As per KITS r20 facts unit-5 combined controllers

hariyenireddy1 329 views 94 slides Sep 16, 2024
Slide 1
Slide 1 of 94
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94

About This Presentation

facts unit-5 combined controllers


Slide Content

1
FLEXIBLEALTERNATING
CURRENTTRANSMISSION
SYSTEMS
.
Presented By :
HARI MADHAVA REDDY. Y (Ph.D)., M.Tech., MISTE., SSI., IAENG
Assistant professor
DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

2
Learning Objectives
To learn the basics of power flow control in transmission
lines using FACTS controllers
To explain operation and control of voltage source converter.
To understand compensation methods to improve stability
and reduce power oscillations of a power system.
To learn the method of shunt compensation using static VAR
compensators.
To learn the methods of compensation using series compensators
To explain operation of Unified Power Flow Controller (UPFC).

3
Learning Outcomes
UnderstandpowerflowcontrolintransmissionlinesusingFACTS
controllers.
Explainoperationandcontrolofvoltagesourceconverter.
Analyzecompensationmethodstoimprovestabilityandreduce
poweroscillationsinthetransmissionlines.
ExplainthemethodofshuntcompensationusingstaticVAR
compensators.
Understandthemethodsofcompensationsusingseries
compensators.
ExplainoperationofUnifiedPowerFlowController(UPFC).

About
Tolearnthebasicsofpowerflow
controlintransmissionlinesusing
FACTScontrollers
Toexplainoperationandcontrolofvoltage
sourceconverter.
Tounderstandcompensationmethods
toimprovestabilityandreducepower
oscillationsofapowersystem.
Tolearnthemethodofshuntcompensation
usingstaticVARcompensators.
Tolearnthemethodsofcompensation
usingseriescompensators
ToexplainoperationofUnifiedPower
FlowController(UPFC).
COURSE
OBJECTIVES
introduction
lesson1
Lesson 2 Lesson 3 Lesson 4 Lesson 5

Lesson
1
Introduction to
FACTS
Lesson
2
Voltage
source and
Current
source
converters
Lesson
3
FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS
As per JNTUK
Shunt
Compensators
–I
Lesson
4
Shunt
Compensators
–II
Lesson
5
Series
Compensators
Lesson
6
Combined
Controllers

Lesson
1
Introduction to
FACTS
Lesson
2
Objectives of
shunt and
Series
Compensation
Lesson
3
FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS
Shunt
Compensators
Lesson
4 Lesson
5
Series
Compensators
Combined
Controllers

1 2
4
Introduction to
FACTS
3
Shunt
Compensator
Series
Compensators
Objectives of
shunt and
Series
Compensation

8
5
Combined
Controllers

9
Text Books:
1. “Understanding FACTS” N.G.Hingoraniand L.Guygi, IEEE
Press.IndianEdition is available:––Standard Publications, 2001.
Reference Books:
1.“Flexible ac transmission system (FACTS)” Edited by Yong Hue
Song and Allan T Johns, Institution of Electrical Engineers,
London.
2. Thyristor-based FACTS Controllers for Electrical Transmission
Systems, by R.MohanMathurand Rajiv k.Varma, Wiley

10

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

12
5.0.ObjectivesofVoltageandPhaseAngle
Regulator
Voltageregulatorsmaintainafixedoutputvoltage,evenwhentheinput
voltageorloadconditionschange.Theykeepthevoltagefromapower
supplywithinarangethat'scompatiblewithotherelectrical
components.
Phaseangleregulators,alsoknownasphaseshiftingtransformers,
correctthephaseangledifferencebetweentwoparallelelectrical
transmissionsystems.
Realpower,P,andreactivelinepower,Q,indicatethatboth
areafunctionofthetransmissionlineimpedance,themagnitudeof
thesendingandreceiving-endvoltages,andthephaseangle
betweenthesevoltages.

13
Controlledreactiveshuntcompensationeffectivelymaintains
voltageprofilesalongtransmissionlines,butisoftennotnecessary
forbulktransmissionsystemstomaintainvoltagelevelsforloads.
TheinterconnectionofaHVlinewithaLVlineforincreasedpower
transmissionisusuallyaccomplishedwithamechanicalon-loadtap
changertoisolatethelowervoltage(LV)systemfromthelarge
voltagevariationofthehigh-voltagelinecausedbyseasonalor
dailyloadchanges.Similarly,voltageregulatorsemployingon-load
tapchangershavebeenusedsincetheearlydaysofactransmission
tomaintainthedesireduservoltageinthefaceofchanging
transmissionvoltageandloads.
Inadditiontovoltageregulation,tapchangerscan,ingeneral,be
usedtocontrolreactivepowerflowintheline.
Transmissionlineimpedancesarepredominantlyreactive,anin-
phasevoltagecomponentintroducedintothetransmissioncircuit
causesasubstantiallyquadrature(reactive)currentflowthat,
withappropriatepolarityandmagnitudecontrol,canbeusedto
improveprevailingreactivepowerflows.

14
Thecontroloftransmittedpowerbyseriesreactive
compensationwhichcanbeahighlyeffectivemeanstocontrol
powerflowinthelineaswellasimprovingthedynamicbehavior
ofthepowersystem.
However,whereasseriesreactivecompensationis
generallyhighlyeffectiveforpowerflowcontrol,itsapplication
tocertaintransmissionproblemscanbeimpractical,cumbersome,
oreconomicallynotviable.Theseproblemsarerelatedtothe
transmissionangle.
Otherproblemsinvolvethecontrolofrealandreactive
loopflowsinameshednetwork.
Thesolutiontothesetypesofproblemsusuallyrequires
thecontroloftheeffectiveangle

15
Voltage and phase angle regulators have several objectives, including:
Voltageandphaseangleregulation:Regulatorscontrolvoltageand
phaseangleinpowersystems.
Powerflowcontrol:Regulatorscontroltheflowofpowerbetween
electricalsystems.
Improvingtransientstability:Regulatorsimprovethesystem'sability
torespondtodisturbances.
Dampingpoweroscillations:Regulatorsreducepoweroscillations.
Minimizingoverloadsandvoltagedips:Regulatorsreduceoverloads
andvoltagedipsthatcanoccurafteradisturbance.
https://www.muquestionpaper.com/p/electrical-facts-theory-latest-updated.html
Infutureflexibleactransmissionsystems,thefunctional
capabilitiesofconventionalvoltageandphaseangleregulators,
withmodernsolid-stateimplementations,willplayanimportant
roleintheoptimalutilizationofthetransmissionnetworkby
realandreactivepowerflowmanagementandvoltagecontrol.

16
Mechanicalphaseangleregulators(PARs)orphaseshifting
transformers(PSTs),usingon-loadtapchangerswithquadrature
voltageinjection,wereintroducedinthe1930stosolvepower
flowproblemsandincreasetheutilizationoftransmissionlines.
Whereason-loadtapchangerswithin-phasevoltage
injectioncontrolreactivepowerviavoltagemagnitude
adjustment,thosewithquadraturevoltageinjectioncontrolreal
powerviaphaseadjustment.

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

18
5.1.VoltageandPhaseAngleRegulator
The basic concept ofvoltage and phase angle regulation is
“theadditionofanappropriatein-phaseoraquadrature
componenttotheprevailingterminal(bus)voltageinorderto
change(increaseordecrease)itsmagnitudeorangletothevalue
specified(ordesired)”.
(i).Voltageregulationcould,theoretically,beachievedbya
synchronous,in-phasevoltagesourcewithcontrollableamplitude,
±ΔV,inserieswiththeacsystemandtheregulatedterminal,as
illustratedinFigure

19
implementation of this concept is shown schematically
Adjustablevoltageisprovidedbymeansofatapchangerfroma
three-phase(auto)transformer(usuallyreferredtoasregulatingor
excitationtransformer)fortheprimaryofaseriesinsertion
transformerwhichinjectsittoachievetherequiredvoltage
regulation.

20
Itisevidentthatinjectedvoltages
±Δva,±Δvb,and±Δvc,areinphasewith
thelinetoneutralvoltagesVa,,vb,andVc.,
respectively,asillustratedbythephasor
diagram
(ii). Phase Angle regulation
Theinjectedvoltage,Δvhaveaphase
of±90°relativetothesystemvoltage,
v.Theinjectedvoltagewillchangethe
prevailingphase-angleofthesystem
voltage.

21
arrangement forphase angle control isshownschematically in
Figure

22

23
The corresponding phasor diagram inFigure
Smallangularadjustments,the
resultantangularchangeis
approximatelyproportionaltothe
injectedvoltage,whilethe
voltagemagnituderemains
almostconstant.
However,forlargeangular
adjustments,themagnitudeof
thesystemvoltagewill
appreciablyincreaseand,forthis
reason,isoftenreferredtoasa
quadratureboostertransformer
(QBT).
TheQBTarrangementhastypicallybeenusedinconventionalphase
shiftingapplications.

24
Power Flow Control byPhaseAngle Regulators

25

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

27
Concept ofSeries Capacitive Compensation5.1.1. TCVR and TCPAR
Therearetwobasicapproachestomodern,
powerelectronics-basedreactivecompensators:
conventionalthyristors(which
commutate"naturally"atcurrent
zeros)tocontrolcurrentin
reactiveimpedances
employsturn-off(GTO)thyristors(or
similardevices)inswitchingpower
converterstorealizecontrollable
synchronousvoltagesources.
GCC
(GTO –Thyristor Controlled Converter)
CTCC(conventional thyristors
Controlled Converter )
TCVR TCPAR
Switching Converter based
Voltage & Phase Angle regulators

28
Thisdualapproach,inadifferentform,extendsalsotovoltage
andphaseangleregulators.
voltageandangleregulationaregenerallyaccomplishedby
in-phaseand,respectively,quadraturevoltageinjection.
BoththeconventionalthyristorandGTO-controlledconverter-
basedapproachesinsertacontrolledvoltagebetweenthegivenbus
andthecontrolledterminalorline.

29
Themajor difference between thetwoisthat
Parameter CTCC GCC
Approach
The insertion voltage from
appropriate taps of the regulating
("excitation") transformer
The insertion voltage from a dc
power supply
function
The first approach is that of an on-
load tap-changer: selecting the
proper tap of the regulating
transformer and injecting the thus
obtained voltage, usually by an
insertion transformer, in series
with the line.
Voltage source is to generate the
required voltage and inject it, also
by an insertion transformer, in
series with the line.
Operation &
Performance
Self-sufficient in supplying or
absorbing the reactive power the
voltage or angle regulation
demands. It requires external signal
to accomplish desired regulation.
Not Self-sufficient in supplying or
absorbing the reactive power.
Controllability
Unrestricted Controllability of
injected Voltage&
Don’t change angle of voltage
that it controls
Restricted Controllability of
injected Voltage &
change angle of voltage that it
controls

30
TherearetworeasonsusingTCVR&TCPAR
insteadofMechanicalloadtapchangers:
Eliminationofexpensiveregular
maintenance
Toprovidehighspeedofresponsefor
dynamicsystemcontrol
(i)Thyristorcontrolledvoltageregulator(TCVR):
Inavoltageregulator,thevoltageregulatorisobtainedbyinjecting
voltageinphasewiththesystemvoltage.
Inthyristorcontrollervoltageregulator(TCVR)the
thyristorswitchesareusedtocontroltheinjectedvoltage.
InTCVR,thetransformerwindingissoconnectedsuchthatthe
injectedvoltageshouldbeinthesamephasewiththesystemvoltage.
Bycontrollingthevalueofthedelayangleofthyristorrequired
voltageregulationcanbeobtained.
ThecircuitdiagramofTCVRissameasthyristorcontrolledtap
changerandisshowninFig.(1).

31
Basicthyristortap-changercircuitconfigurationforcontinuous
(delayangle)controloftheoutputvoltage.(a)Resistiveload(LineI
in-phasewithterminalvoltage)

32
Intheabovecircuit,thecompletesecondarywindingofthetransformer
issplitintotwopart.TwovoltagesobtainedupperandLowertapsV2
&V1.
The lower terminal and the midpoint winding is operated by switch
SW1.
When switch SW1 is closed the voltage across the resistive load is V1.
The complete secondary winding will be connected across load R when
the switch SW2 is closed and the voltage across the load is V2
The gate of thyristor valves SW1 and SW 2 is controlled by the delay
angle α with respect to the zero crossing instant of the voltage.
The waveform of the voltages with respect to delay angle a is as shown
in Fig.

33
https://www.muquestionpaper.com/p/electrical-facts-theory-latest-updated.html

34
Fromthewaveformatα=0,thyristorswitchSW1turnsonanda
voltageacrosstheloadisv1.
Atα,valveSW2isturnedONwhichcommutatesthecurrentfrom
theconductingthyristorvalveSW1,byforcinganegativeanodeto
cathodevoltageacrossitandconnectingtheoutputtotheuppertap
withvoltageV2.
ValveSW2continuesconductinguntilthenextcurrentzerois
reached,whereasthepreviousgatingsequencecontinuesasshown
bytheloadvoltagewaveform.
bydelayingthetum-onofsw2fromzerotoᴨ,anyoutput
voltagebetweenv2andv1canbeattained.

35
Fourieranalysisoftheoutputvoltagewaveformforanidealized
continuouslycontrolledthyristortapchanger,operatingbetween
voltagesv1andv2withresistiveloadanddelayangleαwith
respecttozerocrossingofthevoltage,
•By using the above equation the resultant regulated voltage of tap
changer can be obtained.

36
Output voltage waveform ofthe delay angle controlled
thyristortap changer supplying apurely inductive load.

37
2. Thyristor controlled phase angle regulator (TCPAR):
•Inthephaseangleregulator,thephaseangleregulationisobtainedby
injectingvoltageinphasequadraturewiththesystemvoltage.
•Inthyristorcontrolledphaseangleregulator(TCPAR)thethyristor
switchesareusedtocontroltheinjectedvoltage.
•InTCPARthetransformerwindingissoconnectedsuchthatthe
injectedvoltageshouldbeinphasequadraturewiththesystemvoltage.
•Bycontrollingthevalueofthedelayangleofthyristorrequiredphase
angleregulationcanbeobtained.

38
Considerthebasicpowercircuitofthe
thyristortapchangerwithfullyinductive
load,asshowninFigure.unidirectional
thyristorvalves(A,CorB,D)capableof
conductingonlypositiveoronlynegative
currentarelabeledindividually.
Thevoltagesattheupperand
lowertaps,togetherwithaninductive
loadcurrentofarbitrarymagnitudefor
reference,areshownatFigure.
Operationsimilartothatshownfor
resistiveload,i.e.,changingfirstfromthe
uppertothelowertap,(D-B)andthenfrom
thelowertotheuppertap,tobecarried
outduringthepositivehalf-cycleofthe
supplyvoltage.Itcanbeobservedthatatα=
0theinductiveloadcurrentisnegativeand,
consequently,thyristorvalveDoftheuppertap
mustbeconducting.
Construction:
The"positive"valveat
thelowertaplabeled
"A,"thenegativeone
labeled"B" and,
similarly,attheupper
tapthe"positive"valve
islabeled"C"andthe
"negative" labeled
"D."

39
Output voltage waveform ofthe delay angle controlled
thyristortap changer supplying apurely inductive load.

40
Thus,intheintervalofzerovoltage(α=0)tozerocurrent,which
is,withoutharmonics,atα=ᴨl2,commutationtothelowertap
ispossiblebyturningonthyristorvalveBofthelowertap.
ThisactionwillimposeanegativeanodetocathodevoltageonD,
forcingittoturnoff.Inthesubsequentintervalofthepositive
voltagehalf-cycle,i.e.,fromcurrentzerocrossingtothenext
voltagezerocrossing,thecurrentispositivesoeitherthyristor
valveAorCcouldbegatedon,butcommutationwouldbe
possibleonlyfromvalveAtoC.TurningonvalveCwouldimpose
anegativeanodetocathodevoltageonAtotumitoff,butC
wouldstayinconductionuntilthenaturalcurrentzerocrossingis
reachedbecauseCisconnectedtothehighesttapvoltageavailable.
Positive Half-Cycle ofthe Input Voltage

41
Negative Half-Cycle ofthe Input Voltage
The continuously controllable thyristor tapchanger hasapurely
capacitive loadasshown inFigure.
Controlstrategysimilartothatestablishedforinductiveload,that
is,whentheloadcurrentflowisoppositetothesupplyvoltage
polarity,gatingofappropriatelowertapthyristorvalvetakes
placetoachievecommutationfromtheuppertaptothelower
tap,then1δ0degreescontinuouscontrolcanbeobtainedover
eachhalf-cycle.
The tap changes can occur anywhere in the time periods indicated
by arrows.

42
Outputvoltagewaveformofthedelayanglecontrolledthyristortap
changersupplyingapurelycapacitiveload.

43

44
Anappropriatecontrolprovidingcorrectthyristorfiring
sequenceandcorrecttimingoftapchange,itispossibleto
operateacontinuouslycontrollablethyristortapchangerinto
loadsofanyphaseangleandmaintain1δ0degreecontrol.
Apossiblebasicstructurefortheinternalcontrolofthe
continuouslycontrollablethyristortapchangerisshowninFigure
(beforeslide).

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

46
5.1.2.SwitchedConverterBasedVoltagePhaseAngle
Regulator
Asynchronousvoltagesource(SVS)isappliedasaseriesreactive
compensatortoinjectacontrollablevoltageinquadraturewiththeline
current.
Itisshownthatsuchacompensator,whenappropriatelysupplied
withdcpower,canalsoprovidecompensationfortheresistivevoltage
dropacrossthelinebyinjectingavoltagecomponentthatisinphase
withthelinecurrent.
Aconverter-basedSVSwithcontrollableamplitudeVC,and
phaseangleψcanbeusedforvoltageandphaseangleregulationas
illustratedinFigurebelow,

47
Bysettingψ=0andψ=+/-π/2(quadraturebooster)orψ=+/-
(Π+σ)/2,whereσisthedesiredangularphaseshiftproducedbythe
injectionofvoltagephasorV
ce
+/-jψ.

48
Thesynchronousvoltagesourceusedasavoltageorangleregulatorwill
generallyexchangebothrealandreactivepowerasillustratedinFigure.

49
wherethein-phaseandquadraturecomponentsofanassumed
loadcurrentwithrespecttothevoltageinsertedforvoltageregulation,
quadratureboostingandidealphaseanglecontrolareshowntogether
withthecorrespondingexpressionsfortherealandreactivepowerthe
SVSexchanged.
Itcanbeobservedthat,particularlyforphaseanglecontrol,the
reactivepowerdemandontheSVSisgenerallyasignificant,andoften
thedominantportion,ofthetotalVA=Vc*Ithroughput.
TheSVS,incontrasttoathyristortapchanger,hastheinherent
capabilitytogenerateorabsorbthereactivepoweritexchanges.
However,itmustbesuppliedatitsdcterminalswiththerealpower
portionofthetotalVAdemandresultingfromthevoltageorangle
regulation.

50
Dependingontheapplication,thevoltageregulationorphase
anglecontrolmayrequireeitherunidirectionalorbi-directionalreal
powerflow.
Inthecaseofunidirectionalrealpowerflow(thevoltage
injectionattheacterminalsonlysuppliesrealpower),therealpower
couldbesuppliedfromtheacsystembyarelativelysimpleline-
commutatedac-to-dcthyristorconverter.
Iftheapplicationrequiresbi-directionalpowerflow,thepower
supplymustbe"regenerative,"capableofcontrollingtheflowofcurrent
inandoutofthedeterminaloftheinjectionconverter.

51
Althoughtherearevariousac-to-dcconverterarrangementstodothis,
theback-to-backvoltage-sourcedconverterarrangement,maybethebest
fromthestandpointofuniformity,flexibility,andperformance.
Theinternalcapabilityofthevoltage-sourcedconvertertogenerate
reactivepowerisasignificantadvantageinbothvoltageandphaseangle
regulationapplications.Thisisbecausetheacsystemhastosupplyonly
therealpowerdemandoftheregulationandconsequentlyitisnot
burdenedbythetransmissionofreactivepower,thecorresponding
voltagedrops,andresultantlinelossesiftheregulatorisremotely
located.Theself-sufficiencyoftheregulatortosupplyreactivepoweris
alsoimportanttoavoidvoltagecollapse.Generally,thearrangementof
theback-to-backvoltage-sourcedconverterhasbroadpossibilitiesforthe
implementationofextremelypowerfulFACTSControllerswithmultiple
andconvertiblefunctionalcapabilities.Theseincludevoltageregulation
andphase-anglecontrolinadditiontocombinedrealandreactiveseries
andshuntcompensationoftransmissionlines.

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

53
5.2.SchematicandbasicoperatingprinciplesofUnifiedPower
FlowController(UPFC)
https://www.brainkart.com/article/Unified-Power-Flow-Controller-(UPFC)--Principle,-Modes-of-Operation-
and-Applications_11682/
TheUnifiedPowerFlowController(UPFC)conceptwas
proposedbyGyugyiin1991.UPFCisacombinationofSTATCOMand
SSSCcoupledviaacommonDCvoltagelink.
TheUPFCwasdevisedforthereal-timecontrolanddynamic
compensationofactransmissionsystems,providingmultifunctional
flexibilityrequiredtosolvemanyoftheproblemsfacingthepower
deliveryindustry.
TheUPFCisabletocontrol,simultaneouslyorselectively,allthe
parametersaffectingpowerflowinthetransmissionline(i.e.,voltage,
impedance,andphaseangle),andthisuniquecapabilityissignifiedby
theadjective"unified"initsname.Alternatively,itcanindependently
controlboththerealand.reactivepowerflowintheline.

54
UPFCisageneralizedsynchronousvoltagesource(SVS),
representedatthefundamental(powersystem)frequencybyvoltage
phasorVpqwithcontrollablemagnitudeVpq(0≤Vpq≤Vpqmax)and
angleρ(0≤ρ≤2π),inserieswiththetransmissionline,asillustratedfor
theusualelementarytwomachinesystem(orfortwoindependent
systemswithatransmissionlinkintertie)inFigure.
https://www.studocu.com/in/document/veer-narmad-south-gujarat-university/environment-development-and-
sustainability/unified-power-flow-controller-upfc/49786650
Fig. ConceptualrepresentationoftheUPFCinatwo-machinepowersystem.

55
Thishavefunctionallyunrestrictedoperation&includesvoltage
andangleregulation,theSVSgenerallyexchangesbothreactiveandreal
powerwiththetransmissionsystem.
Since,asestablishedpreviously,anSVSisabletogenerateonly
thereactivepowerexchanged,therealpowermustbesuppliedtoit,or
absorbedfromit,byasuitablepowersupplyorsink.
IntheUPFCarrangementtherealpowerexchangedisprovided
byoneoftheendbuses(e.g.,thesending-endbus),asindicatedinFigure
Fig. ConceptualrepresentationoftheUPFCinatwo-machinepowersystem.

56
UPFCconsistsoftwovoltagesourcedconverters,asillustratedin
Figure.Theseback-to-backconverters,labeled"Converter1"and
"Converter2"inthefigure,areoperatedfromacommondclink
providedbyadcstoragecapacitor.

57
Asweknow,thisarrangementfunctionsasanidealac-to-ac
powerconverterinwhichtherealpowercanfreelyflowineither
directionbetweentheacterminalsofthetwoconverters,andeach
convertercanindependentlygenerate(orabsorb)reactivepoweratits
ownacoutputTerminal.
Converter2providesthemainfunctionoftheUPFCbyinjecting
avoltageVpqwithcontrollablemagnitudeVpqandphaseangleρin
serieswiththelineviaaninsertiontransformer.Thisinjectedvoltage
actsessentiallyasasynchronousacvoltagesource.
Thetransmissionlinecurrentflowsthroughthisvoltagesource
resultinginreactiveandrealpowerexchangebetweenitandtheac
system.Thereactivepowerexchangedattheacterminal(i.e.,atthe
terminaloftheseriesinsertiontransformer)isgeneratedinternallybythe
converter.Therealpowerexchangedattheacterminalisconvertedinto
dcpowerwhichappearsatthedclinkasapositiveornegativereal
powerdemand

58
ThebasicfunctionofConverter1istosupplyorabsorbthereal
powerdemandedbyConverter2atthecommondclinktosupportthe
realpowerexchangeresultingfromtheseriesvoltageinjection.
ThisdclinkpowerdemandofConverter2isconvertedbackto
acbyConverter1andcoupledtothetransmissionlinebusviaashunt
connectedtransformer.
InadditiontotherealpowerneedofConverter2,Converter1
canalsogenerateorabsorbcontrollablereactivepower,ifitisdesired,
andtherebyprovideindependentshuntreactivecompensationforthe
line.
Itisimportanttonotethatwhereasthereisacloseddirectpath
fortherealpowernegotiatedbytheactionofseriesvoltageinjection
throughConvertersIand2backtotheline,thecorrespondingreactive
powerexchangedissuppliedorabsorbedlocallybyConverter2and
thereforedoesnothavetobetransmittedbytheline

59
Thus,Converter1canbeoperatedataunitypowerfactororbe
controlledtohaveareactivepowerexchangewiththelineindependent
ofthereactivepowerexchangedbyConverter2.Obviously,therecanbe
noreactivepowerflowthroughtheUPFCdclink.
OR

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

61
5.2.SchematicandbasicoperatingprinciplesofUnifiedPower
FlowController(UPFC)
Principle of Operation
TheUPFCisthemostversatileFACTScontrollerdevelopedsofar,with
allencompassingcapabilitiesofvoltageregulation,seriescompensation,
andphaseshifting.

Itcanindependentlyandveryrapidlycontrolbothreal-andreactivepower
flowsinatransmission.

ItisconfiguredasshowninFig.andcomprisestwoVSCscoupledthrough
acommondcterminal.

OneVSCconverter1isconnectedinshuntwiththelinethroughacoupling
transformer;theotherVSCconverter2isinsertedinserieswiththe
transmissionlinethroughaninterfacetransformer.

Thedcvoltageforbothconvertersisprovidedbyacommoncapacitorbank.

Theseriesconverteriscontrolledtoinjectavoltagephasor,Vpq,inseries
withtheline,whichcanbevariedfrom0toVpqmax.Moreover,thephase
angleofVpqcanbeindependentlyvariedfrom0
0
to360
0
.

62
The implementation of the UPFC using two “back –to –back” VSCs
with a common DC-terminal capacitor

63
Inthisprocess,theseriesconverterexchangesbothrealandreactive
powerwiththetransmissionline.

Althoughthereactivepowerisinternallygenerated/absorbedbythe
seriesconverter,thereal-powergeneration/absorptionismadefeasible
bythedc-energy–storagedevicethatis,thecapacitor.

Theshunt-connectedconverter1isusedmainlytosupplythereal-
powerdemandofconverter2,whichitderivesfromthetransmissionline
itself.Theshuntconvertermaintainsconstantvoltageofthedcbus.

Thusthenetrealpowerdrawnfromtheacsystemisequaltothe
lossesofthetwoconvertersandtheircouplingtransformers.

Inaddition,theshuntconverterfunctionslikeaSTATCOMand
independentlyregulatestheterminalvoltageoftheinterconnectedbusby
generating/absorbingarequisiteamountofreactivepower.

64
Modes of Operation
Thephasordiagramillustratingthegeneralconceptofsries-voltageinjectionandattainable
powerflowcontrolfunctionsa)Series-voltageinjection;(b)terminal-voltage
regulation;(c)terminal-voltageandline-impedanceregulationand(d)terminal-voltageandphse-
angleregulation

65
Theconceptsofvariouspower-flowcontrolfunctionsbyuseofthe
UPFCareillustratedinFigs.10.26(a)–(d).Part(a)depictstheadditionof
thegeneralvoltagephasorVpqtotheexistingbusvoltage,V0,atan
anglethatvariesfrom0
0
to360
0
.
VoltageregulationiseffectedifVpq=∆V0isgeneratedinphase
withV0,asshowninpart(b).Acombinationofvoltageregulationand
seriescompensationisimplementedinpart(c),whereVpqisthesum
ofavoltageregulatingcomponent∆V0andaseriescompensation
providingvoltagecomponentVcthatlagsbehindthelinecurrentby
90
0
.Inthephase-shiftingprocessshowninpart(d),theUPFC-
generatedvoltageVpqisacombinationofvoltage-regulating
component∆V0andphase-shiftingvoltagecomponentVa.
ThefunctionofVaistochangethephaseangleoftheregulated
voltagephasor,V0+∆V,byanangleα.Asimultaneousattainmentof
allthreeforegoingpower-flowcontrolfunctionsisdepictedinFig.
ThecontrolleroftheUPFCcanselecteitheroneoracombinationof
thethreefunctionsasitscontrolobjective,dependingonthesystem
requirements.

66
TheUPFCoperateswithconstraintsonthefollowingvariables:
1.Theseries-injectedvoltagemagnitude;
2.Thelinecurrentthroughseriesconverter;
3.Theshunt-convertercurrent;
4.Theminimumline-sidevoltageoftheUPFC;
5.Themaximumline-sidevoltageoftheUPFC;and
6.Thereal-powertransferbetweentheseriesconverterandtheshunt
converter
Aphasordiagramillustratingthe
simultaneousregulaitonoftheterminal
voltage,lineimpedance,andphaseangle
byappropriateseries-voltageinjection

67
TheUPFCcanoperateinvariousmodes,including:
1.VoltageRegulationMode:TheUPFCcanregulatethegridvoltage
byinjectingorabsorbingreactivepower.
2.PowerFlowControlMode:TheUPFCcancontroltherealpower
flowinthetransmissionlinebyinjectingavoltageinserieswiththe
linecurrent.
3.LineImpedanceCompensationMode:TheUPFCcancompensate
forlineimpedancebyinjectingavoltageinserieswiththelinecurrent.
4.DampingMode:TheUPFCcandamposcillationsinthepower
systembyinjectingavoltageoutofphasewiththelinecurrent.

68
Applications (UPFC)
The power-transmission capability is determined by the transient
stability considerations of the 345-kV line.
thepowertransferwiththeUPFCcanbeincreased,urtherby
enhancingtheUPFCrating,thepowerincreaseiscorrespondinglyand
significantlylowerthantheincreaseintheUPFCrating,thereby
indicatingthatthepracticallimitontheUPFCsizehasbeenattained.
TheUPFCalsoprovidesverysignificantdampingtopower
oscillationswhenitoperatesatpowerflowswithintheoperating
limits.

About
History
introduction
lesson1Lesson 5
V. Combined Controllers
5.1.VoltageandPhaseAngleRegulator
5.1.1.TCVRandTCPAR
5.1.2.SwitchedConverterBasedVoltagePhase
AngleRegulator
5.2.Schematicandbasicoperatingprinciplesof
UnifiedPowerFlowController(UPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
5.4.Applicationontransmissionlines

70
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)
ThecapabilityoftheUPFCisfacilitatedbyitspowercircuitwhichis
basicallyanac-to-acpowerconverter,usuallyimplementedbytwo
back-to-backdc-to-dcconverterswithacommondcvoltagelink.
Theoutputofoneconverteriscoupledinseries,whiletheoutputofthe
otherinshuntwiththetransmissionline.Withthisarrangement,the
UPFCcaninjectafullycontrollablevoltage(magnitudeandangle)in
serieswiththelineandsupporttheresultinggeneralizedrealand
reactivecompensationbysupplyingtherealpowerrequiredbythe
seriesconverterthroughtheshunt-connectedconverterfromtheacbus.
TheUPFCconceptprovidesapowerfultoolforthecost-effective
utilizationofindividualtransmissionlinesbyfacilitatingthe
independentcontrolofboththerealandreactivepowerflow,andthus
themaximizationofrealpowertransferatminimumlosses,intheline.

71
However,independentoftheirmeansofimplementation,series
reactivecompensatorsareunabletocontrolthereactivepowerflow
in,andthustheproperloadbalancingof,thelines.Thisproblem
becomesparticularlyevidentinthosecaseswheretheratioofreactive
toresistivelineimpedance(X/R)isrelativelylow.
TheIPFCcanpotentiallyprovideahighlyeffectiveschemeforpower
transmissionmanagementatamultilinesubstation.
Basic Operating Principles and Characteristics
InitsgeneralformtheInterlinePowerFlowControlleremploysa
numberofdc-to-acconverterseachprovidingseriescompensationfor
adifferentline.Inotherwords,theIPFCcomprisesanumberofStatic
SynchronousSeriesCompensators.

72
Interline Power Flow Controller comprising n converters.
However, within the general concept of the IPFC, the compensating converters
are linked together at their dc terminals, as illustrated in below Figure.

73
Withthisscheme,inadditiontoprovidingseriesreactive
compensation,anyconvertercanbecontrolledtosupplyrealpowerto
thecommondclinkfromitsowntransmissionline.
Thus,anoverallsurpluspowercanbemadeavailablefromtheunder
utilizedlineswhichthencanbeusedbyotherlinesforrealpower
compensation.
Inthisway,someoftheconverters,compensatingoverloadedlinesor
lineswithaheavyburdenofreactivepowerflow,canbeequipped
withfulltwo-dimensional,reactiveandrealpowercontrolcapability,
similartothatofferedbytheUPFC.
TheIPFCisparticularlyadvantageouswhencontrolledseries
compensationorotherseriespowerflowcontrol(e.g.,phaseshifting)
iscontemplated'thisisbecausetheIPFCsimplycombinesthe
otherwiseindependentseriescompensators(SSSCs),withoutany
significanthardwareaddition,andaffordssomeofthoseagreatly
enhancedfunctionalcapability.

74
Theincreasefunctionalcapabilitycanbemovedfromonelineto
another,assystemconditionsmaydictate.Inaddition,theindividual
convertersoftheIPFcanbedecoupledandoperatedasindependent
seriesreactivecompensatorswithoutanyhardwarechange.
Althoughconverterswithdifferentdcvoltagecouldbecoupledvia
appropriated"-to-d"converters("choppers"),thearrangementwouldbe
expensivewithrelativelyhighoperatinglosses.Therefore,itisdesirableto
establishacommondcoperatingvoltageforallconverter-basedControllers
usedatonelocation,whichwouldfacilitatetheirdccouplingandtherebyan
inexpensiveextensionoftheirfunctionalcapabilities.Reasonablydefined
commondcoperatingvoltageshouldnotimposesignificantrestrictionon
theconverter’design,sinceathighoutputpowermultipleparallelpolesare
normallyemployed.Apartfromthepotentialfordccoupling,common
operatingvoltagewouldalsobehelpfulforthestandardizationofthe
convertertypeequipmentusedatonelocation,aswellasforthe
maintenanceofsparePartsinventory.

75
TheoperatingregionsoftheindividualconvertersoftheIPFCcan
differsignificantly,dependingonthevoltageandpowerratingsofthe
individuallinesandontheamountofcompensationdesired.Itis
evidentthatahighvoltage/high-powerlinemaysupplythenecessary
realpowerforalowvoltage/low-powercapacitylinetooptimizeits
powertransmission,withoutsignificantlyaffectingitsown
transmission.
TheIPFCisanidealsolutiontobalanceboththerealandreactive
powerflowinmultilineandmeshedsystems.
TheprimeconvertersoftheIPFCcanbecontrolledtoprovidetotally
differentoperatingfunctions,e.g.,independent(P)and(e)control,
phaseshifting(transmissionangleregulation),transmission
impedancecontrol,etc.Thesefunctionscanbeselectedaccordingto
prevailingsystemoperatingrequirements.

76
SchematicDiagramforInterlinePowerFlowController(IPFC)
5.3.Schematicandbasicoperatingprinciplesof
InterlinePowerFlowController(IPFC)

77
AnInterlinePowerFlowController(IPFC)isadeviceusedinpower
systemstoenhancetheflexibilityandreliabilityofpowerflow
management.It'spartofabroadercategoryofpowerelectronicdevices
designedtoimprovetheefficiencyandstabilityofelectricalgrids.
Here’sabriefoverviewofitsschematicandbasicoperatingprinciples:
Basic Operating Principles
Function:TheIPFCisusedtocontroltheflowofelectricalpower
betweendifferenttransmissionlinesinapowersystem.Itallowsforthe
dynamicadjustmentofpowerflows,helpingtoalleviatecongestion,
improvestability,andenhancetheoverallreliabilityofthegrid.

78
Components:TheIPFCtypicallyconsistsofmultiplevoltagesource
converters(VSCs),eachassociatedwithdifferenttransmissionlines.
TheseVSCsareconnectedthroughacommonDClink.
Operation:
•VoltageSourceConverters(VSCs):EachVSCcaninjectorabsorb
reactivepowertocontrolthevoltageandpowerflowonitsrespective
transmissionline.
•DCLink:ThecommonDClinkconnectsalltheVSCsandallowsfor
thetransferofpowerbetweendifferentlines.ThisDClinkprovidesa
meansfortheVSCstoexchangepower.
•ControlSystem:TheIPFCusessophisticatedcontrolalgorithmsto
managethepowerflowsbetweenthelines.Itadjuststheoperationof
eachVSCtooptimizepowerdistributionaccordingtothecurrentneeds
ofthegrid.

79
Schematic Overview
Voltage Source Converters (VSCs):
•Input: Alternating current (AC) from the transmission lines.
•Output: Controlled AC voltage injected into the transmission line to
adjust power flow.
•Structure:EachVSCistypicallycomposedofanarrayofpower
electronicswitches(likeIGBTsorMOSFETs)andassociatedcontrol
circuitry.
DC Link:
•Components:Includescapacitorsandsometimesinductorstomaintain
thevoltagebalanceandfilteroutripples.
•Function:ConnectstheoutputsoftheVSCs,allowingthemtoshare
powerandworkincoordination.
Control Strategy:
TheIPFCusesacontrolstrategytoregulatethepowerflowbetweenthe
twotransmissionlines.Thecontrolstrategyinvolvesmeasuringtheline
currentsandvoltages,andthenadjustingtheinjectedvoltagetoachieve
thedesiredpowerflow.

80
The IPFC consists of two main components:
1.ConverterStation:Thisisthemainpowerelectronicdevicethat
convertstheACpowerfromthetransmissionlinetoDCpowerandvice
versa.
2.CouplingTransformer:Thistransformerisusedtoconnectthe
converterstationtothetransmissionline.
Operating Modes:
TheIPFCcanoperateintwomodes:
1.SeriesCompensationMode:Inthismode,theIPFCinjectsavoltage
inserieswiththetransmissionline,whichcanbeusedtoincreaseor
decreasethepowerflowbetweenthetwolines.
2.ShuntCompensationMode:Inthismode,theIPFCinjectsacurrent
inparallelwiththetransmissionline,whichcanbeusedtocontrolthe
reactivepowerflowbetweenthetwolines.

81
Applications and Benefits
•Congestion Management: Helps manage and relieve transmission line
congestion by redistributing power flows.
•Voltage Support: Provides reactive power support to maintain voltage
levels within desired ranges.
•Grid Stability: Enhances the stability of the power system by
improving dynamic response to disturbances.
TheIPFC'sabilitytocontrolpowerflowsdynamicallyandflexibly
makesitavaluabletoolformodernelectricalgrids,whichare
increasinglycomplexandrequireadvancedsolutionsforreliable
operation.

82
Reference links
https://www.muquestionpaper.com/p/electrical-facts-theory-latest-updated.html
http://www.infocobuild.com/education/audio-video-courses/electronics/Flexible-AC-
TransmissionSystemsDevices-IIT-Roorkee/lecture-29.html#google_vignette
https://www.muquestionpaper.com/p/electrical-facts-theory-latest-updated.html
https://www.brainkart.com/article/Unified-Power-Flow-Controller-(UPFC)--Principle,-Modes-
of-Operation-and-Applications_11682/
https://www.studocu.com/in/document/veer-narmad-south-gujarat-university/environment-
development-and-sustainability/unified-power-flow-controller-upfc/49786650
https://top10electrical.blogspot.com/2015/11/principle-of-operation-of-unified-power.html
https://top10electrical.blogspot.com/2015/11/interline-power-flow-controller-ipfc.html
https://vemu.org/uploads/lecture_notes/27_01_2024_1326289443.pdf
https://myninja.ai/?utm_source=google&utm_medium=paid-search&utm_campaign=india-ai-
chat&gad_source=1&gclid=EAIaIQobChMI4tKMpej1hgMVUa1mAh0WxAFUEAAYASAA
EgKvovD_BwE&conv=20240903-040039-dlaiks

83
Q.No
Question M CO BTPI’S
1
DescribethebasicoperatingprinciplesandconceptsofVoltageand
PhaseAngleRegulator
8C413.5L2
1.4.1
3.1.6
DescribethemajordifferencebetweenCTCC(conventional
thyristorsControlledConverter)&GCC(GTO–Thyristor
ControlledConverter)
8C413.5L3
1.4.1
3.1.6
2
DescribethebasicoperatingprinciplesandconceptsofTCVRand
TCPARwithwaveforms.
8
C413.5L1
1.4.1
3.1.6
Explaintheoperationalprinciplesofaphaseangleregulator.How
doesitinfluencepowerflowandvoltagestabilityinanelectrical
grid?
8
C413.5L2
1.4.1
3.1.6
3
DescribetheschematicdesignofanInterlinePowerFlowController
(IPFC).Howdoesitsdesigncontributetoitsfunctionalityinapower
system?
16C413.5L3
1.4.1
3.1.6
4
DrawthecircuitdiagramofUPFCusingtwoback-to-backvoltage
sourcedconverterandexplainitsbasicoperatingprinciple.
10C413.5L2
1.4.1
3.1.6
AnalyzetheworkingprinciplesofSwitchedConverter-Based
VoltagePhaseAngleRegulators(SC-BVPARs).Howdothese
regulatorsuseswitchedconverterstoachievebothvoltageandphase
anglecontrol?
C413.5L2
1.4.1
3.1.6
Question Bank

84
5
ComparetheInterlinePowerFlowController(IPFC)with
otherpowerflowcontrollersliketheUnifiedPowerFlow
Controller(UPFC)andtheStaticSynchronousSeries
Compensator(SSSC).Whatarethekeydifferencesintheir
operatingprinciplesandapplications?
C413.5L2
1.4.1
3.1.6
•Unified Power Flow Controller (UPFC):
•Operating Principles:Describe the UPFC’s combination of series and shunt VSCs for
controlling power flow and voltage.
•Applications:DiscusstypicalscenarioswheretheUPFCisusedanditsadvantagesin
managingcomplexpowerflows.
Static Synchronous Compensator (STATCOM):
Operating Principles:Explain how the STATCOM provides reactive power
compensation using a VSC connected in shunt with the transmission line.
Applications:Discuss the STATCOM’s role in voltage regulation and stability
improvement in power systems.
•Interline Power Flow Controller (IPFC):Operating Principles:Describe how the
IPFC uses multiple VSCs to control power flow across different transmission lines.
•Applications:Explain the IPFC’s ability to manage power flows in multi-line systems
and its advantages in balancing loads.

85
•Comparison:
•Functionality:Compare the key functionalities of UPFC, STATCOM,
and IPFC, focusing on their control capabilities and operational goals.
•Complexity and Cost:Discuss differences in system complexity, cost,
and installation considerations.
•Advantages and Limitations:Analyze the advantages and limitations
of each technology based on their design and applications.

86
What are the main types of voltage regulators?
•LinearRegulators:Theseincludeseriesandshuntregulators.Series
regulatorscontroltheoutputvoltagebyvaryingtheresistanceinseries
withtheload.
•SwitchingRegulators:Theseincludebuckconverters(step-down),
boostconverters(step-up),andbuck-boostconverters(bothstep-upand
step-down).Theyuseinductors,capacitors,andswitchingelementsto
efficientlyconvertvoltages.
How does a phase angle regulator work?
•Phaseangleregulatorscontrolthephaseanglebetweenvoltageand
currentbyadjustingthefiringangleofthyristorsorother
semiconductordevicesinthecircuit.Thisadjustmentchangesthe
effectivepowerflowandvoltagedropacrosstheline.

87
What is the difference between a phase angle regulator and a voltage
regulator?
•Avoltageregulatorprimarilymaintainsaconstantvoltagelevelina
circuit,whileaphaseangleregulatormanagesthephaserelationship
betweenvoltageandcurrenttocontrolpowerflowandimprovesystem
stability.
What are the key components of a phase angle regulator?
•Key components often include thyristors, transformers, and control
circuits. The thyristors are used to adjust the phase angle by switching on
and off at specific times during the AC cycle.
What is a voltage regulator?
•Avoltageregulatorisanelectroniccircuitordevicethatmaintainsa
constantoutputvoltagedespitevariationsininputvoltageorload
conditions.Itensuresthatthevoltagesuppliedtoacircuitordevice
remainsstableandwithinspecifiedlimits.

88
COURSE OUTCOMES
S.NO DESCRIPTION Taxonomy Level
CO413.1
Explainthebasicsofpowerflowcontrolin
transmissionlinesusingFACTScontrollers
Understanding (TL-2)
& Analyzing (TL-4)
CO413.2
DistinguishfunctionalRequirementsofshuntand
seriescompensators.
Understanding (TL-2)
& Analyzing (TL-4)
CO413.3
Describesthemethodofshuntcompensationusing
staticVARcompensators.
Remembering (TL-1)
& Applying (TL-3)
CO413.4
Explainthemethodsofcompensationusingseries
compensators.
Understanding (TL-2)
& Analyzing (TL-4)
CO413.5
Explainthemethodsofcompensationusing
combinedcompensators
Understanding (TL-2)
& Analyzing (TL-4)

89
CO-PO MAPPING
S.NoPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12
CO413.1 3 2 1 1 ---------- -- -- --
CO413.2 3 1 2 1 ---------- -- -- --
CO413.3 3 1 2 2 1 -------- -- 1 1
CO413.4 3 1 2 2 1 -------- -- 1 1
CO413.5 2 1 3 1 1 -------- -- 1 1
CO-PSO Mapping
PSO1 PSO2 PSO3
CO413.1 1 3 -
CO413.2 - 3 -
CO413.3 2 3 1
CO413.4 2 3 1
CO413.5 2 3 1

90
Three Learning Domain and Action Verbs
Cognitive Domain
(PO1-PO8, PO11), Head
(Writen)
Psychomotor
Domain(PO4-PO5),
Hand (practical)
Affective Domain
(PO6-PO12), Heart (Feelings)
C1Remembering
Define, What, List, Sketch,
Write
P1Imitate
Copy, Follow,
Repeat
A1 Receive
Accept, Attend, Recognize
C2Understanding
Explain, Illustrate, Discuss
P2Manipulation
execute, implement,
perform
A2Respond
Obey, Respond, Comply
C3Applying
Apply, Solve, Show,
Determine, Compute
P3Precision
show, Demonstrate
A3Value
Accept, Defend, Devote,
Pursue, Seek
C4Analyzing
Analyze, Illustrate, Test,
Inspect
P4Articulation
Develop, Construct,
Solve, Adapt,
A4Organize
Display, Order, Organize
C5Evaluating
Justify, Compare,
Differentiate, Summarize
P5Naturalization
Design, Invent,
Specify
A5Internalize
Internalize, Verify
C6Creating/ Designing
Design, Create, Modify,
Build, Solve

16-09-2024 HARI MADHAVA REDDY .Y
(Ph.D)
91

16-09-2024 HARI MADHAVA REDDY .Y
(Ph.D)
92

93
చాలామందిశ్రమపడుతూనేఅంటారు.. కానీఇతరులకువచ్చినట్లు గావాళ్ళకి
ఫలితాలులభంచవు.వాళ్ళళతెలుసుకోవలసినదిఏమిటంటే..
శ్రమ+ సరైనపనిముట్లు= మంచ్చఫలితాలు
శ్రమ+ తప్పుడుపనిముట్లు= ఫలితంశూనయం.
సరైనసాధనాలకోసంఎపుటికప్పుడుజ్ఞా నసముపార్జనచేసుత ండాలి. విజ్ఞా లదగ్గర్
తర్ఫీదుపందాలి.

16-09-2024 HARI MADHAVA REDDY .Y
(Ph.D)
94