Arithmetic and Geometric Progressions

BhattTushar1 1,087 views 64 slides Oct 21, 2020
Slide 1
Slide 1 of 64
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64

About This Presentation

This presentation covered following topics :
1. Introduction
2. Arithmetic Progression (AP)
3. Sum of Series in AP
4. Arithmetic and Geometric Mean
5. Geometric Progression (GP)
6. Sum of Series in GP
7. Relation Between AM, GM and HM
and is useful for B.Com and BBA students.


Slide Content

Semester :I
Mr. Tushar J Bhatt
1
Fundamental of Mathematics - I
Unit- 1: Arithmetic and Geometric Progression
1. Introduction
Table of contents
2. Arithmetic Progression (AP)
3. Sum of Series in AP
4. Arithmetic and Geometric Mean
5. Geometric Progression (GP)
6. Sum of Series in GP
7. Relation Between AM, GM and HM

Semester :I
Mr. Tushar J Bhatt
2
Arithmetic and Geometric Progression
1. Introduction
Definition : Sequence / Progression 1
2
3
T h e firs t te rm o f a n y s e q u e c e is d e n o te d b y T ,
T h e s e c o n d te rm is d e n o te d b y T ,
T h e th ird te rm is d e n o te d b y T ,
T h e n te rm is d e n o te d b y T .
th
n
A set of numbers arranged in a definite order according to some rule is
called a sequence .
For example: (1) 4, 7, 10, 13, 16, …..
Note:

Semester :I
Mr. Tushar J Bhatt
3
Arithmetic and Geometric Progression
1. Introduction
Definition : Series 1 2 1
T h e s u m o f firs t 'n ' te rm s o f a s e rie s is d e n o te d b y S ,
T h e re fo re S ...
n
n n n
T T T T

    
The algebraic sum of the terms of a sequence or a progression is called
a series.
For example: (1) 4 + 7 + 10 + 13 + 16+……..
Note:

Semester :I
Mr. Tushar J Bhatt
4
Arithmetic and Geometric Progression
1. Introduction
Definition : Arithmetic Progression(AP) 1
2
3
T h e firs t te rm o f a n A P is d e n o te d b y =
T h e c o m m o n d iffe re n c e o f a n A P is d e n o te d b y =
1 T e rm = T = (1 - 1)
2 T e rm = T = ( 2 - 1)
3 T e rm = T (3 1)
...
T e rm = T = ( 1)
st
nd
rd
th
n
a
d
ad
ad
ad
n a n d


  

A sequence in which each term is obtained by adding a constant
number to its preceding term is called an Arithmetic Progression (AP)
and the constant number is called the common difference.
For example: (1) 2,6,10,14,18, …….. Is an AP because in which the
common difference is 4.
Note:

Semester :I
Mr. Tushar J Bhatt
5
Arithmetic and Geometric Progression
Sum of ‘n’ terms of an AP (theory) 1
2
3
T h e firs t te rm o f a n A P is d e n o te d b y =
T h e c o m m o n d ife re n c e o f a n A P is d e n o ted b y =
1 T e rm = T =
2 T e rm = T =
3 T e rm = T 2
...
T e rm = T = ( 1)
N o w th e s u m o f firs t '
st
nd
rd
th
n
a
d
a
ad
ad
n a n d



1 2 3
n ' te rm s o f a n A P is
...
nn
S T T T T         ( ) ( 2 ) ... ( ( 1) ) ....(1)
n
S a a d a d a n d          N o w eq ....(1 ) can b e arran g ed in reverse o rd er w e g et      ( ( 1) ) ( ( 2) ) ... ( 2 ) ( ) ....(2)
n
S a n d a n d a d a d a            

Semester :I
Mr. Tushar J Bhatt
6
Arithmetic and Geometric Progression
Sum of ‘n’ terms of an AP       
    
____________________________ ____________ _______________________
C o n s id e r e q ....(1 ) + e q ....(2 ) w e g e t,
2 ( 1) ( 2 ) ... ( 1)
2 2 ( 1) 2 ( 1) ... 2 ( 1)
n
n
n t i m e s
S a a n d a d a n d a n d n
S a n d a n d a n d
                   
     
          
 
 
_
2 2 ( 1)
2 ( 1) .
2
n
n
S n a n d
n
S a n d
    
        ( ) ( 2 ) ... ( ( 1) ) ....(1)
n
S a a d a d a n d               ( ( 1) ) ( ( 2) ) ... ( 2 ) ( ) ....(2)
n
S a n d a n d a d a d a            

Semester :I
Mr. Tushar J Bhatt
7
Arithmetic and Geometric Progression
1. Introduction  
T h e s u m o f 'n ' te rm s o f a n A P is g iv e n by
= 2 ( 1)
2
n
n
S a n d 
Note:
Ex-1: Find the 50
th
term of an AP : 37, 33, 29,
25,… Solution 1 : 50
50
50
50
H e re g iv e n A P is : 3 7 , 3 3 , 2 9 , 2 5 , ....
th e re fo re 3 7 , 4 , 5 0 .
( 1)
3 7 (5 0 1) ( 4 )
3 7 4 9 ( 4 )
3 7 1 9 6
159
n
a d n
T a n d
T
T
T
T
   
   
     
    
  
  

Semester :I
Mr. Tushar J Bhatt
8
Arithmetic and Geometric Progression
Ex-2 : The 4
th
term of an AP is 19 and its 12
th
term is 51,
then find its 21
st
term.
Solution 2 : 4
12
H e re g iv e n th a t T 3 1 9 ...................(1)
a n d T 1 1 5 1 ...............(2 )
C o s id e r (1 ) - (2 ) w e g e t,
3 1 6
1 1 5 1
____________
8 3 2
4 p u t in e q u a tio n ......(1 ) w e g e t,
(1) 3 ( 4 ) 1 9
1 9 1 2
ad
ad
ad
ad
d
d
a
a
a
  
  



  

  
  
 7

Semester :I
Mr. Tushar J Bhatt
9
Arithmetic and Geometric Progression
Solution 2 : 21
21
N o w v a lu e s o f 7 a n d 4 in e q u a tio n
2 0 7 2 0 4 7 8 0 8 7
8 7 is th e re q u ire d 2 1 te rm o f g iv e n A P .
st
ad
T a d
T

       

Ex-3 : The 6
th
term of an AP is 47 and its 10
th
term is 75,
then find its 30
th
term.
Solution 3 : 6
10
H e re g iv e n th a t T 5 4 7 ...................(1)
a n d T 9 7 5 ...............(2 )
C o s id e r (1 ) - (2 ) w e g e t,
5 4 7
9 7 5
____________
4 2 8
ad
ad
ad
ad
d
  
  



   7 p u t in e q u a tio n ......(1 ) w e g e t,
(1) 5 ( 7 ) 4 7
4 7 3 5
12
d
a
a
a

  
  


Semester :I
Mr. Tushar J Bhatt
10
Arithmetic and Geometric Progression
Solution 3: 30
30
N o w v a lu e s o f 1 2 a n d 7 in e q u a tio n
2 9 1 2 2 9 7 1 2 2 0 3 2 1 5
2 1 5 is th e re q u ire d 3 0 te rm o f g iv e n A P .
th
ad
T a d
T

       

Ex-4 : Find the sum up to the required number of terms
of the followings:
(a)100, 93, 86, 79, …….( up to 20 terms )
(b) 7, 19/2, 12, 29/2, 17, …….( up to 30 terms )
Solution 4 (a) :  
H e re th e g iv e n A P is 1 0 0 , 9 3 , 8 6 , 7 9 , ...
T h e re fo re 1 0 0 , 7 , 2 0
W e k n o w th a t 2 ( 1)
2
n
a d n
n
S a n d
   
  

Semester :I
Mr. Tushar J Bhatt
11
Arithmetic and Geometric Progression
Solution 4 (a) :  
 
 
 

20
20
20
20
20
N o w 2 ( 1)
2
20
2 1 0 0 ( 2 0 1) ( 7 )
2
1 0 2 0 0 (1 9 7 )
1 0 2 0 0 1 3 3
1 0 6 7
670
n
n
S a n d
S
S
S
S
S
  
      
    
   
  

Solution 4 (b) :  
1 9 2 9
H e re th e g iv e n A P is 7 , , 1 2 , , 1 7 , ...
22
5
T h e re fo re 7 , , 3 0
2
W e k n o w th a t 2 ( 1)
2
n
a d n
n
S a n d
  
  

Semester :I
Mr. Tushar J Bhatt
12
Arithmetic and Geometric Progression
Solution 4 (b) :  
 

30
30
30
30
30
30
N o w 2 ( 1)
2
3 0 5
2 7 (3 0 1)
22
( 2 9 5 )
1 5 1 4
2
2 8 1 4 5
15
2
173
15
2
2595
2
1 2 9 7 .5
n
n
S a n d
S
S
S
S
S
S
  
 
     



   



  
  



Semester :I
Mr. Tushar J Bhatt
13
Arithmetic and Geometric Progression
Ex-5: The 4
th
term of an AP is 22 and its 10
th
term is 52,
find the sum of its 40 terms.
Solution 5 : 4
10
H e re g iv e n th a t T 3 2 2 ...................(1)
a n d T 9 5 2 ...............(2 )
C o s id e r (1 ) - (2 ) w e g e t,
3 2 2
9 5 2
____________
6 3 0
5 p u t in e q u a tio n .....(1 )
(1) 3 2 2
3 5 2 2
2 2 1 5
7
ad
ad
ad
ad
d
d
ad
a
a
a
  
  



  

  
   
  


Semester :I
Mr. Tushar J Bhatt
14
Arithmetic and Geometric Progression
Solution 5 :  
 
 
 
 
40
40
40
40
40
H e n c e w e g e t 7 , 5 a n d 4 0 .
N o w w e k n o w th a t 2 ( 1)
2
40
2 7 ( 4 0 1) 5
2
2 0 1 4 3 9 5
2 0 1 4 1 9 5
2 0 2 0 9
4180
n
a d n
n
S a n d
S
S
S
S
S
  
  
     
    
   
  


Semester :I
Mr. Tushar J Bhatt
15
Arithmetic and Geometric Progression
Ex-6: Find the 40
th
term and the sum of first 40 terms of
the sequence 1, 3, 5, 7, …….
Solution 6 : 40
40
H e re th e g iv e n s e q u e n c e 1 , 3 , 5 , 7 , ..... is a n A P
a n d g iv e n th a t 1, 2
________________________________
T o F in d : T
________________________________
T 3 9 1 3 9 2 1 7 8 7 9
________________________
ad
ad

        
 
 
40
40
________
T o fin d :
________________________________
w e k n o w th a t 2 ( 1)
2
40
2 1 ( 4 0 1) 2
2
n
S
n
S a n d
S
  
     

Semester :I
Mr. Tushar J Bhatt
16
Arithmetic and Geometric Progression
Solution 6 :  
 
 

40
40
40
40
40
40
2 1 ( 4 0 1) 2
2
2 0 2 3 9 2
2 0 2 7 8
2 0 8 0
1600
S
S
S
S
S
     
    
   
  

Note : 1n n n
T S S



Semester :I
Mr. Tushar J Bhatt
17
Arithmetic and Geometric Progression
Solution 7 : 2
2
1
2
1
2
1
2
1
H e re g iv e n th a t 2 3
N o w re p la c e 'n ' b y 'n -1 ' w e g e t,
2 ( 1) 3 ( 1)
2 ( 2 1) 3 3
2 4 2 3 3
21
n
n
n
n
n
S n n
S n n
S n n n
S n n n
S n n





   
     
     
   
Ex-7: The sum of ‘n’ terms of an AP is find its
20
th
term. 2
2 3 ,nn  
1
22
1
22
22
N o w w e k n o w th a t
W h e re 2 3 a n d 2 1
2 3 2 1
2 3 2 1
41
n n n
nn
n
n
n
T S S
S n n S n n
T n n n n
T n n n n
Tn



    
     
     
   20
20
20
20
________________________
T o fin d :
________________________
41
4 ( 2 0 ) 1
8 0 1
81
n
T
Tn
T
T
T
  
  
  

Answer

Semester :I
Mr. Tushar J Bhatt
18
Arithmetic and Geometric Progression
Geometric Progression
Definition : Geometric Progression(GP) 23
23
2
If is th e firs t te rm a n d is th e c o m m o n ra tio o f a G P ,
it c a n b e e x p re s s e d a s , , , , ...
. . ...... c o m m o n ra tio
ar
a a r a r a r
a r a r a r
i e r
a a r a r
   
If in a sequence the ratio of any term to its preceding term is constant, it
is called a geometric progression. The constant ratio is called the
common ratio.
For example: (1) 5, 15, 45, 135, 405, …….. Is GP because in which
the common ratio is 3.
Note:

Semester :I
Mr. Tushar J Bhatt
19
Arithmetic and Geometric Progression
(a) nth term of a Geometric Progression 23
11
1
21
2
3 1 2
3
1
If is th e firs t te rm a n d is th e c o m m o n ra tio
o f a G P , it c a n b e e x p re s s e d a s , , , , ...
F irs t te rm =
S e c o n d te rm =
T h ird te rm =
.
.
.
.
te rm =
t h n
n
ar
a a r a r a r
T a r a
T a r a r
T a r a r
n T a r








Semester :I
Mr. Tushar J Bhatt
20
Arithmetic and Geometric Progression
(b) Sum of first n terms of a Geometric Progression 2 3 1
2 3 1
If is th e firs t te rm a n d is th e c o m m o n ra tio o f a G P ,
it c a n b e e x p re s s e d a s , , , , ..., th e n
... ......(1)
E q ....(1 ) m u ltip ly in g b y ' ' b o th s id e s we g e t,
(1)
n
n
n
n
ar
a a r a r a r a r
S a a r a r a r a r
r
r S r


     
   
    
2 3 1
234
2 2 3 1
2 2 3 3
...
... .....( 2 )
C o n s id e r e q ....(1 ) e q ....(2 ) w e g e t,
...
.....
n
n
n
nn
nn
n
nn
a a r r a r r a r r a r r
r S a r a r a r a r a r
S r S a a r a r a r a r a r a r a r
S r S a a r a r a r a r a r a r a r


        
      

              
      
          

(1 ) (1 )
(1 )
,1
(1 )
( 1)
,1
( 1)
n
nn
n
n
n
n
n
n
S r S a a r
S r a r
ar
S if r
r
ar
S if r
r
  
   

  


  

Semester :I
Mr. Tushar J Bhatt
21
Arithmetic and Geometric Progression
Ex-1: Find the required term of the following GP
(a) 2, 6, 18, 54,……(9
th
term )
(b) 1024, -512, 256, -128,…… (10
th
term) 1
91
9
8
9
9
9
H e re g iv e n G P is : 2 , 6 , 1 8 , 5 4 , .....
6 1 8 5 4
2 , 3 ....
2 6 1 8
th e re fo re th e fo rm u la fo r n o f G P is g ive n b y
2 (3 )
2 (3 )
2 6 5 6 1
13122
th
n
n
ar
T a r
T
T
T
T


      

  
  
  

Solution 1 (a) :
Answer

Semester :I
Mr. Tushar J Bhatt
22
Arithmetic and Geometric Progression 1
1 0 1
10
9
10
10
H e re g iv e n G P is : 1 0 2 4 , -5 1 2 , 2 5 6 , -1 2 8, .....
5 1 2 2 5 6 1 2 8 1
1 0 2 4 , ....
1 0 2 4 5 1 2 2 5 6 2
th e re fo re th e fo rm u la fo r n o f G P is g ive n b y
1
1024
2
1
1024
2
1024
th
n
n
ar
T a r
T
T
T



       



   



   


   
10
1
512
2T



  
Solution 1 (b) :

Semester :I
Mr. Tushar J Bhatt
23
Arithmetic and Geometric Progression
Ex-2: Find the sum up to the required term of the
following GP (a) 1, 2, 4, 8, 16,……(up to 12 terms )
(b) 8, 4, 2, 1,…… (up to 10 terms) 12
12
12
12
H e re g iv e n G P is : 1 , 2 , 4 , 8 , 1 6 , .....
2 4 8 1 6
1, 2 .... a n d 1 2
1 2 4 8
S o 2 1 th e n w e a p p ly th e fo rm u la
(r 1)
1
1 ( 2 1)
21
4 0 9 6 1
1
4095
n
n
a r n
r
a
S
r
S
S
S
        










Solution 2 (a) :
Answer

Semester :I
Mr. Tushar J Bhatt
24
Arithmetic and Geometric Progression 10
10
H e re g iv e n G P is : 8 , 4 , 2 , 1 , .....
4 2 1
8 , .... a n d 1 0
8 4 2
1
S o 1 th e n w e a p p ly th e fo rm u la
2
(1 r )
1
1
81
2
1
1
2
n
n
a r n
r
a
S
r
S
      












Solution 2 (b) :

Semester :I
Mr. Tushar J Bhatt
25
Arithmetic and Geometric Progression
Solution 2 (b) : 10
1
81
1024
1
2
S




 10
1023
8
1024
1
2
S




 10
1 0 2 3 2
8
1 0 2 4 1
S

   

 10
1 0 2 3 2
1 2 8 1
S   10
1023
64
S

Semester :I
Mr. Tushar J Bhatt
26
Arithmetic and Geometric Progression
Ex-3: The 4
th
term of a GP is 4 and product of 2
nd
and
4
th
terms is 1. Find the 6
th
term and sum of first 6
terms. 3
4 3
2
24
3
24
2
4
2
H e re S u p p o s e th a t th e firs t te rm o f G P is a n d
c o m m o n ra tio is
4
T h e re fo re 4 ......(1)
T h e S e c o n d te rm
G iv e n th a t 1
1
1
1
1
.......(2)
a
r
T a r a
r
T a r
TT
a r a r
ar
a
r
a
r
   


  



Solution 3 :

Semester :I
Mr. Tushar J Bhatt
27
Arithmetic and Geometric Progression 23
32
22
C o m p a re ....(1 ) & ....(2 ) w e h a v e
14
4
4
A n d
1 1 1
( 4 ) 1 6
rr
rr
r
a
r



  
Solution 3 : 6
1
N o w 4 a n d
16
________________________
T o fin d : T
________________________
ra

Semester :I
Mr. Tushar J Bhatt
28
Arithmetic and Geometric Progression
Solution 3 : 
5
6
5
6
6
6
T
1
T4
16
1024
T
16
T 6 4
ar

  




1
st
Answer 6
T o fin d :
N o w h e re 4 1 th e n w e a p p ly th e fo rm u la
(r 1) (r 1)
11
nn
nn
S
r
a
S S a
rr


   


Semester :I
Mr. Tushar J Bhatt
29
Arithmetic and Geometric Progression
Solution 3 :
2
nd
Answer 6
6
6
6
6
6
1 ( 4 1)
1 6 4 1
1 ( 4 1)
1 6 3
4 0 9 6 1
48
4095
48
S
S
S
S

  



  






Semester :I
Mr. Tushar J Bhatt
30
Arithmetic and Geometric Progression
Ex-4: The 4
th
and 7
th
terms of a GP are 72 and 576.
Find the sum of first ‘n’ terms 36
47
6
7
3
4
H e re S u p p o s e th a t th e firs t te rm o f G P is a n d
c o m m o n ra tio is . H e re g iv e n th a t
7 2 ......(1) a n d 5 7 6 ......( 2 )
T o fin d : a n d
....( 2 )
C o n s id e r w e g e t,
....(1)
576
8
72
a
r
T a r T a r
ar
eq
eq
T ar
T a r
r
   
   

3
8
2 P u t in e q .......(1 ) w e g e t,r


Solution 4 :

Semester :I
Mr. Tushar J Bhatt
31
Arithmetic and Geometric Progression 3
4
3
(1) 7 2
( 2 ) 7 2
(8 ) 7 2
72
8
9
T a r
a
a
a
a
  




Solution 4 :  
 
 
T o fin d :
H e re 2 1 th e n w e a p p ly th e fo rm u la
1
w h e re 9 a n d 2
1
21
9
21
9 2 1
n
n
n
n
n
n
n
S
r
r
S a a r
r
S
S


   


  

  
Answer

Semester :I
Mr. Tushar J Bhatt
32
Arithmetic and Geometric Progression
Harmonic Progression
Definition : Harmonic Progression(HP) 1 1 1 1
(1) A s e q u e n c e , , , , .... is in H a rm o n ic Pro g re s s io n b e c a u s e
2 4 6 8
2 , 4 , 6 , 8 , .... is a n a rith m e tic p ro g re s s ion.
For example:
12
12
A s e q u e n c e , , ..., is s a id to b e in H a rm on ic P ro g re s s io n
1 1 1
w h e n th e ir re c ip ro c a l , , ..., a re in a rith m e tic p ro g re s s io n .
n
n
x x x
x x x 1 1 1 1
( 2 ) A s e q u e n c e , , , , .... is in H a rm o n ic P ro g re s s io n b e c a u s e
5 8 1 1 1 4
5 , 8 ,1 1,1 4 , .... is a n a rith m e tic p ro g re s sio n .

Semester :I
Mr. Tushar J Bhatt
33
Arithmetic and Geometric Progression 1 1 1 1
E X -1 : F in d 2 9 te rm o f th e s e q u e n c e , , , ,....
4 7 1 0 1 3
th 2 9 2 9
1 1 1 1
H e re th e s e q u e n c e , , , , .... is in H a rm o nic
4 7 1 0 1 3
P ro g re s s io n b e c a u s e a re c ip ro c a l o f th e g iv e n s e q u e n c e
4 , 7 , 1 0 , 1 3 ,... is a n A P .
T o fin d : o f a n A P a n d ta k e th e ir re c ip ro ca l is th e o f TT HP
Solution 1 : N o w th e g iv e n A P is 4 , 7 , 1 0 , 1 3 ,...
in w h ic h 4 , 3, 2 9
W e k n o w th a t T ( 1)
n
a d n
a n d
  
  

Semester :I
Mr. Tushar J Bhatt
34
Arithmetic and Geometric Progression
Solution 1 : 29
29
29
29
29
4 ( 2 9 1) 3
4 ( 2 8 ) 3
4 8 4
8 8 is th e 2 9 te rm o f a n A P
1
T h a t re c ip ro c a l is th e 2 9 te rm o f H P
88
1
i.e . 2 9 te rm o f g iv e n H P is .
88
th
th
th
T
T
T
T
T
    
   
  



Answer

Semester :I
Mr. Tushar J Bhatt
35
Arithmetic and Geometric Progression
Arithmetic Mean If th e 3 n u m b e rs a re in A P , th e n th e m id d le n u m b e r
is s a id to b e th e a rith m e tic m e a n (A.M ) o f th e firs t a n d th e
th ird n u m b e rs .
L e t , , a re in A P th e n th e m id d le n u m b e r is s a id to b e a n a A b A A M .
L e t ' ' a n d ' ' a re a n y tw o n u m b e rs th e n a rith m e tic m e a n (A M ) o f
tw o n u m b e rs ' ' a n d ' ' is o b ta in e d b y d ivid in g th e s u m o f tw o
n u m b e rs b y 2 .
A n a rith m e tic m e a n w e s im p ly d e n o te a s A.
i.e . A =
2
ab
ab
ab
.

Semester :I
Mr. Tushar J Bhatt
36
Arithmetic and Geometric Progression
Geometric Mean If th e 3 n u m b e rs a re in G P , th e n th e m id d le n u m b e r
is s a id to b e th e g e o m e tric m e a n (G .M ) o f th e firs t a n d th e
th ird n u m b e rs .
L e t , , a re in G P th e n th e m id d le n u m b e r G is s a id to b e a n Ga G b M.
L e t ' ' a n d ' ' a re a n y tw o n u m b e rs th e n g e o m e tric m e a n (G M ) o f
tw o n u m b e rs ' ' a n d ' ' is o b ta in e d b y ta kin g s q u a re ro o t o f th e
p ro d u c t o f th e tw o n u m b e rs .
T h e g e o m e tric m e a n w e s im p ly d e n o te a s G.
ab
ab
i.e . G = .ab

Semester :I
Mr. Tushar J Bhatt
37
Arithmetic and Geometric Progression
Example of Arithmetic Mean F o r e x a m p le le t 3 , 5 , 7 a re in A P
T h e re fo re m id d le n u m b e r(te rm ) 5 b e c o m e an A M o f
3 a n d 7 . It is a ls o o b ta in e d b y u s in g form u la
3 7 1 0
= 5 .
2 2 2
ab
AA

   
Example of Geometric Mean F o r e x a m p le le t 5 , 1 0 , 2 0 a re in G P
T h e re fo re m id d le n u m b e r(te rm ) 1 0 b e c o m e G M o f
5 a n d 2 0 . It is a ls o o b ta in e d b y u s in g fo rm u la
5 2 0 1 0 0 1 0 .
( W e c o n s id e r o n ly p o s itiv e v a lu e )
G a b G        

Semester :I
Mr. Tushar J Bhatt
38
Arithmetic and Geometric Progression E X -1 : F in d th e A M a n d G M o f th e fo llo w ing n u m b e rs :
1
(i) 8 a n d 3 2 (ii) 2 a n d 1 8 (iii) a n d 8
32
Solution 1 : ( ) H e re 8 a n d 3 2
T o F in d : A M
A n A rith m e tic M e a n
2
8 3 2 4 0
20
22
T o F in d : G M
T h e G e o m e tric M e a n G
G 8 3 2 2 5 6 1 6
i a b
ab
A
A
ab




   

      

Semester :I
Mr. Tushar J Bhatt
39
Arithmetic and Geometric Progression
Solution 1 : ( ) H e re 2 a n d 1 8
T o F in d : A M
A n A rith m e tic M e a n
2
2 1 8 2 0
10
22
T o F in d : G M
T h e G e o m e tric M e a n G
G 2 1 8 3 6 6
ii a b
ab
A
A
ab




   

      

Semester :I
Mr. Tushar J Bhatt
40
Arithmetic and Geometric Progression
Solution 1 : 1
( ) H e re a n d 8
32
T o F in d : A M
A n A rith m e tic M e a n
2
1 1 3 2 8
8
1 2 5 6 2 5 7
3 2 3 2
2 2 2 3 2 6 4
T o F in d : G M
T h e G e o m e tric M e a n G
1 1 1
G8
3 2 4 2
iii a b
ab
A
A
ab






    


      

Semester :I
Mr. Tushar J Bhatt
41
Arithmetic and Geometric Progression E X -2 : T h e A M a n d G M o f th e tw o n u m b e r s ar e 2 5 .5 a n d 1 2
r e s p e c tiv e ly , fin d th e n u m b e r s .
Solution 2 : 2
S u p p o s e th a t tw o n u m b e r a re ' ' a n d ' '.
th e n 2 5 .5 5 1 ....(1)
22
144
A n d G 1 2 1 4 4 ....( 2 )
144
P u t in 5 1 w e g e t,
144
51
1 4 4 5 1
ab
a b a b
A a b
a b a b a b b
a
b a b
a
a
a
aa

     
        
  

  

Semester :I
Mr. Tushar J Bhatt
42
Arithmetic and Geometric Progression
Solution 2 : 2
5 1 1 4 4 0aa    ( 4 8 )( 3) 0aa    E ith er 4 8 0 o r 3 0aa     E ith er 4 8 o r 3aa   144
N o w w e h a v e b
a
 144
If 4 8 th e n 3 . ( , ) ( 4 8, 3)
48
a b i e a b     144
If 3 th e n 4 8 . ( , ) (3, 4 8 ).
3
a b i e a b    

Semester :I
Mr. Tushar J Bhatt
43
Arithmetic and Geometric Progression E X -3 : If th e th re e n u m b e rs 3, 3 a n d 4 a re in G P .
F in d th e v a lu e o f .
kk
k

Solution 3 : 2
2
2
2
2
2
H e re th re e n u m b e rs 3 , 3, 4 a re in G P .
T h e re fo re th e m id d le te rm 3 re p re s e n t the G M o f 3 a n d 4 .
. : 3, 3 a n d 4 .
w e k n o w th a t
( 3 ) 3 4
6 9 1 2
6 9 1 2 0
6 9 0
( 3 ) 0
kk
kk
i e G k a b k
G a b
G a b
kk
k k k
k k k
kk
k


   


   
   
    
   
  
30
3.
k
k
  

Answer

Semester :I
Mr. Tushar J Bhatt
44
Arithmetic and Geometric Progression
Harmonic Mean If th e 3 n u m b e rs a re in H P , th e n th e m id d le n u m b e r
is s a id to b e th e h a rm o n ic m e a n (H .M) o f th e firs t a n d th e
th ird n u m b e rs .
L e t , , a re in H P th e n th e m id d le n u m b e r H is s a id to b e H M .a H b
T h e h a rm o n ic m e a n w e s im p ly d e n o te a s H .
L e t ' ' a n d ' ' a re a n y tw o n u m b e rs th e n h a rm o n ic m e a n (H M ) o f
tw o n u m b e rs ' ' a n d ' ' is o b ta in e d b y u s in g th e fo rm u la
2
H = .
ab
ab
ab
ab

Semester :I
Mr. Tushar J Bhatt
45
Arithmetic and Geometric Progression
Relation Between AM, GM and HM Q u e s tio n -1 : P ro v e th a t fo r a n y tw o re a l n u m b e rs th e n
A M G M H M .
OR 2
P ro o f :
L e t ' ' a n d ' ' a re a n y tw o re a l n u m b e rs th e n
(1 ) A M = A =
2
( 2 ) G M = G = G =
2
(3 ) H M = H =
ab
ab
a b a b
ab
ab



Semester :I
Mr. Tushar J Bhatt
46
Arithmetic and Geometric Progression
Relation Between AM, GM and HM 
  
2
22
22
P ro o f :
N o w c o n s id e r re s u lt (1 ) re s u lt (3 ) w e g et,
2
.........( )
2
N o w c o n s id e r re s u lt (1 ) - re s u lt (2 ) w e g e t,
2
2
2
22
,
a b a b
A H a b G i
ab
ab
A G a b
a b a b
a b a b
AG
a a b b

   
    
   
   

  


   


Semester :I
Mr. Tushar J Bhatt
47
Arithmetic and Geometric Progression
Relation Between AM, GM and HM  
 
 
22
2
2 2 2
P ro o f :
2
2
0 ( ) 2
2
0
..............( )
a a b b
AG
ab
A G a b a a b b
AG
A G ii

  

       
  
 22
R e s u lt ......(ii) B o th s id e s m u ltip ly in g b y H w e g e t,
( .....( ) )
............( )
A H G H
G G H A H G i
G H iii

  


Semester :I
Mr. Tushar J Bhatt
48
Arithmetic and Geometric Progression
Relation Between AM, GM and HM P ro o f :
F ro m re s u lt ..............( ) a n d re su lt ............( )
W e h a v e
H e n c e p ro v e d th e re s u lt.
A G ii G H iii
A G H



Semester :I
Mr. Tushar J Bhatt
49
Arithmetic and Geometric Progression E X - 4 : F in d A M , G M an d H M o f th e n u m b ers 8 an d 1 8 .
Solution 4 : T o F in d : A M
W e k n o w th a t th e A M is g iv e n b y
2
8 1 8
2
26
2
13
ab
A
A
A
A






1
st
Answer T o F in d : G M
w e k n o w th a t th e G M is g iv e n b y
8 1 8
144
1 2 b u t w e c o n s id e r o n ly
p o s itiv e v a lu e th e re fo re
12
G a b
G
G
G
G

   
  
  
 H ere ' 8 ' and ' 18 'ab 2
nd
Answer T o F in d : H M
w e k n o w th a t th e H M is g iv e n b y
2
2 8 1 8
8 1 8
288
26
144
13
ab
H
ab
H
H
H






 3
rd
Answer

Semester :I
Mr. Tushar J Bhatt
50
Arithmetic and Geometric Progression 2
E X - 5 : F o r tw o n u m b e rs 5 , 4 4 , v e rify th at (i) G = A H (ii) A > G > H .
Solution 5 : T o F in d : A M
W e k n o w th a t th e A M is g iv e n b y
2
5 4 4
2
49
2
2 4 .5
ab
A
A
A
A





 H ere ' 5 ' and ' 44 'ab T o F in d : H M
w e k n o w th a t th e H M is g iv e n b y
2
2 5 4 4
5 4 4
440
49
8 .9 8
ab
H
ab
H
H
H






  
2
2
2
T o F in d : G M
w e k n o w th a t th e G M is g iv e n b y
5 4 4
220
1 4 .8 3 b u t w e c o n s id e r o n ly
p o s itiv e v a lu e th e re fo re
1 4 .8 3
1 4 .8 3 2 1 9 .9 2
220
G a b
G
G
G
G
G
G

   
  
  

  


Semester :I
Mr. Tushar J Bhatt
51
Arithmetic and Geometric Progression
Solution 5 : 2
2
T o V e rify : (i) G
R H S =
2 4 .5 8 .9 8
2 2 0 .0 1
220
AH
AH
G
L H S





 T o V e rify : (ii)
2 4 .5 1 4 .8 3 8 .9 8
A G H
A G H

    

Semester :I
Mr. Tushar J Bhatt
52
Arithmetic and Geometric Progression
Assignment - 1
Sr.No Instruction Answer
(1) Define arithmetic progression and geometric progression and
give formulae for finding the term and sum of first ‘n’ terms of
these progressions.
(2) Find the required term of the following sequence :
a.10, 14, 18, 22, …….30
th
term
b.16, 26, 36, 46, ……..15
th
term
c.59, 56, 53, 50, …….17
th
term
a.126
b.156
c.011
(3) The 12
th
term of an arithmetic progression is 20 and its 32
th
term is 60, find its 40
th
term.
76
(4) The 20
th
term of an arithmetic progression is 30 and its 30
th
term is 20, find its 50
th
term.
0
(5) Find the sum of following AP’s
a.5, 9, 13, 17, ……( up to 10 terms)
b.32, 28, 24, 20, …….( up to 13 terms )
c.1, 3, 5, 7, …..( up to 50 terms )
a.230
b.104
c.2500

Semester :I
Mr. Tushar J Bhatt
53
Arithmetic and Geometric Progression
Assignment - 1
Sr.No Instruction Answer
(6) The 3
rd
term of an AP is 9 and its 9
th
term is 21, find the sum
of its 40 terms.
1760
(7) The 4
th
term of an AP is 3 and its 10
th
term is -9, find the sum
of its 20 terms.
-200
(8) The sum of 10 terms of an AP is 230 and the sum of its 4
terms is 44, find the sum of its 14 terms.
434
(9) The sum of 5 terms of an AP is 25 and the sum of its 9 terms is
81, find the sum of its 10 terms.
100
(10) How many terms of the sequence 2, 5, 8, 11, ……. Will make
the sum 610?
20

Semester :I
Mr. Tushar J Bhatt
54
Arithmetic and Geometric Progression
(1) Define arithmetic progression and geometric progression and give
formulae for finding the term and sum of first ‘n’ terms of these progressions.

Semester :I
Mr. Tushar J Bhatt
55
Arithmetic and Geometric Progression
(2) Find the required term of the following sequence :
a.10, 14, 18, 22, …….30
th
term
b.16, 26, 36, 46, ……..15
th
term
c.59, 56, 53, 50, …….17
th
term
a.126
b.156
c.011

Semester :I
Mr. Tushar J Bhatt
56
Arithmetic and Geometric Progression
(3) The 12
th
term of an arithmetic progression is 20 and its 32
th
term is 60, find its 40
th
term.
76

Semester :I
Mr. Tushar J Bhatt
57
Arithmetic and Geometric Progression
(4) The 20
th
term of an arithmetic progression is 30 and its 30
th
term is 20, find its 50
th
term.
0

Semester :I
Mr. Tushar J Bhatt
58
Arithmetic and Geometric Progression
(5) Find the sum of following AP’s
a.5, 9, 13, 17, ……( up to 10 terms)
b.32, 28, 24, 20, …….( up to 13 terms )
c.1, 3, 5, 7, …..( up to 50 terms )
a.230
b.104
c.2500

Semester :I
Mr. Tushar J Bhatt
59
Arithmetic and Geometric Progression
(6) The 3
rd
term of an AP is 9 and its 9
th
term is 21, find the sum
of its 40 terms.
1760

Semester :I
Mr. Tushar J Bhatt
60
Arithmetic and Geometric Progression
(7) The 4
th
term of an AP is 3 and its 10
th
term is -9, find the sum
of its 20 terms.
-200

Semester :I
Mr. Tushar J Bhatt
61
Arithmetic and Geometric Progression
(8) The sum of 10 terms of an AP is 230 and the sum of its 4
terms is 44, find the sum of its 14 terms.
434

Semester :I
Mr. Tushar J Bhatt
62
Arithmetic and Geometric Progression
(9) The sum of 5 terms of an AP is 25 and the sum of its 9 terms is
81, find the sum of its 10 terms.
100

Semester :I
Mr. Tushar J Bhatt
63
Arithmetic and Geometric Progression
(10) How many terms of the sequence 2, 5, 8, 11, ……. Will make
the sum 610?
20

Semester :I
Mr. Tushar J Bhatt
64
Arithmetic and Geometric Progression