetermonR.H.S,Weget

By the Trigonometric Identity
Therefore, The total field is
Now Substitute the value of ψ, We have,

The total amplitude of the field at point P is 2E0, while
the phase shift is βd cosϕ/2
Thearrayfactoristheratioofthemagnitudeofthe
resultantfieldtothemagnitudeofthemaximumfield.
But Maximum field is Emax=2E0

Maxima direction :
The total field is maximum when is maximum
As we know, the variation of cosine of a angle is ±1.
Hence the condition for maxima is given by
Let spacing between the two point sources be λ/2.
Then we can write

That is
If n = 0, then

Minima direction :
The total field is minimum when is minimum
That is 0 as cosine of angle has minimum value 0.
Hence the condition for minima is given by,
Again assuming d = λ/2 and β=2π/λ, we can write

If n=0 , Then,
Half power point direction:
When the power is half, the voltage or current is 1/√2
times the maximum value.
Hence the condition for half power point is given by,

Let d=λ/2 and β=2π/λ, then we can write,
If n=0 , Then,

ThefieldpatterndrawnwithETagainstϕford=λ/2,
thenthepatternisbidirectionalasShowninFig.
Thefieldpatternobtainedisbidirectionalanditisa
figureofeight.

Two Point Sources with Currents Equal in Magnitudes
but Opposite in Phase :
Considertwopointsourcesseparatedbydistanced
andsuppliedwithcurrentsequalinmagnitudebut
oppositeinphase.
Thephaseofthecurrentsisoppositei.e.180°.With
thiscondition,thetotalfieldatfarpointPisgivenby,

•Assuming equal magnitudes of currents, the fields at
point P due to the point sources A1 and A2 can be
written as,
•Therefore total field is given by
•Rearranging the above equation, we have

The above equation can be written as
Now Substitute phase angle, we get,
Maxima direction :
Thetotalfieldismaximumwhen is
maximumi.e.±1asthemaximumvalueofsineof
angleis±1.Henceconditionformaximaisgivenby,

Let the spacing between two isotropic point sources be
equal to d=λ/2
Substituting d=λ/2 and β=2π/λ, in above equation, we
get,
If n=0, Then

Minima direction :
Total field strength is minimum when is
minimum i.e. 0.
Assuming d=λ/2 and β=2π/λ, we get,
If n= 0 ,Then

Half Power Point Direction (HPPD) :
Whenthepowerishalfofmaximumvalue.Hencethe
conditionforthehalfpowerpointcanbeobtained.
Letd=λ/2andβ=2π/λ,wecanwrite,
Ifn=0,Then

Thusfromtheconditionsofmaxima,minimaandhalf
powerpoints,thefieldpatterncanbedrawnasshown
intheFig.
Ascomparedwiththefieldpatternfortwopoint
sourceswithinphasecurrents,themaximahaveshifted
by90°alongX-axisincaseofout-phasecurrentsintwo
pointsourcearray.

Two point sources with currents unequal in magnitude and
with any phase :
LetusconsiderFig.shownbelow.
Assumethatthetwopointsourcesareseparatedby
distancedandsuppliedwithcurrentswhichare
differentinmagnitudesandwithanyphasedifference
sayα.

Considerthatsource1isassumedtobereferencefor
phaseandamplitudeofthefieldsE1andE2,whichare
duetosource1andsource2respectivelyatthedistant
pointP.
LetusassumethatE1isgreaterthanE2inmagnitude
asshowninthevectordiagraminFig.

Nowthetotalphasedifferencebetweentheradiationsby
thetwopointsourcesatanyfarpointPisgivenby,
Assumevalueofphasedifferenceas0<α<180
0
.
ThentheresultantfieldatpointPisgivenby,

Note that E1> E2, the value of k is less than unity.
Moreover the value of kis given by, 0 ≤ k ≤ 1
ThemagnitudeoftheresultantfieldatpointPisgiven
by,
ThephaseanglebetweentwofieldsatthefarpointP
isgivenby,

n Element Uniform Linear Arrays :
Highlydirectivesinglebeampatterncanbeobtained
byincreasingthepointsourcesinthearrowfrom2to
nsay.
Anarrayofnelementsissaidtobelineararrayifall
theindividualelementsarespacedequallyalongaline.
Anarrayissaidtobeuniformarrayiftheelementsin
thearrayarefedwithcurrentswithequalmagnitudes
andwithuniformprogressivephaseshiftalongthe
line.

Considerageneralnelementlinearanduniformarray
withalltheindividualelementsspacedequallyat
distancedfromeachother.
Allelementsarefedwithcurrentsequalinmagnitude
anduniformprogressivephaseshiftalongline

ThetotalresultantfieldatthedistantpointPis
obtainedbyaddingthefieldsduetonindividual
sourcesvectorically.
Hence we can write,
Ifα=0
0
wegetnelementuniformlinearbroadside
array.
Ifα=180
0
wegetnelementuniformlinearEndfire
array.

Multiplying above equation by e

, we get
Now Subtracting equations, we get,

Simplify mathematically, we get
The resultant field is given by,

Themagnitudeoftheresultantfieldisgivenby,
ThephaseangleθoftheresultantfieldatpointPis
givenby,

Array of n elements with Equal Spacing and Currents
Equal in Magnitude and Phase -Broadside Array :
Consider'n'numberofidenticalradiatorscarries
currentswhichareequalinmagnitudeandinphase.
Hencethemaximumradiationoccursinthedirections
normaltothelineofarray.
HencesuchanarrayisknownasUniformbroadside
array.

Considerabroadsidearraywithnidenticalradiatorsas
shownintheFig.
TheelectricfieldproducedatpointPduetoan
elementA0isgivenby

NowtheelectricfieldproducedatpointPduetoan
elementA1willdifferinphaseasr0andr1arenot
actuallysame.
HencetheelectricfieldduetoA1isgivenby,

Thesimilarlineswecanwritetheelectricfield
producedatpointPduetoanelementA2as,
ButtheterminsidethebracketrepresentE1

Now, Substituting the value of E1, we get
TheelectricfieldproducedatpointPduetoelement
An-1isgivenby
ThetotalelectricfieldatpointPisgivenby

Let ,rewriting above equation with Phase angle (ψ)
Therefore ETis given by

Using the trigonometric identities, We can write the
above equation as
Now considering magnitudes of the electric fields, we
can write,

Properties of Broadside Array
1.Major lobe
In case of broadside array, the field is maximum in the
direction normal to the axis of the array.
Thus the condition for the maximum field at point P is
given by,

2. Magnitude of major lobe
The maximum radiation occurs when ϕ=0. Hence we
can write,

3.Nulls
Theratiooftotalelectricfieldtoanindividualelectric
fieldisgivenby
NowEquatingratioofmagnitudesofthefieldstozero
Theconditionofminimaisgivenby

Therefore

4. Side Lobes Maxima
The directions of the subsidary maxima or side lobes
maxima can be obtained by
.
.
.

Now equation for ϕcan be written as
The equation (15) represents directions of subsidary
maxima or side lobes maxima

5. Beamwidth of Major Lobe
Beamwidth is defined as the angle between first nulls.
Alternatively beamwidth is the angle equal to twice the
angle between first null and the major lobe maximum
direction.
Hence beamwidth between first nulls is given by,

Now , Taking cosine of angle on both sides, we get
.

But nd≈ (n-1)d if n is very large. This L= (nd) indicates
total length of the array.
.
.
.

6. Directivity
The directivity in case of broadside array is defined as
Where
From the expression of ratio of magnitudes we can write

Hence normalized field pattern is given by
Hence we can write electric field due to n array as

Therefore radiation intensity is given by
.
‘

Hence
For large array, nis large hence nβdis also very large
.

Therefore
The directivity is given by
.
.

ArrayofnElementswithEqualSpacingandCurrents
EqualinMagnitudebutwithProgressivePhaseShift-
EndFireArray:
Considernnumberofidenticalradiatorssuppliedwith
equalcurrentwhicharenotinphase

Consider that the current supplied to first element A0
be I0.
Then the current supplied to A1is given by
Similarly the current supplied to A2is given by
Thus the current supplied to last element is

The electric field produced at point P, due to A0is
given by
The electric field produced at point P, due to A1 is
given by
.

.
TheelectricfieldproducedatpointP,duetoA2is
givenby
Similarly electric field produced at point P, due to An-1
is given by
The resultant field at point p is given by

Therefore , We get
Considering only magnitude we get

Properties of End Fire Array
1.Major lobe
Incaseoftheendfirearray,theconditionof
principlemaximaisgivenby
.
2.Magnitudeofthemajorlobe
Themaximumradiationoccurswhenψ=0.

3. Nulls
Theratiooftotalelectricfieldtoanindividualelectric
fieldisgivenby
NowEquatingratioofmagnitudesofthefieldstozero
Theconditionofminimaisgivenby

Hence we can write
Substituting value ofψwe get,

Thus equation gives direction of nulls

4. Side Lobes Maxima
Thedirectionsofthesubsidarymaximaorsidelobes
maximacanbeobtained
Nowputtingthevalueofψ,weget

Therefore

5. Beamwidth of Major Lobe
Beamwidth is defined as the angle between first nulls
.

TheL=(nd)indicatestotallengthofthearraySo
equationbecomes
.
.

6. Directivity
Thedirectivityincaseofendfirearrayisdefinedas
Where,U0isaverageradiationintensitywhichisgiven
by

End Fire Array with Increased Directivity :
Themaximumradiationcanbeobtainedalongthe
axisoftheuniformendfirearray
Iftheprogressivephaseshiftabetweentheelementsis
givenby,
Itisfoundthatthefieldproducedinthedirection
θ=0°ismaximum;butthedirectivityisnotmaximum.

HansenandWoodyardproposedcertainconditions
fortheendfireforenhancingthedirectivitywithout
alteringothercharacteristicsoftheendfirearray.
AccordingToHansen-Woodyardconditions,the
phase-shiftbetweencloselyspacedradiatorsofavery
longarrayshouldbe

TheenhanceddirectivityduetoHansen-Woodyard
conditionscanberealizedbyusingaboveequation.

Itcanbesatisfiedbyusingequationoffirstsetforθ=
0°andθ=180°byselectingthespacingbetweentwo
elementsas,
.
Henceforlargeuniformarray,theHansen-Woodyard
conditionsillustrateenhanceddirectivityifthespacing
betweenthetwoadjacentelementsisλ/4

Consider n element array. The array factor of the n-
element array is given by
.
.

Let the progressive phase shift be α= -pd, where p is
constant. Then above equation becomes
.
.

.
.
.

By simplifying we can get
.

The variation g(v) as a function of v is as figure below

Directivity of end fire array with increased directivity
For end fire array with increased directivity and
maximum radiation in ϕ= 0°direction.
the radiation on intensity for small spacing between
elements (d<<λ) is given
.

Pattern Multiplication Method :
Thesimplemethodofobtainingthepatternsofthe
arraysisknownaspatternmultiplicationmethod.
Consider4elementarrayofequispacedidentical
antennaswiththespacingbetweentwounitsbe
d=λ/2.

Theradiationpatternoftheantennas(1)and(2)
treatedtobeoperatingasasingleunitisasshownin
theFigure
Similarlytheradiationpatternoftheantennas(3)and
(4),spacedd=λ/2distanceapartandfedwithequal
currentinphase,treatedtobeoperatedassingleunit

Nowtheresultantradiationpatternoffourelement
arraycanbeobtainedasthemultiplicationofpattern
asshownintheFigure.
Notethatthismultiplicationispolargraphical
multiplicationfordifferentvaluesofϕ.

Binomial Array :
Inordertoincreasethedirectivityofanarrayitstotal
lengthneedtobeincreased.
Inthisapproach,numberofminorlobesappears
whichareundesiredfornarrowbeamapplications.
Insomeofthespecialapplications,itisdesiredto
havesinglemainlobewithnominorlobes.
Thatmeanstheminorlobesshouldbeeliminated
completely.

Toachievesuchpattern,thearrayisarrangedinsuch
awaythatthebroadsidearrayradiatemorestronglyat
thecentrethanthatfromedges.
Incaseofuniform4-elementarray,theresultant
patternshowsfoursidelobes.
Thesecondarylobesappearintheresultantpattern,
becausetheelementsproducingthegrouppattern
haveaspacinggreaterthanone-halfwavelength.

Pattern for 2-element array and 4-element array :
The two element arrays are spaced λ/ 2 distance
apart from each other.
Such array produces increased radiation pattern with
no secondary lobes.
Hereantenna2and3coincideatthecentreasshown
intheFigure.

Henceitcanbereplacedbyasingleelementcarrying
doublecurrentcomparedwithotherelements.
ThusasshownintheFigure,theresultantarray
consiststhreeelementswithcurrentratio1:2:1.
Thesameconceptcanbeextendedfurtherby
consideringthreeelementarrayasaunitandwitha
secondsimilarthreeelementarrayspacedhalf-wave
lengthfromit.
Thisresultsin4-elementarrayasshownintheFig.
Inthisarray,thecurrentratioisgivenby1:3:3:1.

Ifwecontinuethisprocess,wecanobtainthepattern
witharbitrarilylargedirectivitywithoutminorlobes.
Butitisnecessarytoadjusttheamplitudesofthe
currents.
Inthearraycorrespondingtothecoefficientofthe
binomialseries.
Ingeneralthepatternforthebinomialarrayisgiven
by

Phased Arrays or Scanning Arrays :
Incaseofthebroadsidearrayandtheendfirearray,
themaximumradiationcanbeobtainedbyadjusting
thephaseexcitationbetweenelements.
Sowecanobtainanarraywhichgivesmaximum
radiationinanydirectionbycontrollingphase
excitationineachelement.
Suchanarrayiscommonlycalledphasedarray.
Thearrayinwhichthephaseandtheamplitudeof
mostoftheelementsisvariable,providedthatthe
directionofmaximumradiationiscalledasphased
array.

Suppose the array gives maximum radiation in the
direction ϕ=ϕ0then the phase shift that must be
controlled can be obtained as follows.
.
Thusfromequation,itisclearthatthemaximum
radiationcanbeachievedinanydirectionifthe
progressivephasedifferencebetweentheelementsis
controlled.
The electronic phased array operates on the same
principle.

Consider a three element array, the element of array is
considered as λ/2 dipole.
All the cables used are of same length. All the three
cables are brought together at common feed point.

Inmanyapplicationsphaseshifterisusedinsteadof
controllingphasebyswitchingcables.
It can be achieved by using ferrite device.
Theconductingwiresarewrappedaroundthephase
shifter.
Thearraywhichautomaticallyreflectsanincoming
signalbacktothesourceiscalledretroarray.
Itactsasaretroreflectorsimilartothepassivesquare
cornerreflector.

Attaarraywith8identicalλ/2dipoleelementsare
used,withpairsformedbetweenelements1and8,2
and7,3and6,4and5usingcablesofequallength.

Dipoles with Parasitic Elements :
LetI1becurrentinthedrivenelementD.SimilarlyI2
bethecurrentinducedintheparasiticelementP.
Therelationbetweenvoltagesandcurrentscanbe
writtenonthebasisofcircuittheoryas,

The impedances Z11and are the self-impedances of
the driven element D and the parasitic element P.
The impedances Z12and Z21is the mutual impedance
between the two elements such that, Z12= Z21=ZM

Therefore
The current
The resistance is given by

Yagi-Uda Arrays :
Yagi-UdaarraysorYagi-Udaantennasarehighgain
antennas.
TheantennawasfirstinventedbyaJapaneseProf.S.
UdaandProf.H.YagiwasdescribedinEnglish.
A basic Yagi-Uda antenna consists a driven element,
one reflector and one or more directors.
Basically it is an array of onedriven element and one
of moreparasitic elements.

Generally the spacing between the driven and the
parasitic elements is kept nearly 0.1λto 0.15 λ.
A Yagi-Uda antenna uses both the reflector (R) and
the director (D) elements in same antenna.

Thelengthsofthedifferentelementscanbeobtained
byusingfollowingformula
ThelengthofthedipoleisL=150/f(MHZ)meter
FordipolethelengthL=143/f(MHZ)meter
ForreflectorlengthL=152/f(MHZ)meter
ForfirstdirectorD1=L=137/f(MHZ)meter
SpacingbetweenRandDR=0.25λ=40/f(MHz)meter
SpacingbetweenDandDR=0.25λ=40/f(MHz)meter
SpacingbetweenD1andD2=0.25λ=40/f(MHz)meter

Advantages of Yagi-Uda Antenna :
It has excellent sensitivity.
Itsfronttobackratioisexcellent.
Itisusefulastransmittingantennaathighfrequency
forTVreception.
It has almost unidirectional radiation pattern.
Duetouseoffoldeddipole,theYagi-Udaantennais
broadband.

Disadvantages of Yagi-Uda Antenna :
Gain is limited.
Bandwidth is limited.
The gain of antenna increases with reflector and
director.

Folded dipole :
Folded dipole and radiation pattern

Three wire folded dipole
Input impedance o folded dipole antenna is 292ohm

Different types of folded dipole antenna :
In practice, the folded dipoles of several different types
are possible.
Some of the folded dipoles consists all dipoles of length
λ/2 but number of dipoles may varies.
While in some other cases the folded dipoles consists
dipoles with different lengths.

Thank you