Antisense RNA technology & its role in crop improvement ppt surendra singh

DrSurendraSingh2 771 views 50 slides Jan 31, 2022
Slide 1
Slide 1 of 50
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50

About This Presentation

Antisense RNA Technology & Its Role in Crop Improvement


Slide Content

Speaker: SurendraSingh
Id No. 40925
Antisense RNA Technology & Its
Role in Crop Improvement

Introduction
AntisenseRNAtechnologyisamethodthatusedfortheinhibitionof
geneexpression.
Theantisensenucleicacidsequencecanbeeithersynthetic
oligonucleotidesof30nucleotides(nt)orlongerantisensesequence.
Thistechnologymayusedfortherapeuticpurpose,functionalgenomics
andtargetvalidation.
AntisenseRNAtechnologycanbeusedtopreventviraldisease.
AntisenseRNAtechnologyusedforimprovementofqualitycharacters
inplants.

Antisense RNA approach
AntisenseRNAisasinglestrandedRNAthatis
complementarytomessengerRNA(mRNA)transcribed
withinacell.
Therearemanycasesinbothprokaryotesandeukaryotes
whereasinglestrandedRNAbasepairwitha
complementaryregionofanmRNAanditsprevent
expressionofthetargetmRNA.
Sensestrandandantisensestrand:
referstotheoriginalsequenceofDNAorRNA
moleculewhile,antisensereferstothecomplementary
sequenceofDNAorRNAmolecules.

Types of Antisense RNA Approach
NonCatalyticantisenseRNA
NoncatalyticantisenseRNAstrandsblocksRNA
processingi.e.–modifiedtheRNAstrandsor
transcription
CatalyticantisenseRNA
CatalyticantisenseRNAalsocalledribozymeswhichwill
cleavethemRNAmoleculesatspecificsequence

Construction of antisense RNA
•AntisensegenesorRNAareconstructed
byreversingtheorientationofgenewith
regardtoitspromoter.

Mechanism of non catalytic antisense gene
•Threetypesmechanisminantisensegenepreventgene
expression.
•mRNAnotavailablefortranslationmachinery.
•DegradationbydsRNAspecificenzymeRnaseHwhichbreaks
phosphodiesterbondanddegradestargetmRNA.
•ItrepressthesplicingprocessinpremRNA.

Catalytic Antisense RNA or Ribozymes
RibozymesareRNAenzymesthathaveendoribonuclease
activity.
Ribozymesusedforgeneknockdownapplicationhaveacatalytic
domainthatisflankedbysequencecomplementarytothetarget
RNA.
OncetargetRNAdestroyedribozymesdissociateand
subsequentlycanrepeatcleavageonadditionalsubstrate.
FirstisolatedfromviroidRNAs.
RibozymeactivityenhancedthroughhighMg
++
andhighamount
oftargetRNA.

RNA interfernce(RNAi)
•RNAiisaadvancedtechniqueofantisenseRNAtechnology.
•RNAiisanaturalpowerfulmechanismthatisthoughtto
havearisenforprotectionfromvirusesandtransposon.
•RNAifirstdiscoveredinnematodeC.elegansbyAndrewz.
fireandCraigmelloandgetnobelprizein2006.
•RNAistopthegeneexpressionthroughcomplementory
smalldoublestrandedRNAmolecules.
MostlytwotypesofRNAimoleculesstudies.
•SmallinterfernceRNA(siRNA).
•microRNA(miRNA)

COMPONENTS OF GENE SILENCING

Key enzymes in gene silencing:
Haruhiko Siomi& MikikoC. SiomiNature/vol457/22 2009

DICER A TYPE III RNA-SPECIFICRIBONUCLEASE
EnzymeinvolvedintheinitiationofRNAi.Itisabletodigest
dsRNAintouniformlysizedsmallRNAs(siRNA)
DicerfamilyproteinsareATP-dependentnucleases.
RnaseIIIenzymeactsasadimer
DicerhomologsexistinmanyorganismsincludingC.elegans,
Drosphila,yeastandhumans
Lossofdicerleadstolosssilencingprocessinginvitro
FourkindofdicerinArabidopsisthaliana
DCL1-generationofmiRNA
DCL2-ProduceviralderivedsiRNA
DCL3-GenerateDNArepeatassociatedsiRNA
DCL4-SynthesisoftasiRNa

AGO Protein Family
RNAbindingproteins,throughconservedPAZdomain
AssembleintoRISC
DirectcleavageoftargetmRNA
10AGOmembers
FunctionaldiversificationofRNAsilencingislinkedtothe
variationbetweenAGOfamilymembers
e.g.,AGO1-associatedwithmiRNApathway,AGO4with
endogenoussiRNAsilencing

The RNA-induced silencing complex
(RISC)
MulticomponentRNAinuclease(500kDa):
1.MemberofArgonautefamily
2.RNAbindingproteins
3.RNAhelicase
4.Ribosomalprotein
Sequence-specificnucleasethatusessmallRNAas
guidestotargetspecificmessages basedupon
sequencerecognition.
CleavagesiteofcognateRNA(mRNA)isplacednearthe
middleoftheregionboundbythesiRNAstrand.

Small RNA Molecules

The small interference RNA
(siRNA)
•siRNAmadeartificiallyorproducedinvivofrom
doublestrandedRNAprecursors.
•21-25nucleotideslong.
EachstrandofsiRNAhas:
a.5’-phosphatetermini
b.3’-hydroxyltermini
c.2/3-nucleotide3’overhangs

miRNA
21-24ntinlength
ThemiRNAareendogenoussmallRNAguidesthatrepress
theexpressionoftargetgenes.
DifferfromsiRNAinbiogenesisnotinfunctions,although
mechanisms canbedifferent.mRNA cleavewhen
complementaritiesisextensive,represstranslationwhen
not.
Morethan100miRNAinArabidopsisessentialforplant
development.

miRNAbiogenesis

TranslationofcellmRNAissuppressedbyits
complementarypairingwithmiRNA.
ItisknownthatmiRNAsareproducedfromcell
untranslatedtranscriptsof120–150ntandeven
producedbyDICERfromamiRNAprecursor.
Thisinteractioninducesdegradationofthetarget
mRNAordirectlyblockstranslation.
Endogenous mRNA Silencing Caused by miRNA

Comparison of siRNAand
miRNA

Other types of siRNA
tasiRNA
Chromatin associated siRNA
natsiRNA
scnRNA
rasiRNA
lsiRNA
snoRNA
piRNA

tasiRNA
21-22nt long
Generation initiated by miRNA and or require DCL4 & RDR6
Role in plant development and hormone signaling
Down regulate auxin response factors

Chromatin assisted siRNA
24-25ntlong
MostabundantclassofsiRNA
Generated by DCL3/RDR2/RNA PolIV/AGO4 to
transcriptionalsilencing
RoleinDNAmethylation&transcriptionalgenesilencing

natsiRNA
EndogenoussiRNAderivedfromtheoverlapping
regionofapairofnaturalantisensetranscripts
(NATs).
20-21ntlong.
RegulatesaltstressresponseinArabidopsis.
Majorsourceofendogenous siRNAforgene
regulationinresponsetodifferentenvironmental
conditions.

scnRNA
Protozoan
First Identified in Tetrahymenathermophyla
27-30nt long
Role in developmentally programmed DNA
elimination (Lee and collins, 2006)

piRNA
Mammaliangermlines&stemcells
26-31ntlong
piRNAattacksatranscribedtransposon&the
cleavedproductcontributetothepiRNA
production(Aravinetal.,2006)

rasiRNA
Drosophila
24-29 ntlong
Share common features with piRNA

lsiRNA
30-40ntlong(longsiRNA)
SharecommonfeatureswithendogenoussiRNA
Inducedeitheronpathogeninfectionorspecificgrowth
conditions
DownregulationofgeneexpressionintotheformofmRNA
decappingor5’-3’-degradation

Daniela Castanotto & John J. Rossi. Nature/vol/457/22 ,2009

Application in Crop Improvement

Slow Fruit Softening in Tomato
•InTomatoenzymepolygalacturonase(PG)degradespectin
whichisthemajorcomponentoffruitcellwall.
•Itleadstothesofteningoffruitsanddeterioratethefruit
quality.
•IntransgenictomatoexpressionofPGantisenseRNA
dramaticallyinhibitPGmRNAaccumulationandenzymeactivity
Theologis et al., 1992

Delayed Fruit Ripening in Tomato and Flower
Senescence in Carnation
•Fruitripeningandflowersenescenceis
promotedbyethylenephytohormone.
•Ethylenebiosynthesisinvolvestwoenzymes
viz-ACCsynthase(encodedbyaccgene)and
ACCoxidase(acogene)
•Methionine AdoMet ACC Ethylene
•Geneaccwassuppressedbyusingantisense
ofitscDNA.
•Thatantisensereducedmorethan90%of
ethyleneproduction.
Hamilton et al.,1992

Male Sterility and White Flower Production in Petunia
•Flavonoidsareessentialfornormalpollendevelopmentand
function.
•Chalconesynthaseisakeyenzymeforflavonoidessynthesis.
•InPetuniaantisenseofenzymeCHSisinsert.
•TransformedplantsofPetuniahavenegligibleCHSactivityand
producewhiteflowerandnonfunctionalpollen.
•Formaintenanceofmalesterilelinewegiveflavonolchemical
duringpollendevelopment.
Meer et al., 1992

Changed Fatty Acid Composition of BrassicaOil
Enzymestearoyl-ACPdesturasecatalyzetheconversionof
stearoylACPtooleoyl-ACP.
TransgenicB.rapaandB.napusplantscontainingthe
antisenseRNAofB.compestrisstearoyl-ACPdesaturase.
Transgenicplantshighlyreducedlevelofoleicacidand
increasethelevelofstearicacidfromlessthan2%toupto
40%.
Thesemodificationareaimedtogeneratingsaturatedfatty
acidnowobtainedfromcocoa.
knutzon et al, 1992

Protection of Plants From Viral Infection
TransgenicBarleyresistanttoBYDV(Barleyyellow
dwarfvirus)(Wangetal.,2000).
TransgenicBananaresistanttobananabractmosaic
virus(Williamsetal.,2004).
InbananadesigningRNAivectoraimedatsilencingthe
coatproteinregionofthevirusthatisresistantto
BBrMV.

Production of Low Glutenin Rice
ThericemutantlineLGC-1(LowGlutelinContent-1)
wasthefirstcommerciallyusefulcultivarproducedby
RNAi(Kusabaetal,2003).
Itisalow-proteinriceandisusefulforkidneypatient
unabletodigestgluteninprotein.

Reduced Lignin Content in Jute
ApossibleapplicationofRNAiinvolvethedown
regulationofakeyenzymeinbiosyntheticpathwayof
lignin.
Theenzyme4-coamarateligase(4-cl)isatypeofkey
enzymeinearlystageofligninsynthesis
TransgenicjutevarietyexpressingRNAiconstructto
downregulatethequantityof4-clmRNA.
Williams et al., 2004

Reduced Gossypol Content in Cotton
Cottoncantainsatoxicgossypolterpenoid.Itprotects
cottonplantsfromattackofinsectsandotherpathogens
butitisharmfulforbothanimalandhuman.
TransgeniccottonplantexpressingaRNAiconstructofthe
d-cadinenesynthasegenetofusedwiththeseedspecific
promotercausedseedspecificreductionofgossypol
metabolites.
kumar et al., 2006

Increasing Grain AmyloseContent in Wheat
Foodrichininefficientlydigestedcarbohydratessuchas
fiberareconsideredtobehealthpromoting.
Themajorsourceofplantderivedcarbohydrateis
starchwhich,iscomposedofamylopectinandamylose
polysaccharides.
Forincreasingtheamylosecontentinwheatgrainsa
RNAiconstructdesigntosilencethegeneencoding
starchbranchingisozymesofamylopectinsynthesis.
Thisresultincreaseamylosecontentinwheatgrainby
70%oftotalstarch.
Tang et al., 2006

Reduced Neurotoxin in Khesari
Khesari(lathyrussativus)isalegumecrop.
KhesaricontainaneurotoxinBOAAwhichcauses
paralysisinlowerlimbscalledlathyrism.
RNAitechnologycanbeusedtosilencethegene
responsibleforBOAA.
BOAAgenesmaybelinkedtothisuniquecropwith
droughtandfloodtolerance.
So,bringingdownthelevelsofBOAAtosafe
concentrationratherthentotallysilencedthegene.
Williams et al.,2004

Reduced Caffeine Content in Coffee
Caffeineisastimulantofthecentralnervoussystem.
Itsadverseeffectincludeinsomaniaandrestlessness.
10%ofcoffeeontheworldsharedbydecaffeinate
coffee.whichhave2mgto4mgcaffeinepercupwhile
standardcupoffiltercoffeegenerallycontains60to150
mgcaffeine.
RNAitechnologyhasenabledthecreationofvarietiesof
coffeethatproducedlowcaffeinecontent.
Van Uyen, 2006

Production of Blue Rose
FlowercolourinplantsbyAnthocyanin
ViolettobluecolourisduetoDelphinidinandred
colourduetocyanidinanthocyanin
RNAitechniqueusedforcyanidingeneknockdown
Anewdelphinidingeneintroducedintorosewhich
convertedredcolourintobluecolour.

How to make a blue rose

Improve Fruit Quality by RNAi
Broothaertsetal.,(2004)reportedtheproductionof
transgenicappletrees.Theyareabletoselfpollinate
anddevelopfruits.
ThisbreakthroughwasachievedbysilencingtheS-
generesponsibleforselfincompatibility.
Transgenicapplefruitssilencethekeyenzyme
autocatalyticethyleneproductionwasdisplayedan
increasedshelflife(Dandekaretal.,2004).
Guoetal.,(2005)studiedthatthetransgeniccitrus
downregulatetheputativepectinmethylesterasegene.

Advantages
Highly gene specific
High gene silencing efficiency
Screening targeted plants takes less time
Highly inducible
Disadvantages
It does not knockdown a gene for 100%
siRNA tends to activate unwanted pathways
--Expensive
--Ethical problems

Conclusion
BasedonpresentdiscussionantisenseRNAtechnologyisa
efficientknockdowntechnologyinplants.
Itisthoughttobeusefulforgeneticimprovementevenin
plantswithlowtransformationefficiency.
BasicconceptoftheapplicationoftransgenebasedRNAito
thegeneticimprovementofcropplanthasbeenestablished.
Furtherstudiesareneededforitswiderapplication
Tags