ARUN SIR.pdf the Science hub commerce tsh

aktripathi1794 41 views 31 slides Aug 23, 2024
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

Commerce


Slide Content

Kataria Classes
 8707548600

1. izlkj dk lkis{k eku fuEufyf[kr esa ls D;k gS\
Which one of the following is a relative measure of
dispersion?

(a) ekud fopyu@ Standard deviation
(b) izlj.k@ Variance
(c) fopj.k dk xq.kkad@ Coefficient of variation
(d) mi;qZDr esa ls dksbZ ugha@ None of the above

Kataria Classes
 8707548600

2. ;fn lekUrj ek/; 25 rFkk izeki fopyu 6.25 gks] rks fopj.k
xq.kkad gksxk&

(a) 20
(b) 25
(c) 30
(d) 50

Kataria Classes
 8707548600

3. ;fn fu/kkZj.k ds xq.kkad dk eku 0.64 gS] rks lglaca/k ds xq.kkad
dk ekUk D;k gksxk\
If the value of co-efficient of determination is 0.64, what is the
value of coefficient of correlation?

(a) 0.40
(b) 0.80
(c) 0.08
(d) 0.04

Kataria Classes
 8707548600

4. dkyZ fi;jlu dk nks pyksa ds chp lglaca/k xq.kkad gS\
Karl Pearson’s co-efficient of correlation between two
variable is:

(a) muds ekud fopyu dk xq.kuQy gS@ the product of their
standard deviations
(b) muds izfrxeu xq.kkdksa ds xq.kuQy dk oxZewy@ the square
root of the product of their regression co-efficients
(c) pjksa ds chp lgfopyu@ the co-variance between the
variables
(d) mijksDr esa ls dksbZ ugha@ None of the above

Kataria Classes
 8707548600

5. fuEufyf[kr lw=ksa esa ls dkSu ls lw= dk iz;ksx fdlh izfrn’kZ ds
25 ;qXe izs{k.k ds chp lglaca/k ds xq.kkad dh ekud Hkwy dk
ifjdyu djus ds fy, fd;k tkrk gS\
Which one of the following formulae is used to calculate the
standard error of coefficient of correlation between 25 paired
observations of a sample?

(a)
(�–??????
�
)
??????
(b)
(�–??????
�
)
(??????–�)

(c) (�.����)
�–??????
�
??????
(d)
(??????–�)
(�–??????
�
)

Kataria Classes
 8707548600

6. Regression coefficient of X on Y will be:
X dk Y ij izrhixeu xq.kkad gksxk&

(a)
??????�
??????�
(b) r
??????�
??????�
2
(c) r
??????�
??????�
2
(d) r
??????�
??????�

Kataria Classes
 8707548600

7. ;fn nks izfrixeu xq.kkad –0.8 vkSj –0.2 gks rks lglaca/k xq.kkad
eku gksxk&
If the regression coefficient are –0.8 and –0.2 then the value of
correlation coefficient will be:

(a) –0.4
(b) +0.4
(c) –0.16
(d) +0.16

Kataria Classes
 8707548600

8. lkaf[;dh esa izrhixeu ‘kCn dk iz;ksx------us loZizFke fd;k\
The word regression in statistics was first used by:

(a) ckWmys@ Bowley
(b) dkyZ fi;lZu@ Karl Pearson
(c) jkcV~Zl@ Roberts
(d) xkYVu@ Galton

Kataria Classes
 8707548600

9. vxj dkyZ fi;lZu lglaca/k xq.kkad X rFkk Y ds chp –0.75 gS]
lgizlj.k –15 rFkk Y J`a[kyk dk ekud fopyu 5 gS] rks X
J`a[kyk dk ekud fopyu D;k gksxk\

(a) 4
(b) 3
(c) –4
(d) 5

Kataria Classes
 8707548600

10. ;fn x = �–� rFkk y = �–� ;qXe inksa dh la[;k n gks] rks

(a) ??????=
��
�
�
�
�
(b) ??????=
?????? ��
�
�
�
�



(c) ??????=
��
?????? �
�
�
�
(d) ??????=
��
?????? �
�

Kataria Classes
 8707548600

11. lglaca/k xq.kkad gksrk gS lnSo%

(a) ,d ls vf/kd
(b) &1 ls de
(c) &1 vkSj $1 ds chp esa
(d) 0 ls vf/kd

Kataria Classes
 8707548600

12. ;fn fu/kkZj.k ds xq.kkad dk eku 0.64 gS] rks lglaca/k ds xq.kkad
dk eku D;k gksxk\
If the value of co-efficient of determination is 0.64, what is the
value of coefficient of correlation?

(a) 0.40
(b) 0.80
(c) 0.08
(d) 0.04

Kataria Classes
 8707548600

13. vkdfyr lehdj.k esa] Lora= pj esa o`f) ds lkFk vkfJr pj esa
Hkh o`f) gksrh gS] rks lglaca/k xq.kkad dh lhek gksxh%
If the dependent variable increase as the independent variable
increase in an estimating equation, the coefficient of
correlation will be in the range:

(a) 0 to (–1)
(b) 0 to (–) 0
(c) 0 to (–) 0.05
(d) 0 to 1

Kataria Classes
 8707548600

14. ;fn X vkSj Y pjksa ds chp vO;kf[;r fopj.k 36% gS rks pjksa
ds chp xq.kkad dk lglaca/k D;k gS\
If unexplained variation between variable X and Y is 36%,
what is the coefficient of correlation between the variable?

(a) 0.36
(b) 0.64
(c) 0.60
(d) 0.80

Kataria Classes
 8707548600

15. fuEufyf[kr esa ls lg&laca/k dks tkuus ds fy, fuEufyf[kr esa ls
lgh fof/k dk p;u dhft,%
Select the methods of finding out correlation from the
following?
(i) dkyZ fi;jlu dh fof/k@ Karl Pearson’s Method
(ii) fLi;jeSu dh jSad fof/k@ Spearman’s Rank Method
(iii) ;wys dh fof/k@ Yule’s Method
(iv) dUVhutsUlh xq.kkad@ Coefficient of Contingency
(v) leorhZ fopyu@ Concurrent Deviation Method
Codes :
(a) (i), (ii), (iii) (b) (i), (ii), (iii), (iv)
(c) (i), (ii), (v) (d) (iii), (iv), (v)

Kataria Classes
 8707548600

16. The following are the estimated regression equations for x
and y variables:
‘x’ vkSj ‘y’ pjksa ds izfrxeu lehdj.k fuEufyf[kr gSa%
x = 0.85 y
y = 0.89 x
With this information, the value of the coefficient of
correlation would be:
bl lwpuk ds vk/kkj ij lglaca/k xq.kkad dk ewY; gksxk%
(a) 0.87
(b) 0.86
(c) 0.89
(d) 0.75

Kataria Classes
 8707548600

17. fuEufyf[kr tkudkjh dk v/;;u dhft,%
Study the following information:
Covariance between X and Y series = –17.8
Standard deviation of X series = 6.6
Standard deviation of Y series = 4.2
No. of pairs of observation = 20
lglaca/k xq.kkad gS
The coefficient of correlation is:
(a) –0.642
(b) 0.642
(c) 0.253
(d) –0.253

Kataria Classes
 8707548600

18. xq.kkad 0.8 gS] rks vglaca/k xq.kkad gksxk&
If correlation coefficient is 0.8 then the coefficient of
allenation shall be:

(a) 0.44
(b) 0.6
(c) 0.4
(d) 0.64

Kataria Classes
 8707548600

19. dkyZ fi;jlu dk lglaca/k xq.kkad Kkr fd;k tk ldrk gS&
The Karl Pearson’s coefficient of correlation can be computed
between:

(a) nks pjksa ds e/;@ Two Variables
(b) nks xq.kksa ds e/;@ Two Attributes
(c) nks la[;kvksa ds e/;@ Two Numbers
(d) nks ekU;rkvksa ds e/;@ Two Assumptions

Kataria Classes
 8707548600

20. fuEufyf[kr eas ls dkSu lk lgh gS\
Which one of the following is CORRECT?

(a) PE =
.����(�–??????
�
)
??????
(b) PE =
.����(�–??????
�
)
??????


(c) PE =
.����??????
�–??????
� (d) PE =
.����(�–??????
�
??????

Kataria Classes
 8707548600

21. dkSu&lk dFku lR; ugha gS\

(a) Q
2 = D
5 = P
50
(b) Q
3 = P
75
(c) D
8 = P
80
(d) Q
1 = D
1 = P
1

Kataria Classes
 8707548600

22. vifdj.k ds lkis{k eki D;k dgykrk gS\


(a) lkis{krk xq.kkad
(b) fujis{krk xq.kkad
(c) vifdj.k xq.kkad
(d) vifdj.k lkis{krk

Kataria Classes
 8707548600

23. Øekuqlkj izkd`frd vadksa dk izeki fopyu?????? fuEufyf[kr esa ls
fdl lw= }kjk Kkr fd;k tkrk gS\

(a) ??????=
??????
�
–�
�
(b) ??????=??????
�

�
��


(c) ??????=
??????
�
��
–� (d) ??????=
�
��
(??????
�
–�

Kataria Classes
 8707548600

24. ‘kred ijkl (P. R.) dk lw= gS%

(a) P
90 – P
10
(b) P
50 – P
30
(c) P
75 – P
25
(d) None of these

Kataria Classes
 8707548600

25. dkSu&lk vkuqHkfod laca/k lgh gS\
Which empirical relation is not correct?

(a) M. D. = ¾ S. D.
(b) M. D. = 4/3 S. D.
(c) M. D. = 4/5 S. D.
(d) M. D. = 5/4 S. D.

Kataria Classes
 8707548600

26. ;fn N = 11, �= 60, �
�
= 1,000 gks] rks ekud fopyu gksxk%

(a) 8
(b) 12
(c) 6
(d) 100

Kataria Classes
 8707548600

27. r`rh; prqFkZad (Q
3) dk eku cjkcj gksxk%

(a) ekf/;dk ds 1.50
(b) r`rh; n’ked ds
(c) 75 oka ‘kred ds
(d) mi;qZDr esa ls fdlh ls Hkh ugha

Kataria Classes
 8707548600

28. fopj.k xq.kkad dk lw= gS

(a)
izeki fopyu
ek/;
× 100 (b)
ek/;
izeki fopyu
× 100

(c)
ek/; & Hkwf;"Bd
izeki fopyu
× 100 (d)
izeki fopyu
ek/;&Hkwf;"Bd
× 100

Kataria Classes
 8707548600

29. 100 p;fur fo|kfFkZ;ksa dh špkbZ dk vkSlr 168.8 lsaVhehVj gS
rFkk mudk fopj.k xq.kkad 3.2% gSA mudh špkbZ dk izeki
fopyu D;k gS\

(a) 514
(b) 521
(c) 524.61
(d) 5.4016

Kataria Classes
 8707548600

30. ;fn izFke prqFkZad 142 gS vkSj v)Z&vUrjprqFkZad foLrkj 18 gks]
rks] caVu dks lefer ekurs gq,] ekf/;dk dk ewY; gksxk\

(a) 151
(b) 160
(c) 171
(d) 180

Kataria Classes
 8707548600

31. ekud fopyu dh x.kuk fdl vk/kkj ij dh tkrh gS\
Standard Deviation is calculated on the basis of:

(a) ek/;@ mean
(b) ekf/;dk@ median
(c) cgqyd@ mode
(d) mi;qZDr esa ls dksbZ ugha@ None of the above