THIS IS THE SLIDES ABOUT ANTIBODY ENGINEERING AND ITS FACTS SIMPLY
Size: 2.89 MB
Language: en
Added: Dec 13, 2015
Slides: 32 pages
Slide Content
Antibodies often termed immunoglobulin. They are glycoprotein that bind antigens with high specificity and affinity They are molecules originally identified in serum
Heavy chain Light chain 220 a.a ~500 a.a NH2 IMMUNOGLOBULIN
Antigen Binding Site Variable Regions Constant Regions Effector Functions
Antibody engineering services , involves most forms of recombinant antibody gene manipulation. These include v-region discovery and sequencing ,isotype switching, discovery of enhanced binding variants through in vitro affinity maturation Fully integrated work packages involving Humanization Production of cell line development Production of the purified antibody Antibody engineering has been an extremely intensive research area for many years
Recent achievements in this field includes 1 . significant improvement in the field of selection of antigen-specific Antibody fragment on bacteriophages Production of antibody fragments. Reduce the size of Antibody. Simplifying the expression/production of antibodies.
2. New structural network ,in particular using NMR 3. The cloning of essentially the complete set of human VH genes 4. The use of antibodies to catalyze complicated chemical reactions 5. Novel antibody fusion proteins to potentiate immune therapy 6. New development is the replacement of antibodies with more stable protein scaffold for many future biotechnological Applications
RECOMBINANT DNA TECHNOLOGY FOR ANTIBODY ENGINEERING The work of Cesar Milstein has paved the way to design and construct genes that encode Ig molecule in which the variable region genes come from one species to and constant gene come from another By this technique molecular hybrids or chimers can be made to deliver a powerful toxin to a particulate antigenic target such as tumour cell Transplanted Ig genes have endured receiver to respond to immunization by producing antibodies encoded that of the donor The entire antibodies repertoire of individuals may be reconstructed by the selected L & M chain variable region genes
ADDITIONAL APPRORACHES TO r -DNA TECHNOLOGY HUMANIZED CHIMERIC ANTIBODIES 2. BISPECIFIC ANTIBODIES ( HETEROCONJUGATES) 3. DERIVATION AND USE OF IG –GENE COMBINATORIAL LIBRARIES ( H & L LIBRARIES)
HUMANIZED CHIMERIC ANTIBODIES Cloning the recombinant DNA from mouse containing the promoter leader and variable region sequences, from a human mouse antibody gene and the constant region exons from a human antibody gene is called humanized chimeric antibodies The humanized chimeric antibodies are potential to trigger human competent activation or Fc receptor binding This technique has been used to treat patients of Hodgkin's lymphoma Unlike the major therapies used in treatment of lymphomas By this grafting entire B cell population including b lymphomas cells Were cleared from the body in a way that other cell population are spared.
The therapeutic agent used in the humanized chimeric antibodies is known as CD20 . A membrane bound phospho protein The important issues with such a treatment efficacy ,safety, and immunogenicity are under vigorous and intensive studies is illustrative of application of CD20
BISPECIFIC ANTIBODIES ( HETEROCONJUGATES) Bispecific antibodies are hybrids of two different molecules Constructed by chemically cross linking of two different antibodies or synthesised monoclonal antibody cells The destruction of tumour cells begin when the effector cell is cross linked to the tumour cells
DERIVATION AND USE OF Ig GENE COMBINATORIAL LIBRARIES Producing gene libraries encoding Fab fragments is another approach for generating monoclonal antibodies PCR is employed to amplify the DNA that encodes antibody H & L chain Fab from hybridoma cells or plasma cells Amplified sequences are endowed with a promoter region and ECoR1 restriction site and resultant construct are then inserted in to bacteriophage yielding separate H & L libraries It have specificities against a wide varieties of antigen can be achieved from these gene libraries The immune response is important and highly potential ,in comparison to gene libraries and they have different effective functions so they high versatility and higher affinity
Antibody engineering is useful in large scale production Of antibodies ,in production of active antibody fragments, bifunctional, Single domain and catalytic antibodies ,and has lead to the production of novel expression systems useful in may other areas it allows production of new antibody conjugates E.G : antibody –toxin or antibody –enzyme linked proteins Engineered antibodies have many potential application E.G : imaging, therapy and biosensors mouse antibodies can be humanized ,resulting in chimeric or reshaped antibodies ,engineered antibody molecules ,and their fragments, are being increasingly exploited as scientific and clinical tools one factor that can be limit the applicability of this technology is the ability to express large amount of active protein
CHIMERIC/HUMANIZED .Reduce the HAMA response. .Maintain effector functions. .Increase the half life of the antibody. .Maintain binding affinity. .Easy to construct.
Antibodies are other proteins have been engineered using a variety of immunogenicity evaluation strategies and some have advanced in to clinical development The characteristics of an antibody that may prevent its use , or reduce its efficacy as an immunotherapy, can be altered through genetic engineering Thus the immunogenicity of an antibody can be reduced or eliminated and the effector function ,size, structure, and affinity of the antibody can be altered
Four key characteristics of relating to the efficacy of therapeutic antibody The antibodies that are used in research and as cancer therapies are monoclonal antibodies. Which are identical antibodies derived originally from mouse cells Monoclonal antibodies can generate an anti mouse antibody response in patients It rapidly clearing the injected antibodies from the blood and Rendering it useless Then depending upon the manner in which it will be used Therapeutic antibody may need a stronger or weaker effector Function, increased or decreased antibody affinity ,and / or reduction in size , for maximum efficacy
IMMUNOGENICITY EFFECTOR FUNCTION ANTIBODY SIZE & STRUCTURE AFFINITY
IMMUNOGENICITY Most mAbs are originally produced in a mouse cell system, because it produces large amount of antibodies The human immune system may recognize the mAbs as foreign even though mouse and human mAbs are structurally identical A mAb be found to be immunogenic during clinical characterisation Genetic engineering techniques substitutes mouse gene sequences With the corresponding human gene sequence, by altering the Protein sequence of immunogenic mouse derive mAbs the risk that the patients own immune system will reject the therapy can be reduced or eliminated .Alternatively scientists may generate fully human antibody that targets the same antigen as the mouse mAbs
EFFECTOR FUNCTION Genetic engineering methods to enhance or reduce the effector function of an antibody in order to suit the strategy for its clinical application A strong effector function is required for a naked antibody therapy, in which the antibody is designed to be cytotoxic The antibody can be engineered to enhance the effector function so that the cytotoxicity is via complement dependent cytotoxicity , which is a part of humoral response, or via immune response
ANTIBODY SIZE AND STRUCTURE The size of an antibody has direct impact on its ability to penetrate the tumour and other tissues, as well as pharmacokinetics Scientist reduce the size of antibody by removing non essential components through genetic engineering ,to increase its tumour penetration and improve its pharmacokinetics Therapies that utilize the delivery of a toxin or radioisotope have comprised of an antibody with a conjugated toxin or radio isotope Scientist now fuse the toxin and radioisotope directly to the antibody structure ,minimizing the potential for loss of the toxin from the antibody and thus maximizing the delivery of antibody –toxin conjugate to the tumour
AFFINITY The affinity of an antibody for its antigen can also be increased or decreased through genetic engineering ,by altering the amino acids within the antibody’s binding site
V –region discovery is a critical step in the commencement of an antibody engineering project Capture of the correct v- region sequences from a starting hybridoma can lead to a number of project outcomes depending On the study objectives These may include the development of a lead therapeutic candidate with enhanced properties such as Better potency Productivity Reduced antigenicity ANTIBODY V-REGION SEQUENCING
Production of antibodies by genetic engineering Short primers to consensus sequences in heavy and light chain variable regions of immunoglobulin genes are used to generate a library of heavy and light chain v-region DNA’S by PCR. with spleen DNA as the starting material . These heavy and light chain v region genes are cloned randomly into a filamentous phage such that each phage expresses one heavy chain and one light chain v region as a surface fusion protein with antibody like properties
3. The resulting phage display library is multiplied in bacteria, and the phage are then bound to a surface coated with antigen. The bounded phages are washed away , the bound phage are recovered ,multiplied in bacteria, and again bound to antigen After a few cycles, only specific high affinity antigen binding phage are left .these can be used like antibody molecules or their v genes can be recovered and engineered into antibody genes to produce genetically engineered antibody molecule this technology may replace the hybridoma technology for producing mAbs and has advantage that humans can be use as the source of DNA