476 BIBLIOGRAPHY
[174] D. Stepanova, M. H. Gad-Elrab, and V. T. Ho. Rule induction and reasoning over knowledge
graphs.Reasoning Web International Summer School, pp. 142–172, 2018.
[175] G. Strang. An introduction to linear algebra, Fifth Edition.Wellseley-Cambridge Press, 2016.
[176] G. Strang. Linear algebra and learning from data.Wellesley-Cambridge Press, 2019.
[177] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge.WWW
Conference, pp. 697–706, 2007.
[178] Y. Sun and J. Han. Mining heterogeneous information networks: principles and methodolo-
gies.Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2), pp. 1–159, 2012.
[179] Y. Sun, C. Aggarwal, and J. Han. Relation strength-aware clustering of heterogeneous in-
formation networks with incomplete attributes.Proceedings of the VLDB Endowment, 5(5),
pp. 394–405, 2012.
[180] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning.ICML Confererence, pp. 1139–1147, 2013.
[181] R. Sutton. Learning to Predict by the Method of Temporal Differences,Machine Learning,
3, pp. 9–44, 1988.
[182] R. Sutton and A. Barto. Reinforcement Learning: An Introduction.MIT Press, 1998.
[183] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation.NIPS Conference, pp. 1057–1063, 2000.
[184] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions.IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–9, 2015.
[185] G. Tesauro. Practical issues in temporal difference learning.Advances in NIPS Conference,
pp. 259–266, 1992.
[186] G. Tesauro. Td-gammon: A self-teaching backgammon program.Applications of Neural Net-
works, Springer, pp. 267–285, 1992.
[187] S. Thrun. Learning to play the game of chessNIPS Conference, pp. 1069–1076, 1995.
[188] A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively
shallow networks.NIPS Conference, pp. 550–558, 2016.
[189] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust
features with denoising autoencoders. ICML Confererence, pp. 1096–1103, 2008.
[190] D. Vrandecic and M. Krotzsch. Wikidata: a free collaborative knowledgebase.Communica-
tions of the ACM, 57(1), pp. 78–85, 2014.
[191] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang. Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion.
ACM KDD Conference, pp. 601–610, 2014.
[192] N. Nakashole, G. Weikum, and F. Suchanek. PATTY: A Taxonomy of Relational Patterns
with Semantic Types.Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pp. 1135–1145, 2012.
[193] N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with high pre-
cision and high recall.WSDM Conference, pp. 227–236, 2011.