ASME BPVC IX 2023.pdf

6,777 views 152 slides Aug 03, 2024
Slide 1
Slide 1 of 423
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252
Slide 253
253
Slide 254
254
Slide 255
255
Slide 256
256
Slide 257
257
Slide 258
258
Slide 259
259
Slide 260
260
Slide 261
261
Slide 262
262
Slide 263
263
Slide 264
264
Slide 265
265
Slide 266
266
Slide 267
267
Slide 268
268
Slide 269
269
Slide 270
270
Slide 271
271
Slide 272
272
Slide 273
273
Slide 274
274
Slide 275
275
Slide 276
276
Slide 277
277
Slide 278
278
Slide 279
279
Slide 280
280
Slide 281
281
Slide 282
282
Slide 283
283
Slide 284
284
Slide 285
285
Slide 286
286
Slide 287
287
Slide 288
288
Slide 289
289
Slide 290
290
Slide 291
291
Slide 292
292
Slide 293
293
Slide 294
294
Slide 295
295
Slide 296
296
Slide 297
297
Slide 298
298
Slide 299
299
Slide 300
300
Slide 301
301
Slide 302
302
Slide 303
303
Slide 304
304
Slide 305
305
Slide 306
306
Slide 307
307
Slide 308
308
Slide 309
309
Slide 310
310
Slide 311
311
Slide 312
312
Slide 313
313
Slide 314
314
Slide 315
315
Slide 316
316
Slide 317
317
Slide 318
318
Slide 319
319
Slide 320
320
Slide 321
321
Slide 322
322
Slide 323
323
Slide 324
324
Slide 325
325
Slide 326
326
Slide 327
327
Slide 328
328
Slide 329
329
Slide 330
330
Slide 331
331
Slide 332
332
Slide 333
333
Slide 334
334
Slide 335
335
Slide 336
336
Slide 337
337
Slide 338
338
Slide 339
339
Slide 340
340
Slide 341
341
Slide 342
342
Slide 343
343
Slide 344
344
Slide 345
345
Slide 346
346
Slide 347
347
Slide 348
348
Slide 349
349
Slide 350
350
Slide 351
351
Slide 352
352
Slide 353
353
Slide 354
354
Slide 355
355
Slide 356
356
Slide 357
357
Slide 358
358
Slide 359
359
Slide 360
360
Slide 361
361
Slide 362
362
Slide 363
363
Slide 364
364
Slide 365
365
Slide 366
366
Slide 367
367
Slide 368
368
Slide 369
369
Slide 370
370
Slide 371
371
Slide 372
372
Slide 373
373
Slide 374
374
Slide 375
375
Slide 376
376
Slide 377
377
Slide 378
378
Slide 379
379
Slide 380
380
Slide 381
381
Slide 382
382
Slide 383
383
Slide 384
384
Slide 385
385
Slide 386
386
Slide 387
387
Slide 388
388
Slide 389
389
Slide 390
390
Slide 391
391
Slide 392
392
Slide 393
393
Slide 394
394
Slide 395
395
Slide 396
396
Slide 397
397
Slide 398
398
Slide 399
399
Slide 400
400
Slide 401
401
Slide 402
402
Slide 403
403
Slide 404
404
Slide 405
405
Slide 406
406
Slide 407
407
Slide 408
408
Slide 409
409
Slide 410
410
Slide 411
411
Slide 412
412
Slide 413
413
Slide 414
414
Slide 415
415
Slide 416
416
Slide 417
417
Slide 418
418
Slide 419
419
Slide 420
420
Slide 421
421
Slide 422
422
Slide 423
423

About This Presentation

American Standards


Slide Content

Qualification Standard for
Welding, Brazing, and Fusing
Procedures; Welders; Brazers;
and Welding, Brazing, and
Fusing Operators
SECTION IX
Welding, Brazing, and Fusing Qualifications
ASME BPVC.IX-2023
2023
ASME Boiler and
Pressure Vessel Code
An International Code

Markings such as “ASME,” “ASME Standard,” or any other marking including “ASME,” ASME logos,
or the ASME Single Cer�fica�on Mark shall not be used on any item that is not constructed in
accordance with all of the applicable requirements of the Code or Standard. Use of the ASME
Single Cer�fica�on Mark requires formal ASME cer�fica�on; if no cer�fica�on program is
available, such ASME markings may not be used. (For Cer�fica�on and Accredita�on Programs,
see h�ps://www.asme.org/cer�fica�on-accredita�on.)
Items produced by par�es not formally possessing an ASME Cer�ficate may not be described,
either explicitly or implicitly, as ASME cer�fied or approved in any code forms or other document.

IX
QUALIFICATION STANDARD
FORWELDING, BRAZING, AND
FUSING PROCEDURES;
WELDERS; BRAZERS; AND
WELDING, BRAZING, AND
FUSING OPERATORS
ASMEBoiler andPressure VesselCommittee
onWelding,Brazing, andFusing
Two Park Avenue • New York, NY • 10016 USA
AN INTERNATIONAL CODE
2023 ASME Boiler &
Pressure Vessel Code
July 1, 20232023 Edition

DateofIssuance:July1,2023
Thisinternationalcodeorstandardwasdevelopedunderproceduresaccreditedasmeetingthecriteriafor
AmericanNationalStandardsanditisanAmericanNationalStandard.Thestandardscommitteethatapproved
thecodeorstandardwasbalancedtoensurethatindividualsfromcompetentandconcernedinterestshadan
opportunitytoparticipate.Theproposedcodeorstandardwasmadeavailableforpublicreviewand
comment,whichprovidedanopportunityforadditionalpublicinputfromindustry,academia,regulatoryagencies,
andthepublic-at-large.
ASMEdoesnot“approve,”“certify,”“rate,”or“endorse”anyitem,construction,proprietarydevice,oractivity.
ASMEdoesnottakeanypositionwithrespecttothevalidityofanypatentrightsassertedinconnectionwithany
itemsmentionedinthisdocument,anddoesnotundertaketoinsureanyoneutilizingastandardagainstliabilityfor
infringementofanyapplicableletterspatent,nordoesASMEassumeanysuchliability.Usersofacodeorstandard
areexpresslyadvisedthatdeterminationofthevalidityofanysuchpatentrights,andtheriskofinfringementofsuch
rights,isentirelytheirownresponsibility.
Participationbyfederalagencyrepresentativesorpersonsaffiliatedwithindustryisnottobeinterpretedas
governmentorindustryendorsementofthiscodeorstandard.
ASMEacceptsresponsibilityforonlythoseinterpretationsofthisdocumentissuedinaccordancewiththeestab-
lishedASMEproceduresandpolicies,whichprecludestheissuanceofinterpretationsbyindividuals.
Theendnotesandpreambleinthisdocument(ifany)arepartofthisAmericanNationalStandard.
ASMECollectiveMembershipMark
ASMESingleCertificationMark
“ASME” andtheaboveASMEsymbolsareregisteredtrademarksofTheAmericanSocietyofMechanicalEngineers.
Nopartofthisdocumentmaybereproducedinanyform,inanelectronic
retrievalsystemorotherwise,withoutthepriorwrittenpermissionofthe
publisher.
LibraryofCongressCatalogCardNumber:56-3934
AdoptedbytheCouncilofTheAmericanSocietyofMechanicalEngineers,1914;latestedition2023.
TheAmericanSocietyofMechanicalEngineers
TwoParkAvenue,NewYork,NY10016-5990
Copyright©2023by
THEAMERICANSOCIETYOFMECHANICALENGINEERS
Allrightsreserved
PrintedinU.S.A.

TABLEOFCONTENTS
ListofSections.................................................................. xii
Foreword...................................................................... xiii
StatementofPolicyontheUseoftheASMESingleCertificationMarkandCodeAuthorizationinAdvertising xv
StatementofPolicyontheUseofASMEMarkingtoIdentifyManufacturedItems................... xv
Personnel...................................................................... xvi
CorrespondenceWiththeCommittee...................................................xxxviii
Introduction..................................................................... xl
SummaryofChanges..............................................................xliii
Cross-ReferencingintheASMEBPVC..................................................xlvii
PartQG GeneralRequirements.................................. 1
QG-100 Scope............................................... 1
QG-109 Definitions............................................ 5
PartQW Welding............................................. 15
ArticleI WeldingGeneralRequirements........................... 15
QW-100 Scope............................................... 15
QW-110 WeldOrientation....................................... 15
QW-120 TestPositionsforGrooveWelds............................ 15
QW-130 TestPositionsforFilletWelds............................. 16
QW-140 TypesandPurposesofTestsandExaminations................. 17
QW-150 TensionTests......................................... 17
QW-160 Guided-BendTests...................................... 18
QW-170 ToughnessTests....................................... 19
QW-180 Fillet-WeldTests....................................... 20
QW-190 OtherTestsandExaminations.............................. 21
AppendixI RoundedIndicationCharts............................... 28
ArticleII WeldingProcedureQualifications......................... 29
QW-200 General.............................................. 29
QW-210 PreparationofTestCoupon............................... 32
QW-220 HybridWeldingProcedureVariables......................... 35
QW-250 WeldingVariables...................................... 35
QW-290 TemperBeadWelding................................... 70
ArticleIII WeldingPerformanceQualifications....................... 74
QW-300 General.............................................. 74
QW-310 QualificationTestCoupons................................ 76
QW-320 RetestsandRenewalofQualification......................... 77
QW-350 WeldingVariablesforWelders............................. 78
QW-360 WeldingVariablesforWeldingOperators..................... 79
iii

QW-380 SpecialProcesses....................................... 80
ArticleIV WeldingData......................................... 83
QW-400 Variables............................................. 83
QW-410 Technique............................................ 94
QW-420 P-Numbers........................................... 99
QW-430 F-Numbers...........................................191
QW-440 WeldMetalChemicalComposition...........................203
QW-450 Specimens............................................204
QW-460 Graphics.............................................209
QW-470 Etching—ProcessesandReagents..........................248
ArticleV StandardWeldingProcedureSpecifications(SWPSS)...........250
QW-500 General..............................................250
QW-510 AdoptionofSWPSS.....................................250
QW-520 UseofSWPSSWithoutDiscreteDemonstration.................250
QW-530 Forms...............................................251
QW-540 ProductionUseofSWPSS.................................251
ArticleVI MaterialManufacturingUsingWire-AdditiveWelding..........252
QW-600 General..............................................252
QW-610 QualificationVariablesforWire-AdditiveWeldingProcedures.......252
QW-620 SpecimenTestingandAcceptanceCriteriaforWire-AdditiveWelding. 253
QW-650 WeldingVariables......................................254
PartQB Brazing..............................................256
ArticleXI BrazingGeneralRequirements............................256
QB-100 Scope...............................................256
QB-110 BrazeOrientation.......................................256
QB-120 TestPositionsforLap,Butt,Scarf,orRabbetJoints..............256
QB-140 TypesandPurposesofTestsandExaminations.................257
QB-150 TensionTests.........................................257
QB-160 Guided-BendTests......................................258
QB-170 PeelTests............................................259
QB-180 SectioningTestsandWorkmanshipCoupons...................259
ArticleXII BrazingProcedureQualifications..........................260
QB-200 General..............................................260
QB-210 PreparationofTestCoupon...............................262
QB-250 BrazingVariables.......................................262
ArticleXIII BrazingPerformanceQualifications........................266
QB-300 General..............................................266
QB-310 QualificationTestCoupons................................267
QB-320 RetestsandRenewalofQualification.........................267
QB-350 BrazingVariablesforBrazersandBrazingOperators.............267
ArticleXIV BrazingData.........................................268
QB-400 Variables.............................................268
QB-410 Technique............................................269
QB-420 P-Numbers...........................................269
QB-430 F-Numbers...........................................269
iv

QB-450 Specimens............................................273
QB-460 Graphics.............................................276
PartQF PlasticFusing.........................................296
ArticleXXI PlasticFusingGeneralRequirements.......................296
QF-100 Scope...............................................296
QF-110 FusedJointOrientation...................................296
QF-120 TestPositions.........................................296
QF-130 DataAcquisitionandEvaluation............................296
QF-140 ExaminationsandTests..................................297
ArticleXXII FusingProcedureQualifications...........................303
QF-200 General..............................................303
QF-220 StandardFusingProcedureSpecifications.....................306
QF-250 FusingVariables........................................310
ArticleXXIII PlasticFusingPerformanceQualifications...................313
QF-300 General..............................................313
QF-310 QualificationTestCoupons................................314
QF-320 RetestsandRenewalofQualification.........................314
QF-360 EssentialVariablesforPerformanceQualificationofFusingOperators. 315
ArticleXXIV PlasticFusingData.....................................316
QF-400 Variables.............................................316
QF-420 MaterialGroupings......................................317
QF-450 Pipe-FusingLimits......................................318
QF-460 Graphics.............................................319
QF-480 Forms...............................................332
QF-490 Definitions............................................346
NonmandatoryAppendixB WeldingandBrazingForms..............................347
B-100 Forms...............................................347
MandatoryAppendixE PermittedStandardWeldingProcedureSpecifications(SWPSs)..358
E-100 Introduction..........................................358
E-200 Background..........................................358
E-300 InstructionsforAdoption................................358
MandatoryAppendixF StandardUnitsforUseinEquations.......................361
MandatoryAppendixG GuidancefortheUseofU.S.CustomaryandSIUnitsintheASMEBoiler
andPressureVesselCode.............................362
G-100 UseofUnitsinEquations.................................362
G-200 GuidelinesUsedtoDevelopSIEquivalents.....................362
G-300 SoftConversionFactors..................................364
NonmandatoryAppendixH WaveformControlledWelding............................365
H-100 Background...........................................365
H-200 WaveformControlledWeldingandHeatInputDetermination.......365
H-300 NewProceduresQualifications.............................365
H-400 ExistingQualifiedProcedures..............................366
H-500 PerformanceQualifications................................366
MandatoryAppendixJ GuidelineforRequestingP-NumberAssignmentsforBaseMetalsNot
ListedinTableQW/QB-422............................367
J-100 Introduction..........................................367
v

J-200 RequestFormat........................................367
J-300 Submittals............................................367
MandatoryAppendixK GuidanceonInvokingSectionIXRequirementsinOtherCodes,
Standards,Specifications,andContractDocuments..........368
K-100 BackgroundandPurpose.................................368
K-200 ScopeofSectionIXandWhatReferencingDocumentsMustAddress..368
K-300 RecommendedWording—General..........................368
NonmandatoryAppendixL WeldersandWeldingOperatorsQualifiedSimultaneouslyto(EN)ISO
9606-1,ISO14732,andSectionIX.......................371
L-100 Introduction..........................................371
L-200 AdministrativeRequirements..............................371
L-300 TechnicalRequirements..................................371
L-400 TestingRequirements....................................371
Figures
QG-109.2.1 TypicalSingleandMultibeadLayers......................... 14
QG-109.2.2 TypicalSingleBeadLayers................................ 14
QW-191.1.2.2(b)(4) RoundedIndicationCharts................................ 23
QW-461.1 PositionsofWelds—GrooveWelds.........................209
QW-461.2 PositionsofWelds—FilletWelds...........................210
QW-461.3 GrooveWeldsinPlate—TestPositions......................211
QW-461.4 GrooveWeldsinPipe—TestPositions.......................211
QW-461.5 FilletWeldsinPlate—TestPositions........................211
QW-461.6 FilletWeldsinPipe—TestPositions........................212
QW-461.7 StudWelds—TestPositions..............................213
QW-461.8 StudWelds—WeldingPositions...........................213
QW-461.10 RotatingToolDesignCharacteristics(FSW)ReferencedinQW-410...215
QW-462.1(a) Tension—ReducedSection—Plate.........................216
QW-462.1(b) Tension—ReducedSection—Pipe.........................217
QW-462.1(c) Tension—ReducedSectionAlternateforPipe.................217
QW-462.1(d) Tension—ReducedSection—TurnedSpecimens...............218
QW-462.1(e) Tension—FullSection—SmallDiameterPipe.................219
QW-462.2 SideBend............................................220
QW-462.3(a) FaceandRootBends—Transverse.........................221
QW-462.3(b) FaceandRootBends—Longitudinal........................221
QW-462.4(a) FilletWeldsinPlate—Procedure...........................222
QW-462.4(b) FilletWeldsinPlate—Performance.........................222
QW-462.4(c) FilletWeldsinPipe—Performance.........................223
QW-462.4(d) FilletWeldsinPipe—Procedure...........................224
QW-462.5(a) ChemicalAnalysisandHardnessSpecimenCorrosion-ResistantandHard-
FacingWeldMetalOverlay..............................224
QW-462.5(b) ChemicalAnalysisSpecimen,Hard-FacingOverlayHardness,andMacro
TestLocation(s)forCorrosion-ResistantandHard-FacingWeldMetal
Overlay............................................225
QW-462.5(c) PipeBendSpecimen—Corrosion-ResistantWeldMetalOverlay.....226
QW-462.5(d) PlateBendSpecimens—Corrosion-ResistantWeldMetalOverlay...227
vi

QW-462.5(e) PlateMacro,Hardness,andChemicalAnalysisSpecimens—Corrosion-
ResistantandHard-FacingWeldMetalOverlay...............228
QW-462.7.1 ResistanceSeamWeldTestCoupon..........................228
QW-462.7.2 SeamWeldSectionSpecimenRemoval.......................229
QW-462.7.3 ResistanceWeldNuggetSectionTestSpecimens................229
QW-462.8.1 SpotWeldsinSheets....................................230
QW-462.8.2 SeamWeldPeelTestSpecimenandMethod...................231
QW-462.9 SpotWeldsinSheet.....................................232
QW-462.12 NomenclatureforTemperBeadWelding......................233
QW-462.13 MeasurementofTemperBeadOverlap.......................234
QW-463.1(a) Plates—LessThan
3

4
in.(19mm)ThicknessProcedureQualification234
QW-463.1(b) Plates—
3

4
in.(19mm)andOverThicknessandAlternateFrom
3

8
in.
(10mm)butLessThan
3

4
in.(19mm)ThicknessProcedure
Qualification........................................234
QW-463.1(c) Plates—LongitudinalProcedureQualification..................234
QW-463.1(d) ProcedureQualification..................................235
QW-463.1(e) ProcedureQualification..................................235
QW-463.1(f) ToughnessTestSpecimenLocation..........................236
QW-463.2(a) Plates—LessThan
3

4
in.(19mm)ThicknessPerformanceQualification236
QW-463.2(b) Plates—
3

4
in.(19mm)andOverThicknessandAlternateFrom
3

8
in.
(10mm)butLessThan
3

4
in.(19mm)ThicknessPerformance
Qualification........................................236
QW-463.2(c) Plates—LongitudinalPerformanceQualification................237
QW-463.2(d) PerformanceQualification.................................237
QW-463.2(e) PerformanceQualification.................................237
QW-463.2(f) Pipe—NPS10(DN250)AssemblyPerformanceQualification......238
QW-463.2(g) NPS6(DN150)orNPS8(DN200)AssemblyPerformanceQualification239
QW-463.2(h) PerformanceQualification.................................240
QW-464.1 ProcedureQualificationTestCouponandTestSpecimens..........241
QW-464.2 PerformanceQualificationTestCouponsandTestSpecimens.......242
QW-466.1 TestJigDimensions.....................................243
QW-466.2 Guided-BendRollerJig...................................245
QW-466.3 Guided-BendWrapAroundJig.............................245
QW-466.4 Stud-WeldBendJig.....................................246
QW-466.5 TorqueTestingArrangementforStudWelds...................247
QW-466.6 SuggestedTypeTensileTestFigureforStudWelds..............247
QW-469.1 ButtJoint.............................................247
QW-469.2 AlternativeButtJoint....................................248
QW-661(a) LayerWidth,W,>½in.(13mm)ProcedureQualification..........255
QW-661(b) LayerWidth,W,≤½in.(13mm)ProcedureQualification..........255
QB-461.1 FlowPositions.........................................276
QB-461.2 TestFlowPositions.....................................277
QB-462.1(a) Tension—ReducedSectionforButtandScarfJoints—Plate......279
QB-462.1(b) Tension—ReducedSectionforButt,Lap,andScarfJoints—Pipe...280
QB-462.1(c) Tension—ReducedSectionforLapandRabbetJoints—Plate.....281
vii

QB-462.1(e) Tension—FullSectionforLap,Scarf,andButtJoints—SmallDiameter
Pipe..............................................282
QB-462.1(f) SupportFixtureforReduced-SectionTensionSpecimens..........283
QB-462.2(a) TransverseFirstandSecondSurfaceBends—PlateandPipe.......284
QB-462.2(b) LongitudinalFirstandSecondSurfaceBends—Plate............284
QB-462.3 LapJointPeelSpecimen..................................285
QB-462.4 LapJointSectionSpecimen(SeeQB-181).....................285
QB-462.5 WorkmanshipCoupons...................................286
QB-463.1(a) PlatesProcedureQualification..............................287
QB-463.1(b) PlatesProcedureQualification..............................287
QB-463.1(c) PlatesProcedureQualification..............................288
QB-463.1(d) PlatesProcedureQualification..............................289
QB-463.1(e) Pipe—ProcedureQualification............................290
QB-463.2(a) PlatesPerformanceQualification............................291
QB-463.2(b) PlatesPerformanceQualification............................292
QB-463.2(c) PipePerformanceQualification.............................293
QB-466.1 Guided-BendJig........................................294
QB-466.2 Guided-BendRollerJig...................................295
QB-466.3 Guided-BendWrapAroundJig.............................295
QF-221.1 RequiredMinimumMeltBeadSize..........................307
QF-461.1 FusingPositions........................................319
QF-461.2 FusingTestPositions....................................320
QF-462(a) CrossSectionofUpsetBeadsforButt-FusedPEPipe.............321
QF-462(b) CrossSectionofUpsetBeadsforSidewall-FusedFitting(ProfileatCrotchof
Fitting)............................................322
QF-463 BendTestSpecimenRemoval,Configuration,andTesting..........323
QF-464 HSTITSpecimenConfigurationandDimensions.................325
QF-465 HSTITSpecimenFailureExamples...........................326
QF-466 ElectrofusionCrushTest..................................327
QF-467 ElectrofusionBendTest..................................328
QF-468 FusionZoneVoidCriteria.................................329
QF-469 ElectrofusionPeelTest...................................330
QF-470 Short-TermHydrostaticTestSpecimen.......................331
K-305 ProposedCodeCaseTemplate.............................370
Tables
QW-252 WeldingVariablesProcedureSpecifications(WPS)—OxyfuelGasWelding
(OFW)............................................. 37
QW-252.1 WeldingVariablesProcedureSpecifications(WPS)—OxyfuelGasWelding
(OFW)............................................. 38
QW-253 WeldingVariablesProcedureSpecifications(WPS)—ShieldedMetal-Arc
Welding(SMAW)..................................... 39
QW-253.1 WeldingVariablesProcedureSpecifications(WPS)—ShieldedMetal-Arc
Welding(SMAW)..................................... 40
QW-254 WeldingVariablesProcedureSpecifications(WPS)—Submerged-Arc
Welding(SAW)...................................... 41
viii

QW-254.1 WeldingVariablesProcedureSpecifications(WPS)—Submerged-Arc
Welding(SAW)...................................... 43
QW-255 WeldingVariablesProcedureSpecifications(WPS)—GasMetal-Arc
Welding(GMAWandFCAW)............................ 44
QW-255.1 WeldingVariablesProcedureSpecifications(WPS)—GasMetal-Arc
Welding(GMAWandFCAW)............................ 46
QW-256 WeldingVariablesProcedureSpecifications(WPS)—GasTungsten-Arc
Welding(GTAW)..................................... 47
QW-256.1 WeldingVariablesProcedureSpecifications(WPS)—GasTungsten-Arc
Welding(GTAW)..................................... 49
QW-257 WeldingVariablesProcedureSpecifications(WPS)—Plasma-ArcWelding
(PAW)............................................. 50
QW-257.1 WeldingVariablesProcedureSpecifications(WPS)—Plasma-ArcWelding
(PAW)............................................. 52
QW-258 WeldingVariablesProcedureSpecifications(WPS)—ElectroslagWelding
(ESW)............................................. 54
QW-258.1 WeldingVariablesProcedureSpecifications(WPS)—ElectroslagWelding
(ESW)............................................. 55
QW-259 WeldingVariablesProcedureSpecifications(WPS)—ElectrogasWelding
(EGW)............................................. 56
QW-260 WeldingVariablesProcedureSpecifications(WPS)—ElectronBeam
Welding(EBW)...................................... 57
QW-261 WeldingVariablesProcedureSpecifications(WPS)—StudWelding.. 58
QW-262 WeldingVariablesProcedureSpecifications(WPS)—Inertiaand
ContinuousDriveFrictionWelding........................ 59
QW-263 WeldingVariablesProcedureSpecifications(WPS)—ResistanceWelding 60
QW-264 WeldingVariablesProcedureSpecifications(WPS)—LaserBeamWelding
(LBW)............................................. 61
QW-264.1 WeldingVariablesProcedureSpecifications(WPS)—LaserBeamWelding
(LBW)............................................. 62
QW-264.2 WeldingVariablesProcedureSpecifications(WPS)—Low-PowerDensity
LaserBeamWelding(LLBW)............................ 63
QW-265 WeldingVariablesProcedureSpecifications(WPS)—FlashWelding.. 65
QW-266 WeldingVariablesProcedureSpecifications(WPS)—DiffusionWelding
(DFW)............................................. 66
QW-267 WeldingVariablesProcedureSpecifications—FrictionStirWelding(FSW) 67
QW-288.1 EssentialVariablesforProcedureQualificationofTube-to-Tubesheet
Welding(AllWeldingProcessesExceptExplosionWelding)...... 69
QW-288.2 EssentialVariablesforProcedureQualificationofTube-to-Tubesheet
Welding(ExplosionWelding)............................ 69
QW-290.4 WeldingVariablesforTemperBeadProcedureQualification........ 71
QW-352 OxyfuelGasWelding(OFW)EssentialVariables................. 78
QW-353 ShieldedMetal-ArcWelding(SMAW)EssentialVariables.......... 78
QW-354 SemiautomaticSubmerged-ArcWelding(SAW)EssentialVariables... 78
QW-355 SemiautomaticGasMetal-ArcWelding(GMAW)[ThisIncludesFlux-Cored
ArcWelding(FCAW)]EssentialVariables................... 78
QW-356 ManualandSemiautomaticGasTungsten-ArcWelding(GTAW)Essential
Variables........................................... 79
ix

QW-357 ManualandSemiautomaticPlasma-ArcWelding(PAW)Essential
Variables........................................... 79
QW-358 ManualandSemiautomaticLaserBeamWelding(LBW)........... 79
QW-388 EssentialVariablesforTube-to-TubesheetPerformanceQualification(All
WeldingProcesses)................................... 82
QW-416 WeldingVariablesWelderPerformance....................... 98
QW/QB-421.2 BaseMetalAssignmentGroups............................ 99
QW/QB-422 BaseMetalP-Numbers...................................101
QW-432 F-NumbersGroupingofElectrodesandWeldingRodsforQualification191
QW-442 A-NumbersClassificationofFerrousWeldMetalAnalysisforProcedure
Qualification........................................203
QW-451.1 Groove-WeldTensionTestsandTransverse-BendTests...........204
QW-451.2 Groove-WeldTensionTestsandLongitudinal-BendTests..........205
QW-451.3 Fillet-WeldTests.......................................205
QW-451.4 FilletWeldsQualifiedbyGroove-WeldTests...................205
QW-452.1(a) TestSpecimens........................................206
QW-452.1(b) ThicknessofWeldMetalQualified...........................206
QW-452.3 Groove-WeldDiameterLimits..............................206
QW-452.4 SmallDiameterFillet-WeldTest............................207
QW-452.5 Fillet-WeldTest........................................207
QW-452.6 FilletQualificationbyGroove-WeldTests......................207
QW-453 ProcedureandPerformanceQualificationThicknessLimitsandTest
SpecimensforHard-Facing(Wear-Resistant)andCorrosion-Resistant
Overlays...........................................208
QW-461.9 PerformanceQualification—PositionandDiameterLimitations(Within
theOtherLimitationsofQW-303) .........................214
QW-473.3-1 MakeupofEquationsforAquaRegiaandLepito’sEtch............249
QW-613 Wire-AdditiveWeldingQualificationLayerWidthLimits...........253
QW-651 Wire-AdditiveWeldingVariablesProcedureSpecifications(WPS)—Gas
Metal-ArcWelding(GMAW).............................254
QB-252 TorchBrazing(TB).....................................262
QB-253 FurnaceBrazing(FB)....................................263
QB-254 InductionBrazing(IB)...................................263
QB-255 ResistanceBrazing(RB)..................................264
QB-256 DipBrazing—SaltorFluxBath(DB)........................264
QB-257 DipBrazing—MoltenMetalBath(DB).......................265
QB-432 F-NumbersGroupingofBrazingFillerMetalsforProcedureand
PerformanceQualificationSFA-5.8........................270
QB-451.1 TensionTestsandTransverse-BendTests—ButtandScarfJoints...273
QB-451.2 TensionTestsandLongitudinalBendTests—ButtandScarfJoints..273
QB-451.3 TensionTestsandPeelTests—LAPJoints....................274
QB-451.4 TensionTestsandSectionTests—RabbetJoints................274
QB-451.5 SectionTests—WorkmanshipCouponJoints..................274
QB-452.1 PeelorSectionTests—Butt,Scarf,Lap,RabbetJoints............275
QB-452.2 SectionTests—WorkmanshipSpecimenJoints.................275
QB-461.3 ProcedureandPerformanceQualificationPositionLimitations(AsGivenin
QB-203andQB-303) ..................................278
x

QF-144.2 TestingSpeedRequirements...............................301
QF-144.2.3 ....................................................301
QF-202.2.2 ElectrofusionProcedureQualificationTestCouponsRequired.......306
QF-221.2 MaximumHeaterPlateRemovalTimeforPipe-to-PipeButtFusing...309
QF-222.1 ElectrofusionMaterialCombinations.........................309
QF-254 FusingVariablesProcedureSpecificationPolyethylenePipeButtFusing310
QF-255 FusingVariablesProcedureSpecificationPolyethyleneElectrofusion..311
QF-256 ManualButt-FusingVariablesProcedureSpecificationPolyethylenePipe
ManualButtFusing...................................311
QF-257 FusingVariablesProcedureSpecificationPolyethyleneSidewallFusing 312
QF-362 EssentialVariablesApplicabletoFusingOperators..............315
QF-422 MaterialGrouping......................................317
QF-452.3 Pipe-FusingDiameterLimits...............................318
F-100 StandardUnitsforUseinEquations.........................361
Forms
QF-482(a) SuggestedFormatforButt-FusingProcedureSpecifications(FPSorSFPS) 332
QF-482(b) SuggestedFormatforElectrofusionFusingProcedureSpecification(FPSor
MEFPS)............................................333
QF-482(c) SuggestedFormatforSidewall-FusingProcedureSpecification(FPSor
SFPS).............................................334
QF-483(a) SuggestedFormatforButt-FusingProcedureQualificationRecords(PQR) 335
QF-483(b) SuggestedFormatforElectrofusionFusingProcedureQualification
Records(PQR).......................................337
QF-483(c) SuggestedFormatforSidewall-FusingProcedureQualificationRecords
(PQR).............................................340
QF-484(a) SuggestedFormatforButt-FusingMachineOperatorPerformance
Qualifications(FPQ)...................................342
QF-484(b) SuggestedFormatforElectrofusionFusingOperatorPerformance
Qualification(FPQ)....................................343
QF-484(c) SuggestedFormatforSidewall-FusingMachineOperatorPerformance
Qualifications(FPQ)...................................344
QF-485 SuggestedFormatforPlasticPipeFusingDataAcquisitionLogReview 345
QW-482 SuggestedFormatforWeldingProcedureSpecifications(WPS)......348
QW-483 SuggestedFormatforProcedureQualificationRecords(PQR).......350
QW-484A SuggestedFormatAforWelderPerformanceQualifications(WPQ)...352
QW-484B SuggestedFormatBforWeldingOperatorPerformanceQualifications
(WOPQ)...........................................353
QW-485 SuggestedFormatforDemonstrationofStandardWeldingProcedure
Specifications(SWPS)..................................354
QB-482 SuggestedFormatforaBrazingProcedureSpecification(BPS)......355
QB-483 SuggestedFormatforaBrazingProcedureQualificationRecord(PQR) 356
QB-484 SuggestedFormatforaBrazerorBrazingOperatorPerformance
Qualification(BPQ)...................................357
xi

?23? LISTOFSECTIONS
SECTIONS
I RulesforConstructionofPowerBoilers
IIMaterials
•PartA—FerrousMaterialSpecifications
•PartB—NonferrousMaterialSpecifications
•PartC—SpecificationsforWeldingRods,Electrodes,andFillerMetals
•PartD—Properties(Customary)
•PartD—Properties(Metric)
IIIRulesforConstructionofNuclearFacilityComponents
•SubsectionNCA—GeneralRequirementsforDivision1andDivision2
•Appendices
•Division1
–SubsectionNB—Class1Components
–SubsectionNCD—Class2andClass3Components
–SubsectionNE—ClassMCComponents
–SubsectionNF—Supports
–SubsectionNG—CoreSupportStructures
•Division2—CodeforConcreteContainments
•Division3—ContainmentSystemsforTransportationandStorageofSpentNuclearFuelandHigh-Level
RadioactiveMaterial
•Division4—FusionEnergyDevices
•Division5—HighTemperatureReactors
IVRulesforConstructionofHeatingBoilers
V NondestructiveExamination
VIRecommendedRulesfortheCareandOperationofHeatingBoilers
VIIRecommendedGuidelinesfortheCareofPowerBoilers
VIIIRulesforConstructionofPressureVessels
•Division1
•Division2—AlternativeRules
•Division3—AlternativeRulesforConstructionofHighPressureVessels
IXWelding,Brazing,andFusingQualifications
X Fiber-ReinforcedPlasticPressureVessels
XIRulesforInserviceInspectionofNuclearReactorFacilityComponents
•Division1—RulesforInspectionandTestingofComponentsofLight-Water-CooledPlants
•Division2—RequirementsforReliabilityandIntegrityManagement(RIM)ProgramsforNuclearReactor
Facilities
XIIRulesforConstructionandContinuedServiceofTransportTanks
XIIIRulesforOverpressureProtection
xii

FOREWORD
*
In1911,TheAmericanSocietyofMechanicalEngineersestablishedtheBoilerandPressureVesselCommitteeto
formulatestandardrulesfortheconstructionofsteamboilersandotherpressurevessels.In2009,theBoilerandPressure
VesselCommitteewassupersededbythefollowingcommittees:
(a)CommitteeonPowerBoilers(I)
(b)CommitteeonMaterials(II)
(c)CommitteeonConstructionofNuclearFacilityComponents(III)
(d)CommitteeonHeatingBoilers(IV)
(e)CommitteeonNondestructiveExamination(V)
(f)CommitteeonPressureVessels(VIII)
(g)CommitteeonWelding,Brazing,andFusing(IX)
(h)CommitteeonFiber-ReinforcedPlasticPressureVessels(X)
(i)CommitteeonNuclearInserviceInspection(XI)
(j)CommitteeonTransportTanks(XII)
(k)CommitteeonOverpressureProtection(XIII)
(l)TechnicalOversightManagementCommittee(TOMC)
Wherereferenceismadeto“theCommittee”inthisForeword,eachofthesecommitteesisincludedindividuallyand
collectively.
TheCommittee’sfunctionistoestablishrulesofsafetyrelatingtopressureintegrity,whichgoverntheconstruction
**
of
boilers,pressurevessels,transporttanks,andnuclearcomponents,andtheinserviceinspectionofnuclearcomponents
andtransporttanks.TheCommitteealsointerpretstheseruleswhenquestionsariseregardingtheirintent.Thetechnical
consistencyoftheSectionsoftheCodeandcoordinationofstandardsdevelopmentactivitiesoftheCommitteesis
supportedandguidedbytheTechnicalOversightManagementCommittee.ThisCodedoesnotaddressother
safetyissuesrelatingtotheconstructionofboilers,pressurevessels,transporttanks,ornuclearcomponents,or
theinserviceinspectionofnuclearcomponentsortransporttanks.UsersoftheCodeshouldrefertothepertinent
codes,standards,laws,regulations,orotherrelevantdocumentsforsafetyissuesotherthanthoserelatingtopressure
integrity.ExceptforSectionsXIandXII,andwithafewotherexceptions,therulesdonot,ofpracticalnecessity,reflectthe
likelihoodandconsequencesofdeteriorationinservicerelatedtospecificservicefluidsorexternaloperatingenvi-
ronments.Informulatingtherules,theCommitteeconsiderstheneedsofusers,manufacturers,andinspectorsofpres-
surevessels.Theobjectiveoftherulesistoaffordreasonablycertainprotectionoflifeandproperty,andtoprovidea
marginfordeteriorationinservicetogiveareasonablylong,safeperiodofusefulness.Advancementsindesignand
materialsandevidenceofexperiencehavebeenrecognized.
ThisCodecontainsmandatoryrequirements,specificprohibitions,andnonmandatoryguidanceforconstruction
activitiesandinserviceinspectionandtestingactivities.TheCodedoesnotaddressallaspectsoftheseactivities
andthoseaspectsthatarenotspecificallyaddressedshouldnotbeconsideredprohibited.TheCodeisnotahandbook
andcannotreplaceeducation,experience,andtheuseofengineeringjudgment.Thephraseengineeringjudgmentrefers
totechnicaljudgmentsmadebyknowledgeableengineersexperiencedintheapplicationoftheCode.Engineeringjudg-
mentsmustbeconsistentwithCodephilosophy,andsuchjudgmentsmustneverbeusedtooverrulemandatoryre-
quirementsorspecificprohibitionsoftheCode.
TheCommitteerecognizesthattoolsandtechniquesusedfordesignandanalysischangeastechnologyprogressesand
expectsengineerstousegoodjudgmentintheapplicationofthesetools.Thedesignerisresponsibleforcomplyingwith
CoderulesanddemonstratingcompliancewithCodeequationswhensuchequationsaremandatory.TheCodeneither
requiresnorprohibitstheuseofcomputersforthedesignoranalysisofcomponentsconstructedtotherequirementsof
theCode.However,designersandengineersusingcomputerprogramsfordesignoranalysisarecautionedthattheyare
responsibleforalltechnicalassumptionsinherentintheprogramstheyuseandtheapplicationoftheseprogramstotheir
design.
*
TheinformationcontainedinthisForewordisnotpartofthisAmericanNationalStandard(ANS)andhasnotbeenprocessedinaccordancewith
ANSI'srequirementsforanANS.Therefore,thisForewordmaycontainmaterialthathasnotbeensubjectedtopublicrevieworaconsensusprocess.In
addition,itdoesnotcontainrequirementsnecessaryforconformancetotheCode.
**
Construction, asusedinthisForeword,isanall-inclusivetermcomprisingmaterials,design,fabrication,examination,inspection,testing,certifica-
tion,andoverpressureprotection.
xiii

TherulesestablishedbytheCommitteearenottobeinterpretedasapproving,recommending,orendorsingany
proprietaryorspecificdesign,oraslimitinginanywaythemanufacturer’sfreedomtochooseanymethodofdesignorany
formofconstructionthatconformstotheCoderules.
TheCommitteemeetsregularlytoconsiderrevisionsoftherules,newrulesasdictatedbytechnologicaldevelopment,
CodeCases,andrequestsforinterpretations.OnlytheCommitteehastheauthoritytoprovideofficialinterpretationsof
thisCode.Requestsforrevisions,newrules,CodeCases,orinterpretationsshallbeaddressedtotheSecretaryinwriting
andshallgivefullparticularsinordertoreceiveconsiderationandaction(seeSubmittalofTechnicalInquiriestothe
BoilerandPressureVesselStandardsCommittees).ProposedrevisionstotheCoderesultingfrominquirieswillbe
presentedtotheCommitteeforappropriateaction.TheactionoftheCommitteebecomeseffectiveonlyafterconfirmation
byballotoftheCommitteeandapprovalbyASME.ProposedrevisionstotheCodeapprovedbytheCommitteeare
submittedtotheAmericanNationalStandardsInstitute(ANSI)andpublishedathttp://go.asme.org/BPVCPublicReview
toinvitecommentsfromallinterestedpersons.AfterpublicreviewandfinalapprovalbyASME,revisionsarepublishedat
regularintervalsinEditionsoftheCode.
TheCommitteedoesnotruleonwhetheracomponentshallorshallnotbeconstructedtotheprovisionsoftheCode.
ThescopeofeachSectionhasbeenestablishedtoidentifythecomponentsandparametersconsideredbytheCommittee
informulatingtheCoderules.
QuestionsorissuesregardingcomplianceofaspecificcomponentwiththeCoderulesaretobedirectedtotheASME
CertificateHolder(Manufacturer).InquiriesconcerningtheinterpretationoftheCodearetobedirectedtothe
Committee.ASMEistobenotifiedshouldquestionsariseconcerningimproperuseoftheASMESingleCertification
Mark.
WhenrequiredbycontextinthisSection,thesingularshallbeinterpretedastheplural,andviceversa,andthefeminine,
masculine,orneutergendershallbetreatedassuchothergenderasappropriate.
Thewords“shall,”“should,”and“may”areusedinthisStandardasfollows:
–Shallisusedtodenotearequirement.
–Shouldisusedtodenotearecommendation.
–Mayisusedtodenotepermission,neitherarequirementnorarecommendation.
xiv

STATEMENTOFPOLICYONTHEUSEOFTHEASMESINGLE
CERTIFICATIONMARKANDCODEAUTHORIZATIONIN
ADVERTISING
ASMEhasestablishedprocedurestoauthorizequalifiedorganizationstoperformvariousactivitiesinaccordancewith
therequirementsoftheASMEBoilerandPressureVesselCode.ItistheaimoftheSocietytoproviderecognitionof
organizationssoauthorized.Anorganizationholdingauthorizationtoperformvariousactivitiesinaccordancewiththe
requirementsoftheCodemaystatethiscapabilityinitsadvertisingliterature.
OrganizationsthatareauthorizedtousetheASMESingleCertificationMarkformarkingitemsorconstructionsthat
havebeenconstructedandinspectedincompliancewiththeASMEBoilerandPressureVesselCodeareissuedCertificates
ofAuthorization.ItistheaimoftheSocietytomaintainthestandingoftheASMESingleCertificationMarkforthebenefitof
theusers,theenforcementjurisdictions,andtheholdersoftheASMESingleCertificationMarkwhocomplywithall
requirements.
Basedontheseobjectives,thefollowingpolicyhasbeenestablishedontheusageinadvertisingoffacsimilesofthe
ASMESingleCertificationMark,CertificatesofAuthorization,andreferencetoCodeconstruction.TheAmericanSocietyof
MechanicalEngineersdoesnot“approve,”“certify,”“rate,”or“endorse”anyitem,construction,oractivityandthereshall
benostatementsorimplicationsthatmightsoindicate.AnorganizationholdingtheASMESingleCertificationMarkand/
oraCertificateofAuthorizationmaystateinadvertisingliteraturethatitems,constructions,oractivities“arebuilt
(producedorperformed)oractivitiesconductedinaccordancewiththerequirementsoftheASMEBoilerandPressure
VesselCode,”or“meettherequirementsoftheASMEBoilerandPressureVesselCode.”AnASMEcorporatelogoshallnot
beusedbyanyorganizationotherthanASME.
TheASMESingleCertificationMarkshallbeusedonlyforstampingandnameplatesasspecificallyprovidedintheCode.
However,facsimilesmaybeusedforthepurposeoffosteringtheuseofsuchconstruction.Suchusagemaybebyan
associationorasociety,orbyaholderoftheASMESingleCertificationMarkwhomayalsousethefacsimileinadvertising
toshowthatclearlyspecifieditemswillcarrytheASMESingleCertificationMark.
STATEMENTOFPOLICYONTHEUSEOFASMEMARKINGTO
IDENTIFYMANUFACTURED ITEMS
TheASMEBoilerandPressureVesselCodeprovidesrulesfortheconstructionofboilers,pressurevessels,andnuclear
components.Thisincludesrequirementsformaterials,design,fabrication,examination,inspection,andstamping.Items
constructedinaccordancewithalloftheapplicablerulesoftheCodeareidentifiedwiththeASMESingleCertification
MarkdescribedinthegoverningSectionoftheCode.
Markingssuchas“ASME,”“ASMEStandard,”oranyothermarkingincluding“ASME”ortheASMESingleCertification
Markshallnotbeusedonanyitemthatisnotconstructedinaccordancewithalloftheapplicablerequirementsofthe
Code.
ItemsshallnotbedescribedonASMEDataReportFormsnoronsimilarformsreferringtoASMEthattendtoimplythat
allCoderequirementshavebeenmetwhen,infact,theyhavenotbeen.DataReportFormscoveringitemsnotfully
complyingwithASMErequirementsshouldnotrefertoASMEortheyshouldclearlyidentifyallexceptionstotheASME
requirements.
xv

PERSONNEL
?23? ASMEBoilerandPressureVesselStandardsCommittees,
Subgroups,andWorkingGroups
January1,2023
TECHNICALOVERSIGHTMANAGEMENTCOMMITTEE(TOMC)
R.E.McLaughlin, Chair
N.A.Finney, ViceChair
S.J.Rossi, StaffSecretary
G.Aurioles,Sr.
R.W.Barnes
T.L.Bedeaux
C.Brown
D.B.DeMichael
R.P.Deubler
J.G.Feldstein
G.W.Galanes
J.A.Hall
T.E.Hansen
G.W.Hembree
R.B.Keating
B.Linnemann
W.M.Lundy
D.I.Morris
T.P.Pastor
M.D.Rana
S.C.Roberts
F.J.Schaaf,Jr.
G.Scribner
W.J.Sperko
D.Srnic
R.W.Swayne
J.Vattappilly
M.Wadkinson
B.K.Nutter, Ex-OfficioMember
M.J.Pischke, Ex-OfficioMember
J.F.Henry, HonoraryMember
SubgrouponResearchandDevelopment(TOMC)
S.C.Roberts, Chair
S.J.Rossi, StaffSecretary
R.W.Barnes
N.A.Finney
W.Hoffelner
R.B.Keating
R.E.McLaughlin
T.P.Pastor
D.Andrei, ContributingMember
SubgrouponStrategicInitiatives(TOMC)
N.A.Finney, Chair
S.J.Rossi, StaffSecretary
R.W.Barnes
T.L.Bedeaux
G.W.Hembree
M.H.Jawad
R.B.Keating
R.E.McLaughlin
T.P.Pastor
S.C.Roberts
TaskGrouponRemoteInspectionandExamination(SI-TOMC)
S.C.Roberts, Chair
P.J.Coco
N.A.Finney
S.A.Marks
R.Rockwood
C.Stevens
M.Tannenbaum
J.Cameron, Alternate
A.Byk,ContributingMember
J.Pang, ContributingMember
S.J.Rossi, ContributingMember
C.A.Sanna, ContributingMember
SpecialWorkingGrouponHighTemperatureTechnology(TOMC)
D.Dewees, Chair
F.W.Brust
T.D.Burchell
P.R.Donavin
B.F.Hantz
R.I.Jetter
P.Smith
ADMINISTRATIVECOMMITTEE
R.E.McLaughlin, Chair
N.A.Finney, ViceChair
S.J.Rossi, StaffSecretary
J.Cameron
R.B.Keating
B.Linnemann
B.K.Nutter
M.J.Pischke
M.D.Rana
S.C.Roberts
R.R.Stevenson
R.W.Swayne
M.Wadkinson
MARINECONFERENCEGROUP
J.Oh,StaffSecretary
J.G.Hungerbuhler,Jr.
G.Nair
H.N.Patel
N.Prokopuk
J.D.Reynolds
CONFERENCECOMMITTEE
R.D.Troutt—Texas, Chair
J.T.Amato—Ohio, Secretary
W.Anderson—Mississippi
R.Becker—Colorado
T.D.Boggs—Missouri
R.A.Boillard—Indiana
D.P.Brockerville—Newfoundland
andLabrador,Canada
R.J.Bunte—Iowa
J.H.Burpee—Maine
M.Carlson—Washington
T.G.Clark—Oregon
B.J.Crawford—Georgia
E.L.Creaser—NewBrunswick,
Canada
J.J.Dacanay—Hawaii
R.DeLury—Manitoba,Canada
A.Denham—Michigan
C.Dinic—Ontario,Canada
D.A.Ehler—NovaScotia,Canada
S.D.Frazier—Washington
T.J.GrannemanII—Oklahoma
S.Harder—Arizona
M.L.Jordan—Kentucky
R.Kamboj—BritishColumbia,
Canada
E.Kawa—Massachusetts
A.Khssassi—Quebec,Canada
D.Kinney—NorthCarolina
K.S.Lane—Alaska
J.LeSage,Jr.—Louisiana
A.M.Lorimor—SouthDakota
M.Mailman—NorthwestTerri-
tories,Canada
W.McGivney—CityofNewYork,
NewYork
S.F.Noonan—Maryland
C.L.O’Guin—Tennessee
B.S.Oliver—NewHampshire
J.L.Oliver—Nevada
P.B.Polick—Illinois
J.F.Porcella—WestVirginia
B.Ricks—Montana
W.J.Ross—Pennsylvania
M.H.Sansone—NewYork
T.S.Seime—NorthDakota
C.S.Selinger—Saskatchewan,
Canada
J.E.Sharier—Ohio
R.Spiker—NorthCarolina
D.Srnic—Alberta,Canada
D.J.Stenrose—Michigan
R.J.StimsonII—Kansas
R.K.Sturm—Utah
D.K.Sullivan—Arkansas
J.Taveras—RhodeIsland
G.Teel—California
D.M.Warburton—Florida
M.Washington—NewJersey
E.Wiggins—Alabama
xvi

INTERNATIONALINTERESTREVIEWGROUP
V.Felix
Y.-G.Kim
S.H.Leong
W.Lin
O.F.Manafa
C.Minu
Y.-W.Park
A.R.ReynagaNogales
P.Williamson
COMMITTEEONPOWERBOILERS(BPVI)
R.E.McLaughlin, Chair
E.M.Ortman, ViceChair
U.D’Urso, StaffSecretary
D.I.Anderson
J.L.Arnold
K.K.Coleman
J.G.Feldstein
S.Fincher
G.W.Galanes
T.E.Hansen
J.S.Hunter
M.Ishikawa
M.Lemmons
L.Moedinger
Y.Oishi
M.Ortolani
A.Spangenberg
D.E.Tompkins
D.E.Tuttle
J.Vattappilly
M.Wadkinson
R.V.Wielgoszinski
F.Zeller
H.Michael, Delegate
D.L.Berger, HonoraryMember
P.D.Edwards, HonoraryMember
D.N.French, HonoraryMember
J.Hainsworth, HonoraryMember
J.F.Henry, HonoraryMember
W.L.Lowry, HonoraryMember
J.R.MacKay, HonoraryMember
P.A.Molvie, HonoraryMember
J.T.Pillow, HonoraryMember
B.W.Roberts, HonoraryMember
R.D.Schueler,Jr.,HonoraryMember
J.M.Tanzosh, HonoraryMember
R.L.Williams, HonoraryMember
L.W.Yoder, HonoraryMember
ExecutiveCommittee(BPVI)
E.M.Ortman, Chair
R.E.McLaughlin, ViceChair
D.I.Anderson
J.L.Arnold
J.R.Braun
K.K.Coleman
H.Dalal
T.Dhanraj
U.D’Urso
P.F.Gilston
K.Hayes
P.Jennings
A.Spangenberg
D.E.Tompkins
M.Wadkinson
SubgrouponDesign(BPVI)
D.I.Anderson, Chair
L.S.Tsai,Secretary
P.Becker
L.Krupp
C.T.McDaris
N.S.Ranck
J.Vattappilly
M.Wadkinson
D.Dewees, ContributingMember
J.P.Glaspie, ContributingMember
SubgrouponFabricationandExamination(BPVI)
J.L.Arnold, Chair
P.F.Gilston, ViceChair
P.Becker, Secretary
K.K.Coleman
S.Fincher
G.W.Galanes
T.E.Hansen
P.Jennings
M.Lewis
C.T.McDaris
R.E.McLaughlin
R.J.Newell
Y.Oishi
R.V.Wielgoszinski
SubgrouponGeneralRequirementsandPiping(BPVI)
D.E.Tompkins, Chair
M.Wadkinson, ViceChair
M.Lemmons, Secretary
R.Antoniuk
T.E.Hansen
M.Ishikawa
R.E.McLaughlin
L.Moedinger
B.J.Mollitor
Y.Oishi
E.M.Ortman
D.E.Tuttle
J.Vattappilly
R.V.Wielgoszinski
W.L.Lowry, ContributingMember
SubgrouponLocomotiveBoilers(BPVI)
J.R.Braun, Chair
S.M.Butler, Secretary
G.W.Galanes
D.W.Griner
M.A.Janssen
S.A.Lee
L.Moedinger
G.M.Ray
M.W.Westland
SubgrouponMaterials(BPVI)
K.K.Coleman, Chair
K.Hayes, ViceChair
M.Lewis, Secretary
S.H.Bowes
G.W.Galanes
P.F.Gilston
J.S.Hunter
E.Liebl
F.Masuyama
L.S.Nicol
M.Ortolani
D.W.Rahoi
F.Zeller
B.W.Roberts, ContributingMember
J.M.Tanzosh, ContributingMember
SubgrouponSolarBoilers(BPVI)
P.Jennings, Chair
R.E.Hearne, Secretary
S.Fincher
J.S.Hunter
P.Swarnkar
TaskGrouponModernization(BPVI)
D.I.Anderson, Chair
U.D’Urso, StaffSecretary
J.L.Arnold
D.Dewees
G.W.Galanes
J.P.Glaspie
T.E.Hansen
R.E.McLaughlin
E.M.Ortman
D.E.Tuttle
J.Vattappilly
GermanyInternationalWorkingGroup(BPVI)
A.Spangenberg, Chair
P.Chavdarov, Secretary
B.Daume
J.Fleischfresser
C.Jaekel
R.Kauer
D.Koelbl
S.Krebs
T.Ludwig
R.A.Meyers
H.Michael
F.Miunske
M.Sykora
R.Helmholdt, ContributingMember
J.Henrichsmeyer, Contributing
Member
B.Müller, ContributingMember
xvii

IndiaInternationalWorkingGroup(BPVI)
H.Dalal, Chair
T.Dhanraj, ViceChair
K.Thanupillai, Secretary
P.Brahma
S.Chakrabarti
A.Hantodkar
A.J.Patil
S.Purkait
M.G.Rao
G.U.Shanker
D.K.Shrivastava
K.Singha
R.Sundararaj
S.Venkataramana
COMMITTEEONMATERIALS(BPVII)
J.Cameron, Chair
G.W.Galanes, ViceChair
C.E.Rodrigues, StaffSecretary
A.Appleton
P.Chavdarov
K.K.Coleman
D.W.Gandy
J.F.Grubb
J.A.Hall
D.O.Henry
K.M.Hottle
M.Ishikawa
K.Kimura
M.Kowalczyk
D.L.Kurle
F.Masuyama
S.Neilsen
L.S.Nicol
M.Ortolani
D.W.Rahoi
W.Ren
E.Shapiro
R.C.Sutherlin
F.Zeller
O.Oldani, Delegate
A.Chaudouet, ContributingMember
J.D.Fritz, ContributingMember
W.Hoffelner, ContributingMember
K.E.Orie,ContributingMember
D.T.Peters, ContributingMember
B.W.Roberts, ContributingMember
J.M.Tanzosh, ContributingMember
E.Upitis, ContributingMember
R.G.Young, ContributingMember
ExecutiveCommittee(BPVII)
J.Cameron, Chair
C.E.Rodrigues, StaffSecretary
A.Appleton
K.K.Coleman
G.W.Galanes
J.F.Grubb
S.Guzey
W.Hoffelner
M.Ishikawa
M.Ortolani
P.K.Rai
J.Robertson
E.Shapiro
SubgrouponExternalPressure(BPVII)
S.Guzey, Chair
E.Alexis, ViceChair
J.A.A.Morrow, Secretary
L.F.Campbell
H.Chen
D.S.Griffin
J.F.Grubb
M.H.Jawad
S.Krishnamurthy
D.L.Kurle
R.W.Mikitka
P.K.Rai
M.Wadkinson
SubgrouponFerrousSpecifications(BPVII)
A.Appleton, Chair
K.M.Hottle, ViceChair
C.Hyde, Secretary
D.Amire-Brahimi
G.Cuccio
O.Elkadim
D.Fialkowski
J.F.Grubb
D.S.Janikowski
Y.-J.Kim
S.G.Lee
W.C.Mack
J.Nickel
K.E.Orie
D.Poweleit
E.Upitis
L.Watzke
J.D.Fritz, ContributingMember
C.Meloy, ContributingMember
SubgrouponInternationalMaterialSpecifications(BPVII)
M.Ishikawa, Chair
P.Chavdarov, ViceChair
A.Chaudouet
H.Chen
A.F.Garbolevsky
D.O.Henry
W.M.Lundy
F.Zeller
C.Zhou
O.Oldani, Delegate
H.Lorenz, ContributingMember
T.F.Miskell, ContributingMember
E.Upitis, ContributingMember
SubgrouponNonferrousAlloys(BPVII)
E.Shapiro, Chair
W.MacDonald, ViceChair
J.Robertson, Secretary
R.M.Beldyk
J.M.Downs
J.F.Grubb
J.A.Hall
D.Maitra
J.A.McMaster
D.W.Rahoi
W.Ren
R.C.Sutherlin
R.Wright
S.Yem
D.B.Denis, ContributingMember
D.T.Peters, ContributingMember
SubgrouponPhysicalProperties(BPVII)
P.K.Rai,Chair
S.Neilsen, ViceChair
G.Aurioles,Sr.
D.Chandiramani
P.Chavdarov
H.Eshraghi
J.F.Grubb
B.F.Hantz
R.D.Jones
P.K.Lam
D.W.Rahoi
E.Shapiro
D.K.Verma
S.Yem
D.B.Denis, ContributingMember
SubgrouponStrength,FerrousAlloys(BPVII)
M.Ortolani, Chair
L.S.Nicol, Secretary
G.W.Galanes
J.A.Hall
M.Ishikawa
S.W.Knowles
F.Masuyama
M.Osterfoss
D.W.Rahoi
S.Rosinski
M.Ueyama
F.Zeller
F.Abe,ContributingMember
R.G.Young, ContributingMember
SubgrouponStrengthofWeldments(BPVII&BPVIX)
K.K.Coleman, Chair
K.L.Hayes, ViceChair
S.H.Bowes, Secretary
M.Denault
G.W.Galanes
D.W.Gandy
M.Ghahremani
W.F.Newell,Jr.
J.Penso
D.W.Rahoi
W.J.Sperko
J.P.Swezy,Jr.
M.Ueyama
P.D.Flenner, ContributingMember
B.W.Roberts, ContributingMember
WorkingGrouponMaterialsDatabase(BPVII)
W.Hoffelner, Chair
C.E.Rodrigues, StaffSecretary
F.Abe
W.MacDonald
R.C.Sutherlin
D.Andrei, ContributingMember
J.L.Arnold, ContributingMember
J.Cameron, ContributingMember
J.F.Grubb, ContributingMember
D.T.Peters, ContributingMember
W.Ren,ContributingMember
B.W.Roberts, ContributingMember
E.Shapiro, ContributingMember
xviii

WorkingGrouponCreepStrengthEnhancedFerriticSteels(BPVII)
M.Ortolani, Chair
G.W.Galanes, ViceChair
P.Becker, Secretary
S.H.Bowes
K.K.Coleman
K.Kimura
M.Lang
S.Luke
F.Masuyama
T.Melfi
W.F.Newell,Jr.
J.J.Sanchez-Hanton
J.A.Siefert
W.J.Sperko
F.Zeller
F.Abe,ContributingMember
P.D.Flenner, ContributingMember
J.M.Tanzosh, ContributingMember
WorkingGrouponDataAnalysis(BPVII)
J.F.Grubb, Chair
W.Ren,ViceChair
K.Kimura
F.Masuyama
S.Neilsen
M.Ortolani
M.J.Swindeman
F.Abe,ContributingMember
W.Hoffelner, ContributingMember
W.C.Mack, ContributingMember
D.T.Peters, ContributingMember
B.W.Roberts, ContributingMember
ChinaInternationalWorkingGroup(BPVII)
T.Xu,Secretary
W.Cai
W.Fang
Q.C.Feng
S.Huo
F.Kong
H.Leng
HliLi
HongbinLi
J.Li
S.Liu
Z.Rongcan
S.Tan
C.Wang
JinguangWang
JiongxiangWang
Q.-J.Wang
X.Wang
H.-C.Yang
J.Yang
L.Yin
H.Zhang
X.-H.Zhang
Y.Zhang
COMMITTEEONCONSTRUCTIONOFNUCLEARFACILITY
COMPONENTS(BPVIII)
R.B.Keating, Chair
T.M.Adams, ViceChair
D.E.Matthews, ViceChair
A.Maslowski, StaffSecretary
A.Appleton
S.Asada
R.W.Barnes
W.H.Borter
M.E.Cohen
R.P.Deubler
P.R.Donavin
A.C.Eberhardt
J.V.Gardiner
J.Grimm
S.Hunter
R.M.Jessee
R.I.Jetter
C.C.Kim
G.H.Koo
D.W.Lewis
M.A.Lockwood
K.A.Manoly
K.Matsunaga
B.McGlone
S.McKillop
J.McLean
J.C.Minichiello
M.N.Mitchell
T.Nagata
J.B.Ossmann
S.Pellet
E.L.Pleins
T.-L.Sham
W.J.Sperko
W.Windes
C.Basavaraju, Alternate
C.T.Smith, ContributingMember
W.K.Sowder,Jr.,Contributing
Member
M.Zhou, ContributingMember
E.B.Branch, HonoraryMember
G.D.Cooper, HonoraryMember
D.F.Landers, HonoraryMember
C.Pieper, HonoraryMember
ExecutiveCommittee(BPVIII)
R.B.Keating, Chair
A.Maslowski, Secretary
T.M.Adams
P.R.Donavin
J.V.Gardiner
J.Grimm
D.W.Lewis
K.A.Manoly
D.E.Matthews
S.McKillop
J.McLean
T.-L.Sham
W.K.Sowder,Jr.
K.A.Kavanagh, Alternate
ArgentinaInternationalWorkingGroup(BPVIII)
M.F.Liendo, Chair
J.Fernández, ViceChair
O.Martinez, StaffSecretary
O.A.Verastegui, Secretary
E.H.Aldaz
G.O.Anteri
A.P.Antipasti
D.O.Bordato
G.Bourguigne
M.Brusa
A.Claus
R.G.Cocco
A.J.Dall’Osto
J.I.Duo
M.M.Gamizo
I.M.Guerreiro
I.A.Knorr
D.E.Matthews
A.E.Pastor
M.Rivero
M.D.Vigliano
P.Yamamoto
M.Zunino
ChinaInternationalWorkingGroup(BPVIII)
Y.Wang, Chair
H.Yu,Secretary
L.Feng
J.Gu
L.Guo
C.Jiang
D.Kang
Y.Li
H.Lin
S.Liu
W.Liu
J.Ma
K.Mao
D.E.Matthews
J.Ming
W.Pei
C.Peiyin
Z.Sun
G.Tang
L.Ting
F.Wu
C.Yang
P.Yang
W.Yang
H.Yin
D.Yuangang
G.Zhang
D.Zhao
Z.Zhong
Q.Zhou
H.Zhu
GermanyInternationalWorkingGroup(BPVIII)
J.Wendt, Chair
D.Koelbl, ViceChair
R.Gersinska, Secretary
P.R.Donavin
R.Döring
C.G.Frantescu
A.Huber
R.E.Hueggenberg
C.Huttner
E.Iacopetta
M.H.Koeppen
C.Kuschke
H.-W.Lange
T.Ludwig
X.Pitoiset
M.Reichert
G.Roos
J.Rudolph
L.Sybertz
I.Tewes
R.Tiete
F.Wille
xix

IndiaInternationalWorkingGroup(BPVIII)
R.N.Sen,Chair
S.B.Parkash, ViceChair
A.D.Bagdare, Secretary
S.Aithal
S.Benhur
N.M.Borwankar
M.Brijlani
H.Dalal
S.K.Goyal
A.Johori
A.P.Kishore
D.Kulkarni
R.Kumar
S.Kumar
M.Lakshminarasimhan
T.Mukherjee
D.Narain
A.D.Paranjpe
J.R.Patel
E.L.Pleins
T.J.P.Rao
V.Sehgal
S.Singh
B.K.Sreedhar
KoreaInternationalWorkingGroup(BPVIII)
G.H.Koo,Chair
O.-S.Kim,Secretary
H.Ahn
S.Cho
G.-S.Choi
M.-J.Choi
S.Choi
J.Y.Hong
N.-S.Huh
J.-K.Hwang
S.S.Hwang
C.Jang
I.I.Jeong
S.H.Kang
J.-I.Kim
J.-S.Kim
M.-W.Kim
S.-S.Kim
Y.-B.Kim
Y.-S.Kim
D.Kwon
B.Lee
D.Lee
S.Lee
S.-G.Lee
H.Lim
I.-K.Nam
C.-K.Oh
C.-Y.Oh
E.-J.Oh
C.Park
H.Park
Y.S.Pyun
T.Shin
S.Song
W.J.Sperko
J.S.Yang
O.Yoo
SeismicDesignSteeringCommittee(BPVIII)
T.M.Adams, Chair
F.G.Abatt, Secretary
G.A.Antaki
C.Basavaraju
D.Chowdhury
R.Döring
G.H.Koo
A.Maekawa
K.Matsunaga
J.McLean
R.M.Pace
D.Watkins
TaskGrouponAlternateRequirements(BPVIII)
J.Wen, Chair
R.R.Romano, Secretary
P.J.Coco
P.R.Donavin
J.V.Gardiner
J.Grimm
R.S.HillIII
M.Kris
M.A.Lockwood
D.E.Matthews
S.McKillop
B.P.Nolan
J.B.Ossmann
E.C.Renaud
M.A.Richter
I.H.Tseng
Y.Wang
UnitedKingdomInternationalWorkingGroup
(BPVIII)
C.D.Bell,Chair
P.M.James, ViceChair
C.B.Carpenter, Secretary
T.M.Adams
T.Bann
M.J.Chevalier
A.J.Cole-Baker
M.Consonni
M.J.Crathorne
G.Innes
S.A.Jones
B.Pellereau
C.R.Schneider
J.W.Stairmand
J.Sulley
J.Talamantes-Silva
A.J.Holt,ContributingMember
SpecialWorkingGrouponNewPlantConstructionIssues(BPVIII)
J.B.Ossmann, Chair
A.Maslowski, StaffSecretary
M.C.Buckley, Secretary
M.Arcaro
A.Cardillo
P.J.Coco
K.Harris
J.Honcharik
M.Kris
R.E.McLaughlin
E.L.Pleins
D.W.Sandusky
M.C.Scott
R.R.Stevenson
H.Xu
J.Yan
J.C.Minichiello, Contributing
Member
SpecialWorkingGrouponEditingandReview(BPVIII)
D.E.Matthews, Chair
R.P.Deubler
A.C.Eberhardt
J.V.Gardiner
S.Hunter
J.C.Minichiello
J.F.Strunk
C.Wilson
SpecialWorkingGrouponHDPEStakeholders(BPVIII)
S.Patterson, Secretary
S.Choi
C.M.Faidy
M.Golliet
R.M.Jessee
J.Johnston,Jr.
M.Kuntz
M.Lashley
K.A.Manoly
D.P.Munson
T.M.Musto
J.E.O’Sullivan
V.Rohatgi
F.J.Schaaf,Jr.
R.Stakenborghs
M.Troughton
B.Lin,Alternate
SpecialWorkingGrouponHonorsandAwards(BPVIII)
J.C.Minichiello, Chair
A.Appleton
R.W.Barnes
R.M.Jessee
D.E.Matthews
SpecialWorkingGrouponInternationalMeetingsandIWGLiaisons
(BPVIII)
D.E.Matthews, Chair
A.Maslowski, StaffSecretary
T.M.Adams
R.W.Barnes
P.R.Donavin
E.L.Pleins
W.J.Sperko
xx

JointACI-ASMECommitteeonConcreteComponentsforNuclear
Service(BPVIII)
J.McLean, Chair
L.J.Colarusso, ViceChair
J.Cassamassino, StaffSecretary
A.Dinizulu, StaffSecretary
C.J.Bang
A.C.Eberhardt
B.D.Hovis
T.C.Inman
C.Jones
T.Kang
N.-H.Lee
J.A.Munshi
T.Muraki
J.S.Saini
J.F.Strunk
G.Thomas
A.Varma
S.Wang
A.Istar, Alternate
A.Adediran, ContributingMember
S.Bae,ContributingMember
J.-B.Domage, ContributingMember
P.S.Ghosal, ContributingMember
B.B.Scott, ContributingMember
M.R.Senecal, ContributingMember
Z.Shang, ContributingMember
M.Sircar, ContributingMember
C.T.Smith, ContributingMember
SpecialWorkingGrouponModernization(BPVIII-2)
S.Wang, Chair
J.McLean, ViceChair
A.Adediran
S.Malushte
J.S.Saini
A.Varma
F.Lin,ContributingMember
J.A.Pires, ContributingMember
I.Zivanovic, ContributingMember
TaskGrouponSteel-ConcreteCompositeContainments(BPVIII-2)
A.Varma, Chair
S.Malushte
J.McLean
J.A.Pires
J.S.Saini
WorkingGrouponDesign(BPVIII-2)
N.-H.Lee,Chair
S.Wang, ViceChair
M.Allam
S.Bae
L.J.Colarusso
A.C.Eberhardt
B.D.Hovis
T.C.Inman
C.Jones
J.A.Munshi
T.Muraki
J.S.Saini
G.Thomas
A.Istar, Alternate
P.S.Ghosal, ContributingMember
S.-Y.Kim,ContributingMember
J.Kwon, ContributingMember
S.E.Ohler-Schmitz, Contributing
Member
B.B.Scott, ContributingMember
Z.Shang, ContributingMember
M.Shin,ContributingMember
M.Sircar, ContributingMember
WorkingGrouponMaterials,Fabrication,andExamination
(BPVIII-2)
C.Jones, Chair
A.Eberhardt, ViceChair
C.J.Bang
B.Birch
J.-B.Domage
T.Kang
N.-H.Lee
Z.Shang
J.F.Strunk
A.A.Aboelmagd, Contributing
Member
P.S.Ghosal, ContributingMember
B.B.Scott, ContributingMember
I.Zivanovic, ContributingMember
SubcommitteeonDesign(BPVIII)
P.R.Donavin, Chair
S.McKillop, ViceChair
R.P.Deubler
M.A.Gray
R.I.Jetter
R.B.Keating
J.-I.Kim
K.A.Manoly
D.E.Matthews
M.N.Mitchell
B.Pellereau
T.-L.Sham
W.F.Weitze
C.Basavaraju, Alternate
G.L.Hollinger, ContributingMember
M.H.Jawad, ContributingMember
W.J.O’Donnell,Sr.,Contributing
Member
K.Wright, ContributingMember
SubgrouponComponentDesign(SC-D)(BPVIII)
D.E.Matthews, Chair
P.Vock, ViceChair
S.Pellet, Secretary
T.M.Adams
D.J.Ammerman
G.A.Antaki
J.J.Arthur
S.Asada
J.F.Ball
C.Basavaraju
D.Chowdhury
N.A.Costanzo
R.P.Deubler
M.Kassar
D.Keck
T.R.Liszkai
K.A.Manoly
J.C.Minichiello
T.Mitsuhashi
D.Murphy
T.M.Musto
T.Nagata
G.Z.Tokarski
S.Willoughby-Braun
C.Wilson
A.A.Dermenjian, Contributing
Member
P.Hirschberg, ContributingMember
R.B.Keating, ContributingMember
O.-S.Kim,ContributingMember
R.J.Masterson, Contributing
Member
H.S.Mehta, ContributingMember
I.Saito, ContributingMember
J.P.Tucker, ContributingMember
TaskGrouptoImproveSectionIII/XIInterface(SG-CD)(BPVIII)
P.Vock, Chair
E.Henry, Secretary
G.A.Antaki
A.Cardillo
D.Chowdhury
J.Honcharik
J.Hurst
J.Lambin
C.A.Nove
T.Nuoffer
J.B.Ossmann
A.T.RobertsIII
J.Sciulli
A.Udyawar
S.Willoughby-Braun
WorkingGrouponCoreSupportStructures(SG-CD)(BPVIII)
D.Keck, Chair
R.Z.Ziegler, ViceChair
R.Martin, Secretary
G.W.Delport
L.C.Hartless
T.R.Liszkai
M.Nakajima
M.D.Snyder
R.Vollmer
T.M.Wiger
C.Wilson
Y.Wong
H.S.Mehta, ContributingMember
WorkingGrouponDesignofDivision3ContainmentSystems
(SG-CD)(BPVIII)
D.J.Ammerman, Chair
S.Klein, Secretary
G.Bjorkman
V.Broz
D.W.Lewis
J.M.Piotter
A.Rigato
P.Sakalaukus,Jr.
D.Siromani
R.Sypulski
X.Zhai
X.Zhang
C.R.Sydnor, Alternate
J.C.Minichiello, Contributing
Member
xxi

WorkingGrouponHDPEDesignofComponents(SG-CD)(BPVIII)
T.M.Musto, Chair
J.B.Ossmann, Secretary
M.Brandes
S.Choi
J.R.Hebeisen
P.Krishnaswamy
M.Kuntz
K.A.Manoly
D.P.Munson
F.J.Schaaf,Jr.
R.Stakenborghs
M.T.Audrain, Alternate
J.C.Minichiello, Contributing
Member
WorkingGrouponPiping(SG-CD)(BPVIII)
G.A.Antaki, Chair
G.Z.Tokarski, Secretary
C.Basavaraju
J.Catalano
F.Claeys
C.M.Faidy
R.G.Gilada
N.M.Graham
M.A.Gray
R.J.Gurdal
R.W.Haupt
A.Hirano
P.Hirschberg
M.Kassar
J.Kawahata
D.Lieb
I.-K.Nam
J.O’Callaghan
K.E.ReidII
D.Vlaicu
S.Weindorf
T.M.Adams, ContributingMember
R.B.Keating, ContributingMember
T.B.Littleton, ContributingMember
Y.Liu,ContributingMember
J.F.McCabe, ContributingMember
J.C.Minichiello, Contributing
Member
A.N.Nguyen, ContributingMember
M.S.Sills,ContributingMember
N.C.Sutherland, Contributing
Member
E.A.Wais, ContributingMember
C.-I.Wu,ContributingMember
WorkingGrouponPressureRelief(SG-CD)(BPVIII)
K.R.May,Chair
R.Krithivasan, Secretary
M.Brown
J.W.Dickson
S.Jones
R.Lack
D.Miller
T.Patel
K.Shores
I.H.Tseng
B.J.Yonsky
Y.Wong, Alternate
J.Yu,Alternate
S.T.French, ContributingMember
D.B.Ross, ContributingMember
S.Ruesenberg, ContributingMember
WorkingGrouponPumps(SG-CD)(BPVIII)
D.Chowdhury, Chair
J.V.Gregg,Jr.,Secretary
B.Busse
M.D.Eftychiou
R.A.Fleming
K.J.Noel
J.Sulley
K.B.Wilson
Y.Wong
I.H.Tseng, Alternate
X.Di,ContributingMember
C.Gabhart, ContributingMember
R.Ladefian, ContributingMember
WorkingGrouponSupports(SG-CD)(BPVIII)
N.A.Costanzo, Chair
U.S.Bandyopadhyay, Secretary
K.Avrithi
N.M.Bisceglia
R.P.Deubler
N.M.Graham
Y.Matsubara
S.Pellet
G.Thomas
G.Z.Tokarski
L.Vandersip
P.Wiseman
R.J.Masterson, Contributing
Member
J.R.Stinson, ContributingMember
WorkingGrouponValves(SG-CD)(BPVIII)
P.Vock, Chair
S.Jones, Secretary
M.C.Buckley
A.Cardillo
G.A.Jolly
J.Lambin
T.Lippucci
C.A.Mizer
H.O’Brien
J.O’Callaghan
M.Rain
K.E.ReidII
J.Sulley
I.H.Tseng
J.P.Tucker
Y.Wong, Alternate
WorkingGrouponVessels(SG-CD)(BPVIII)
D.Murphy, Chair
S.Willoughby-Braun, Secretary
J.J.Arthur
C.Basavaraju
M.Brijlani
L.Constantinescu
J.I.Kim
O.-S.Kim
D.E.Matthews
T.Mitsuhashi
T.J.Schriefer
M.C.Scott
P.K.Shah
D.Vlaicu
C.Wilson
R.Z.Ziegler
R.J.Huang, Alternate
B.Basu, ContributingMember
R.B.Keating, ContributingMember
W.F.Weitze, ContributingMember
SubgrouponDesignMethods(SC-D)(BPVIII)
S.McKillop, Chair
P.R.Donavin, ViceChair
J.Wen, Secretary
K.Avrithi
L.Davies
M.A.Gray
J.V.Gregg,Jr.
K.Hsu
R.Kalnas
D.Keck
J.I.Kim
B.Pellereau
W.D.Reinhardt
P.Smith
R.Vollmer
W.F.Weitze
T.M.Adams, ContributingMember
C.W.Bruny, ContributingMember
S.R.Gosselin, ContributingMember
H.T.HarrisonIII,Contributing
Member
W.J.O’Donnell,Sr.,Contributing
Member
K.Wright, ContributingMember
SpecialWorkingGrouponComputationalModelingforExplicit
Dynamics(SG-DM)(BPVIII)
G.Bjorkman, Chair
D.J.Ammerman, ViceChair
V.Broz, Secretary
S.Kuehner
D.Molitoris
W.D.Reinhardt
D.Siromani
C.-F.Tso
M.C.Yaksh
U.Zencker
X.Zhang
Y.Wong, ContributingMember
xxii

WorkingGrouponDesignMethodology(SG-DM)(BPVIII)
B.Pellereau, Chair
R.Vollmer, Secretary
K.Avrithi
C.Basavaraju
F.Berkepile
C.M.Faidy
Y.Gao
M.Kassar
J.I.Kim
T.R.Liszkai
D.Lytle
K.Matsunaga
S.McKillop
S.Ranganath
W.D.Reinhardt
P.K.Shah
S.Wang
W.F.Weitze
J.Wen
T.M.Wiger
K.Hsu,Alternate
G.Banyay, ContributingMember
D.S.Bartran, ContributingMember
R.D.Blevins, ContributingMember
M.R.Breach, ContributingMember
C.W.Bruny, ContributingMember
D.L.Caldwell, ContributingMember
H.T.HarrisonIII,Contributing
Member
C.F.HeberlingII,Contributing
Member
P.Hirschberg, ContributingMember
R.B.Keating, ContributingMember
A.Walker, ContributingMember
K.Wright, ContributingMember
WorkingGrouponEnvironmentalFatigueEvaluationMethods
(SG-DM)(BPVIII)
M.A.Gray, Chair
W.F.Weitze, Secretary
S.Asada
K.Avrithi
R.C.Cipolla
T.M.Damiani
C.M.Faidy
A.Hirano
P.Hirschberg
K.Hsu
J.-S.Park
B.Pellereau
D.Vlaicu
K.Wang
R.Z.Ziegler
S.Cuvilliez, ContributingMember
T.D.Gilman, ContributingMember
S.R.Gosselin, ContributingMember
Y.He,ContributingMember
H.S.Mehta, ContributingMember
K.Wright, ContributingMember
WorkingGrouponFatigueStrength(SG-DM)(BPVIII)
P.R.Donavin, Chair
M.S.Shelton, Secretary
R.S.Bass
T.M.Damiani
D.W.DeJohn
C.M.Faidy
P.Gill
S.R.Gosselin
R.J.Gurdal
C.F.HeberlingII
C.E.Hinnant
P.Hirschberg
K.Hsu
J.I.Kim
S.H.Kleinsmith
B.Pellereau
S.Ranganath
Y.Wang
W.F.Weitze
Y.Zou
S.Majumdar, ContributingMember
H.S.Mehta, ContributingMember
W.J.O’Donnell,Sr.,Contributing
Member
K.Wright, ContributingMember
WorkingGrouponProbabilisticMethodsinDesign
(SG-DM)(BPVIII)
M.Golliet, Chair
R.Kalnas, ViceChair
K.Avrithi
G.Brouette
J.Hakii
D.O.Henry
A.Hirano
K.A.Manoly
P.J.O’Regan
B.Pellereau
M.Yagodich
R.S.HillIII,ContributingMember
SubgrouponContainmentSystemsforSpentNuclearFueland
High-LevelRadioactiveMaterial(BPVIII)
D.W.Lewis, Chair
D.J.Ammerman, ViceChair
S.Klein, Secretary
G.Bjorkman
V.Broz
A.Rigato
P.Sakalaukus,Jr.
D.Siromani
D.B.Spencer
R.Sypulski
J.Wellwood
X.J.Zhai
X.Zhang
D.Dunn, Alternate
W.H.Borter, ContributingMember
E.L.Pleins, ContributingMember
N.M.Simpson, ContributingMember
SubgrouponFusionEnergyDevices(BPVIII)
W.K.Sowder,Jr.,Chair
A.Maslowski, StaffSecretary
M.Ellis,Secretary
M.Bashir
J.P.Blanchard
T.P.Davis
B.R.Doshi
L.El-Guebaly
G.Holtmeier
D.Johnson
I.Kimihiro
C.J.Lammi
S.Lawler
P.Mokaria
D.J.Roszman
F.J.Schaaf,Jr.
P.Smith
Y.Song
C.Vangaasbeek
I.J.Zatz
R.W.Barnes, ContributingMember
SpecialWorkingGrouponFusionStakeholders(BPVIII-4)
T.P.Davis, Chair
R.W.Barnes
V.Chugh
S.S.Desai
F.Deschamps
M.Hua
S.Lawler
S.C.Middleburgh
R.J.Pearson
W.K.Sowder,Jr.
D.A.Sutherland
N.Young
J.Zimmermann
WorkingGrouponGeneralRequirements(BPVIII-4)
D.J.Roszman, Chair
M.Ellis
P.Mokaria
W.K.Sowder,Jr.
WorkingGrouponIn-VesselComponents(BPVIII-4)
M.Bashir, Chair
Y.Carin
T.P.Davis
M.Kalsey
S.T.Madabusi
WorkingGrouponMagnets(BPVIII-4)
W.K.Sowder,Jr.,Chair D.S.Bartran
WorkingGrouponMaterials(BPVIII-4)
M.Porton, Chair
T.P.Davis
P.Mummery
WorkingGrouponVacuumVessels(BPVIII-4)
I.Kimihiro, Chair
L.C.Cadwallader
B.R.Doshi
D.Johnson
Q.Shijun
Y.Song
xxiii

SubgrouponGeneralRequirements(BPVIII)
J.V.Gardiner, Chair
N.DeSantis, Secretary
V.Apostolescu
A.Appleton
S.Bell
J.R.Berry
G.Brouette
G.C.Deleanu
J.W.Highlands
E.V.Imbro
K.A.Kavanagh
Y.-S.Kim
B.McGlone
E.C.Renaud
T.N.Rezk
J.Rogers
R.Spuhl
D.M.Vickery
J.DeKleine, ContributingMember
H.Michael, ContributingMember
D.J.Roszman, ContributingMember
C.T.Smith, ContributingMember
W.K.Sowder,Jr.,Contributing
Member
G.E.Szabatura, Contributing
Member
SpecialWorkingGrouponGeneralRequirementsConsolidation
(SG-GR)(BPVIII)
J.V.Gardiner, Chair
J.Grimm, ViceChair
G.C.Deleanu
A.C.Eberhardt
E.C.Renaud
J.L.Williams
C.T.Smith, ContributingMember
WorkingGrouponGeneralRequirements(SG-GR)(BPVIII)
B.McGlone, Chair
J.Grimm, Secretary
V.Apostolescu
A.Appleton
S.Bell
J.R.Berry
G.Brouette
P.J.Coco
N.DeSantis
Y.Diaz-Castillo
O.Elkadim
J.Harris
J.W.Highlands
E.V.Imbro
K.A.Kavanagh
Y.-S.Kim
Y.K.Law
D.T.Meisch
E.C.Renaud
T.N.Rezk
J.Rogers
B.S.Sandhu
R.Spuhl
J.F.Strunk
D.M.Vickery
J.L.Williams
J.DeKleine, ContributingMember
S.F.Harrison,Jr.,Contributing
Member
D.J.Roszman, ContributingMember
G.E.Szabatura, Contributing
Member
WorkingGrouponGeneralRequirementsforGraphiteandCeramic
CompositeCoreComponentsandAssemblies(SG-GR)(BPVIII)
W.J.Geringer, Chair
A.Appleton
J.R.Berry
C.Cruz
Y.Diaz-Castillo
J.Lang
M.N.Mitchell
J.Potgieter
E.C.Renaud
R.Spuhl
W.Windes
B.Lin,Alternate
SubgrouponHighTemperatureReactors(BPVIII)
T.-L.Sham, Chair
Y.Wang, Secretary
M.Ando
N.Broom
F.W.Brust
P.Carter
M.E.Cohen
W.J.Geringer
B.F.Hantz
M.H.Jawad
W.T.Jessup
R.I.Jetter
K.Kimura
G.H.Koo
A.Mann
M.C.Messner
X.Wei
W.Windes
R.Wright
G.L.Zeng
D.S.Griffin, ContributingMember
X.Li,ContributingMember
W.O’Donnell,Sr.,Contributing
Member
L.Shi,ContributingMember
R.W.Swindeman, Contributing
Member
SpecialWorkingGrouponHighTemperatureReactorStakeholders
(SG-HTR)(BPVIII)
M.E.Cohen, Chair
M.C.Albert
M.Arcaro
R.W.Barnes
N.Broom
R.Christensen
V.Chugh
W.Corwin
G.C.Deleanu
R.A.Fleming
K.Harris
R.I.Jetter
Y.W.Kim
G.H.Koo
N.J.McTiernan
T.Nguyen
K.J.Noel
T.-L.Sham
B.Song
X.Wei
G.L.Zeng
T.Asayama, ContributingMember
X.Li,ContributingMember
L.Shi,ContributingMember
G.Wu,ContributingMember
TaskGrouponDivision5AMComponents(SG-HTR)(BPVIII)
R.Wright, Chair
R.Bass,Secretary
M.C.Albert
R.W.Barnes
F.W.Brust
Z.Feng
S.Lawler
X.Lou
M.McMurtrey
M.C.Messner
T.Patterson
E.C.Renaud
D.Rudland
T.-L.Sham
I.J.VanRooyen
X.Wei
WorkingGrouponAllowableStressCriteria(SG-HTR)(BPVIII)
R.Wright, Chair
M.McMurtrey, Secretary
R.Bass
K.Kimura
D.Maitra
R.J.McReynolds
M.C.Messner
J.C.Poehler
W.Ren
T.-L.Sham
Y.Wang
X.Wei
M.Yoo,Alternate
R.W.Swindeman, Contributing
Member
xxiv

WorkingGrouponAnalysisMethods(SG-HTR)(BPVIII)
M.C.Messner, Chair
H.Mahajan, Secretary
R.W.Barnes
J.A.Blanco
P.Carter
W.T.Jessup
R.I.Jetter
G.H.Koo
H.Qian
T.Riordan
T.-L.Sham
X.Wei
S.X.Xu
J.Young
M.R.Breach, ContributingMember
T.Hassan, ContributingMember
S.Krishnamurthy, Contributing
Member
M.J.Swindeman, Contributing
Member
WorkingGrouponCreep-FatigueandNegligibleCreep
(SG-HTR)(BPVIII)
Y.Wang, Chair
M.Ando
P.Carter
M.E.Cohen
J.I.Duo
R.I.Jetter
G.H.Koo
H.Mahajan
M.McMurtrey
M.C.Messner
T.Nguyen
J.C.Poehler
H.Qian
R.Rajasekaran
T.-L.Sham
X.Wei
J.Young
M.Yoo,Alternate
WorkingGrouponHighTemperatureFlawEvaluation
(SG-HTR)(BPVIII)
C.J.Sallaberry, Chair
F.W.Brust
P.Carter
S.Kalyanam
B.-L.Lyow
M.C.Messner
J.C.Poehler
H.Qian
D.A.Scarth
D.J.Shim
A.Udyawar
X.Wei
S.X.Xu
M.Yoo,Alternate
WorkingGrouponNonmetallicDesignandMaterials
(SG-HTR)(BPVIII)
W.Windes, Chair
W.J.Geringer, ViceChair
J.Potgieter, Secretary
G.Beirnaert
C.Chen
A.N.Chereskin
V.Chugh
C.Contescu
N.Gallego
S.T.Gonczy
K.Harris
M.G.Jenkins
J.Lang
M.P.Metcalfe
M.N.Mitchell
J.Parks
T.-L.Sham
A.Tzelepi
G.L.Zeng
M.Yoo,Alternate
A.Appleton, ContributingMember
R.W.Barnes, ContributingMember
A.A.Campbell, ContributingMember
S.-H.Chi,ContributingMember
Y.Katoh, ContributingMember
A.Mack, ContributingMember
J.B.Ossmann, ContributingMember
SubgrouponMaterials,Fabrication,andExamination(BPVIII)
J.Grimm, Chair
S.Hunter, Secretary
W.H.Borter
M.Brijlani
G.R.Cannell
A.Cardillo
S.Cho
P.J.Coco
R.H.Davis
D.B.Denis
B.D.Frew
D.W.Gandy
S.E.Gingrich
M.Golliet
L.S.Harbison
R.M.Jessee
C.C.Kim
M.Kris
D.W.Mann
T.Melfi
I.-K.Nam
J.B.Ossmann
J.E.O’Sullivan
M.C.Scott
W.J.Sperko
J.R.Stinson
J.F.Strunk
W.Windes
R.Wright
S.Yee
H.Michael, Delegate
A.L.Hiser,Jr.,Alternate
R.W.Barnes, ContributingMember
TaskGrouponAdvancedManufacturing(BPVIII)
D.W.Mann, Chair
D.W.Gandy, Secretary
R.Bass
D.Chowdhury
P.J.Coco
B.D.Frew
J.Grimm
A.L.Hiser,Jr.
J.Lambin
T.Lippucci
K.Matsunaga
T.Melfi
E.C.Renaud
W.J.Sperko
J.F.Strunk
J.Sulley
S.Tate
S.Wolbert
H.Xu
D.W.Pratt, Alternate
S.Malik, ContibutingMember
JointWorkingGrouponHDPE(SG-MFE)(BPVIII)
M.Brandes, Chair
T.M.Musto, Chair
J.B.Ossmannn, Secretary
G.Brouette
M.C.Buckley
S.Choi
M.Golliet
J.Hebeisen
J.Johnston,Jr.
P.Krishnaswamy
M.Kuntz
B.Lin
K.Manoly
D.P.Munson
J.O’Sullivan
V.Rohatgi
F.Schaaf,Jr.
S.Schuessler
R.Stakenborghs
M.Troughton
P.Vibien
J.Wright
T.Adams, ContributingMember
COMMITTEEONHEATINGBOILERS(BPVIV)
M.Wadkinson, Chair
J.L.Kleiss, ViceChair
C.R.Ramcharran, StaffSecretary
B.Ahee
L.Badziagowski
T.L.Bedeaux
B.Calderon
J.P.Chicoine
C.Dinic
J.M.Downs
J.A.Hall
M.Mengon
D.Nelson
H.Michael, Delegate
D.Picart, Delegate
P.A.Molvie, ContributingMember
ExecutiveCommittee(BPVIV)
M.Wadkinson, Chair
C.R.Ramcharran, StaffSecretary
L.Badziagowski
T.L.Bedeaux
J.P.Chicoine
J.A.Hall
J.L.Kleiss
xxv

SubgrouponCastBoilers(BPVIV)
J.P.Chicoine, Chair
J.M.Downs, ViceChair
C.R.Ramcharran, StaffSecretary
T.L.Bedeaux
J.A.Hall
J.L.Kleiss
M.Mengon
SubgrouponMaterials(BPVIV)
J.A.Hall,Chair
J.M.Downs, ViceChair
C.R.Ramcharran, StaffSecretary
L.Badziagowski
T.L.Bedeaux
Y.Teng
M.Wadkinson
SubgrouponWaterHeaters(BPVIV)
J.L.Kleiss, Chair
L.Badziagowski, ViceChair
C.R.Ramcharran, StaffSecretary
B.Ahee
J.P.Chicoine
C.Dinic
B.J.Iske
M.Mengon
Y.Teng
T.E.Trant
P.A.Molvie, ContributingMember
SubgrouponWeldedBoilers(BPVIV)
T.L.Bedeaux, Chair
C.R.Ramcharran, StaffSecretary
B.Ahee
L.Badziagowski
B.Calderon
J.P.Chicoine
C.Dinic
J.L.Kleiss
M.Mengon
M.Wadkinson
M.J.Melita, Alternate
D.Nelson, Alternate
P.A.Molvie, ContributingMember
EuropeInternationalWorkingGroup(BPVIV)
L.Badziagowski, Chair
D.Picart, ViceChair
R.Lozny
E.VanBruggen
G.Vicchi
A.Alessandrini, Alternate
COMMITTEEONNONDESTRUCTIVEEXAMINATION(BPVV)
N.A.Finney, Chair
C.May,ViceChair
C.R.Ramcharran, StaffSecretary
D.Bajula
P.L.Brown
M.A.Burns
N.Carter
T.Clausing
C.Emslander
A.F.Garbolevsky
P.T.Hayes
G.W.Hembree
F.B.Kovacs
K.Krueger
B.D.Laite
P.B.Shaw
C.Vorwald
S.J.Akrin, ContributingMember
J.E.Batey, ContributingMember
A.S.Birks, ContributingMember
N.Y.Faransso, ContributingMember
J.F.Halley, ContributingMember
R.W.Kruzic, ContributingMember
L.E.Mullins, ContributingMember
F.J.Sattler, ContributingMember
H.C.Graber, HonoraryMember
T.G.McCarty, HonoraryMember
ExecutiveCommittee(BPVV)
C.May,Chair
N.A.Finney, ViceChair
C.R.Ramcharran, StaffSecretary
N.Carter
V.F.Godinez-Azcuaga
P.T.Hayes
G.W.Hembree
F.B.Kovacs
K.Krueger
E.Peloquin
C.Vorwald
SubgrouponGeneralRequirements/PersonnelQualificationsand
Inquiries(BPVV)
C.Vorwald, Chair
D.Bajula
N.Carter
P.Chavdarov
T.Clausing
C.Emslander
N.A.Finney
G.W.Hembree
F.B.Kovacs
K.Krueger
C.May
S.J.Akrin, ContributingMember
N.Y.Faransso, ContributingMember
J.F.Halley, ContributingMember
D.I.Morris, ContributingMember
J.P.Swezy,Jr.,ContributingMember
ProjectTeamonAssistedAnalysis(BPVV)
K.Hayes, Chair
J.Aldrin
J.Chen
N.A.Finney
V.F.Godinez-Azcuaga
C.Hansen
G.W.Hembree
R.S.F.Orozco
E.Peloquin
T.Thulien
SubgrouponVolumetricMethods(BPVV)
C.May,Chair
P.T.Hayes, ViceChair
D.Adkins
P.L.Brown
N.A.Finney
A.F.Garbolevsky
R.W.Hardy
G.W.Hembree
F.B.Kovacs
K.Krueger
E.Peloquin
C.Vorwald
S.J.Akrin, ContributingMember
N.Y.Faransso, ContributingMember
J.F.Halley, ContributingMember
R.W.Kruzic, ContributingMember
L.E.Mullins, ContributingMember
F.J.Sattler, ContributingMember
WorkingGrouponRadiography(SG-VM)(BPVV)
C.Vorwald, Chair
D.M.Woodward, ViceChair
J.Anderson
P.L.Brown
C.Emslander
A.F.Garbolevsky
R.W.Hardy
G.W.Hembree
F.B.Kovacs
B.D.Laite
T.R.Lerohl
C.May
R.J.Mills
J.F.Molinaro
T.Vidimos
B.White
S.J.Akrin, ContributingMember
T.L.Clifford, ContributingMember
N.Y.Faransso, ContributingMember
R.W.Kruzic, ContributingMember
WorkingGrouponUltrasonics(SG-VM)(BPVV)
K.Krueger, Chair
D.Bajula, ViceChair
D.Adkins
C.Brown
C.Emslander
N.A.Finney
P.T.Hayes
G.W.Hembree
B.D.Laite
T.R.Lerohl
C.May
E.Peloquin
J.Schoneweis
D.Tompkins
D.VanAllen
J.Vinyard
C.Vorwald
C.Wassink
N.Y.Faransso, ContributingMember
J.F.Halley, ContributingMember
R.W.Kruzic, ContributingMember
P.Mudge, ContributingMember
L.E.Mullins, ContributingMember
M.J.Quarry, ContributingMember
F.J.Sattler, ContributingMember
J.Vanvelsor, ContributingMember
xxvi

WorkingGrouponAcousticEmissions(SG-VM)(BPVV)
V.F.Godinez-Azcuaga, Chair
J.Catty, ViceChair
S.R.Doctor
N.F.Douglas,Jr.
R.K.Miller
N.Y.Faransso, ContributingMember
WorkingGrouponFullMatrixCapture(SG-VM)(BPVV)
E.Peloquin, Chair
C.Wassink, ViceChair
D.Bajula
D.Bellistri
J.Catty
N.A.Finney
J.L.Garner
R.T.Grotenhuis
P.T.Hayes
G.W.Hembree
K.Krueger
M.Lozev
R.Nogueira
D.Richard
M.Sens
D.Tompkins
J.F.Halley, ContributingMember
L.E.Mullins, ContributingMember
SubgrouponInserviceExaminationMethodsandTechniques
(BPVV)
P.T.Hayes, Chair
E.Peloquin, ViceChair
M.A.Burns
M.Carlson
N.A.Finney
V.F.Godinez-Azcuaga
G.W.Hembree
K.Krueger
C.May
D.D.Raimander
C.Vorwald
SubgrouponSurfaceExaminationMethods(BPVV)
N.Carter, Chair
B.D.Laite, ViceChair
R.M.Beldyk
P.L.Brown
T.Clausing
C.Emslander
N.Farenbaugh
N.A.Finney
A.F.Garbolevsky
K.Hayes
G.W.Hembree
C.May
P.B.Shaw
R.Tedder
C.Vorwald
C.Wassink
D.M.Woodward
S.J.Akrin, ContributingMember
N.Y.Faransso, ContributingMember
J.F.Halley, ContributingMember
R.W.Kruzic, ContributingMember
L.E.Mullins, ContributingMember
F.J.Sattler, ContributingMember
GermanyInternationalWorkingGroup(BPVV)
P.Chavdarov, Chair
C.Kringe, ViceChair
H.-P.Schmitz, Secretary
K.-H.Gischler
D.Kaiser
S.Mann
V.Reusch
IndiaInternationalWorkingGroup(BPVV)
P.Kumar, Chair
A.V.Bhagwat
J.Chahwala
S.Jobanputra
D.Joshi
G.R.Joshi
A.Relekar
V.J.Sonawane
D.B.Tanpure
ItalyInternationalWorkingGroup(BPVV)
D.D.Raimander, Chair
O.Oldani, ViceChair
C.R.Ramcharran, StaffSecretary
P.Campli, Secretary
M.Agostini
T.Aldo
F.Bresciani
N.Caputo
M.Colombo
P.L.Dinelli
F.Ferrarese
E.Ferrari
M.A.Grimoldi
G.Luoni
U.Papponetti
P.Pedersoli
A.Veroni
M.Zambon
V.Calo,ContributingMember
G.Gobbi, ContributingMember
A.Gusmaroli, ContributingMember
G.Pontiggia, ContributingMember
COMMITTEEONPRESSUREVESSELS(BPVVIII)
S.C.Roberts, Chair
M.D.Lower, ViceChair
S.J.Rossi, StaffSecretary
G.Aurioles,Sr.
S.R.Babka
R.J.Basile
P.Chavdarov
D.B.DeMichael
J.F.Grubb
B.F.Hantz
M.Kowalczyk
D.L.Kurle
R.Mahadeen
S.A.Marks
P.Matkovics
R.W.Mikitka
B.R.Morelock
T.P.Pastor
D.T.Peters
M.J.Pischke
M.D.Rana
G.B.Rawls,Jr.
F.L.Richter
C.D.Rodery
J.C.Sowinski
D.Srnic
D.B.Stewart
P.L.Sturgill
K.Subramanian
D.A.Swanson
J.P.Swezy,Jr.
S.Terada
E.Upitis
A.Viet
K.Xu
P.A.McGowan, Delegate
H.Michael, Delegate
K.Oyamada, Delegate
M.E.Papponetti, Delegate
A.Chaudouet, ContributingMember
J.P.Glaspie, ContributingMember
K.T.Lau,ContributingMember
U.R.Miller, ContributingMember
K.Mokhtarian, ContributingMember
G.G.Karcher, HonoraryMember
K.K.Tam,HonoraryMember
ExecutiveCommittee(BPVVIII)
M.D.Lower, Chair
S.J.Rossi, StaffSecretary
G.Aurioles,Sr.
C.W.Cary
J.Hoskinson
M.Kowalczyk
S.A.Marks
P.Matkovics
S.C.Roberts
J.C.Sowinski
K.Subramanian
K.Xu
xxvii

SubgrouponDesign(BPVVIII)
J.C.Sowinski, Chair
C.S.Hinson, ViceChair
G.Aurioles,Sr.
S.R.Babka
O.A.Barsky
R.J.Basile
D.Chandiramani
M.D.Clark
M.Faulkner
B.F.Hantz
C.E.Hinnant
M.H.Jawad
S.Krishnamurthy
D.L.Kurle
K.Kuscu
M.D.Lower
R.W.Mikitka
B.Millet
M.D.Rana
G.B.Rawls,Jr.
S.C.Roberts
C.D.Rodery
T.G.Seipp
D.Srnic
D.A.Swanson
S.Terada
J.Vattappilly
K.Xu
K.Oyamada, Delegate
M.E.Papponetti, Delegate
P.K.Lam,ContributingMember
K.Mokhtarian, ContributingMember
T.P.Pastor, ContributingMember
S.C.Shah, ContributingMember
K.K.Tam,ContributingMember
E.Upitis, ContributingMember
WorkingGrouponDesign-by-Analysis(BPVVIII)
B.F.Hantz, Chair
T.W.Norton, Secretary
D.A.Arnett
J.Bedoya
S.Guzey
C.F.HeberlingII
C.E.Hinnant
M.H.Jawad
S.Kataoka
S.Kilambi
K.D.Kirkpatrick
S.Krishnamurthy
A.Mann
C.Nadarajah
P.Prueter
T.G.Seipp
M.A.Shah
S.Terada
R.G.Brown, ContributingMember
D.Dewees, ContributingMember
K.Saboda, ContributingMember
WorkingGrouponElevatedTemperatureDesign(BPVIandVIII)
A.Mann, Chair
C.Nadarajah, Secretary
D.Anderson
D.Dewees
B.F.Hantz
M.H.Jawad
R.I.Jetter
S.Krishnamurthy
T.Le
M.C.Messner
M.N.Mitchell
P.Prueter
M.J.Swindeman
J.P.Glaspie, ContributingMember
N.McMurray, ContributingMember
B.J.Mollitor, ContributingMember
SubgrouponFabricationandExamination(BPVVIII)
S.A.Marks, Chair
D.I.Morris, ViceChair
T.Halligan, Secretary
N.Carter
J.Lu
B.R.Morelock
O.Mulet
M.J.Pischke
M.J.Rice
J.Roberts
C.D.Rodery
B.F.Shelley
D.Smith
P.L.Sturgill
J.P.Swezy,Jr.
E.Upitis
C.Violand
K.Oyamada, Delegate
W.J.Bees, ContributingMember
L.F.Campbell, ContributingMember
R.Uebel, ContributingMember
SubgrouponGeneralRequirements(BPVVIII)
J.Hoskinson, Chair
M.Faulkner, ViceChair
N.Barkley
R.J.Basile
T.P.Beirne
D.B.DeMichael
M.D.Lower
T.P.Pastor
I.Powell
G.B.Rawls,Jr.
F.L.Richter
S.C.Roberts
J.Rust
J.C.Sowinski
P.Speranza
D.Srnic
D.B.Stewart
D.A.Swanson
J.P.Glaspie, ContributingMember
Y.Yang, ContributingMember
TaskGrouponFiredHeaterPressureVessels(BPVVIII)
J.Hoskinson, Chair
W.Kim
S.Kirk
D.Nelson
T.P.Pastor
R.Robles
J.Rust
P.Shanks
E.Smith
D.Srnic
TaskGrouponSubseaApplications(BPVVIII)
M.Sarzynski, Chair
A.J.Grohmann, ViceChair
L.P.Antalffy
R.C.Biel
J.Ellens
J.Hademenos
J.Kaculi
K.Karpanan
F.Kirkemo
C.Lan
P.Lutkiewicz
N.McKie
S.K.Parimi
R.H.Patil
M.P.Vaclavik
R.Cordes, ContributingMember
D.T.Peters, ContributingMember
J.R.Sims, ContributingMember
SubgrouponHeatTransferEquipment(BPVVIII)
P.Matkovics, Chair
M.D.Clark, ViceChair
L.Bower, Secretary
G.Aurioles,Sr.
S.R.Babka
J.H.Barbee
O.A.Barsky
T.Bunyarattaphantu
A.Chaudouet
D.L.Kurle
R.Mahadeen
S.Mayeux
S.Neilsen
E.Smith
A.M.Voytko
R.P.Wiberg
J.Pasek, ContributingMember
D.Srnic, ContributingMember
Z.Tong, ContributingMember
WorkingGrouponPlateHeatExchangers(BPVVIII)
D.I.Morris, Chair
S.R.Babka
J.F.Grubb
V.Gudge
R.Mahadeen
S.A.Marks
P.Matkovics
M.J.Pischke
P.Shanks
E.Smith
D.Srnic
S.Sullivan
xxviii

SubgrouponHighPressureVessels(BPVVIII)
K.Subramanian, Chair
M.Sarzynski, ViceChair
A.Dinizulu, StaffSecretary
L.P.Antalffy
J.Barlow
R.C.Biel
P.N.Chaku
L.Fridlund
D.Fuenmayor
J.Gibson
R.T.Hallman
K.Karpanan
J.Keltjens
A.K.Khare
G.T.Nelson
D.T.Peters
E.D.Roll
J.R.Sims
E.Smith
F.W.Tatar
S.Terada
Y.Xu
A.M.Clayton, ContributingMember
R.Cordes, ContributingMember
R.D.Dixon, ContributingMember
Q.Dong, ContributingMember
T.A.Duffey, ContributingMember
R.M.Hoshman, Contributing
Member
F.Kirkemo, ContributingMember
R.A.Leishear, ContributingMember
G.M.Mital, ContributingMember
M.Parr,ContributingMember
M.D.Rana, ContributingMember
C.Romero, ContributingMember
C.Tipple, ContributingMember
K.-J.Young, ContributingMember
D.J.Burns, HonoraryMember
G.J.Mraz, HonoraryMember
SubgrouponMaterials(BPVVIII)
M.Kowalczyk, Chair
P.Chavdarov, ViceChair
S.Kilambi, Secretary
J.Cameron
J.F.Grubb
D.Maitra
D.W.Rahoi
J.Robertson
R.C.Sutherlin
E.Upitis
K.Xu
S.Yem
A.DiRienzo, ContributingMember
J.D.Fritz, ContributingMember
M.Katcher, ContributingMember
W.M.Lundy, ContributingMember
J.Penso, ContributingMember
SubgrouponToughness(BPVVIII)
K.Xu,Chair
T.Halligan, ViceChair
T.Finn
C.S.Hinson
S.Kilambi
D.L.Kurle
T.Newman
J.Qu
M.D.Rana
F.L.Richter
K.Subramanian
D.A.Swanson
J.P.Swezy,Jr.
S.Terada
E.Upitis
J.Vattappilly
K.Oyamada, Delegate
L.Dong, ContributingMember
S.Krishnamurthy, Contributing
Member
K.Mokhtarian, ContributingMember
SubgrouponGraphitePressureEquipment(BPVVIII)
C.W.Cary, Chair
A.Viet,ViceChair
G.C.Becherer
F.L.Brown
R.J.Bulgin
J.D.Clements
H.Lee,Jr.
S.Mehrez
T.Rudy
A.A.Stupica
ArgentinaInternationalWorkingGroup(BPVVIII)
A.Dominguez, Chair
R.Robles, ViceChair
G.Glissenti, Secretary
M.M.Acosta
R.A.Barey
C.Alderetes
F.A.Andres
A.Antipasti
D.A.Bardelli
L.F.Boccanera
O.S.Bretones
A.Burgueno
G.Casanas
D.H.DaRold
D.A.DelTeglia
J.I.Duo
M.Favareto
M.D.Kuhn
F.P.Larrosa
L.M.Leccese
C.Meinl
M.A.Mendez
J.J.Monaco
C.Parente
M.A.A.Pipponzi
L.C.Rigoli
A.Rivas
D.Rizzo
J.C.Rubeo
S.Schamun
G.Telleria
M.M.C.Tocco
ChinaInternationalWorkingGroup(BPVVIII)
X.Chen, Chair
B.Shou, ViceChair
Z.Fan,Secretary
Y.Chen
J.Cui
R.Duan
J.-G.Gong
B.Han
J.Hu
Q.Hu
H.Hui
K.Li
D.Luo
Y.Luo
C.Miao
L.Sun
C.Wu
J.Xiaobin
F.Xu
G.Xu
F.Yang
Y.Yang
Y.Yuan
YanfengZhang
YijunZhang
S.Zhao
J.Zheng
G.Zhu
GermanyInternationalWorkingGroup(BPVVIII)
R.Kauer, Chair
M.Sykora, ViceChair
A.Aloui
P.Chavdarov
A.Emrich
J.Fleischfresser
C.Jaekel
D.Koelbl
S.Krebs
T.Ludwig
R.A.Meyers
H.Michael
S.Reich
A.Spangenberg
C.Stobbe
G.Naumann, ContributingMember
IndiaInternationalWorkingGroup(BPVVIII)
D.Chandiramani, Chair
D.Kulkarni, ViceChair
A.D.Dalal, Secretary
P.Arulkumar
B.Basu
P.Gandhi
U.Ganesan
S.K.Goyal
V.Jayabalan
V.K.Joshi
A.Kakumanu
V.V.P.Kumar
T.Mukherjee
P.C.Pathak
D.Prabhu
A.Sadasivam
M.P.Shah
R.Tiru
V.T.Valavan
M.Sharma, ContributingMember
xxix

ItalyInternationalWorkingGroup(BPVVIII)
A.Teli,Chair
M.Millefanti, ViceChair
P.Campli, Secretary
B.G.Alborali
P.Aliprandi
A.Avogadri
A.Camanni
N.Caputo
M.Colombo
P.Conti
D.Cortassa
P.L.Dinelli
F.Finco
M.Guglielmetti
A.F.Magri
P.Mantovani
L.Moracchioli
P.Pacor
S.Sarti
V.Calo,ContributingMember
G.Gobbi, ContributingMember
A.Gusmaroli, ContributingMember
G.Pontiggia, ContributingMember
D.D.Raimander, Contributing
Member
SpecialWorkingGrouponBoltedFlangedJoints(BPVVIII)
W.Brown, Chair
M.Osterfoss, ViceChair
G.Aurioles,Sr.
D.Bankston,Jr.
H.Bouzid
A.Chaudouet
H.Chen
D.Francis
H.Lejeune
A.Mann
W.McDaniel
R.W.Mikitka
D.Nash
M.Ruffin
R.Wacker
E.Jamalyaria, ContributingMember
J.R.Payne, ContributingMember
G.VanZyl,ContributingMember
J.Veiga, ContributingMember
SubgrouponInterpretations(BPVVIII)
G.Aurioles,Sr.,Chair
J.Oh,StaffSecretary
S.R.Babka
J.Cameron
C.W.Cary
B.F.Hantz
M.Kowalczyk
D.L.Kurle
M.D.Lower
S.A.Marks
P.Matkovics
D.I.Morris
D.T.Peters
F.L.Richter
S.C.Roberts
C.D.Rodery
T.G.Seipp
J.C.Sowinski
D.B.Stewart
K.Subramanian
D.A.Swanson
J.P.Swezy,Jr.
J.Vattappilly
A.Viet
K.Xu
R.J.Basile, ContributingMember
D.B.DeMichael, Contributing
Member
R.D.Dixon, ContributingMember
S.Kilambi, ContributingMember
R.Mahadeen, ContributingMember
T.P.Pastor, ContributingMember
P.L.Sturgill, ContributingMember
COMMITTEEONWELDING,BRAZING,ANDFUSING(BPVIX)
M.J.Pischke, Chair
P.L.Sturgill, ViceChair
R.Rahaman, StaffSecretary
M.Bernasek
M.A.Boring
D.A.Bowers
N.Carter
J.G.Feldstein
P.Gilston
S.E.Gingrich
K.L.Hayes
R.M.Jessee
J.S.Lee
W.M.Lundy
D.W.Mann
S.A.Marks
T.Melfi
W.F.Newell,Jr.
E.G.Reichelt
M.J.Rice
M.B.Sims
W.J.Sperko
J.P.Swezy,Jr.
A.D.Wilson
E.W.Woelfel
D.Pojatar, Delegate
A.Roza, Delegate
M.Consonni, ContributingMember
P.D.Flenner, ContributingMember
S.A.Jones, ContributingMember
D.K.Peetz, ContributingMember
S.Raghunathan, Contributing
Member
M.J.Stanko, ContributingMember
P.L.VanFosson, Contributing
Member
R.K.Brown,Jr.,HonoraryMember
M.L.Carpenter, HonoraryMember
B.R.Newmark, HonoraryMember
S.D.Reynolds,Jr.,HonoraryMember
SubgrouponBrazing(BPVIX)
S.A.Marks, Chair
E.W.Beckman
A.F.Garbolevsky
N.Mohr
M.J.Pischke
P.L.Sturgill
J.P.Swezy,Jr.
SubgrouponGeneralRequirements(BPVIX)
N.Carter, Chair
P.Gilston, ViceChair
J.P.Bell
D.A.Bowers
M.Heinrichs
A.Howard
R.M.Jessee
S.A.Marks
H.B.Porter
P.L.Sturgill
J.P.Swezy,Jr.
E.W.Woelfel
E.W.Beckman, Contributing
Member
A.Davis, ContributingMember
D.K.Peetz, ContributingMember
B.R.Newmark, HonoraryMember
SubgrouponMaterials(BPVIX)
M.Bernasek, Chair
T.Anderson
L.Constantinescu
E.Cutlip
M.Denault
S.E.Gingrich
L.S.Harbison
M.James
R.M.Jessee
T.Melfi
S.D.Nelson
M.J.Pischke
A.Roza
C.E.Sainz
P.L.Sturgill
C.Zanfir
V.G.V.Giunto, Delegate
D.J.Kotecki, ContributingMember
B.Krueger, ContributingMember
W.J.Sperko, ContributingMember
M.J.Stanko, ContributingMember
SubgrouponPlasticFusing(BPVIX)
K.L.Hayes, Chair
R.M.Jessee
J.Johnston,Jr.
J.E.O’Sullivan
E.G.Reichelt
M.J.Rice
S.Schuessler
M.Troughton
C.Violand
E.W.Woelfel
J.Wright
xxx

SubgrouponWeldingQualifications(BPVIX)
T.Melfi, Chair
A.D.Wilson, ViceChair
K.L.Hayes, Secretary
M.Bernasek
M.A.Boring
D.A.Bowers
R.Campbell
R.B.Corbit
L.S.Harbison
M.Heinrichs
J.S.Lee
W.M.Lundy
D.W.Mann
W.F.Newell,Jr.
E.G.Reichelt
M.J.Rice
M.B.Sims
W.J.Sperko
P.L.Sturgill
J.P.Swezy,Jr.
C.Violand
D.Chandiramani, Contributing
Member
M.Consonni, ContributingMember
M.Dehghan, ContributingMember
P.D.Flenner, ContributingMember
T.C.Wiesner, ContributingMember
ArgentinaInternationalWorkingGroup(BPVIX)
A.Burgueno, Chair
A.R.G.Frinchaboy, ViceChair
R.Rahaman, StaffSecretary
M.D.Kuhn, Secretary
B.Bardott
L.F.Boccanera
P.J.Cabot
J.Caprarulo
M.Favareto
J.A.Gandola
C.A.Garibotti
J.A.Herrera
M.A.Mendez
A.E.Pastor
G.Telleria
M.M.C.Tocco
GermanyInternationalWorkingGroup(BPVIX)
A.Roza, Chair
A.Spangenberg, ViceChair
R.Rahaman, StaffSecretary
P.Chavadarov
B.Daume
J.Fleischfresser
P.Khwaja
S.Krebs
T.Ludwig
S.Wegener
F.Wodke
J.Daldrup, ContributingMember
E.Floer, ContributingMember
R.Helmholdt, ContributingMember
G.Naumann, ContributingMember
K.-G.Toelle, ContributingMember
ItalyInternationalWorkingGroup(BPVIX)
D.D.Raimander, Chair
F.Ferrarese, ViceChair
R.Rahaman, StaffSecretary
M.Bernasek
A.Camanni
P.L.Dinelli
M.Mandina
A.S.Monastra
L.Moracchioli
P.Pacor
P.Siboni
V.Calo,ContributingMember
G.Gobbi, ContributingMember
A.Gusmaroli, ContributingMember
G.Pontiggia, ContributingMember
SpainInternationalWorkingGroup(BPVIX)
F.J.Q.Pandelo, Chair
F.L.Villabrille, ViceChair
R.Rahaman, StaffSecretary
F.R.Hermida, Secretary
C.A.Celimendiz
M.A.F.Garcia
R.G.Garcia
F.Manas
B.B.Miguel
A.D.G.Munoz
A.B.Pascual
S.Sevil
G.Gobbi, ContributingMember
COMMITTEEONFIBER-REINFORCEDPLASTICPRESSUREVESSELS
(BPVX)
B.Linnemann, Chair
D.Eisberg, ViceChair
P.D.Stumpf, StaffSecretary
A.L.Beckwith
F.L.Brown
J.L.Bustillos
B.R.Colley
T.W.Cowley
I.L.Dinovo
J.Eihusen
M.R.Gorman
B.Hebb
L.E.Hunt
D.H.McCauley
N.L.Newhouse
G.Ramirez
J.R.Richter
B.F.Shelley
G.A.VanBeek
S.L.Wagner
D.O.Yancey,Jr.
P.H.Ziehl
D.H.Hodgkinson, Contributing
Member
D.L.Keeler, ContributingMember
COMMITTEEONNUCLEARINSERVICEINSPECTION(BPVXI)
R.W.Swayne, Chair
D.W.Lamond, ViceChair
A.T.RobertsIII,ViceChair
D.Miro-Quesada, StaffSecretary
J.F.Ball
W.H.Bamford
M.L.Benson
J.M.Boughman
C.Brown
S.B.Brown
T.L.Chan
R.C.Cipolla
D.R.Cordes
H.Do
E.V.Farrell,Jr.
M.J.Ferlisi
T.J.Griesbach
J.Hakii
M.L.Hall
P.J.Hennessey
D.O.Henry
K.Hojo
S.D.Kulat
C.Latiolais
J.T.Lindberg
H.Malikowski
S.L.McCracken
S.A.Norman
T.Nuoffer
J.Nygaard
J.E.O’Sullivan
N.A.Palm
G.C.Park
D.A.Scarth
F.J.Schaaf,Jr.
S.Takaya
D.Vetter
T.V.Vo
J.G.Weicks
M.Weis
Y.-K.Chung, Delegate
C.Ye,Delegate
B.Lin,Alternate
R.O.McGill, Alternate
L.A.Melder, Alternate
A.Udyawar, Alternate
E.B.Gerlach, ContributingMember
C.D.Cowfer, HonoraryMember
R.E.Gimple, HonoraryMember
F.E.Gregor, HonoraryMember
R.D.Kerr,HonoraryMember
P.C.Riccardella, HonoraryMember
R.A.West, HonoraryMember
C.J.Wirtz, HonoraryMember
R.A.Yonekawa, HonoraryMember
ExecutiveCommittee(BPVXI)
D.W.Lamond, Chair
R.W.Swayne, ViceChair
D.Miro-Quesada, StaffSecretary
M.L.Benson
M.J.Ferlisi
S.D.Kulat
J.T.Lindberg
S.L.McCracken
T.Nuoffer
N.A.Palm
G.C.Park
A.T.RobertsIII
B.L.Lin,Alternate
ArgentinaInternationalWorkingGroup(BPVXI)
O.Martinez, StaffSecretary
A.Claus
I.M.Guerreiro
L.R.Miño
F.J.Schaaf,Jr.
F.M.Schroeter
P.Yamamoto
xxxi

ChinaInternationalWorkingGroup(BPVXI)
J.H.Liu,Chair
J.F.Cai,ViceChair
C.Ye,ViceChair
M.W.Zhou, Secretary
H.Chen
H.D.Chen
Y.Cheng
Y.B.Guo
Y.Hongqi
D.R.Horn
Y.Hou
S.X.Lin
Y.Nie
W.N.Pei
L.Shiwei
S.Shuo
Y.Sixin
Y.X.Sun
G.X.Tang
Q.Wang
Q.W.Wang
Z.S.Wang
L.Xing
F.Xu
S.X.Xu
Q.Yin
K.Zhang
Y.Zhe
Z.M.Zhong
GermanyInternationalWorkingGroup(BPVXI)
R.Döring, Chair
M.Hagenbruch, ViceChair
R.Piel,Secretary
A.Casse
C.G.Frantescu
E.Iacopetta
S.D.Kulat
H.-W.Lange
N.Legl
T.Ludwig
X.Pitoiset
M.Reichert
L.Sybertz
I.Tewes
R.Tiete
J.Wendt
IndiaInternationalWorkingGroup(BPVXI)
S.B.Parkash, Chair
D.Narain, ViceChair
K.K.Rai,Secretary
Z.M.Mansuri
M.R.Nadgouda
N.Palm
D.Rawal
R.Sahai
R.K.Sharma
SpecialWorkingGrouponEditingandReview(BPVXI)
R.W.Swayne, Chair
R.C.Cipolla
D.O.Henry
M.Orihuela
D.A.Scarth
TaskGrouponInspectability(BPVXI)
J.T.Lindberg, Chair
E.Henry, Secretary
A.Bushmire
A.Cardillo
K.Caver
D.R.Cordes
P.Gionta
D.O.Henry
J.Honcharik
C.Latiolais
G.A.Lofthus
S.Matsumoto
D.E.Matthews
P.J.O’Regan
J.B.Ossmann
C.Thomas
WorkingGrouponSpentNuclearFuelStorageandTransportation
ContainmentSystems(BPVXI)
K.Hunter, Chair
M.Orihuela, Secretary
D.J.Ammerman
W.H.Borter
J.Broussard
C.R.Bryan
T.Carraher
S.Corcoran
D.Dunn
N.Fales
R.C.Folley
G.Grant
B.Gutherman
M.W.Joseph
M.Keene
M.Liu
K.Mauskar
R.M.Meyer
R.M.Pace
E.L.Pleins
M.A.Richter
B.Sarno
R.Sindelar
M.Staley
J.Wellwood
K.A.Whitney
X.J.Zhai
P.-S.Lam,Alternate
G.White, Alternate
J.Wise, Alternate
H.Smith, ContributingMember
TaskGrouponMitigationandRepairofSpentNuclearFuel
Canisters(WG-SNFS&TCS)(BPVXI)
J.Tatman, Chair
D.J.Ammerman
J.Broussard
C.R.Bryan
G.R.Cannell
K.Dietrich
D.Dunn
N.Fales
R.C.Folley
D.Jacobs
N.Klymyshyn
M.Kris
M.Liu
K.Mauskar
S.L.McCracken
M.Orihuela
M.Richter
K.E.Ross
B.Sarno
R.Sindelar
J.Wellwood
A.Williams
SubgrouponEvaluationStandards(SG-ES)(BPVXI)
N.A.Palm, Chair
S.X.Xu,Secretary
W.H.Bamford
M.Brumovsky
H.D.Chung
R.C.Cipolla
C.M.Faidy
M.M.Farooq
B.R.Ganta
T.J.Griesbach
K.Hasegawa
K.Hojo
D.N.Hopkins
D.R.Lee
Y.S.Li
R.O.McGill
K.Miyazaki
R.M.Pace
J.C.Poehler
S.Ranganath
D.A.Scarth
D.J.Shim
A.Udyawar
T.V.Vo
G.M.Wilkowski
M.L.Benson, Alternate
H.S.Mehta, ContributingMember
TaskGrouponEvaluationofBeyondDesignBasisEvents
(SG-ES)(BPVXI)
R.M.Pace, Chair
S.X.Xu,Secretary
F.G.Abatt
G.A.Antaki
P.R.Donavin
R.G.Gilada
T.J.Griesbach
M.Hayashi
K.Hojo
S.A.Kleinsmith
S.M.Moenssens
T.V.Vo
G.M.Wilkowski
H.S.Mehta, ContributingMember
T.Weaver, ContributingMember
xxxii

WorkingGrouponFlawEvaluation
(SG-ES)(BPVXI)
R.C.Cipolla, Chair
S.X.Xu,Secretary
W.H.Bamford
M.L.Benson
M.Brumovsky
H.D.Chung
N.G.Cofie
M.A.Erickson
C.M.Faidy
M.M.Farooq
B.R.Ganta
R.G.Gilada
C.Guzman-Leong
P.H.Hoang
K.Hojo
D.N.Hopkins
S.Kalyanam
Y.Kim
V.Lacroix
D.R.Lee
Y.S.Li
C.Liu
M.Liu
G.A.Miessi
K.Miyazaki
S.Noronha
R.K.Qashu
S.Ranganath
D.A.Scarth
W.L.Server
D.J.Shim
S.Smith
M.Uddin
A.Udyawar
T.V.Vo
K.Wang
B.Wasiluk
G.M.Wilkowski
H.S.Mehta, ContributingMember
WorkingGrouponFlawEvaluationReferenceCurves
(SG-ES)(BPVXI)
A.Udyawar, Chair
D.A.Scarth, Secretary
W.H.Bamford
M.L.Benson
F.W.Brust
R.C.Cipolla
M.M.Farooq
A.E.Freed
P.Gill
K.Hasegawa
K.Hojo
V.Lacroix
K.Miyazaki
B.Pellereau
S.Ranganath
D.J.Shim
S.Smith
M.Uddin
T.V.Vo
G.White
S.X.Xu
H.S.Mehta, ContributingMember
WorkingGrouponOperatingPlantCriteria(SG-ES)(BPVXI)
N.A.Palm, Chair
A.E.Freed, Secretary
W.H.Bamford
M.Brumovsky
M.A.Erickson
T.J.Griesbach
M.Hayashi
R.Janowiak
M.Kirk
S.A.Kleinsmith
H.Kobayashi
A.D.Odell
R.M.Pace
J.C.Poehler
S.Ranganath
W.L.Server
C.A.Tomes
A.Udyawar
T.V.Vo
H.Q.Xu
H.S.Mehta, ContributingMember
TaskGrouponAppendixL(WG-OPC)(BPVXI)
N.Glunt, Chair
R.M.Pace, Secretary
J.I.Duo
A.E.Freed
M.A.Gray
T.J.Griesbach
H.Nam
A.Nana
A.D.Odell
C.-S.Oh
H.Park
S.Ranganath
A.Scott
D.J.Shim
S.Smith
A.Udyawar
T.V.Vo
WorkingGrouponPipeFlawEvaluation(SG-ES)(BPVXI)
D.A.Scarth, Chair
S.Kalyanam, Secretary
K.Azuma
W.H.Bamford
M.L.Benson
M.Brumovsky
F.W.Brust
H.D.Chung
R.C.Cipolla
N.G.Cofie
C.M.Faidy
M.M.Farooq
B.R.Ganta
R.G.Gilada
S.R.Gosselin
C.E.Guzman-Leong
K.Hasegawa
P.H.Hoang
K.Hojo
D.N.Hopkins
E.J.Houston
R.Janowiak
K.Kashima
Y.Kim
V.Lacroix
Y.S.Li
R.O.McGill
G.A.Miessi
K.Miyazaki
S.M.Parker
S.H.Pellet
C.J.Sallaberry
W.L.Server
D.J.Shim
S.Smith
M.F.Uddin
A.Udyawar
T.V.Vo
K.Wang
B.Wasiluk
G.M.Wilkowski
S.X.Xu
Y.Zou
K.Gresh, Alternate
H.S.Mehta, ContributingMember
TaskGrouponCodeCaseN-513(WG-PFE)(BPVXI)
R.O.McGill, Chair
S.M.Parker, Secretary
G.A.Antaki
R.C.Cipolla
M.M.Farooq
K.Gresh
E.J.Houston
R.Janowiak
S.H.Pellet
D.Rudland
D.A.Scarth
S.X.Xu
TaskGrouponEvaluationProceduresforDegradedBuriedPipe
(WG-PFE)(BPVXI)
R.O.McGill, Chair
S.X.Xu,Secretary
F.G.Abatt
G.A.Antaki
R.C.Cipolla
R.G.Gilada
K.Hasegawa
K.M.Hoffman
R.Janowiak
M.Kassar
M.Moenssens
D.P.Munson
R.M.Pace
S.H.Pellet
D.Rudland
D.A.Scarth
TaskGrouponFlawEvaluationforHDPEPipe(WG-PFE)(BPVXI)
S.Kalyanam, Chair
P.Krishnaswamy
M.Moenssens
D.P.Munson
D.A.Scarth
D.J.Shim
M.Troughton
J.Wright
S.X.Xu
SubgrouponNondestructiveExamination(SG-NDE)(BPVXI)
J.T.Lindberg, Chair
D.O.Henry, ViceChair
T.Cinson, Secretary
M.Briley
C.Brown
A.Bushmire
T.L.Chan
D.R.Cordes
S.E.Cumblidge
K.J.Hacker
J.Harrison
D.A.Kull
C.Latiolais
F.J.Schaaf,Jr.
R.V.Swain
C.A.Nove, Alternate
xxxiii

WorkingGrouponPersonnelQualificationandSurfaceVisualand
EddyCurrentExamination(SG-NDE)(BPVXI)
C.Brown, Chair
M.Orihuela, Secretary
J.Bennett
T.Cinson
S.E.Cumblidge
A.Diaz
N.Farenbaugh
D.O.Henry
J.T.Lindberg
C.Shinsky
R.Tedder
T.Thulien
J.T.Timm
WorkingGrouponProcedureQualificationandVolumetric
Examination(SG-NDE)(BPVXI)
J.Harrison, Chair
D.A.Kull,Secretary
M.Briley
A.Bushmire
D.R.Cordes
K.J.Hacker
R.E.Jacob
W.A.Jensen
C.Latiolais
C.A.Nove
D.R.Slivon
R.V.Swain
D.VanAllen
J.Williams
B.Lin,Alternate
SubgrouponReliabilityandIntegrityManagementProgram
(SG-RIM)(BPVXI)
A.T.RobertsIII,Chair
D.Vetter, Secretary
T.Anselmi
M.T.Audrain
N.Broom
F.W.Brust
V.Chugh
S.R.Doctor
J.D.Fletcher
J.T.Fong
R.Grantom
K.Harris
P.J.Hennessey
S.Kalyanam
D.R.Lee
R.J.McReynolds
R.Meyer
M.Orihuela
C.J.Sallaberry
F.J.Schaaf,Jr.
H.M.Stephens,Jr.
R.W.Swayne
S.Takaya
R.Vayda
WorkingGrouponMANDE(SG-RIM)(BPVXI)
H.M.Stephens,Jr.,Chair
S.R.Doctor, ViceChair
M.Turnbow, Secretary
T.Anselmi
M.T.Audrain
N.A.Finney
J.T.Fong
D.O.Henry
R.J.McReynolds
R.Meyer
M.Orihuela
K.Yamada
TaskGrouponNonmetallicComponentDegradationandFailure
Monitoring(SG-RIM)(BPVXI)
M.P.Metcalfe, Chair
A.Tzelepi, Secretary
M.T.Audrain
G.Beirnaert
C.Chen
W.J.Geringer
K.Harris
J.Lang
J.Potgieter
ASME/JSMEJointWorkingGrouponRIMProcessesand
System-BasedCode(SG-RIM)(BPVXI)
S.Takaya, Chair
R.J.McReynolds, ViceChair
M.T.Audrain
K.Dozaki
J.T.Fong
J.Hakii
K.Harris
M.Hayashi
S.Kalyanam
D.R.Lee
H.Machida
R.Meyer
T.Muraki
S.Okajima
A.T.RobertsIII
C.J.Sallaberry
F.J.Schaaf,Jr.
R.Vayda
D.Watanabe
H.Yada
K.Yamada
T.Asayama, ContributingMember
SubgrouponRepair/ReplacementActivities(SG-RRA)(BPVXI)
S.L.McCracken, Chair
E.V.Farrell,Jr.,Secretary
J.F.Ball
M.Brandes
S.B.Brown
R.Clow
S.J.Findlan
M.L.Hall
J.Honcharik
A.B.Meichler
L.A.Melder
S.A.Norman
G.T.Olson
J.E.O’Sullivan
G.C.Park
R.R.Stevenson
R.W.Swayne
D.J.Tilly
J.G.Weicks
B.Lin,Alternate
WorkingGrouponDesignandPrograms(SG-RRA)(BPVXI)
S.B.Brown, Chair
R.A.Patel, Secretary
O.Bhatty
R.Clow
R.R.Croft
E.V.Farrell,Jr.
K.Harris
B.Lin
H.Malikowski
A.B.Meichler
G.C.Park
M.A.Pyne
R.R.Stevenson
K.Sullivan
R.W.Swayne
TaskGrouponRepairandReplacementOptimization
(WG-D&P)(BPVXI)
S.L.McCracken, Chair
S.J.Findlan, Secretary
T.Basso
R.Clow
K.Dietrich
E.V.Farrell,Jr.
M.J.Ferlisi
R.C.Folley
M.L.Hall
D.Jacobs
H.Malikowski
T.Nuoffer
G.C.Park
A.Patel
R.R.Stevenson
J.G.Weicks
WorkingGrouponNonmetalsRepair/ReplacementActivities
(SG-RRA)(BPVXI)
J.E.O’Sullivan, Chair
S.Schuessler, Secretary
M.Brandes
D.R.Dechene
M.Golliet
J.Johnston,Jr.
B.Lin
T.M.Musto
A.Pridmore
F.J.Schaaf,Jr.
R.Stakenborghs
P.Vibien
M.P.Marohl, ContributingMember
xxxiv

TaskGrouponHDPEPipingforLowSafetySignificanceSystems
(WG-NMRRA)(BPVXI)
M.Brandes, Chair
J.E.O’Sullivan, Secretary
M.Golliet
B.Lin
T.M.Musto
F.J.Schaaf,Jr.
S.Schuessler
R.Stakenborghs
TaskGrouponRepairbyCarbonFiberComposites
(WG-NMRRA)(BPVXI)
J.E.O’Sullivan, Chair
S.F.Arnold
S.W.Choi
D.R.Dechene
M.Golliet
L.S.Gordon
P.Krishnaswamy
M.Kuntz
H.Lu
M.P.Marohl
L.Nadeau
C.A.Nove
R.P.Ojdrovic
A.Pridmore
S.Rios
C.W.Rowley
J.Sealey
R.Stakenborghs
N.Stoeva
M.F.Uddin
J.Wen
B.Davenport, Alternate
WorkingGrouponWeldingandSpecialRepairProcesses
(SG-RRA)(BPVXI)
J.G.Weicks, Chair
G.T.Olson, Secretary
D.Barborak
S.J.Findlan
R.C.Folley
M.L.Hall
J.Honcharik
D.Jacobs
M.Kris
S.E.Marlette
S.L.McCracken
L.A.Melder
J.E.O’Sullivan
D.J.Tilly
TaskGrouponTemperBeadWelding(WG-W&SRP)(BPVXI)
S.J.Findlan, Chair
D.Barborak
R.C.Folley
J.Graham
M.L.Hall
D.Jacobs
H.Kobayashi
S.L.McCracken
N.Mohr
G.T.Olson
J.E.O’Sullivan
A.Patel
J.Tatman
J.G.Weicks
TaskGrouponWeldOverlay(WG-W&SRP)(BPVXI)
S.L.McCracken, Chair
S.Hunter, Secretary
D.Barborak
S.J.Findlan
J.Graham
M.L.Hall
D.Jacobs
C.Lohse
S.E.Marlette
G.T.Olson
A.Patel
D.W.Sandusky
D.E.Waskey
J.G.Weicks
SubgrouponWater-CooledSystems(SG-WCS)(BPVXI)
M.J.Ferlisi, Chair
J.Nygaard, Secretary
J.M.Boughman
S.T.Chesworth
J.Collins
H.Q.Do
K.W.Hall
P.J.Hennessey
A.E.Keyser
S.D.Kulat
D.W.Lamond
T.Nomura
T.Nuoffer
M.A.Pyne
H.M.Stephens,Jr.
R.Thames
M.Weis
I.A.Anchondo-Lopez, Alternate
TaskGrouponHighStrengthNickelAlloysIssues(SG-WCS)(BPVXI)
H.Malikowski, Chair
C.Waskey, Secretary
E.Blackard
T.Cinson
J.Collins
K.Dietrich
P.R.Donavin
H.Kobayashi
S.E.Marlette
G.C.Park
C.Wax
G.White
K.A.Whitney
WorkingGrouponContainment(SG-WCS)(BPVXI)
M.J.Ferlisi, Chair
R.Thames, Secretary
P.S.Ghosal
H.T.Hill
S.Johnson
A.E.Keyser
B.Lehman
P.Leininger
J.A.Munshi
M.Sircar
P.C.Smith
S.Walden
M.Weis
S.G.Brown, Alternate
WorkingGrouponInspectionofSystemsandComponents
(SG-WCS)(BPVXI)
H.Q.Do,Chair
M.Weis, Secretary
I.A.Anchondo-Lopez
R.W.Blyde
K.Caver
C.Cueto-Felgueroso
M.J.Ferlisi
M.L.GarciaHeras
K.W.Hall
J.Howard
A.Keller
S.D.Kulat
E.Lantz
A.Maekawa
T.Nomura
J.C.Nygaard
S.Orita
A.W.Wilkens
WorkingGrouponPressureTesting(SG-WCS)(BPVXI)
J.M.Boughman, Chair
S.A.Norman, Secretary
T.Anselmi
M.J.Homiack
A.E.Keyser
D.W.Lamond
M.Moenssens
R.A.Nettles
C.Thomas
K.Whitney
WorkingGrouponRisk-InformedActivities(SG-WCS)(BPVXI)
M.A.Pyne, Chair
S.T.Chesworth, Secretary
G.Brouette
C.Cueto-Felgueroso
R.Haessler
J.Hakii
K.W.Hall
M.J.Homiack
S.D.Kulat
D.W.Lamond
E.Lantz
P.J.O’Regan
N.A.Palm
D.Vetter
WorkingGrouponGeneralRequirements(BPVXI)
T.Nuoffer, Chair
J.Mayo, Secretary
J.F.Ball
T.L.Chan
P.J.Hennessey
K.A.Kavanagh
G.Ramaraj
T.N.Rezk
A.T.RobertsIII
S.R.Scott
D.Vetter
S.E.Woolf
B.Harris, Alternate
R.S.Spencer, Alternate
xxxv

COMMITTEEONTRANSPORTTANKS(BPVXII)
N.J.Paulick, Chair
M.D.Rana, ViceChair
J.Oh,StaffSecretary
A.N.Antoniou
K.W.A.Cheng
P.Chilukuri
W.L.Garfield
P.Miller
M.Pitts
J.Roberts
T.A.Rogers
R.C.Sallash
M.Shah
S.Staniszewski
A.P.Varghese
R.Meyers, ContributingMember
ExecutiveCommittee(BPVXII)
M.D.Rana, Chair
N.J.Paulick, ViceChair
J.Oh,StaffSecretary
M.Pitts
T.A.Rogers
R.C.Sallash
S.Staniszewski
A.P.Varghese
SubgrouponDesignandMaterials(BPVXII)
R.C.Sallash, Chair
D.K.Chandiramani
K.W.A.Cheng
P.Chilukuri
S.L.McWilliams
N.J.Paulick
M.D.Rana
T.J.Rishel
T.A.Rogers
M.Shah
S.Staniszewski
A.P.Varghese
K.Xu
Y.Doron, ContributingMember
A.T.Duggleby, ContributingMember
R.D.Hayworth, Contributing
Member
B.E.Spencer, ContributingMember
J.Zheng, ContributingMember
SubgrouponFabrication,Inspection,andContinuedService
(BPVXII)
M.Pitts,Chair
K.W.A.Cheng
P.Chilukuri
M.Koprivnak
P.Miller
O.Mulet
T.J.Rishel
J.Roberts
T.A.Rogers
R.C.Sallash
S.Staniszewski
Y.Doron, ContributingMember
R.D.Hayworth, Contributing
Member
G.McRae, ContributingMember
SubgrouponGeneralRequirements(BPVXII)
S.Staniszewski, Chair
A.N.Antoniou
P.Chilukuri
H.EbbenIII
J.L.Freiler
W.L.Garfield
O.Mulet
B.F.Pittel
M.Pitts
R.C.Sallash
Y.Doron, ContributingMember
T.J.Hitchcock, ContributingMember
S.L.McWilliams, Contributing
Member
T.A.Rogers, ContributingMember
D.G.Shelton, ContributingMember
SubgrouponNonmandatoryAppendices(BPVXII)
T.A.Rogers, Chair
S.Staniszewski, Secretary
P.Chilukuri
N.J.Paulick
M.Pitts
T.J.Rishel
R.C.Sallash
D.G.Shelton
D.D.Brusewitz, Contributing
Member
Y.Doron, ContributingMember
COMMITTEEONOVERPRESSUREPROTECTION(BPVXIII)
B.K.Nutter, Chair
A.Donaldson, ViceChair
C.E.Rodrigues, StaffSecretary
J.F.Ball
J.Burgess
B.Calderon
D.B.DeMichael
J.W.Dickson
J.M.Levy
D.Miller
T.Patel
B.F.Pittel
T.R.Tarbay
D.E.Tompkins
Z.Wang
J.A.West
B.Engman, Alternate
H.Aguilar, ContributingMember
R.W.Barnes, ContributingMember
R.D.Danzy, ContributingMember
A.Frigerio, ContributingMember
J.P.Glaspie, ContributingMember
S.F.Harrison,Jr.,Contributing
Member
A.Hassan, ContributingMember
P.K.Lam,ContributingMember
M.Mengon, ContributingMember
J.Mize, ContributingMember
M.Mullavey, ContributingMember
S.K.Parimi, ContributingMember
J.Phillips, ContributingMember
M.Reddy, ContributingMember
S.Ruesenberg, ContributingMember
K.Shores, ContributingMember
D.E.Tezzo, ContributingMember
A.Wilson, ContributingMember
ExecutiveCommittee(BPVXIII)
A.Donaldson, Chair
B.K.Nutter, ViceChair
C.E.Rodrigues, StaffSecretary
J.F.Ball
D.B.DeMichael
K.R.May
D.Miller
SubgrouponDesignandMaterials(BPVXIII)
D.Miller, Chair
T.Patel, ViceChair
T.K.Acharya
C.E.Beair
W.E.Chapin
J.L.Freiler
B.Joergensen
V.Kalyanasundaram
R.Krithivasan
B.J.Mollitor
T.R.Tarbay
J.A.West
A.Williams
D.J.Azukas, ContributingMember
R.D.Danzy, ContributingMember
A.Hassan, ContributingMember
R.Miyata, ContributingMember
M.Mullavey, ContributingMember
S.K.Parimi, ContributingMember
G.Ramirez, ContributingMember
K.Shores, ContributingMember
xxxvi

SubgrouponGeneralRequirements(BPVXIII)
A.Donaldson, Chair
B.F.Pittel, ViceChair
J.M.Levy, Secretary
R.Antoniuk
D.J.Azukas
J.F.Ball
J.Burgess
D.B.DeMichael
S.T.French
J.Grace
C.Haldiman
J.Horne
R.Klimas,Jr.
Z.E.Kumana
P.K.Lam
D.Mainiero-Cessna
K.R.May
J.Mize
L.Moedinger
M.Mullavey
K.Shores
D.E.Tezzo
D.E.Tompkins
J.F.White
B.Calderon, ContributingMember
P.Chavdarov, ContributingMember
T.M.Fabiani, ContributingMember
J.L.Freiler, ContributingMember
J.P.Glaspie, ContributingMember
G.D.Goodson, ContributingMember
B.Joergensen, ContributingMember
C.Lasarte, ContributingMember
M.Mengon, ContributingMember
D.E.Miller, ContributingMember
R.Miyata, ContributingMember
B.Mruk, ContributingMember
J.Phillips, ContributingMember
M.Reddy, ContributingMember
S.Ruesenberg, ContributingMember
R.Sadowski, ContributingMember
A.Swearingin, ContributingMember
A.P.Varghese, ContributingMember
SubgrouponNuclear(BPVXIII)
K.R.May,Chair
J.F.Ball,ViceChair
R.Krithivasan, Secretary
M.Brown
J.W.Dickson
S.Jones
R.Lack
D.Miller
T.Patel
K.Shores
I.H.Tseng
B.J.Yonsky
J.M.Levy, Alternate
Y.Wong, Alternate
J.Yu,Alternate
S.T.French, ContributingMember
D.B.Ross, ContributingMember
SubgrouponTesting(BPVXIII)
B.K.Nutter, Chair
J.W.Dickson, ViceChair
R.Houk, Secretary
T.P.Beirne
M.Brown
B.Calderon
V.ChicolaIII
B.Engman
R.J.Garnett
R.Lack
M.Mengon
C.Sharpe
J.R.Thomas,Jr.
Z.Wang
D.Nelson, Alternate
J.Mize, ContributingMember
M.Mullavey, ContributingMember
S.Ruesenberg, ContributingMember
K.Shores, ContributingMember
A.Strecker, ContributingMember
A.Wilson, ContributingMember
USTAGtoISOTC185SafetyDevicesforProtectionAgainst
ExcessivePressure(BPVXIII)
D.Miller, Chair
C.E.Rodrigues, StaffSecretary
J.F.Ball
T.J.Bevilacqua
D.B.DeMichael
J.W.Dickson
B.K.Nutter
T.Patel
J.R.Thomas,Jr.
D.Tuttle
J.A.West
J.F.White
COMMITTEEONBOILERANDPRESSUREVESSELCONFORMITY
ASSESSMENT(CBPVCA)
R.V.Wielgoszinski, Chair
G.Scribner, ViceChair
G.Moino, StaffSecretary
M.Blankinship
J.P.Chicoine
T.E.Hansen
W.Hibdon
B.L.Krasiun
L.E.McDonald
N.Murugappan
I.Powell
D.E.Tuttle
E.A.Whittle
P.Williams
T.P.Beirne, Alternate
N.Caputo, Alternate
P.Chavdarov, Alternate
J.M.Downs, Alternate
P.D.Edwards, Alternate
Y.-S.Kim,Alternate
B.Morelock, Alternate
M.Prefumo, Alternate
R.Rockwood, Alternate
K.Roewe, Alternate
B.C.Turczynski, Alternate
J.Yu,Alternate
D.Cheetham, ContributingMember
A.J.Spencer, HonoraryMember
COMMITTEEONNUCLEARCERTIFICATION(CNC)
R.R.Stevenson, Chair
M.A.Lockwood, ViceChair
S.Khan, StaffSecretary
A.Appleton
J.F.Ball
G.Claffey
N.DeSantis
C.Dinic
G.Gobbi
J.W.Highlands
K.A.Kavanagh
J.C.Krane
T.McGee
E.L.Pleins
T.E.Quaka
T.N.Rezk
D.M.Vickery
E.A.Whittle
T.Aldo, Alternate
M.Blankinship, Alternate
G.Brouette, Alternate
M.Burke, Alternate
P.J.Coco, Alternate
Y.Diaz-Castillo, Alternate
P.D.Edwards, Alternate
J.Grimm, Alternate
K.M.Hottle, Alternate
P.Krane, Alternate
S.J.Montano, Alternate
I.Olson, Alternate
L.Ponce, Alternate
M.Wilson, Alternate
S.Yang, Alternate
S.F.Harrison,Jr.,Contributing
Member
xxxvii

?23? CORRESPONDENCE WITHTHECOMMITTEE
General
ASMEcodesandstandardsaredevelopedandmaintainedbycommitteeswiththeintenttorepresenttheconsensusof
concernedinterests.UsersofASMEcodesandstandardsmaycorrespondwiththecommitteestoproposerevisionsor
cases,reporterrata,orrequestinterpretations.CorrespondenceforthisSectionoftheASMEBoilerandPressureVessel
Code(BPVC)shouldbesenttothestaffsecretarynotedontheSection’scommitteewebpage,accessibleat
https://go.asme.org/CSCommittees.
NOTE:SeeASMEBPVCSectionII,PartDforguidelinesonrequestingapprovalofnewmaterials.SeeSectionII,PartCforguidelineson
requestingapprovalofnewweldingandbrazingmaterials(“consumables”).
RevisionsandErrata
ThecommitteeprocessesrevisionstothisCodeonacontinuousbasistoincorporatechangesthatappearnecessaryor
desirableasdemonstratedbytheexperiencegainedfromtheapplicationoftheCode.Approvedrevisionswillbe
publishedinthenexteditionoftheCode.
Inaddition,thecommitteemayposterrataandSpecialNoticesathttp://go.asme.org/BPVCerrata.ErrataandSpecial
Noticesbecomeeffectiveonthedateposted.Userscanregisteronthecommitteewebpagetoreceivee-mailnotifications
ofpostederrataandSpecialNotices.
ThisCodeisalwaysopenforcomment,andthecommitteewelcomesproposalsforrevisions.Suchproposalsshouldbe
asspecificaspossible,citingtheparagraphnumber(s),theproposedwording,andadetaileddescriptionofthereasons
fortheproposal,includinganypertinentbackgroundinformationandsupportingdocumentation.
Cases
(a)Themostcommonapplicationsforcasesare
(1)topermitearlyimplementationofarevisionbasedonanurgentneed
(2)toprovidealternativerequirements
(3)toallowuserstogainexperiencewithalternativeorpotentialadditionalrequirementspriortoincorporation
directlyintotheCode
(4)topermituseofanewmaterialorprocess
(b)Usersarecautionedthatnotalljurisdictionsorownersautomaticallyacceptcases.Casesarenottobeconsidered
asapproving,recommending,certifying,orendorsinganyproprietaryorspecificdesign,oraslimitinginanywaythe
freedomofmanufacturers,constructors,orownerstochooseanymethodofdesignoranyformofconstructionthat
conformstotheCode.
(c)Thecommitteewillconsiderproposedcasesconcerningthefollowingtopicsonly:
(1)equipmenttobemarkedwiththeASMESingleCertificationMark,or
(2)equipmenttobeconstructedasarepair/replacementactivityundertherequirementsofSectionXI
(d)Aproposedcaseshallbewrittenasaquestionandreplyinthesameformatasexistingcases.Theproposalshallalso
includethefollowinginformation:
(1)astatementofneedandbackgroundinformation
(2)theurgencyofthecase(e.g.,thecaseconcernsaprojectthatisunderwayorimminent)
(3)theCodeSectionandtheparagraph,figure,ortablenumber(s)towhichtheproposedcaseapplies
(4)theedition(s)oftheCodetowhichtheproposedcaseapplies
(e)Acaseiseffectiveforusewhenthepublicreviewprocesshasbeencompletedanditisapprovedbythecognizant
supervisoryboard.CasesthathavebeenapprovedwillappearinthenexteditionorsupplementoftheCodeCasesbooks,
“BoilersandPressureVessels”or“NuclearComponents.”EachCodeCasesbookisupdatedwithsevenSupplements.
xxxviii

SupplementswillbesentormadeavailableautomaticallytothepurchasersoftheCodeCasesbooksuntilthenextedition
oftheCode.AnnulmentsofCodeCasesbecomeeffectivesixmonthsafterthefirstannouncementoftheannulmentina
CodeCaseSupplementorEditionoftheappropriateCodeCasebook.Thestatusofanycaseisavailableat
http://go.asme.org/BPVCCDatabase.AnindexofthecompletelistofBoilerandPressureVesselCodeCasesand
NuclearCodeCasesisavailableathttp://go.asme.org/BPVCC.
Interpretations
(a)InterpretationsclarifyexistingCoderequirementsandarewrittenasaquestionandreply.Interpretationsdonot
introducenewrequirements.Ifarevisiontoresolveconflictingorincorrectwordingisrequiredtosupporttheinter-
pretation,thecommitteewillissueanintentinterpretationinparallelwitharevisiontotheCode.
(b)Uponrequest,thecommitteewillrenderaninterpretationofanyrequirementoftheCode.Aninterpretationcanbe
renderedonlyinresponsetoarequestsubmittedthroughtheonlineInterpretationSubmittalFormat
http://go.asme.org/InterpretationRequest.Uponsubmittingtheform,theinquirerwillreceiveanautomatice-mail
confirmingreceipt.
(c)ASMEdoesnotactasaconsultantforspecificengineeringproblemsorforthegeneralapplicationorunderstanding
oftheCoderequirements.If,basedontheinformationsubmitted,itistheopinionofthecommitteethattheinquirer
shouldseekassistance,therequestwillbereturnedwiththerecommendationthatsuchassistancebeobtained.Inquirers
maytrackthestatusoftheirrequestsathttp://go.asme.org/Interpretations.
(d)ASMEproceduresprovideforreconsiderationofanyinterpretationwhenorifadditionalinformationthatmight
affectaninterpretationisavailable.Further,personsaggrievedbyaninterpretationmayappealtothecognizantASME
committeeorsubcommittee.ASMEdoesnot“approve,”“certify,”“rate,”or“endorse”anyitem,construction,proprietary
device,oractivity.
(e)InterpretationsarepublishedintheASMEInterpretationsDatabaseathttp://go.asme.org/Interpretationsasthey
areissued.
CommitteeMeetings
TheASMEBPVCcommitteesregularlyholdmeetingsthatareopentothepublic.Personswishingtoattendanymeeting
shouldcontactthesecretaryoftheapplicablecommittee.Informationonfuturecommitteemeetingscanbefoundat
http://go.asme.org/BCW.
xxxix

INTRODUCTION
ThefollowingisprovidedasabriefintroductiontoSectionIX,andcannotbeconsideredasasubstitutefortheactual
reviewofthedocument.However,thisintroductionisintendedtogivethereaderabetterunderstandingofthepurpose
andorganizationofSectionIX.
SectionIXoftheASMEBoilerandPressureVesselCoderelatestothequalificationofwelders,weldingoperators,
brazers,brazingoperators,andfusingoperators,andtheproceduresemployedinwelding,brazing,orplasticfusingin
accordancewiththeASMEBoilerandPressureVesselCodeandtheASMEB31CodeforPressurePiping.Assuch,thisisan
activedocumentsubjecttoconstantreview,interpretation,andimprovementtorecognizenewdevelopmentsand
researchdata.SectionIXisadocumentreferencedforthequalificationofmaterialjoiningprocessesbyvariousconstruc-
tioncodessuchasSectionI,III,IV,VIII,XII,etc.Theseparticularconstructioncodesapplytospecifictypesoffabrication
andmayimposeadditionalrequirementsorexemptionstoSectionIXqualifications.Qualificationinaccordancewith
SectionIXisnotaguaranteethatproceduresandperformancequalificationswillbeacceptabletoaparticularconstruc-
tioncode.
SectionIXdoesnotcontainrulesforproductionjoining,nordoesitcontainrulestocoverallfactorsaffectingproduc-
tionmaterialjoiningpropertiesunderallcircumstances.Wheresuchfactorsaredeterminedbytheorganizationtoaffect
materialjoiningproperties,theorganizationshalladdressthosefactorsintheProcedureSpecificationtoensurethatthe
requiredpropertiesareachievedintheproductionmaterialjoiningprocess.
ThepurposeoftheProcedureSpecificationandtheProcedureQualificationRecord(PQR)istoensurethematerial
joiningprocessproposedforconstructioniscapableofproducingjointshavingtherequiredmechanicalpropertiesfor
theintendedapplication.Personnelperformingthematerialjoiningprocedurequalificationtestshallbesufficiently
skilled.Thepurposeoftheprocedurequalificationtestistoestablishthemechanicalpropertiesofthejointproducedby
thematerialjoiningprocessandnottheskillofthepersonnelusingthematerialjoiningprocess.Inaddition,special
considerationisgivenwhentoughnesstestingisrequired.Thesupplementaryessentialvariablesapplyonlywhen
toughnesstestingisrequiredbythereferencingcode,standard,orspecification.
ThepurposeofPerformanceQualificationistodeterminetheabilityofthepersonusingamaterialjoiningprocessto
produceasoundjoint.InOperatorPerformanceQualification,thebasiccriterionistodeterminetheabilityoftheoperator
toproperlyoperatetheequipmenttoproduceasoundjoint.
IndevelopingSectionIX,eachmaterialjoiningprocessthatisincludedwasreviewedwithregardtothosefactors
(calledvariables)thathaveaneffectuponthematerialjoiningoperationsasappliedtoprocedureorperformancecriteria.
TheuserofSectionIXshouldbeawareofhowSectionIXisorganized.ItisdividedintofourParts:generalrequirements,
welding,brazing,andplasticfusing.EachPartaddressingamaterialjoiningprocessisthendividedintoArticles.The
Articlesforeachmaterialjoiningprocessdealwiththefollowing:
(a)generalrequirementsspecificallyapplicabletothematerialjoiningprocess(ArticleIWelding,ArticleXIBrazing,
andArticleXXIPlasticFusing)
(b)procedurequalifications(ArticleIIWelding,ArticleXIIBrazing,andArticleXXIIPlasticFusing)
(c)performancequalifications(ArticleIIIWelding,ArticleXIIIBrazing,andArticleXXIIIPlasticFusing)
(d)data(ArticleIVWelding,ArticleXIVBrazing,andArticleXXIVPlasticFusing)
(e)standardweldingprocedurespecifications(ArticleVWelding)
Thesearticlescontaingeneralreferencesandguidesthatapplytoprocedureandperformancequalificationssuchas
positions,typeandpurposeofvariousmechanicaltests,acceptancecriteria,andtheapplicabilityofSectionIX,which
previouslyappearedinthePreambleofthe1980EditionofSectionIX(thePreamblehassincebeendeleted).Thegeneral
requirementarticlesreferencethedataarticlesforspecificdetailsofthetestingequipmentandremovalofthemechanical
testspecimens.
xl

PROCEDUREQUALIFICATIONS
EachmaterialjoiningprocessthathasbeenevaluatedandadoptedbySectionIXislistedseparatelywiththeessential
andnonessentialvariablesastheyapplytothatparticularprocess.Ingeneral,theProcedureSpecificationsarerequired
tolistallessentialandnonessentialvariablesforeachprocessthatisincludedunderthatparticularprocedurespec-
ification.Whenanessentialvariablemustbechangedbeyondtherangequalifiedandthechangeisnotaneditorial
revisiontocorrectanerror,requalificationoftheprocedurespecificationisrequired.Ifachangeismadeinanonessential
variable,theprocedureneedonlyberevisedoramendedtoaddressthenonessentialvariablechange.Whentoughness
testingisrequiredforWeldingProcedureSpecification(WPS)qualificationbythereferencingcode,standard,orspec-
ification,thesupplementaryessentialvariablesbecomeadditionalessentialvariables,andachangeinthesevariables
requiresrequalificationoftheWPS.
Inadditiontocoveringvariousprocesses,therearealsorulesforprocedurequalificationofcorrosion-resistantweld
metaloverlayandhard-facingweldmetaloverlay.
Beginningwiththe2000Addenda,theuseofStandardWeldingProcedureSpecifications(SWPSs)waspermitted.
ArticleVprovidestherequirementsandlimitationsthatgoverntheuseofthesedocuments.TheSWPSsapprovedforuse
arelistedinMandatoryAppendixE.
Inthe2004Edition,rulesfortemperbeadweldingwereadded.
WiththeincorporationofthenewCreep-StrengthEnhancedFerritic(CSEF)alloysinthe1986Edition,usingthe
existingP-NumbergroupingstospecifyPWHTparameterscanleadtovariationsinheattreatmentsthatmaysignificantly
degradethemechanicalpropertiesofthesealloys.CSEFalloysareafamilyofferriticsteelswhosecreepstrengthis
enhancedbythecreationofapreciseconditionofmicrostructure,specificallymartensiteorbainite,whichisstabilized
duringtemperingbycontrolledprecipitationoftemper-resistantcarbides,carbo-nitrides,orotherstablephases.
Inthe2007EditionoftheCode,onlyP-No.5B,Group2basemetalsmetthisdefinitionandwereapprovedforCode
construction.Lookingforward,anumberofCSEFalloysarealreadyinuseinCodeCasesanddrawingneartoincorpora-
tion.Tofacilitateaddressingtheirspecialrequirements,P-No.15AthroughP-No.15FhavebeenestablishedforCSEF
alloys.
Inthe2013Edition,PartQGGeneralRequirementsandPartQFPlasticFusingwereadded.
PERFORMANCEQUALIFICATIONS
Thesearticleslistseparatelythevariousprocesseswiththeessentialvariablesthatapplytotheperformancequali-
ficationsofeachprocess.Theperformancequalificationsarelimitedbyessentialvariables.
Theperformancequalificationarticleshavenumerousparagraphsdescribinggeneralapplicablevariablesforall
processes.QW-350, QB-350, andQF-360listadditionalessentialvariablesthatareapplicableforspecificprocesses.
TheQW-350variablesdonotapplytoweldingoperators.QW-360liststheadditionalessentialvariablesforwelding
operators.
Generally,awelderorweldingoperatormaybequalifiedbymechanicalbendingtests,orvolumetricNDEofatest
coupon,ortheinitialproductionweld.Brazersorbrazingoperatorsandfusingoperatorsmaynotbequalifiedby
volumetricNDE.
WELDING,BRAZING,ANDFUSINGDATA
Thedataarticlesincludethevariablesgroupedintocategoriessuchasjoints,basematerialsandfillermaterials,
positions,preheat/postweldheattreatment,gas,electricalcharacteristics,andtechnique.Theyarereferencedfrom
otherarticlesastheyapplytoeachprocess.
Thesearticlesarefrequentlymisusedbyselectingvariablesthatdonotapplytoaparticularprocess.Variablesonly
applyasreferencedfortheapplicableprocessinArticleIIorIIIforwelding,ArticleXIIorXIIIforbrazing,andArticleXXII
orXXIIIforplasticfusing.TheuserofSectionIXshouldnotapplyanyvariablethatisnotreferencedforthatprocess.
ThesearticlesalsoincludeassignmentsofweldingandbrazingP-NumberstoparticularbasematerialsandF-Numbers
tofillermaterials.ArticleIValsoincludesA-NumbertablesforreferencebytheCodeuser.
xli

Beginningwiththe1994Addenda,weldingP-Numbers,brazingP-Numbers,andnonmandatoryS-Numberswere
consolidatedintoTableQW/QB-422.BoththeQB-422table(brazingP-Numbers)andAppendixCtable(S-
Numbers)weredeleted.ThenewTableQW/QB-422wasdividedintoferrousandnonferroussections.Metals
werelistedinnumericalorderbymaterialspecificationnumbertoaidusersinlocatingtheappropriategroupingnumber.
Inthe2009Addenda,S-NumberbasemetalslistedinTableQW/QB-422werereassignedasP-NumbersandtheS-
Numberlistingsandreferencesweredeleted.
TheQW-451andQB-451tablesforprocedurequalificationthicknessrequirementsandtheQW-452andQB-452tables
forperformancequalificationthicknessaregivenandmaybeusedonlyasreferencedbyotherparagraphs.Generally,the
appropriateessentialvariablesreferencethesetables.
Revisionstothe1980EditionofSectionIXintroducednewdefinitionsforpositionandaddedafillet-weldorientation
sketchtocomplementthegroove-weldorientationsketch.Thenewrevisiontopositionindicatesthatawelderqualifiesin
the1G,2G,3G,etc.,positionandisthenqualifiedtoweld,inproduction,intheF,V,H,orOpositionsasappropriate.
TableQW-461.9isarevisedtablethatsummarizesthesenewqualifications.
Thedataarticlesalsogivesketchesofcouponorientations,removaloftestspecimens,andtestjigdimensions.These
arereferencedbyArticlesI,XI,andXXI.
QW-470describesetchingprocessesandreagents.
WithinPartQGisalistofgeneraldefinitionsapplicabletoSectionIX–adoptedmaterialjoiningprocesses.Thesemay
differslightlyfromotherweldingdocuments.
NonmandatoryFormsfordocumentingprocedureandperformancequalificationsareprovidedfortheaidofthose
whodonotwishtodesigntheirownforms.Anyform(s)thataddressallapplicablerequirementsofSectionIXmaybe
used.
xlii

SUMMARYOFCHANGES
Changeslistedbelowareidentifiedonthepagesbyamarginnote,(23), placednexttotheaffectedarea.
Page Location Change
xii ListofSections (1)UnderSectionIII,Division4added
(2)TitleofSectionXIandsubtitleofSectionXI,Division2revised
(3)InformationoninterpretationsandCodecasesmovedto“Correspondence
WiththeCommittee”
xvi Personnel Updated
xxxviii CorrespondenceWiththeCommittee Added(replaces“SubmittalofTechnicalInquiriestotheBoilerandPressure
VesselStandardsCommittees”)
xlvii Cross-ReferencingintheASMEBPVC Updated
1 QG-101 Secondparagraphrevised
2 QG-106.1 Insubpara.(a),lastsentencedeletedbyerrata
4 QG-106.4 Firstparagraphrevised
4 QG-108 Revisedinitsentirety
5 QG-109.2 (1)Definitionsofbracketedqualification, initialheatinginterfacialpressure,
integratedbacking, material-joiningprocesses, andwire-additivewelding
added
(2)Definitionsoffusinggaugepressure, fusingoperator, fusingprocedure
specification, heatsoakcycle, heatsoaktime,heaterremoval(dwell)time,
heatertemperature, interfacialpressure, ManufacturerQualified
ElectrofusionProcedureSpecification(MEFPS), meltbeadsize,and
organizationrevised
15 QW-101 Thirdparagraphrevised
19 QW-162.1 Secondandfourthparagraphsrevised
20 QW-181.1 Revised
21 QW-191.1.2.1 Subparagraph(c)revised
21 QW-191.1.2.2 Subparagraphs(a)and(b)revisedintheirentirety
25 QW-193.1.2 Revised
25 QW-195.1 Revised
26 QW-195.3 Added
29 QW-200.1 Firstparagraphandsubpara.(b)revised
29 QW-200.2 Firstparagraphrevised
31 QW-202.4 Subparagraph(b)(1)revised
32 QW-214.2 Subparagraph(a)revised
33 QW-216.2 Subparagraph(a)revised
34 QW-217 Subparagraphs(a)(2)and(b)revised
35 QW-218.2 Revised
36 QW-251.4 Revised
39 TableQW-253 (1)“SupplementaryEssential”entriesforQW-409.4andQW-410.9deleted
(2)QW-409.30andQW-410.87added
41 TableQW-254 (1)“SupplementaryEssential”entriesforQW-409.4andQW-410.9deleted
(2)QW-409.30andQW-410.87added
44 TableQW-255 (1)QW-409.2and“SupplementaryEssential”entriesforQW-409.4and
QW-410.9deleted
(2)QW-409.30,QW-409.32,andQW-410.87added
47 TableQW-256 (1)“SupplementaryEssential”entriesforQW-409.4andQW-410.9deleted
(2)QW-409.30andQW-410.87added
50 TableQW-257 (1)“SupplementaryEssential”entriesforQW-409.4andQW-410.9deleted
(2)QW-409.30andQW-410.87added
xliii

Page Location Change
54 TableQW-258 (1)QW-410.7deleted
(2)QW-410.86added
56 TableQW-259 (1)“SupplementaryEssential”entriesforQW-409.4andQW-410.9deleted
(2)QW-409.30andQW-410.87added
57 TableQW-260 (1)QW-410.7deleted
(2)QW-410.86added
61 TableQW-264 (1)QW-403.1deleted
(2)QW-403.35added
74 QW-300.1 Thirdparagraphadded
75 QW-304 Secondparagraphdeleted
76 QW-305 Secondparagraphdeleted
76 QW-306 Firstparagraphrevised
77 QW-322.1 Secondparagraphrevised
79 TableQW-358 Added
79 QW-361.1 Subparagraph(e)revised
80 QW-362 Firstsentencerevised
80 QW-381.1 Revisedinitsentirety
80 QW-382.1 (1)Subparagraphs(c),(d),and(g)revised
(2)Subparagraph(h)deleted
83 QW-401.1 Thirdparagraphrevised
85 QW-403.10 Deleted
86 QW-403.35 Added
87 QW-403.36 Added
87 QW-404.12 Revised
90 QW-406.12 Added
91 QW-408.2 Revisedinitsentirety
92 QW-409.1 Editoriallyrevised
92 QW-409.4 Revised
93 QW-409.26 Revisedinitsentirety
94 QW-409.30 Added
94 QW-409.31 Added
94 QW-409.32 Added
94 QW-410.9 Revisedinitsentirety
95 QW-410.38 Revised
98 TableQW-416 (1)LastcolumnandQW-410paragraphsadded
(2)“BriefofVariables”entryforQW-408.8revised
97 QW-410.87 Added
97 QW-410.88 Added
97 QW-410.89 Added
97 QW-410.90 Added
99 QW-421.1 Revisedinitsentirety
99 QW-421.3 Subparagraph(a)revised
99 QW-421.4 Revised
101 TableQW/QB-422 (1)Titlerevised
(2)ISOcolumnmovedunder“Welding”
(3)Under“Brazing,”“P-No.”columndeletedand“AWSB2.2BM”column
relabeledas“P-No.”
(4)“A/SA–”replacedwith“AorSA–”and“B/SB–”replacedwith“BorSB–”
throughout
(5)Rowsaddedandrevised
(6)GeneralNoteadded
190 QW-424.3 Added
xliv

Page Location Change
207 TableQW-452.4 GeneralNote(a)revised
216 FigureQW-462.1(a) Bottomcalloutrevised
217 FigureQW-462.1(b) Bottomcalloutrevised
222 FigureQW-462.4(a) (1)Shadingaddedtoleftfilletweld
(2)GeneralNoterevised
225 FigureQW-462.5(b) Note(2)revised
236 FigureQW-463.2(a) Bottomimagerevised
236 FigureQW-463.2(b) Bottomimagerevised
237 FigureQW-463.2(c) Bottomimagerevised
243 FigureQW-466.1 (1)Under“D,in.,”penultimateentrycorrectedbyerratafrom“
3

16
max.”to
“1
3

16
max.”
(2)GeneralNote(c)revised
245 FigureQW-466.3 GeneralNote(d)deleted
252 ArticleVI Added
258 QB-161.2 Lastsentencerevised
260 QB-200.1 Firstparagraphandsubpara.(b)revised
260 QB-200.2 Firstparagraphrevised
262 QB-211 Secondparagraphrevised
262 QB-212 Revised
262 TableQB-252 Secondandthirdcolumnheadsrevised
263 TableQB-253 Secondandthirdcolumnheadsrevised
263 TableQB-254 Secondandthirdcolumnheadsrevised
264 TableQB-255 Secondandthirdcolumnheadsrevised
264 TableQB-256 Secondandthirdcolumnheadsrevised
265 TableQB-257 Secondandthirdcolumnheadsrevised
266 QB-300.1 Secondparagraphrevised
267 QB-304 Secondparagraphdeleted
267 QB-322 RevisedandQB-322.1added
267 QB-351.2 Titlerevised
270 TableQB-432 Firstcolumndeleted
274 TableQB-451.4 Lastcolumnheadrevised
274 TableQB-451.5 Lastcolumnheadrevised
275 TableQB-452.1 Lastcolumnheadrevised
275 TableQB-452.2 (1)Lastcolumnheadrevised
(2)Note(1)added
279 FigureQB-462.1(a) Bottomcalloutsoneachimagerevised
280 FigureQB-462.1(b) Bottomcalloutsonfirsttwoimagesrevised
281 FigureQB-462.1(c) Bottomcalloutsonfirsttwoimagesrevised
303 QF-200 Revised
303 QF-201.1 Subparagraph(b)revised
303 QF-201.2 Subparagraph(b)(1)revised
303 QF-201.5 Firstparagraphrevised
308 QF-221.2 Subparagraphs(d)(1)and(d)(2)revised
309 QF-222.1 (1)Subparagraph(e)revised
(2)Subparagraph(g)addedandsubsequentsubparagraphsredesignated
310 TableQF-254 “BriefofVariables”entryforQF-405.9revised
312 TableQF-257 “BriefofVariables”entryforQF-405.9revised
313 QF-300 Revised
313 QF-301.2 Thirdsentencedeleted
316 QF-402.3 Revised
316 QF-405.9 Revised
334 FormQF-482(c) “ThermalConditions(QF-405)”boxrevised
xlv

Page Location Change
340 FormQF-483(c) “ThermalConditions(QF-405)”boxrevised
347 B-101 Firstsentencerevised
350 FormQW-483 Fill-infieldfor“QG-106.4GroupQualification”added
352 FormQW-484A “WeldingVariables(QW-350)”columnrevised
358 E-300 Inin-texttable,editionyearforAWSB2.1‐1‐209updated
367 J-100 Firstsentencerevised
371 NonmandatoryAppendixL Revisedinitsentirety
xlvi

?23?CROSS-REFERENCINGINTHEASMEBPVC
ParagraphswithintheASMEBPVCmayincludesubparagraphbreakdowns,i.e.,nestedlists.Thefollowingisaguideto
thedesignationandcross-referencingofsubparagraphbreakdowns:
(a)HierarchyofSubparagraphBreakdowns
(1)First-levelbreakdownsaredesignatedas(a),(b),(c),etc.
(2)Second-levelbreakdownsaredesignatedas(1),(2),(3),etc.
(3)Third-levelbreakdownsaredesignatedas(-a),(-b),(-c),etc.
(4)Fourth-levelbreakdownsaredesignatedas(-1),(-2),(-3),etc.
(5)Fifth-levelbreakdownsaredesignatedas(+a),(+b),(+c),etc.
(6)Sixth-levelbreakdownsaredesignatedas(+1),(+2),etc.
(b)Cross-ReferencestoSubparagraphBreakdowns.Cross-referenceswithinanalphanumericallydesignatedpara-
graph(e.g.,PG-1,UIG-56.1,NCD-3223)donotincludethealphanumericaldesignatorofthatparagraph.Thecrossrefer-
encestosubparagraphbreakdownsfollowthehierarchyofthedesignatorsunderwhichthebreakdownappears.The
followingexamplesshowtheformat:
(1)IfX.1(c)(1)(-a)isreferencedinX.1(c)(1),itwillbereferencedas(-a).
(2)IfX.1(c)(1)(-a)isreferencedinX.1(c)(2),itwillbereferencedas(1)(-a).
(3)IfX.1(c)(1)(-a)isreferencedinX.1(e)(1),itwillbereferencedas(c)(1)(-a).
(4)IfX.1(c)(1)(-a)isreferencedinX.2(c)(2),itwillbereferencedasX.1(c)(1)(-a).
xlvii

INTENTIONALLYLEFTBLANK
xlviii

PARTQG
GENERALREQUIREMENTS
QG-100SCOPE
(a)ThisSectioncontainsrequirementsforthequalifi-
cationofwelders,weldingoperators,brazers,brazing
operators,plasticfusingoperators,andthematerial-
joiningprocessestheyuseduringwelding,brazing,and
fusingoperationsfortheconstructionofcomponents
undertherulesoftheASMEBoilerandPressure
VesselCode,theASMEB31CodesforPressurePiping,
andotherCodes,standards,andspecificationsthatrefer-
encethisSection.ThisSectionisdividedintofourparts.
(1)PartQGcontainsgeneralrequirementsforall
material-joiningprocesses.
(2)PartQWcontainsrequirementsforwelding.
(3)PartQBcontainsrequirementsforbrazing.
(4)PartQFcontainsrequirementsforplasticfusing.
(b)WheneverthereferencingCode,standard,orspec-
ificationimposesqualificationrequirementsdifferent
thanthosegiveninthisSection,therequirementsof
thereferencingCode,standard,orspecificationshall
takeprecedenceovertherequirementsofthisSection.
(c)Someofthemorecommontermsrelatingtomate-
rial-joiningprocessesaredefinedinQG-109. Whenever
theword“pipe”isused,“tube”shallalsobeapplicable.
(d)NeweditionstoSectionIXmaybeusedbeginning
withthedateofissuanceandbecomemandatory6months
afterthedateofissuance.
(e)CodeCasesarepermissibleandmaybeused,begin-
ningwiththedateofapprovalbyASME.OnlyCodeCases
thatarespecificallyidentifiedasbeingapplicabletothis
Sectionmaybeused.AtthetimeaCodeCaseisapplied,
onlythelatestrevisionmaybeused.CodeCasesthathave
beenincorporatedintothisSectionorhavebeenannulled
shallnotbeusedfornewqualifications,unlesspermitted
bythereferencingCode.Qualificationsusingtheprovi-
sionsofaCodeCaseremainvalidaftertheCodeCase
isannulled.TheCodeCasenumbershallbelistedon
thequalificationrecord(s).
(f)ThroughoutthisSection,referencesaremadeto
variousnon-ASMEdocuments.Unlessaspecificdateis
referenced,thelatesteditionofthereferencedocument
ineffectatthetimeofperformanceorprocedurequali-
ficationistobeused.
QG-101 ?23?PROCEDURESPECIFICATION
Aprocedurespecificationisawrittendocument
providingdirectiontothepersonapplyingthemate-
rial-joiningprocess.Detailsforthepreparationandquali-
ficationofprocedurespecificationsforwelding(WPS),
brazing(BPS),andfusing(FPS)aregivenintherespective
Partsaddressingthoseprocesses.Procedurespecifica-
tionsusedbyanorganization(seeQG-109.2) having
responsibilityforoperationalcontrolofmaterial-
joiningprocessesshallhavebeenqualifiedbythatorga-
nization,orshallbeastandardprocedurespecification
acceptableundertherulesoftheapplicablePartfor
thejoiningprocesstobeused.Procedurespecifications
shallbeavailableforreferenceandreviewatthefabrica-
tionsite.
Procedurespecificationsaddresstheconditions
(includingranges,ifany)underwhichthematerial-
joiningprocessmustbeperformed.Theseconditions
arereferredtointhisSectionas“variables.”Aprocedure
specificationshalladdress,asaminimum,thespecific
essentialandnonessentialvariablesthatareapplicable
tothematerial-joiningprocesstobeusedinproduction.
Whenthereferencingcode,standard,orspecification
requirestoughnessqualificationofthematerial-joining
procedure,theapplicablesupplementaryessentialvari-
ablesshallalsobeaddressedintheprocedurespecifica-
tion.
QG-102PROCEDUREQUALIFICATIONRECORD
Thepurposeofqualifyingtheprocedurespecificationis
todemonstratethatthejoiningprocessproposedfor
constructioniscapableofproducingjointshavingthe
requiredmechanicalpropertiesfortheintendedapplica-
tion.Qualificationoftheprocedurespecificationdemon-
stratesthemechanicalpropertiesofthejointmadeusinga
joiningprocess,andnottheskillofthepersonusingthe
joiningprocess.
Theprocedurequalificationrecord(PQR)documents
whatoccurredduringtheproductionofaprocedurequali-
ficationtestcouponandtheresultsoftestingthatcoupon.
Asaminimum,thePQRshalldocumenttheessential
procedurequalificationtestvariablesappliedduring
productionofthetestjoint,andtheresultsoftherequired
tests.Whentoughnesstestingisrequiredbythereferen-
cingcode,standard,orspecificationforqualificationofthe
ASMEBPVC.IX-2023
1

procedure,theapplicablesupplementaryessentialvari-
ablesshallberecordedforeachprocess.Theorganization
shallcertifythePQRbyasignatureorothermeansas
describedintheorganization’squalityprogram.The
PQRshallbeavailableforreview.Aprocedurespecifica-
tionmaybesupportedbyoneormorePQR(s),andone
PQRmaybeusedtosupportoneormoreprocedurespec-
ification(s).
QG-103PERFORMANCEQUALIFICATION
Thepurposeofqualifyingthepersonwhowillusea
joiningprocessistodemonstratethatperson’sability
toproduceasoundjointwhenusingaprocedurespeci-
fication.
QG-104PERFORMANCEQUALIFICATIONRECORD
Theperformancequalificationrecorddocumentswhat
occurredduringtheproductionofatestcouponbya
personusingoneormorejoiningprocessesfollowing
anorganization’sprocedurespecification.Asa
minimum,therecordshalldocument
(a)theessentialvariablesforeachprocessusedto
producethetestcoupon
(b)therangesofvariablesqualifiedasrequiredbythe
applicablepart(seeQW-301.4, QB-301.4, andQF-301.4)
(c)theresultsoftherequiredtestingandnondestruc-
tiveexaminations
(d)theidentificationoftheprocedurespecification(s)
followedduringthetest
Theorganizationshallstateontherecordthatthe
performancequalificationtestwasconductedinaccor-
dancewiththerequirementsofthisSection,and
certifytherecordbyasignatureorothermeansas
describedintheorganization’squalityprogram.Perfor-
mancequalificationrecordsshallbeavailableforreview.
QG-105VARIABLES
QG-105.1EssentialVariables(Procedure).Essential
variablesareconditionsinwhichachange,asdescribed
inthespecificvariables,isconsideredtoaffectthe
mechanicalproperties(otherthantoughness)ofthe
joint.Beforeusingaprocedurespecificationwhoseessen-
tialvariableshavebeenrevisedandfalloutsidetheirqual-
ifiedrange,theprocedurespecificationmustbe
requalified.Procedurequalificationrecordsmaybe
changedwhenaprocedurequalificationtestsupporting
thechangehasbeencompleted,orwhenaneditorialrevi-
sionisnecessarytocorrectanerror,aspermittedbythe
rulesofthePartapplicabletothematerial-joiningprocess.
QG-105.2EssentialVariables(Performance).Essen-
tialvariablesareconditionsinwhichachange,as
describedinthespecificvariablelist,willaffectthe
abilityofthepersontoproduceasoundjoint.
QG-105.3SupplementaryEssentialVariables.
Supplementaryessentialvariablesareconditionsin
whichachangewillaffectthetoughnesspropertiesof
thejoint,heat-affectedzone,orbasematerial.Supplemen-
taryessentialvariablesbecomeadditionalessentialvari-
ablesinsituationswherethereferencingcode,standard,
orspecificationrequirestoughnesstestingforprocedure
qualification.Whenprocedurequalificationdoesnot
requiretheadditionoftoughnesstesting,supplementary
essentialvariablesarenotapplicable.SeeQW-401.1.
QG-105.4NonessentialVariables.Nonessentialvari-
ablesareconditionsinwhichachange,asdescribedinthe
specificvariables,isnotconsideredtoaffectthemechan-
icalpropertiesofthejoint.Thesevariablesshallbe
addressedintheprocedurespecification,asrequired
byQG-101.
Aprocedurespecificationmaybeeditoriallyrevisedto
changeanonessentialvariabletofalloutsideofits
previouslylistedrange,butdoesnotrequirerequalifica-
tionoftheprocedurespecification.
QG-105.5SpecialProcessVariables.Specialprocess
variablesareconditionsthatapplyonlytospecial
processesthataredescribedinthePartthataddresses
thoseprocesses.Whenthesespecialprocessesare
used,onlytheapplicablespecialprocessvariablesshall
apply.
QG-105.6Applicability.Theapplicableessential,
supplementaryessential,nonessential,andspecial
processvariablesforaspecificjoiningprocessare
giveninthePartaddressingthatjoiningprocess.
QG-106ORGANIZATIONALRESPONSIBILITY
Personnelperformingsupervisoryactivitiesspecified
inthisSectionshall
(a)bedesignatedbytheorganizationwithresponsi-
bilityforsupervision,control,evaluation,andacceptance
ofqualificationtesting.
(b)haveasatisfactorylevelofcompetenceinaccor-
dancewiththeorganization’squalityprogram.Asa
minimum,theyshallbequalifiedbyeducation,experience,
ortraininginthefollowingareas:
(1)knowledgeoftherequirementsofthisSectionfor
thequalificationofproceduresand/orjoiningpersonnel
(2)knowledgeoftheorganization’squalityprogram
(3)thescope,complexity,orspecialnatureofthe
activitiestowhichoversightistobeprovided
(c)havearecord,maintainedbytheorganization,
containingobjectiveevidenceofthequalifications,
training,orexperience.
QG-106.1
?©W?ProcedureQualifications.Eachorganiza-
tionisresponsibleforconductingthetestsrequiredby
thisSectiontoqualifytheproceduresthatareusedin
theconstructionofcomponentsundertherulesofthe
ASMEBPVC.IX-2023
2

Codes,standards,andspecificationsthatreferencethis
Section.
(a)Thepersonnelwhoproducetestjointsforproce-
durequalificationshallbeunderthefullsupervisionand
controlofthequalifyingorganizationduringtheproduc-
tionofthesetestjoints.
(b)Productionofqualificationtestjointsunderthe
supervisionandcontrolofanotherorganizationisnot
permitted,exceptaspermittedinQG-106.4. However,
itispermittedtosubcontractanyoralloftheworknec-
essaryforpreparingthematerialstobejoined,thesubse-
quentworkforpreparingtestspecimensfromthe
completedtestjoint,andtheperformanceofnondestruc-
tiveexaminationandmechanicaltests,providedtheorga-
nizationacceptsfullresponsibilityforanysuchwork.
(c)Iftheeffectiveoperationalcontrolofprocedure
qualificationsfortwoormorecompaniesofdifferent
namesexistsunderthesamecorporateownership,the
companiesinvolvedshalldescribeintheirquality
programstheoperationalcontrolofprocedurequalifica-
tions.Inthiscase,separateprocedurequalificationsare
notrequired,providedallotherrequirementsofthis
Sectionaremet.
QG-106.2PerformanceQualifications.Eachorganiza-
tionisresponsibleforthesupervisionandcontrolofmate-
rialjoiningperformedbypersonsforwhomtheyhave
operationalresponsibilityandcontrol.Theorganization
shallconductthetestsrequiredbythisSectiontoqualify
theperformanceofthosepersonswitheachjoining
processtheywillusefortheconstructionofcomponents
undertherulesoftheCodes,standards,andspecifications
thatreferencethisSection.Thisrequirementensuresthat
thequalifyingorganizationhasdeterminedthattheper-
sonnelusingitsproceduresarecapableofachievingthe
minimumrequirementsspecifiedforanacceptablejoint.
Thisresponsibilitycannotbedelegatedtoanotherorga-
nization.
(a)Thepersonnelwhoproducetestjointsforperfor-
mancequalificationshallbetestedunderthefullsuper-
visionandcontrolofthequalifyingorganization.
(b)Theperformancequalificationtestshallbe
performedfollowingeitheraqualifiedprocedurespeci-
ficationorastandardprocedurespecificationacceptable
undertherulesoftheapplicablePartforthejoining
process.ThePartaddressinganyspecificjoining
processmayexemptaportionoftheprocedurespecifi-
cationfrombeingfollowedduringproductionofthe
performancequalificationtestcoupon.
(c)Productionoftestjointsunderthesupervisionand
controlofanotherorganizationisnotpermitted.Itis
permittedtosubcontractanyoralloftheworknecessary
forpreparingthematerialstobejoinedinthetestjoint,
andthesubsequentworkforpreparingtestspecimens
fromthecompletedtestjoint,andtheperformanceof
nondestructiveexaminationandmechanicaltests,
providedtheorganizationacceptsfullresponsibility
foranysuchwork.
(d)Theperformancequalificationtestmaybetermi-
natedatanystage,wheneveritbecomesapparenttothe
supervisorconductingtheteststhatthepersonbeing
testeddoesnothavetherequiredskilltoproducesatis-
factoryresults.
(e)Whenaprocedurequalificationtestcouponhas
beentestedandfoundacceptable,thepersonwho
preparedthetestcouponisalsoqualifiedforthe
joiningprocessused,withintherangesspecifiedfor
performancequalificationfortheapplicableprocess(es).
(f)Personswhoaresuccessfullyqualifiedshallbe
assignedanidentifyingnumber,letter,orsymbolby
theorganization,whichshallbeusedtoidentifytheir
work.
(g)Ifeffectiveoperationalcontrolofperformance
qualificationsfortwoormorecompaniesofdifferent
namesexistsunderthesamecorporateownership,the
companiesinvolvedshalldescribeintheirquality
programstheoperationalcontrolofperformancequali-
fications.Inthiscase,requalificationofpersonsworking
withinthecompaniesofsuchanorganizationarenot
required,providedallotherrequirementsofthis
Sectionaremet.
QG-106.3SimultaneousPerformanceQualifications.
Organizationsmayparticipateinanassociationtocollec-
tivelyqualifytheperformanceofoneormorepersonsfor
material-joiningprocessessimultaneouslyandmayshare
performancequalificationinformationwithotherpartici-
patingorganizationswithintheassociation.Whensimul-
taneousperformancequalificationsareconducted,each
participatingorganizationshallberepresentedbyan
employeewithdesignatedresponsibilityforperformance
qualifications.
(a)Theessentialvariablesoftheprocedurespecifica-
tionstobefollowedduringsimultaneousperformance
qualificationsshallbecomparedbytheparticipatingorga-
nizations,andshallbeidentical,exceptasotherwise
providedinthePartaddressingthespecificjoining
method.Thequalifiedthicknessrangesneednotbeiden-
ticalbutshallincludethetestcouponthickness.
(b)Alternatively,theparticipatingorganizationsshall
agreetofollowasingleprocedurespecificationthathas
beenreviewedandacceptedbyeachparticipatingorga-
nization.Eachparticipatingorganizationshallhavea
supportingPQRorshallhaveacceptedresponsibility
forusingastandardprocedurespecificationhavinga
rangeofvariablesconsistentwiththosetobefollowed
duringtheperformancequalificationtest,inaccordance
withtheapplicablePartforthejoiningmethod.
(c)Eachparticipatingorganization’srepresentative
shall
(1)positivelyidentifythepersonwhoseperfor-
manceistobetested
ASMEBPVC.IX-2023
3

(2)verifythemarkingsonthetestcouponcorre-
spondtotheperson’sidentification
(3)verifythatthepositionalorientationmarkingson
thetestcouponreflectthetestpositionofthecouponas
requiredtoidentifythelocationoftestspecimenremoval
(4)performavisualexaminationofeachcompleted
testcouponandeachtestspecimentodetermineits
acceptability
(-a)Whenthetestcoupon(s)ispreparedandthe
testspecimensaremechanicallytestedbyanindependent
laboratory,thelaboratory'sreportmaybeusedasthe
basisforacceptingthetestmethodsandtheirresults.
(-b)Whenthetestcoupon(s)isexaminedbyvolu-
metricexamination,theexaminingorganization'sreport
maybeusedasthebasisforacceptanceofthetest
methods,qualificationandcertificationoftheexaminer,
andtheresultsoftheexamination.
(5)prepareandcertifyaperformancequalification
recordforeachpersonqualified
(d)Whenthequalifiedpersonchangesemployers
betweenparticipatingorganizations,theemployingorga-
nizationshallverifythecontinuityoftheperson’squali-
ficationshasbeenmaintainedbypreviousemployers
sincehisqualificationdate,asrequiredbytheapplicable
Partforthejoiningmethod.Evidenceofactivities
supportingperformancequalificationcontinuitymay
beobtainedfromanymemberoftheassociation,even
ifthememberwasnotaparticipantinthesimultaneous
welderqualifications.
(e)Ifapersonhashadtheirperformancequalification
revokedforspecificreasons,theemployingorganization
shallnotifyallotherparticipatingorganizationsthatthe
person’squalification(s)hasbeenrevoked.Theremaining
participatingorganizationsshalldeterminewhetherthey
willupholdorrevoketheperformancequalificationsfor
thatpersoninaccordancewiththisSection.
(f)Whenaperson’sperformancequalificationsare
collectivelyrenewedinaccordancewiththeapplicable
Partforthejoiningmethod,thetestingprocedures
shallfollowtherulesofthisparagraph.
QG-106.4
?©W? SimultaneousProcedureQualifications.
Whenexpresslypermittedbythereferencingcode,mate-
rial-joiningproceduresmaybesimultaneouslyqualified
bymorethanoneorganization,providedthateachorga-
nizationacceptsfullresponsibilityforanysuchqualifica-
tionsandthefollowingrequirementsaremet:
(a)Eachparticipatingorganizationshallberepre-
sentedbyanindividualwithresponsibilityforqualifica-
tionofjoiningprocedures,asdetailedinQG-106.
(b)Apreliminaryjoiningprocedurespecificationac-
ceptabletotherepresentativesofeachparticipatingorga-
nizationshallbepreparedaddressingtheessentialand
nonessentialvariablesand,whenapplicable,thesupple-
mentaryessentialvariablesandotherrequirementsthat
aretobeobservedforeachprocesstobeusedforjoining
thetestcoupon(s).Ifanyvariablesarerevisedduringthe
joiningofatestcoupon,therevisedvariablesshallbe
agreeduponbytherepresentativesofeachparticipating
organization.
(c)Joiningofthetestcoupon(s)shallbeconducted
underthesimultaneoussupervisionoftherepresenta-
tivesofeachparticipatingorganization.
(d)ThePQRshalldocumentthatthequalificationwas
conductedundertheprovisionsofQG-106.4.
QG-107OWNERSHIPTRANSFERS
Organizationsmaymaintaineffectiveoperational
controlofPQRs,procedurespecifications,andperfor-
mancequalificationrecordsunderdifferentownership
thanexistedduringtheoriginalprocedurequalification.
Multipleorganizationsunderacommonownershipmay
usePQRs,procedurespecifications,andperformance
qualificationrecordsunderthatowner’sname.The
qualityprogramofeachorganizationshalldescribethe
effectiveoperationalcontrolandauthorityfortechnical
directionofwelding.
Whenanorganizationorsomepartthereofisacquired
byanewowner(s),thePQRs,procedurespecifications,
andperformancequalificationrecordsmayremain
validforusebythenewowner(s)withoutrequalification;
andthenewowner(s)PQRs,procedurespecifications,and
performancequalificationrecordsbecomevalidforuseby
theacquiredorganization,providedallofthefollowing
requirementshavebeenmet:
(a)Thenewowner(s)takesresponsibilityforthe
procedurespecificationsandperformancequalification
records.
(b)Theprocedurespecificationsidentifythenameof
thenewowner(s)priortouse.
(c)Thequalityprogramdocumentstheoriginalsource
ofthePQRs,procedurespecifications,andperformance
qualificationrecordsasbeingfromtheoriginalqualifying
organization.
QG-108 ?23?SPECIFICATIONSANDQUALIFICATIONS
MADETOPREVIOUSEDITIONS
Joiningprocedurespecifications,procedurequalifica-
tions,andperformancequalificationsthatweremade
inaccordancewithearlierEditionsorAddendaofthis
Sectionmaybeusedinanyconstructionforwhichthe
currentEditionhasbeenspecified.
Procedurequalificationsmadeinaccordancewith
earlierEditionsorAddendamaybeusedtosupportproce-
durespecificationswrittentolaterEditionsandAddenda
providedtheessentialand,whenrequired,supplemen-
taryessentialvariablesspecifiedbythelaterEditions
orAddendawereaddressedonthepreviouslyqualified
procedurequalificationrecords.
Procedurespecifications,procedurequalification
records,andperformancequalificationrecordsmeeting
theaboverequirementsdonotrequireamendmentto
ASMEBPVC.IX-2023
4

includeanyvariablesrequiredbylaterEditionsofSection
IX,exceptasspecifiedinQW-421.4. However,asrequired
byQG-100(b), thequalificationrequirementsoftherefer-
encingcode,standard,orspecificationshallbemet.
Qualificationofnewprocedurespecificationsfor
joiningprocesses,andperformancequalificationsfor
personsapplyingthem,shallbeinaccordancewiththe
currentEditionofSectionIX.
QG-109DEFINITIONS
QG-109.1GENERAL
Definitionsofthemorecommontermsrelatingtomate-
rial-joiningprocessesaredefinedinQG-109.2. Thereare
termslistedthatarespecifictoASMESectionIXandare
notpresentlydefinedinAWSA3.0.Severaldefinitions
havebeenmodifiedslightlyfromAWSA3.0soasto
betterdefinethecontextorintentasusedinASME
SectionIX.
QG-109.2?23? DEFINITIONS
arcseamweld:aseamweldmadebyanarcwelding
process.
arcspotweld:aspotweldmadebyanarcweldingprocess.
arcstrike:anyinadvertentdiscontinuityresultingfroman
arc,consistingofanylocalizedremeltedmetal,heat-
affectedmetal,orchangeinthesurfaceprofileofany
metalobject.Thearcmaybecausedbyarcweldingelec-
trodes,magneticinspectionprods,orfrayedelectrical
cable.
arcwelding:agroupofweldingprocesseswhereincoales-
cenceisproducedbyheatingwithanarcorarcs,withor
withouttheapplicationofpressure,andwithorwithout
theuseoffillermetal.
as-brazed:adj.pertainingtotheconditionofbrazements
afterbrazing,priortoanysubsequentthermal,mechan-
ical,orchemicaltreatments.
as-welded:adj.pertainingtotheconditionofweldmetal,
weldedjoints,andweldmentsafterweldingbutpriorto
anysubsequentthermal,mechanical,orchemicaltreat-
ments.
backgouging:theremovalofweldmetalandbasemetal
fromtheweldrootsideofaweldedjointtofacilitate
completefusionandcompletejointpenetrationupon
subsequentweldingfromthatside.
backhandwelding:aweldingtechniqueinwhichthe
weldingtorchorgunisdirectedoppositetotheprogress
ofwelding.
backing:amaterialplacedattherootofaweldjointforthe
purposeofsupportingmoltenweldmetal.Thematerial
mayormaynotfuseintothejoint.Seealsoretainer.
backinggas:agas,suchasargon,helium,nitrogen,orreac-
tivegas,whichisemployedtoexcludeoxygenfromthe
rootside(oppositefromtheweldingside)ofweldjoints.
basemetal:themetaloralloythatiswelded,brazed,orcut.
bead-upcycle:partofthebutt-fusingprocesstoensure
completecontactbetweentheheatersurfaceandthe
pipeends.Thebead-upcyclebeginswheninitial
contactofthepipeendstotheheaterismadeatbutt-
fusingpressureuntilanindicationofmeltisobserved
aroundthepipecircumference.
bondline(brazingandthermalspraying):thecrosssection
oftheinterfacebetweenabrazeorthermalspraydeposit
andthesubstrate.
bracketedqualification:aprocedurequalification
performedbypreparingtestcouponsusingcombinations
ofhighandlowvaluesofspecifiedvariablestoestablish
theupperandlowerrangeofqualificationforthosevari-
ables.
braze:ajointproducedbyheatinganassemblytosuitable
temperaturesandbyusingafillermetalhavingaliquidus
above840°F(450°C)andbelowthesolidusofthebase
materials.Thefillermetalisdistributedbetweenthe
closelyfittedsurfacesofthejointbycapillaryaction.
brazer:onewhoperformsamanualorsemiautomatic
brazingoperation.
brazing:agroupofmetaljoiningprocesseswhich
producescoalescenceofmaterialsbyheatingthemtoa
suitabletemperature,andbyusingafillermetal
havingaliquidusabove840°F(450°C)andbelowthe
solidusofthebasematerials.Thefillermetalisdistributed
betweenthecloselyfittedsurfacesofthejointbycapillary
action.
brazingoperator:onewhooperatesmachineorautomatic
brazingequipment.
brazingtemperature:thetemperaturetowhichthebase
metal(s)isheatedtoenablethefillermetaltowetthebase
metal(s)andformabrazedjoint.
brazingtemperaturerange:thetemperaturerangewithin
whichbrazingcanbeconducted.
brazing,automatic:brazingwithequipmentwhich
performsthebrazingoperationwithoutconstantobser-
vationandadjustmentbyabrazingoperator.Theequip-
mentmayormaynotperformtheloadingandunloading
ofthework.
brazing,block(BB):abrazingprocessthatusesheatfrom
heatedblocksappliedtothejoint.Thisisanobsoleteor
seldomusedprocess.
brazing,dip(DB):abrazingprocessinwhichtheheat
requiredisfurnishedbyamoltenchemicalormetal
bath.Whenamoltenchemicalbathisused,thebath
mayactasaflux;whenamoltenmetalbathisused,
thebathprovidesthefillermetal.
ASMEBPVC.IX-2023
5

brazing,furnace(FB):abrazingprocessinwhichthework-
piecesareplacedinafurnaceandheatedtothebrazing
temperature.
brazing,induction(IB):abrazingprocessthatusesheat
fromtheresistanceoftheworkpiecestoinducedelectric
current.
brazing,machine:brazingwithequipmentwhich
performsthebrazingoperationundertheconstantobser-
vationandcontrolofabrazingoperator.Theequipment
mayormaynotperformtheloadingandunloadingofthe
work.
brazing,manual:abrazingoperationperformedand
controlledcompletelybyhand.Seealsoautomatic
brazingandmachinebrazing.
brazing,resistance(RB):abrazingprocessthatusesheat
fromtheresistancetoelectriccurrentflowinacircuitof
whichtheworkpiecesareapart.
brazing,semiautomatic:brazingwithequipmentwhich
controlsonlythebrazingfillermetalfeed.Theadvance
ofthebrazingismanuallycontrolled.
brazing,torch(TB):abrazingprocessthatusesheatfroma
fuelgasflame.
build-upofbasemetal(restorationofbasemetalthickness):
thisistheapplicationofaweldmaterialtoabasemetalso
astorestorethedesignthicknessand/orstructuralinteg-
rity.Thisbuild-upmaybewithachemistrydifferentfrom
thebasemetalchemistrywhichhasbeenqualifiedviaa
standardbutt-weldedtestcoupon.Also,maybecalled
basemetalrepairorbuildup.
buttjoint:ajointbetweentwomembersalignedapproxi-
matelyinthesameplane.
butt-fusingcycle:pressure–timediagramforadefined
fusingtemperature,representingtheentirefusingopera-
tion.
butt-fusingpressure:thesumofthetheoreticalbutt-fusing
pressureplusthedragpressure.Thisisverifiedbythe
gaugepressureusedbythefusingoperatoronthe
butt-fusingmachinetojointhepipeendsorbyapplied
torquewhentorqueverificationisrequiredbythe
fusingprocedurespecification(FPS).
buttfusion(BF):fusingaccomplishedbyheatingtheends
ofpolyethylenepipesabovetheirmeltingpointusinga
contactheater,thenremovingtheheaterandapplying
pressurenecessarytoachievecoalescenceofthe
moltenpolyethylenematerialsduringthecooling
phase.SomeofthemorecommontermsrelatingtoBF
aredefinedinASTMF412.
buttering:theadditionofmaterial,bywelding,ononeor
bothfacesofajoint,priortothepreparationofthejointfor
finalwelding,forthepurposeofprovidingasuitabletran-
sitionwelddepositforthesubsequentcompletionofthe
joint.
cladorcladding:weldmetaloverlayorbondedcorrosion-
resistantmaterialaddedtoametalsurface.
cladbrazingsheet:ametalsheetonwhichoneorboth
sidesarecladwithbrazingfillermetal.
coalescence:thegrowingtogetherorgrowthintoonebody
ofthematerialsbeingjoined.
completefusion:fusionwhichhasoccurredovertheentire
basematerialsurfacesintendedforwelding,andbetween
alllayersandbeads.
consumableinsert:fillermetalthatisplacedatthejoint
rootbeforewelding,andisintendedtobecompletely
fusedintotheroottobecomepartoftheweld.
contacttube:adevicewhichtransferscurrenttoacontin-
uouselectrode.
controlmethod(FSW):themannerofmonitoringand
controllingthepositionoftherotatingtoolwith
respecttotheweldjointduringthefrictionstir
weldingprocess.
controlmethod,force(FSW):acontrolmethodthatusesa
forcesetpoint,suchasplungeforceortravelforce,to
controlthetoolposition.Undertheforcecontrol
method,theplungedepthortravelspeedcanvary,
withinaspecifiedrange,duringwelding.
controlmethod,position(FSW):acontrolmethodthatuses
asetplungepositionrelativetotheplatesurfacetocontrol
thetoolposition.Underthepositioncontrolmethod,the
plungeforcecanvary,withinaspecifiedrange,during
welding.
controlmethod,travel(FSW):acontrolmethodthatusesa
settravelspeedtocontrolthetoolposition.Underthe
travelcontrolmethod,thetravelforcecanvary,within
aspecifiedrange,duringwelding.
controlspecimen:asectionfromthebasematerialtested
todetermineitstensilestrengthforthepurposeof
comparingtothetensilestrengthofthefusedjoint.
cooltimeatbutt-fusingpressure:theminimumtimethat
thebutt-fusingpressureshallbemaintainedbetweenthe
pipefaceswhilethepipejointcools.Thisisafunctionof
thewallthickness.
cornerjoint:ajointbetweentwomemberslocated
approximatelyatrightanglestoeachotherintheform
ofanL.
coupon:seetestcoupon.
crack:afracture-typediscontinuitycharacterizedbya
sharptipandhighratiooflengthandwidthto
openingdisplacement.
creepstrengthenhancedferriticalloys(CSEF’s):afamilyof
ferriticsteelswhosecreeptemperaturestrengthis
enhancedbythecreationofapreciseconditionofmicro-
structure,specificallymartensiteorbainite,whichisstabi-
lizedduringtemperingbycontrolledprecipitationof
ASMEBPVC.IX-2023
6

temper-resistantcarbides,carbo-nitrides,orotherstable
and/ormeta-stablephases.
dataacquisitionrecord:adetailed,permanentrecordof
variablesapplicabletothefusingprocess,suchasbutt-
fusionpressure,electrofusionvoltage,andcyclecool-
downtimes,alongwiththemeasuredheatersurface
temperature,employeeinformation,butt-fusingorelec-
trofusionmachineinformation,pipeinformation,date,
andtimeforeachjointmade.
defect:adiscontinuityordiscontinuitiesthatbynatureor
accumulatedeffect(forexample,totalcracklength)
renderapartorproductunabletomeetminimumappli-
cableacceptancestandardsorspecifications.Thisterm
designatesrejectability.Seealsodiscontinuityandflaw.
directcurrentelectrodenegative(DCEN):thearrangement
ofdirectcurrentarcweldingleadsinwhichtheelectrode
isthenegativepoleandtheworkpieceisthepositivepole
oftheweldingarc.
directcurrentelectrodepositive(DCEP):thearrangement
ofdirectcurrentarcweldingleadsinwhichtheelectrode
isthepositivepoleandtheworkpieceisthenegativepole
oftheweldingarc.
discontinuity:aninterruptionofthetypicalstructureofa
material,suchasalackofhomogeneityinitsmechanical,
metallurgical,orphysicalcharacteristics.Adiscontinuity
isnotnecessarilyadefect.Seealsodefectandflaw.
double-weldedjoint:ajointthatisweldedfrombothsides.
double-weldedlapjoint:alapjointinwhichtheoverlapped
edgesofthememberstobejoinedareweldedalongthe
edgesofbothmembers.
dragpressure:thepressurerequiredtoovercomethedrag
resistanceandfrictionalresistanceinthebutt-fusing
machineandkeepthecarriagemovingatitsslowest
speed.
dragresistance:force-opposingmovementofthemovable
clampofthebutt-fusingmachineduetotheweightofthe
pipe.
dwell:thetimeduringwhichtheenergysourcepausesat
anypointineachoscillation.
electrode,arcwelding:acomponentoftheweldingcircuit
throughwhichcurrentisconducted.
electrode,bare:afillermetalelectrodethathasbeen
producedasawire,strip,orbarwithnocoatingor
coveringotherthanthatincidentaltoitsmanufacture
orprovidedforpurposesofpreservation,feeding,orelec-
tricalcontact.
electrode,carbon:anonfillermaterialelectrodeusedinarc
weldingandcutting,consistingofacarbonorgraphiterod,
whichmaybecoatedwithcopperorothermaterials.
electrode,composite:agenerictermofmulticomponent
fillermetalelectrodesinvariousphysicalforms,such
asstrandedwires,tubes,andcoveredelectrodes.
electrode,covered:acompositefillermetalelectrode
consistingofacoreofabareelectrodeormetal-cored
electrodetowhichacoveringsufficienttoprovidea
slaglayerontheweldmetalhasbeenapplied.The
coveringmaycontainmaterialsprovidingsuchfunctions
asshieldingfromtheatmosphere,deoxidation,andarc
stabilization,andcanserveasasourceofmetallicaddi-
tionstotheweld.
electrode,electroslagwelding:afillermetalcomponentof
theweldingcircuitthroughwhichcurrentisconducted
betweentheelectrodeguidingmemberandthemolten
slag.
NOTE:Bareelectrodesandcompositeelectrodesasdefined
underarcweldingelectrodeareusedforelectroslagwelding.
Aconsumableguidemayalsobeusedaspartoftheelectroslag
weldingelectrodesystem.
electrode,emissive:afillermetalelectrodeconsistingofa
coreofabareelectrodeoracompositeelectrodetowhich
averylightcoatinghasbeenappliedtoproduceastable
arc.
electrode,flux-cored:acompositefillermetalelectrode
consistingofametaltubeorotherhollowconfiguration
containingingredientstoprovidesuchfunctionsas
shieldingatmosphere,deoxidation,arcstabilization,
andslagformation.Alloyingmaterialsmaybeincluded
inthecore.Externalshieldingmayormaynotbeused.
electrode,lightlycoated:afillermetalelectrodeconsisting
ofametalwirewithalightcoatingappliedsubsequentto
thedrawingoperation,primarilyforstabilizingthearc.
electrode,metal:afillerornonfillermetalelectrodeusedin
arcweldingandcuttingthatconsistsofametalwireorrod
thathasbeenmanufacturedbyanymethodandthatis
eitherbareorcovered.
electrode,metal-cored:acompositefillermetalelectrode
consistingofametaltubeorotherhollowconfiguration
containingalloyingingredients.Minoramountsofingre-
dientsprovidingsuchfunctionsasarcstabilizationand
fluxingofoxidesmaybeincluded.Externalshielding
gasmayormaynotbeused.
electrode,resistancewelding:thepartofaresistance
weldingmachinethroughwhichtheweldingcurrent
and,inmostcases,forceareapplieddirectlytothework-
piece.Theelectrodemaybeintheformofarotatingwheel,
rotatingroll,bar,cylinder,plate,clamp,chuck,ormodi-
ficationthereof.
electrode,stranded:acompositefillermetalelectrode
consistingofstrandedwireswhichmaymechanically
enclosematerialstoimproveproperties,stabilizethe
arc,orprovideshielding.
electrode,tungsten:anonfillermetalelectrodeusedinarc
welding,arccutting,andplasmaspraying,madeprinci-
pallyoftungsten.
ASMEBPVC.IX-2023
7

electrofusion(EF):fusingaccomplishedbyheatingpoly-
ethylenematerialsabovetheirmeltingpointsusingelec-
tricelementswithinaconfinedspace,producing
temperaturesandpressuresnecessarytoachievecoales-
cenceofthemoltenpolyethylenematerialsduringthe
coolingphase.Someofthemorecommontermsrelating
toEFaredefinedinASTMF1290andASTMF412.
electrofusionmanufacturer:themanufacturerofelectro-
fusionfittings.
facefeed:theapplicationoffillermetaltothefacesideofa
joint.
fillermetal:themetaloralloytobeaddedinmakinga
welded,brazed,orsolderedjoint.
fillermetal,brazing:themetaloralloyusedasafillermetal
inbrazing,whichhasaliquidusabove840°F(450°C)and
belowthesolidusofthebasemetal.
fillermetal,powder:fillermetalinparticleform.
fillermetal,supplemental:inelectroslagweldingorina
weldingprocessinwhichthereisanarcbetweenone
ormoreconsumableelectrodesandtheworkpiece,a
powder,solid,orcompositematerialthatisintroduced
intotheweldotherthantheconsumableelectrode(s).
filletweld:aweldofapproximatelytriangularcross
sectionjoiningtwosurfacesapproximatelyatright
anglestoeachotherinalapjoint,teejoint,orcornerjoint.
flaw:anundesirablediscontinuity.Seealsodefect.
flux(weldingorbrazing):amaterialusedtodissolve,
prevent,orfacilitatetheremovalofoxidesorotherunde-
sirablesurfacesubstances.Itmayacttostabilizethearc,
shieldthemoltenpool,andmayormaynotevolve
shieldinggasbydecomposition.
fluxcover:metalbathdipbrazinganddipsoldering.Alayer
ofmoltenfluxoverthemoltenfillermetalbath.
flux,active(SAW):afluxfromwhichtheamountof
elementsdepositedintheweldmetalisdependent
upontheweldingparameters,primarilyarcvoltage.
flux,alloy(SAW):afluxwhichprovidesalloyingelements
intheweldmetaldeposit.
flux,neutral(SAW):afluxwhichwillnotcauseasignificant
changeintheweldmetalcompositionwhenthereisa
largechangeinthearcvoltage.
forehandwelding:aweldingtechniqueinwhichthe
weldingtorchorgunisdirectedtowardtheprogress
ofwelding.
frequency:thecompletednumberofcycleswhichtheoscil-
latingheadmakesin1minorotherspecifiedtimeincre-
ment.
frictionalresistanceinthebutt-fusingmachine:force-
opposingmovementduetofrictioninthemechanism
ofthefusingmachine.
fuelgas:agassuchasacetylene,naturalgas,hydrogen,
propane,stabilizedmethylacetylenepropadiene,and
otherfuelsnormallyusedwithoxygeninoneofthe
oxyfuelprocessesandforheating.
fusedspraydeposit(thermalspraying):aself-fluxing
thermalspraydepositwhichissubsequentlyheatedto
coalescencewithinitselfandwiththesubstrate.
fusing:thecoalescenceoftwoplasticmembersbythe
combinationofcontrolledheatingandtheapplication
ofpressureapproximatelynormaltotheinterface
betweenthem.
fusinggaugepressure:thehydraulicgaugepressuretobe
observedbythefusingoperatorwhenbuttfusingorside-
wallfusingpolyethylene(PE)piping.Thisisthesumofthe
theoreticalfusingpressureplusthedragpressure.
fusingoperator:persontrainedandqualifiedtocarryout
fusingofpolyethylene(PE)pipesand/orfittingsusinga
butt-fusingorsidewall-fusingprocedureorelectrofusion
procedurewithapplicableequipment.
fusingprocedurespecification:adocumentprovidingin
detailtherequiredvariablesforthefusingprocessto
ensurerepeatabilityinthefusingprocedure.This
generictermincludesfusingprocedurespecifications
qualifiedbytesting(FPS),aswellasstandardfusingproce-
durespecifications(SFPS)ormanufacturerqualifiedelec-
trofusionprocedurespecifications(MEFPS).
fusion(fusionwelding):themeltingtogetheroffillermetal
andbasemetal,orofbasemetalonly,toproduceaweld.
fusionface:asurfaceofthebasemetalthatwillbemelted
duringwelding.
fusionline:anon-standardtermforweldinterface.
gasbacking:seebackinggas.
globulartransfer(arcwelding):atypeofmetaltransferin
whichmoltenfillermetalistransferredacrossthearcin
largedroplets.
grooveweld:aweldmadeinagrooveformedwithina
singlememberorinthegroovebetweentwomembers
tobejoined.Thestandardtypesofgrooveweldareas
follows:
(a)squaregrooveweld
(b)single-Veegrooveweld
(c)single-bevelgrooveweld
(d)single-Ugrooveweld
(e)single-Jgrooveweld
(f)single-flare-bevelgrooveweld
(g)single-flare-Veegrooveweld
(h)double-Veegrooveweld
(i)double-bevelgrooveweld
(j)double-Ugrooveweld
(k)double-Jgrooveweld
(l)double-flare-bevelgrooveweld
(m)double-flare-Veegrooveweld
ASMEBPVC.IX-2023
8

header:pipeusedasacentralconnectionoramanifoldfor
otherpipingruns.
heatsoakcycle:theportionofthebutt-fusingorsidewall-
fusingprocedurewhereheatisallowedtosoakintothe
pipesorfittingsafterthebead-upcycleiscomplete.The
heatsoakcyclebeginsbyreducingthepressuretothat
requiredtomaintaincontactwiththeheatersurfaces
withoutforce.Thepipeendscontinueheatinguntilthe
minimumheatsoaktimeiscompletedforthepipe
wallbeingjoinedandtheminimumbeadsizeisattained
perthestandardprocedure.
heatsoaktime:thetimerequiredtocompletethebutt-
fusingorsidewall-fusingheatsoakcycle.
heaterremoval(dwell)time:periodoftimeduringbutt
fusingorsidewallfusingfromtheseparationofthe
pipeorfittingfromtheheatersurface,removalofthe
heater,andclosureofthecarriagetobringthemolten
pipeorfittingsurfacestogether.
heatertemperature:measuredtemperatureonthesurface
oftheheaterwherethepipeorfittingcrosssectionmakes
contactduringbuttfusingorsidewallfusing.
heat-affectedzone:thatportionofthebasemetalwhich
hasnotbeenmelted,butwhosemechanicalpropertiesor
microstructureshavebeenalteredbytheheatofwelding
orcutting.
initialheatinginterfacialpressure:theamountofforceper
unitareaofbutt-fusedorsidewall-fusedjointsthatis
appliedduringthebead-upcyclebeforetheheatsoak
cycle.
instantaneousenergy:asusedforwaveformcontrolled
welding,thedeterminationoftotalenergyduringa
timeperiodusingtheproductofcurrentandvoltage
measurementsmadeatrapidintervalsthatcapture
briefchangesintheweldingwaveform.
instantaneouspower:asusedforwaveformcontrolled
welding,thedeterminationofaveragepowerusingthe
productofcurrentandvoltagemeasurementsmadeat
rapidintervalsthatcapturebriefchangesinthe
weldingwaveform.
integratedbacking:basemetalthatisusedtosupportor
containtheweldpuddleduringitsdepositionandremains
aspartofthecompletedweldment.
interfacialpressure:theamountoffusingforceperunit
areaoffusedjointrequiredtomakeanapprovedbutt-
fusedorsidewall-fusedjoint.Thisisusedtocalculate
thefusingmachinegaugepressure.Theinterfacialpres-
sureisoftenexpressedasarange[example:60psito90
psi(400kPato600kPa)],andthecommonpracticeisto
usethemid-range[example:75psi(505kPa)when
makingthesecalculations.
interpasstemperature:formultiple-passwelds,the
temperatureinthepreviouslydepositedweldmetalor
adjacentbasemetal[typicallywithin1in.(25mm)of
thewelddeposit]immediatelybeforethenextpassis
started.
joint:thejunctionofmembersortheedgesofmembers
whicharetobejoinedorhavebeenjoined.
jointpenetration:thedistancetheweldmetalextends
fromtheweldfaceintoajoint,exclusiveofweldreinforce-
ment.
keyholewelding:atechniqueinwhichaconcentratedheat
sourcepenetratespartiallyorcompletelythroughawork-
piece,formingahole(keyhole)attheleadingedgeofthe
weldpool.Astheheatsourceprogresses,themoltenmetal
fillsinbehindtheholetoformtheweldbead.
lapjoint:ajointbetweentwooverlappingmembersin
parallelplanes.
laporoverlap:thedistancemeasuredbetweentheedges
oftwoplateswhenoverlappingtoformthejoint.
layer:astratumofweldmetalconsistingofoneormore
beads.SeeFiguresQG-109.2.1andQG-109.2.2.
lowertransformationtemperature:thetemperatureat
whichaustenitebeginstoformduringheating.
macro-examination:theprocessofobservingaspecimen
cross-sectionbytheunaidedeye,orataspecifiedlow
magnification,withorwithouttheuseofsmoothing
andetching.
ManufacturerQualifiedElectrofusionProcedureSpecifica-
tion(MEFPS):anelectrofusionfusingprocedurespecifi-
cationdevelopedbyanelectrofusionfittingmanufacturer
basedonstandardindustrypracticeinaccordancewith
thePlasticsPipeInstitute(PPI)MAB-02andASTMF1290,
fortheelectrofusionfittingmanufacturer’sspecificelec-
trofusionjointdesign,andqualifiedbytheelectrofusion
fittingmanufacturerinaccordancewithASTMF1055to
definetherangesfortheessentialvariablesidentifiedin
QF-253. AnMEFPSmaybeusedforproductionfusingby
organizationswithoutfurtherqualification.
material-joiningprocesses:welding,brazing,orplastic-
fusingprocesses,includingwire-additiveweldingand
processesusedtodepositoverlaysorcladding.
meltbeadsize:thewidthofabeadformedattheinterface
betweentheheatedpipesurfaceandtheheatersurface
duringthebutt-fusingorsidewall-fusingheatingcycle.
melt-in:atechniqueofweldinginwhichtheintensityofa
concentratedheatsourceissoadjustedthataweldpass
canbeproducedfromfillermetaladdedtothemolten
weldmetal.
metaltransfermode(gasmetal-arcwelding):themanner
inwhichmoltenmetaltravelsfromtheendofaconsum-
ableelectrodetotheworkpiece.Seealsoshort-circuiting
transfer(gasmetal-arcwelding); pulsedpowerwelding;
globulartransfer(arcwelding); pulsedspraywelding;
andspraytransfer(arcwelding).
ASMEBPVC.IX-2023
9

nugget:thevolumeofweldmetalformedinaspot,seam,
orprojectionweld.
organization:asusedinthisSection,anorganizationisa
manufacturer,contractor,assembler,installer,orother
entityhavingresponsibilityforoperationalcontrolof
thematerial-joiningmethodsusedintheconstruction
ofcomponentsinaccordancewiththecodes,standards,
andspecificationswhichreferencethisSection.
oscillation:foramachineorautomaticprocess,analter-
natingmotionrelativetothedirectionoftravelofwelding,
brazing,orthermalspraydevice.Seealsoweavebead.
overlay:anon-standardterm,usedinSectionIX,forsurfa-
cing.Seealsohard-facingandcorrosion-resistantoverlay.
overlay,corrosion-resistantweldmetal:depositionofone
ormorelayersofweldmetaltothesurfaceofabasemate-
rialinanefforttoimprovethecorrosionresistanceprop-
ertiesofthesurface.Thiswouldbeappliedatalevelabove
theminimumdesignthicknessasanonstructuralcompo-
nentoftheoverallwallthickness.
overlay,hard-facingweldmetal:depositionofoneormore
layersofweldmetaltothesurfaceofamaterialinaneffort
toimprovethewearresistancepropertiesofthesurface.
Thiswouldbeappliedatalevelabovetheminimumdesign
thicknessasanonstructuralcomponentoftheoverallwall
thickness.
pass:asingleprogressionofaweldingorsurfacingopera-
tionalongajoint,welddeposit,orsubstrate.Theresultofa
passisaweldbeadorlayer.
pass,cover:afinalorcappass(es)onthefaceofaweld.
pass,wash:passtocorrectminorsurfaceaberrationsand/
orpreparethesurfacefornondestructivetesting.
peeltest:adestructivemethodoftestingthatmechanically
separatesalapjointbypeeling.
peening:themechanicalworkingofmetalsusingimpact
blows.
performancequalification:thedemonstrationofa
welder’sorweldingoperator’sabilitytoproduce
weldsmeetingprescribedstandards.
plastics::thosematerialslistedinTableQF-422.
plugweld:aweldmadeinacircular,orothergeometrically
shapedhole(likeaslotweld)inonememberofalaportee
joint,joiningthatmembertotheother.Thewallsofthe
holemayormaynotbeparallel,andtheholemaybe
partiallyorcompletelyfilledwithweldmetal.(Afillet-
weldedholeorspotweldshouldnotbeconstruedas
conformingtothisdefinition.)
polarity,reverse:thearrangementofdirectcurrentarc
weldingleadswiththeworkasthenegativepoleand
theelectrodeasthepositivepoleoftheweldingarc;a
synonymfordirectcurrentelectrodepositive.
polarity,straight:thearrangementofdirectcurrentarc
weldingleadsinwhichtheworkisthepositivepole
andtheelectrodeisthenegativepoleofthewelding
arc;asynonymfordirectcurrentelectrodenegative.
polyethylene(PE):apolyolefincomposedofpolymersof
ethylene.
postbrazeheattreatment:anyheattreatmentsubsequent
tobrazing.
postheating:theapplicationofheattoanassemblyafter
welding,brazing,soldering,thermalspraying,orthermal
cutting.
postweldheattreatment:anyheattreatmentsubsequent
towelding.
postweldhydrogenbakeout:holdingacompletedor
partiallycompletedweldatelevatedtemperature
below800°F(425°C)forthepurposeofallowing
hydrogendiffusionfromtheweld.
powder:seefillermetal,powder.
preheatcurrent:animpulseorseriesofimpulsesthat
occurspriortoandisseparatedfromtheweldingcurrent.
preheatmaintenance:practiceofmaintainingthe
minimumspecifiedpreheattemperature,orsomespeci-
fiedhighertemperatureforsomerequiredtimeinterval
afterweldingorthermalsprayingisfinishedoruntilpost
weldheattreatmentisinitiated.
preheattemperature:theminimumtemperatureinthe
weldjointpreparationimmediatelypriortothe
welding;orinthecaseofmultiplepasswelds,the
minimumtemperatureinthesectionofthepreviously
depositedweldmetal,immediatelypriortowelding.
preheating:theapplicationofheattothebasemetalimme-
diatelybeforeaweldingorcuttingoperationtoachievea
specifiedminimumpreheattemperature.
pulsedpowerwelding:anarcweldingprocessvariationin
whichtheweldingpowersourceisprogrammedtocycle
betweenlowandhighpowerlevels.
qualityprogram:awrittenprogramorprocedurethat
includes,asaminimum,provisionsforensuringthat
welding,brazing,andfusingqualificationsconformto
therequirementsofthisSection.
rabbetjoint:typicaldesignisindicatedinFigures
QB-462.1(c), QB-462.4, QB-463.1(c), andQB-463.2(a).
retainer:nonconsumablematerial,metallicornonme-
tallic,whichisusedtocontainorshapemoltenweld
metal.Seealsobacking.
sealweld:anywelddesignedprimarilytoprovideaspe-
cificdegreeoftightnessagainstleakage.
seamweld:acontinuousweldmadebetweenorupon
overlappingmembersinwhichcoalescencemaystart
andoccuronthefayingsurfaces,ormayhaveproceeded
fromthesurfaceofonemember.Thecontinuousweldmay
ASMEBPVC.IX-2023
10

consistofasingleweldbeadoraseriesofoverlappingspot
welds.Seealsoresistancewelding.
short-circuitingtransfer(gasmetal-arcwelding):metal
transferinwhichmoltenmetalfromaconsumableelec-
trodeisdepositedduringrepeatedshortcircuits.Seealso
globulartransferandspraytransfer.
sidewallfusion(SWF):fusingaccomplishedbymeltingthe
concavesurfaceofthebaseofasaddlefittingwhilesimul-
taneouslymeltingamatchingpatternonthesurfaceofthe
mainpipeusingacontactheater,thenremovingtheheater
andbringingthetwomeltedsurfacestogetherunderpres-
suretoachievecoalescenceofthemoltenpolyethylene
materialsduringthecoolingphase.Someofthemore
commontermsrelatingtosidewallfusionaredefined
inASTMF2620.
single-weldedjoint:ajointweldedfromonesideonly.
single-weldedlapjoint:alapjointinwhichtheoverlapped
edgesofthememberstobejoinedareweldedalongthe
edgeofonememberonly.
slaginclusion:nonmetallicsolidmaterialentrappedin
weldmetalorbetweenweldmetalandbasemetal.
specimen:seetestspecimen.
spotweld:aweldmadebetweenoruponoverlapping
membersinwhichcoalescencemaystartandoccuron
thefayingsurfacesormayproceedfromtheouter
surfaceofonemember.Theweldcrosssection(plan
view)isapproximatelycircular.
spraytransfer(arcwelding):metaltransferinwhich
moltenmetalfromaconsumableelectrodeispropelled
axiallyacrossthearcinsmalldroplets.
spray-fuse:athermalsprayingtechniqueinwhichthe
depositisreheatedtofusetheparticlesandformametal-
lurgicalbondwiththesubstrate.
StandardFusingProcedureSpecification(SFPS):afusing
procedurespecificationthatcontainsacceptablepoly-
ethylene(PE)fusingvariablesbasedonstandardindustry
practiceandtestingasdefinedinASTMF2620.AnSFPS
maybeusedforproductionfusingbyorganizations
withoutfurtherqualification.Testresultsaredescribed
inPlasticsPipeInstitute(PPI)TechnicalReportsTR-33
forbuttfusingandTR-41forsidewallfusing.
StandardWeldingProcedureSpecification(SWPS):a
weldingprocedurespecification,publishedbytheAmer-
icanWeldingSociety,thatismadeavailableforproduction
weldingbycompaniesorindividualswithoutfurther
qualification,andthatmaybeusedinCodeapplications
inaccordancewiththerestrictionsandlimitationsof
ArticleV.
stringerbead:aweldbeadformedwithoutappreciable
weaving.
surfacetemperbeadreinforcinglayer:asubsetoftemper
beadweldinginwhichoneormorelayersofweldmetal
areappliedonorabovethesurfacelayersofacomponent
andareusedtomodifythepropertiesofpreviouslydepos-
itedweldmetalortheheat-affectedzone.Surfacelayer
maycoverasurfaceoronlytheperimeteroftheweld.
surfacing:theapplicationbywelding,brazing,orthermal
sprayingofalayer(s)ofmaterialtoasurfacetoobtain
desiredpropertiesordimensions,asopposedto
makingajoint.
teejoint(T):ajointbetweentwomemberslocated
approximatelyatrightanglestoeachotherintheform
ofaT.
temperbeadwelding:aweldbeadplacedataspecificloca-
tioninoratthesurfaceofaweldforthepurposeof
affectingthemetallurgicalpropertiesoftheheat-affected
zoneorpreviouslydepositedweldmetal.Thebeadmaybe
above,flushwith,orbelowthesurroundingbasemetal
surface.Ifabovethebasemetalsurface,thebeadsmay
coveralloronlypartofthewelddepositandmayor
maynotberemovedfollowingwelding.
testcoupon:aweldorbrazeassemblyforprocedureor
performancequalificationtesting.Thecouponmaybe
anyproductfromplate,pipe,tube,etc.,andmaybea
filletweld,overlay,depositedweldmetal,etc.
testcoupon,fusing:afusedplastictestjointthatismadeto
qualifyafusingprocedureorfusingoperator.
testspecimen:asampleofatestcouponforspecifictest.
Thespecimenmaybeabendtest,tensiontest,toughness
test,chemicalanalysis,macrotest,etc.Aspecimenmaybe
acompletetestcoupon,forexample,inradiographic
testingorsmalldiameterpipetensiontesting.
theoreticalfusingpressure:thepipeareamultipliedbythe
interfacialpressureanddividedbythetotaleffective
pistonareaofthebutt-fusingmachine.
thermalcutting(TC):agroupofcuttingprocessesthat
seversorremovesmetalbylocalizedmelting,burning,
orvaporizingoftheworkpieces.
throat,actual(offillet):theshortestdistancefromtheroot
ofafilletweldtoitsface.
throat,effective(offillet):theminimumdistancefromthe
filletface,minusanyconvexity,totheweldroot.Inthecase
offilletweldscombinedwithagrooveweld,theweldroot
ofthegrooveweldshallbeused.
throat,theoretical(offillet):thedistancefromthebegin-
ningofthejointrootperpendiculartothehypotenuseof
thelargestrighttrianglethatcanbeinscribedwithinthe
cross-sectionofafilletweld.Thisdimensionisbasedon
theassumptionthattherootopeningisequaltozero.
trailinggas:agasusedtoproduceaprotectiveatmosphere
thatextendsbeyondtheweldpoolinthedirectionoppo-
siteoftravel.
ASMEBPVC.IX-2023
11

undercut:agroovemeltedintothebasemetaladjacentto
theweldtoeorweldrootandleftunfilledbyweldmetal.
uppertransformationtemperature:thetemperatureat
whichtransformationoftheferritetoausteniteis
completedduringheating.
usability:ameasureoftherelativeeaseofapplicationofa
fillermetaltomakeasoundweldorbrazejoint.
waveformcontrolledwelding:Aweldingprocessmodifi-
cationofthevoltageand/orcurrentwaveshapetocontrol
characteristicssuchasdropletshape,penetration,
wetting,beadshapeortransfermode(s).
weavebead:foramanualorsemiautomaticprocess,aweld
beadformedusingweaving.Seealsooscillation.
weaving:aweldingtechniqueinwhichtheenergysource
isoscillatedtransverselyasitprogressesalongtheweld
path.
weld:alocalizedcoalescenceofmetalsornonmetals
producedeitherbyheatingthematerialstothe
weldingtemperature,withorwithouttheapplication
ofpressure,orbytheapplicationofpressurealone
andwithorwithouttheuseoffillermaterial.
weldbead:awelddepositresultingfromapass.Seealso
stringerbeadandweavebead.
weldface:theexposedsurfaceofaweldonthesidefrom
whichweldingwasdone.
weldinterface:theinterfacebetweentheweldmetaland
basemetalinafusionweld.
weldmetal:metalinafusionweldconsistingofthat
portionofthebasemetalandfillermetalmelted
duringwelding.
weldreinforcement:weldmetalonthefaceorrootofa
grooveweldinexcessofthemetalnecessaryforthespeci-
fiedweldsize.
weldsize:forequallegfilletwelds:theleglengthsofthe
largestisoscelesrighttrianglewhichcanbeinscribed
withinthefilletweldcrosssection.
weldsize:forunequallegfilletwelds:theleglengthsofthe
largestrighttrianglewhichcanbeinscribedwithinthe
filletweldcrosssection.
weldsize:groovewelds:thedepthofchamferingplusany
penetrationbeyondthechamfering,resultinginthe
strengthcarryingdimensionoftheweld.
weld,autogenous:afusionweldmadewithoutfillermetal.
welder:onewhoperformsmanualorsemiautomatic
welding.
weldingoperator:onewhooperatesmachineorautomatic
weldingequipment.
welding,arcstud(SW):anarcweldingprocessthatusesan
arcbetweenametalstud,orsimilarpart,andtheother
workpiece.Theprocessisusedwithoutfillermetal,with
orwithoutshieldinggasorflux,withorwithoutpartial
shieldingfromaceramicorgraphiteferrulesurrounding
thestud,andwiththeapplicationofpressureafterthe
fayingsurfacesaresufficientlyheated.
welding,automatic:weldingwithequipmentwhich
performstheweldingoperationwithoutadjustmentof
thecontrolsbyaweldingoperator.Theequipment
mayormaynotperformtheloadingandunloadingof
thework.Seealsomachinewelding.
welding,consumableguideelectroslag:anelectroslag
weldingprocessvariationinwhichfillermetalissupplied
byanelectrodeanditsguidingmember.
welding,diffusion(DFW):asolid-stateweldingprocess
producingaweldbetweenmultiplelayersofsheetor
platebytheapplicationofmechanicalpressureatelevated
temperaturewithnomacroscopicdeformationorrelative
motionoftheworkpieces.Asolidfillermetalmaybe
insertedbetweenthefayingsurfaces.
welding,electrogas(EGW):anarcweldingprocessthat
usesanarcbetweenacontinuousfillermetalelectrode
andtheweldpool,employingapproximatelyvertical
weldingprogressionwithretainerstoconfinetheweld
metal.Theprocessisusedwithorwithoutanexternally
suppliedshieldinggasandwithouttheapplicationofpres-
sure.Shieldingforusewithsolidormetal-coredelec-
trodesisobtainedfromagasorgasmixture.Shielding
forusewithflux-coredelectrodesmayormaynotbe
obtainedfromanexternallysuppliedgasorgasmixture.
welding,electronbeam(EBW):aweldingprocessthat
producescoalescencewithaconcentratedbeam
composedprimarilyofhigh-velocityelectrons,impinging
onthejoint.Theprocessisusedwithoutshieldinggasand
withouttheapplicationofpressure.
welding,electroslag(ESW):aweldingprocessproducing
coalescenceofmetalswithmoltenslagwhichmeltsthe
fillermetalandthesurfacesoftheworktobewelded.The
moltenweldpoolisshieldedbythisslagwhichmoves
alongthefullcrosssectionofthejointaswelding
progresses.Theprocessisinitiatedbyanarcwhich
heatstheslag.Thearcisthenextinguishedandthe
conductiveslagismaintainedinamoltenconditionby
itsresistancetoelectriccurrentpassingbetweentheelec-
trodeandthework.Seeelectroslagweldingelectrodeand
consumableguideelectroslagwelding.
welding,explosion(EXW):asolid-stateweldingprocess
producingaweldbyhigh-velocityimpactofthework-
piecesasaresultofacontrolleddetonation.
welding,flux-coredarc(FCAW):agasmetal-arcwelding
processthatusesanarcbetweenacontinuousfiller
metalelectrodeandtheweldpool.Theprocessisused
withshieldinggasfromafluxcontainedwithinthe
tubularelectrode,withorwithoutadditionalshielding
fromanexternallysuppliedgas,andwithouttheapplica-
tionofpressure.
ASMEBPVC.IX-2023
12

welding,friction(FRW):asolidstateweldingprocessthat
producesaweldundercompressiveforcecontactofwork-
piecesrotatingormovingrelativetooneanotherto
produceheatandplasticallydisplacematerialfromthe
fayingsurfaces.
welding,frictionstir(FSW):avariationoffrictionwelding
producingaweldbythefrictionheatingandplasticmate-
rialdisplacementcausedbyarapidlyrotatingtooltraver-
singtheweldjoint.
welding,friction,inertiaandcontinuousdrive:processes
andtypesoffrictionwelding(solidstatewelding
process)whereincoalescenceisproducedafterheating
isobtainedfrommechanicallyinducedslidingmotion
betweenrubbingsurfacesheldtogetherunderpressure.
Inertiaweldingutilizesallofthekineticenergystoredina
revolvingflywheelspindlesystem.Continuousdrivefric-
tionweldingutilizestheenergyprovidedbyacontinuous
drivesourcesuchasanelectricorhydraulicmotor.
welding,gasmetal-arc(GMAW):anarcweldingprocess
thatusesanarcbetweenacontinuousfillermetalelec-
trodeandtheweldpool.Theprocessisusedwithshielding
fromanexternallysuppliedgasandwithouttheapplica-
tionofpressure.
welding,gasmetal-arc,pulsedspray(GMAW-P):avariation
ofthegasmetal-arcweldingprocessinwhichthepoweris
pulsedresultingintransferofthemetalacrossthearcin
spraymode.Seealsopulsedpowerwelding.
welding,gasmetal-arc,short-circuitingarc(GMAW-S):a
variationofthegasmetal-arcweldingprocessin
whichtheconsumableelectrodeisdepositedduring
repeatedshortcircuits.Seealsoshort-circuitingtransfer.
welding,gastungsten-arc(GTAW):anarcweldingprocess
whichproducescoalescenceofmetalsbyheatingthem
withanarcbetweenatungsten(nonconsumable)elec-
trodeandthework.Shieldingisobtainedfromagas
orgasmixture.Pressuremayormaynotbeusedand
fillermetalmayormaynotbeused.(Thisprocesshas
sometimesbeencalledTIGwelding,anonpreferredterm.)
welding,gastungsten-arc,pulsedarc(GTAW-P):avariation
ofthegastungsten-arcweldingprocessinwhichthe
currentispulsed.Seealsopulsedpowerwelding.
welding,hybrid:weldinginwhichtwoormorewelding
processesareusedinthesameweldpool.
welding,hybrid,processseparation:thedistancebetween
eachweldingprocessasspecifiedintheWPS.
welding,hybrid,processsequence:theorderofeach
weldingprocesswithrespecttothedirectionoftravel.
welding,induction(IW):aweldingprocessthatproduces
coalescenceofmetalsbytheheatobtainedfromresistance
oftheworkpiecestotheflowofinducedhighfrequency
weldingcurrentwithorwithouttheapplicationofpres-
sure.Theeffectofthehigh-frequencyweldingcurrentisto
concentratetheweldingheatatthedesiredlocation.
welding,laserbeam(LBW):aweldingprocesswhich
producescoalescenceofmaterialswiththeheatobtained
fromtheapplicationofaconcentratedcoherentlightbeam
impinginguponthememberstobejoined.Weldingcanbe
performedbyusingthemelt-intechnique[seealso
welding,low-powerdensitylaserbeam(LLBW)] orby
keyholewelding.
welding,low-powerdensitylaserbeam(LLBW):avariation
ofthelaserbeamweldingprocessinwhichthecoherent
lightbeamemploysreducedpowerdensity,suchthat
coalescenceofmaterialsisachievedbyconduction(i.e.,
melt-in)withoutkeyholewelding.
welding,machine:weldingwithequipmentthathas
controlsthatcanbeadjustedbytheweldingoperator,
oradjustedundertheweldingoperator’sdirection,in
responsetochangesintheweldingconditions.The
torch,gun,orelectrodeholderisheldbyamechanical
device.Seealsowelding,automatic.
welding,manual:weldingwhereintheentirewelding
operationisperformedandcontrolledbyhand.
welding,oxyfuelgas(OFW):agroupofweldingprocesses
whichproducescoalescencebyheatingmaterialswithan
oxyfuelgasflameorflames,withorwithouttheapplica-
tionofpressure,andwithorwithouttheuseoffillermetal.
welding,plasma-arc(PAW):anarcweldingprocesswhich
producescoalescenceofmetalsbyheatingthemwitha
constrictedarcbetweenanelectrodeandtheworkpiece
(transferredarc),ortheelectrodeandtheconstricting
nozzle(nontransferredarc).Shieldingisobtainedfrom
thehot,ionizedgasissuingfromthetorchorifice
whichmaybesupplementedbyanauxiliarysourceof
shieldinggas.Shieldinggasmaybeaninertgasora
mixtureofgases.Pressuremayormaynotbeused,
andfillermetalmayormaynotbesupplied.
welding,projection(PW):aresistanceweldingprocess
thatproducescoalescencebytheheatobtainedfrom
theresistanceoftheflowofweldingcurrent.Theresulting
weldsarelocalizedatpredeterminedpointsbyprojec-
tions,embossments,orintersections.Themetalstobe
joinedlapovereachother.
welding,resistance(RW):agroupofweldingprocesses
thatproducescoalescenceofthefayingsurfaceswith
theheatobtainedfromresistanceoftheworkpiecesto
theflowoftheweldingcurrentinacircuitofwhich
theworkpiecesareapart,andbytheapplicationofpres-
sure.
welding,resistanceseam(RSEW):aresistancewelding
processthatproducesaweldatthefayingsurfacesofover-
lappedpartsprogressivelyalongalengthofajoint.The
weldmaybemadewithoverlappingweldnuggets,a
continuousweldnugget,orbyforgingthejointasitis
heatedtotheweldingtemperaturebyresistancetothe
flowoftheweldingcurrent.
ASMEBPVC.IX-2023
13

welding,resistancespot(RSW):aresistancewelding
processthatproducesaweldatthefayingsurfacesof
ajointbytheheatobtainedfromresistancetothe
flowofweldingcurrentthroughtheworkpiecesfromelec-
trodesthatservetoconcentratetheweldingcurrentand
pressureattheweldarea.
welding,resistancestud:aresistanceweldingprocess
whereincoalescenceisproducedbytheheatobtained
fromresistancetoelectriccurrentattheinterface
betweenthestudandtheworkpiece,untilthesurfaces
tobejoinedareproperlyheated,whentheyare
broughttogetherunderpressure.
welding,semiautomaticarc:arcweldingwithequipment
whichcontrolsonlythefillermetalfeed.Theadvanceof
theweldingismanuallycontrolled.
welding,shieldedmetal-arc(SMAW):anarcwelding
processwithanarcbetweenacoveredelectrodeand
theweldpool.Theprocessisusedwithshieldingfrom
thedecompositionoftheelectrodecovering,without
theapplicationofpressure,andwithfillermetalfrom
theelectrode.
welding,stud:ageneraltermforthejoiningofametalstud
orsimilarparttoaworkpiece.Weldingmaybeaccom-
plishedbyarc,resistance,friction,orothersuitable
processwithorwithoutexternalgasshielding.
welding,submerged-arc(SAW):anarcweldingprocess
thatusesanarcorarcsbetweenabaremetalelectrode
orelectrodesandtheweldpool.Thearcandmoltenmetal
areshieldedbyablanketofgranularfluxonthework-
pieces.Theprocessisusedwithoutpressureandwith
fillermetalfromtheelectrodeandsometimesfroma
supplementalsource(weldingrod,flux,ormetalgran-
ules).
weldment:anassemblywhoseconstituentpartsarejoined
bywelding,orpartswhichcontainweldmetaloverlay.
wire-additivewelding:thedepositionofweldmetalusinga
weldingprocessandwirefillermetaltocreateanew
componenteitherseparatelyorjoinedtoanexisting
component.
FigureQG-109.2.1
TypicalSingleandMultibeadLayersLayers
Cover beads
11 10
9
78
6 5
3
4
2
1
FigureQG-109.2.2
TypicalSingleBeadLayersCover bead
Layers
1
2
3
4
5
6
7
ASMEBPVC.IX-2023
14

PARTQW
WELDING
ARTICLEI
WELDINGGENERALREQUIREMENTS
QW-100SCOPE
TherulesinthisPartapplytothepreparationof
WeldingProcedureSpecifications(WPS)andthequalifi-
cationofweldingprocedures,welders,andweldingopera-
torsforalltypesofmanualandmachinewelding
processespermittedinthisPart.Theserulesmayalso
beapplied,insofarastheyareapplicable,toother
manualormachineweldingprocessespermittedin
otherSections.
QW-101?23? PROCEDURESPECIFICATION
AWPSusedbyanorganizationthatwillhaverespon-
sibleoperationalcontrolofproductionweldingshallbea
WPSthathasbeenqualifiedbythatorganizationinaccor-
dancewithArticleII,oritshallbeanAWSStandard
WeldingProcedureSpecification(SWPS)listedin
MandatoryAppendixEandadoptedbythatorganization
inaccordancewithArticleV.
BothWPSsandSWPSsspecifythevariables(including
ranges,ifany)underwhichweldingmustbeperformed.
Theseconditionsincludethebasemetalsthatare
permitted,thefillermetalsthatmustbeused(ifany),
preheatandpostweldheattreatmentrequirements,etc.
AWPSshalladdress,asaminimum,thespecificvari-
ables,bothessentialandnonessential,asprovidedin
ArticleIIforeachprocesstobeusedinproduction
welding.Inaddition,whenreferencingcodes,standards,
orspecificationsrequiretoughnessqualificationofthe
WPS,thesupplementaryessentialvariablesmustbe
addressedintheWPS.
WhenavariableisoutsidethescopeofaWPS(e.g.,the
variableappliestoaP-NumbernotincludedontheWPS)
orisaddressedbyanothervariable(e.g.,theAWSClassi-
ficationspecifiesthefillermetalproductform),thatvari-
ableneednotbespecificallyaddressedontheWPSor
PQRsthatsupporttheWPS.
QW-102PERFORMANCEQUALIFICATION
Inperformancequalification,thebasiccriterionestab-
lishedforwelderqualificationistodeterminethewelder’s
abilitytodepositsoundweldmetal.Thepurposeofthe
performancequalificationtestfortheweldingoperatoris
todeterminetheweldingoperator’smechanicalabilityto
operatetheweldingequipment.
QW-103RESPONSIBILITY
QW-103.1Welding.Eachorganizationshallconduct
thetestsrequiredinthisSectiontoqualifythewelding
proceduresusedintheconstructionoftheweldments
builtunderthisCodeandtheperformanceofwelders
andweldingoperatorswhoapplytheseprocedures.
QW-103.2Records.Eachorganizationshallmaintaina
recordoftheresultsobtainedinweldingprocedureand
welderandweldingoperatorperformancequalifications.
RefertorecommendedFormsinNonmandatoryAppendix
B.
QW-110WELDORIENTATION
TheorientationsofweldsareillustratedinFigure
QW-461.1orFigureQW-461.2.
QW-120TESTPOSITIONSFORGROOVE
WELDS
Grooveweldsmaybemadeintestcouponsorientedin
anyofthepositionsinFigureQW-461.3orFigure
QW-461.4andasdescribedinthefollowingparagraphs,
exceptthatanangulardeviationof±15degfromthespeci-
fiedhorizontalandverticalplanes,andanangulardevia-
tionof±5degfromthespecifiedinclinedplaneare
permittedduringwelding.
QW-121PLATEPOSITIONS
QW-121.1FlatPosition1G.Plateinahorizontalplane
withtheweldmetaldepositedfromabove.Referto
FigureQW-461.3, illustration(a).
ASMEBPVC.IX-2023
15

QW-121.2HorizontalPosition2G.Plateinavertical
planewiththeaxisoftheweldhorizontal.Referto
FigureQW-461.3, illustration(b).
QW-121.3VerticalPosition3G.Plateinaverticalplane
withtheaxisoftheweldvertical.Referto
FigureQW-461.3, illustration(c).
QW-121.4OverheadPosition4G.Plateinahorizontal
planewiththeweldmetaldepositedfromunderneath.
RefertoFigureQW-461.3, illustration(d).
QW-122PIPEPOSITIONS
QW-122.1FlatPosition1G.Pipewithitsaxishori-
zontalandrolledduringweldingsothattheweld
metalisdepositedfromabove.RefertoFigure
QW-461.4, illustration(a).
QW-122.2HorizontalPosition2G.Pipewithitsaxis
verticalandtheaxisoftheweldinahorizontalplane.
Pipeshallnotberotatedduringwelding.Referto
FigureQW-461.4, illustration(b).
QW-122.3MultiplePosition5G.Pipewithitsaxishori-
zontalandwiththeweldinggrooveinaverticalplane.
Weldingshallbedonewithoutrotatingthepipe.Refer
toFigureQW-461.4, illustration(c).
QW-122.4MultiplePosition6G.Pipewithitsaxis
inclinedat45degtohorizontal.Weldingshallbedone
withoutrotatingthepipe.RefertoFigureQW-461.4, illus-
tration(d).
QW-123TESTPOSITIONSFORSTUDWELDS
QW-123.1StudWelding.Studweldsmaybemadein
testcouponsorientedinanyofthepositionsasdescribed
inQW-121forplateandQW-122forpipe(excluding
QW-122.1). Inallcases,thestudshallbeperpendicular
tothesurfaceoftheplateorpipe.SeeFigures
QW-461.7andQW-461.8.
QW-124SPECIALPOSITIONS
QW-124.1Testpositionsotherthanthosedefinedin
QW-120throughQW-123aredefinedas“specialposi-
tions.”
QW-130TESTPOSITIONSFORFILLETWELDS
Filletweldsmaybemadeintestcouponsorientedinany
ofthepositionsofFigureQW-461.5orFigureQW-461.6,
andasdescribedinthefollowingparagraphs,exceptthat
anangulardeviationof±15degfromthespecifiedhori-
zontalandverticalplanesispermittedduringwelding.
QW-131PLATEPOSITIONS
QW-131.1FlatPosition1F.Platessoplacedthatthe
weldisdepositedwithitsaxishorizontalandits
throatvertical.RefertoFigureQW-461.5, illustration(a).
QW-131.2HorizontalPosition2F.Platessoplacedthat
theweldisdepositedwithitsaxishorizontalontheupper
sideofthehorizontalsurfaceandagainstthevertical
surface.RefertoFigureQW-461.5, illustration(b).
QW-131.3VerticalPosition3F.Platessoplacedthat
theweldisdepositedwithitsaxisvertical.Referto
FigureQW-461.5, illustration(c).
QW-131.4OverheadPosition4F.Platessoplacedthat
theweldisdepositedwithitsaxishorizontalontheunder-
sideofthehorizontalsurfaceandagainstthevertical
surface.RefertoFigureQW-461.5, illustration(d).
QW-132PIPEPOSITIONS
QW-132.1FlatPosition1F.Pipewithitsaxisinclinedat
45degtohorizontalandrotatedduringweldingsothatthe
weldmetalisdepositedfromaboveandatthepointof
depositiontheaxisoftheweldishorizontalandthe
throatvertical.RefertoFigureQW-461.6, illustration(a).
QW-132.2HorizontalPositions2Fand2FR.
(a)Position2F.Pipewithitsaxisverticalsothatthe
weldisdepositedontheuppersideofthehorizontal
surfaceandagainsttheverticalsurface.Theaxisofthe
weldwillbehorizontalandthepipeisnottobe
rotatedduringwelding.RefertoFigureQW-461.6, illus-
tration(b).
(b)Position2FR.Pipewithitsaxishorizontalandthe
axisofthedepositedweldintheverticalplane.Thepipeis
rotatedduringwelding.RefertoFigureQW-461.6, illus-
tration(c).
QW-132.3OverheadPosition4F.Pipewithitsaxis
verticalsothattheweldisdepositedontheunderside
ofthehorizontalsurfaceandagainstthevertical
surface.Theaxisoftheweldwillbehorizontalandthe
pipeisnottoberotatedduringwelding.Referto
FigureQW-461.6, illustration(d).
QW-132.4MultiplePosition5F.Pipewithitsaxishori-
zontalandtheaxisofthedepositedweldinthevertical
plane.Thepipeisnottoberotatedduringwelding.Refer
toFigureQW-461.6, illustration(e).
QW-133SPECIALPOSITIONS
QW-133.1Testpositionsotherthanthosedefinedin
QW-130throughQW-132aredefinedas“specialposi-
tions.”
ASMEBPVC.IX-2023
16

QW-140TYPESANDPURPOSESOFTESTS
ANDEXAMINATIONS
QW-141MECHANICALTESTS
Mechanicaltestsusedinprocedureorperformance
qualificationarespecifiedinQW-141.1through
QW-141.5.
QW-141.1TensionTests.Tensiontestsasdescribedin
QW-150areusedtodeterminetheultimatestrengthof
groove-weldjoints.
QW-141.2Guided-BendTests.Guided-bendtestsas
describedinQW-160areusedtodeterminethedegree
ofsoundnessandductilityofgroove-weldjoints.
QW-141.3Fillet-WeldTests.Testsasdescribedin
QW-180areusedtodeterminethesize,contour,and
degreeofsoundnessoffilletwelds.
QW-141.4ToughnessTests.Testsasdescribedin
QW-171andQW-172areusedtodeterminethetoughness
oftheweldment.
QW-141.5Stud-WeldTest.Deflectionbend,
hammering,torque,ortensiontestsasshownin
FiguresQW-466.4, QW-466.5, andQW-466.6, anda
macro-examinationperformedinaccordancewith
QW-202.5, respectively,areusedtodetermineaccept-
abilityofstudwelds.
QW-142SPECIALEXAMINATIONSFORWELDERS
RadiographicorUltrasonicexaminationperQW-191
maybesubstitutedformechanicaltestingofQW-141
forgroove-weldperformancequalificationaspermitted
inQW-304toprovetheabilityofwelderstomake
soundwelds.
QW-143EXAMINATIONFORWELDING
OPERATORS
RadiographicorUltrasonicexaminationperQW-191
maybesubstitutedformechanicaltestingofQW-141
forgrooveweldperformancequalificationaspermitted
inQW-305toprovetheabilityofweldingoperatorsto
makesoundwelds.
QW-144VISUALEXAMINATION
VisualexaminationasdescribedinQW-194isusedto
determinethatthefinalweldsurfacesmeetspecified
qualitystandards.
QW-150TENSIONTESTS
QW-151SPECIMENS
Tensiontestspecimensshallconformtooneofthetypes
illustratedinFiguresQW-462.1(a)throughQW-462.1(e)
andshallmeettherequirementsofQW-153.
QW-151.1ReducedSection—Plate.Reduced-section
specimensconformingtotherequirementsgivenin
FigureQW-462.1(a)maybeusedfortensiontestson
allthicknessesofplate.
(a)Forthicknessesuptoandincluding1in.(25mm),a
fullthicknessspecimenshallbeusedforeachrequired
tensiontest.
(b)Forplatethicknessgreaterthan1in.(25mm),full
thicknessspecimensormultiplespecimensmaybeused,
provided(c)and(d)arecompliedwith.
(c)Whenmultiplespecimensareused,inlieuoffull
thicknessspecimens,eachsetshallrepresentasingle
tensiontestofthefullplatethickness.Collectively,all
ofthespecimensrequiredtorepresentthefullthickness
oftheweldatonelocationshallcompriseaset.
(d)Whenmultiplespecimensarenecessary,theentire
thicknessshallbemechanicallycutintoaminimum
numberofapproximatelyequalstripsofasizethat
canbetestedintheavailableequipment.Eachspecimen
ofthesetshallbetestedandmeettherequirementsof
QW-153.
QW-151.2ReducedSection—Pipe.Reduced-section
specimensconformingtotherequirementsgivenin
FigureQW-462.1(b)maybeusedfortensiontestson
allthicknessesofpipehavinganoutsidediameter
greaterthan3in.(75mm).
(a)Forthicknessesuptoandincluding1in.(25mm),a
fullthicknessspecimenshallbeusedforeachrequired
tensiontest.
(b)Forpipethicknessesgreaterthan1in.(25mm),full
thicknessspecimensormultiplespecimensmaybeused,
provided(c)and(d)arecompliedwith.
(c)Whenmultiplespecimensareused,inlieuoffull
thicknessspecimens,eachsetshallrepresentasingle
tensiontestofthefullpipethickness.Collectively,all
ofthespecimensrequiredtorepresentthefullthickness
oftheweldatonelocationshallcompriseaset.
(d)Whenmultiplespecimensarenecessary,theentire
thicknessshallbemechanicallycutintoaminimum
numberofapproximatelyequalstripsofasizethat
canbetestedintheavailableequipment.Eachspecimen
ofthesetshallbetestedandmeettherequirementsof
QW-153.
Forpipehavinganoutsidediameterof3in.(75mm)or
less,reduced-sectionspecimensconformingtothere-
quirementsgiveninFigureQW-462.1(c)maybeused
fortensiontests.
ASMEBPVC.IX-2023
17

QW-151.3TurnedSpecimens.Turnedspecimens
conformingtotherequirementsgiveninFigure
QW-462.1(d)maybeusedfortensiontests.
(a)Forthicknessesuptoandincluding1in.(25mm),a
singleturnedspecimenmaybeusedforeachrequired
tensiontest,whichshallbeaspecimenofthelargest
diameterDofFigureQW-462.1(d)possiblefortest
couponthickness[perNote(a)ofFigureQW-462.1(d)].
(b)Forthicknessesover1in.(25mm),multiplespeci-
mensshallbecutthroughthefullthicknessoftheweld
withtheircentersparalleltothemetalsurfaceandnot
over1in.(25mm)apart.Thecentersofthespecimens
adjacenttothemetalsurfacesshallnotexceed
5

8
in.(16
mm)fromthesurface.
(c)Whenmultiplespecimensareused,eachsetshall
representasinglerequiredtensiontest.Collectively,all
thespecimensrequiredtorepresentthefullthicknessof
theweldatonelocationshallcompriseaset.
(d)Eachspecimenofthesetshallbetestedandmeet
therequirementsofQW-153.
QW-151.4Full-SectionSpecimensforPipe.Tension
specimensconformingtothedimensionsgivenin
FigureQW-462.1(e)maybeusedfortestingpipewith
anoutsidediameterof3in.(75mm)orless.
QW-152TENSIONTESTPROCEDURE
Thetensiontestspecimenshallberupturedunder
tensileload.Thetensilestrengthshallbecomputedby
dividingtheultimatetotalloadbytheleastcross-sectional
areaofthespecimenascalculatedfromactualmeasure-
mentsmadebeforetheloadisapplied.
QW-153ACCEPTANCECRITERIA—TENSION
TESTS
QW-153.1TensileStrength.Minimumvaluesfor
procedurequalificationareprovidedunderthecolumn
heading“MinimumSpecifiedTensile,ksi”of
TableQW/QB-422. Inordertopassthetensiontest,
thespecimenshallhaveatensilestrengththatisnot
lessthan
(a)theminimumspecifiedtensilestrengthofthebase
metal;or
(b)theminimumspecifiedtensilestrengthofthe
weakerofthetwo,ifbasemetalsofdifferentminimum
tensilestrengthsareused;or
(c)theminimumspecifiedtensilestrengthoftheweld
metalwhentheapplicableSectionprovidesfortheuseof
weldmetalhavinglowerroomtemperaturestrengththan
thebasemetal;
(d)ifthespecimenbreaksinthebasemetaloutsideof
theweldorweldinterface,thetestshallbeacceptedas
meetingtherequirements,providedthestrengthisnot
morethan5%belowtheminimumspecifiedtensile
strengthofthebasemetal.
(e)thespecifiedminimumtensilestrengthisforfull
thicknessspecimensincludingcladdingforAluminum
Alcladmaterials(P-No.21throughP-No.23)lessthan
1

2
in.(13mm).ForAluminumAlcladmaterials
1

2
in.
(13mm)andgreater,thespecifiedminimumtensile
strengthisforbothfullthicknessspecimensthat
includecladdingandspecimenstakenfromthecore.
QW-160GUIDED-BENDTESTS
QW-161SPECIMENS
Guided-bendtestspecimensshallbepreparedby
cuttingthetestplateorpipetoformspecimensofapproxi-
matelyrectangularcrosssection.Thecutsurfacesshallbe
designatedthesidesofthespecimen.Theothertwo
surfacesshallbecalledthefaceandrootsurfaces,the
facesurfacehavingthegreaterwidthofweld.The
specimenthicknessandbendradiusareshownin
FiguresQW-466.1, QW-466.2, andQW-466.3. Formate-
rialswithlessthan3%elongation,amacro-etchspecimen
shallbeusedinlieuofbendtestateachbendtestlocation.
Acceptancecriteriashallbeinaccordancewith
QW-183(a). FigureQW-466.3showstherecommended
methodoftestingaluminumweldments.Guided-bend
specimensareoffivetypes,dependingonwhetherthe
axisoftheweldistransverseorparalleltothelongitudinal
axisofthespecimen,andwhichsurface(side,face,orroot)
isontheconvex(outer)sideofbentspecimen.Thefive
typesaredefinedasfollows.
QW-161.1TransverseSideBend.Theweldistrans-
versetothelongitudinalaxisofthespecimen,whichis
bentsothatoneofthesidesurfacesbecomesthe
convexsurfaceofthebentspecimen.Transverseside-
bendtestspecimensshallconformtothedimensions
showninFigureQW-462.2.
Specimensofbasemetalthicknessequaltoorgreater
than1
1

2
in.(38mm)maybecutintoapproximatelyequal
stripsbetween
3

4
in.(19mm)and1
1

2
in.(38mm)widefor
testing,orthespecimensmaybebentatfullwidth(see
requirementsonjigwidthinFigureQW-466.1). Whenthe
widthoftheweldissolargethatabendspecimencannot
bebentsothattheentireweldandheataffectedzonesare
withinthebentportion,multiplespecimensacrossthe
entireweldandheataffectedzonesshallbeused.
Ifmultiplespecimensareusedineithersituationabove,
onecompletesetshallbemadeforeachrequiredtest.Each
specimenshallbetestedandmeettherequirementsin
QW-163.
QW-161.2TransverseFaceBend.Theweldistrans-
versetothelongitudinalaxisofthespecimen,whichis
bentsothatthefacesurfacebecomestheconvex
surfaceofthebentspecimen.Transverseface-bend
testspecimensshallconformtothedimensionsshown
inFigureQW-462.3(a). Forsubsizetransverseface
bends,seeQW-161.4.
ASMEBPVC.IX-2023
18

QW-161.3TransverseRootBend.Theweldistrans-
versetothelongitudinalaxisofthespecimen,whichis
bentsothattherootsurfacebecomestheconvex
surfaceofthebentspecimen.Transverseroot-bend
testspecimensshallconformtothedimensionsshown
inFigureQW-462.3(a). Forsubsizetransverseroot
bends,seeQW-161.4.
QW-161.4SubsizeTransverseFaceandRootBends.
Bendspecimenstakenfromsmalldiameterpipecoupons
maybesubsizedinaccordancewithGeneralNote(b)of
FigureQW-462.3(a).
QW-161.5Longitudinal-BendTests.Longitudinal-
bendtestsmaybeusedinlieuofthetransverseside-
bend,face-bend,androot-bendtestsfortestingweld
metalorbasemetalcombinations,whichdiffermarkedly
inbendingpropertiesbetween
(a)thetwobasemetals,or
(b)theweldmetalandthebasemetal
QW-161.6LongitudinalFaceBend.Theweldis
paralleltothelongitudinalaxisofthespecimen,which
isbentsothatthefacesurfacebecomestheconvex
surfaceofthebentspecimen.Longitudinalface-bend
testspecimensshallconformtothedimensionsshown
inFigureQW-462.3(b).
QW-161.7LongitudinalRootBend.Theweldis
paralleltothelongitudinalaxisofthespecimen,which
isbentsothattherootsurfacebecomestheconvex
sideofthebentspecimen.Longitudinalroot-bendtest
specimensshallconformtothedimensionsshownin
FigureQW-462.3(b).
QW-162GUIDED-BENDTESTPROCEDURE
QW-162.1?23? Jigs.Guided-bendspecimensshallbebentin
testjigsthatareinsubstantialaccordancewith
FiguresQW-466.1throughQW-466.3. Whenusingthe
jigsillustratedinFigureQW-466.1orFigure
QW-466.2, thesideofthespecimenturnedtowardthe
gapofthejigshallbethefaceforface-bendspecimens,
therootforroot-bendspecimens,andthesidewiththe
greaterdiscontinuities,ifany,forside-bendspecimens.
Thespecimenshallbeforcedintothediebyapplying
loadontheplungeruntilthecurvatureofthespecimen
issuchthata
1

8
in.(3mm)diameterwirecannotbe
insertedbetweenthespecimenandthedieofFigure
QW-466.1, orthespecimenisbottomejectedifthe
rollertypeofjig(seeFigureQW-466.2) isused.
Whenusingthewraparoundjig(seeFigureQW-466.3),
thesideofthespecimenturnedtowardtherollershallbe
thefaceforface-bendspecimens,therootforroot-bend
specimens,andthesidewiththegreaterdiscontinuities,if
any,forside-bendspecimens.Thebendingisconsidered
completeoncetheouterrollhasmovedatleast180deg
fromthestartingpoint.
Whenspecimenswiderthan1
1

2
in.(38mm)aretobe
bentaspermittedinFigureQW-462.2, thetestjigmandrel
mustbeatleast
1

4
in.(6mm)widerthanthespecimen
width.
Theplungerradius,B,shallbenolargerthanthatgiven
inFigureQW-466.1. Whenabendspecimenistestedfrom
acouponjoiningbasemetalshavingdifferentBvalues,the
largerofthetwoBvaluesmaybeused.
QW-163ACCEPTANCECRITERIA—BENDTESTS
Theweldandheat-affectedzoneofatransverseweld-
bendspecimenshallbecompletelywithinthebentportion
ofthespecimenaftertesting.
Theguided-bendspecimensshallhavenoopendiscon-
tinuityintheweldorheat-affectedzoneexceeding
1

8
in.
(3mm),measuredinanydirectionontheconvexsurface
ofthespecimenafterbending.Opendiscontinuitiesoccur-
ringonthecornersofthespecimenduringtestingshallnot
beconsideredunlessthereisdefiniteevidencethatthey
resultfromlackoffusion,slaginclusions,orotherinternal
discontinuities.Forcorrosion-resistantweldoverlayclad-
ding,noopendiscontinuityexceeding
1

16
in.(1.5mm),
measuredinanydirection,shallbepermittedintheclad-
ding,andnoopendiscontinuityexceeding
1

8
in.(3mm)
shallbepermittedalongtheapproximateweldinterface.
QW-170TOUGHNESSTESTS
QW-171TOUGHNESSTESTS
QW-171.1General.Toughnesstestsshallbemade
whenrequiredbyreferencingcodes.Testprocedures
andapparatusshallconformtotherequirementsof
thereferencingcode.Whennotspecifiedbythereferen-
cingcode,thetestproceduresandapparatusshall
conformtotherequirementsofSA-370.
QW-171.2Acceptance.Theacceptancecriteriashallbe
inaccordancewiththatSectionspecifyingtoughness
testingrequirements.
QW-171.3LocationandOrientationofTestSpecimen.
Thetoughnesstestspecimenremovalandpreparationre-
quirementsshallbeasgivenintheSectionrequiringsuch
tests.
Whenqualifyingpipeinthe5Gor6Gposition,thetough-
nessspecimensshallberemovedfromtheshadedportion
ofFigureQW-463.1(f).
QW-172TOUGHNESSTESTS—DROPWEIGHT
QW-172.1General.Drop-weighttestsshallbemade
whenrequiredbyreferencingcodes.Testprocedures
andapparatusshallconformtotherequirementsof
thereferencingcode.Whennotspecifiedbythereferen-
cingcode,thetestproceduresandapparatusshall
conformtotherequirementsofASTMspecificationE208.
ASMEBPVC.IX-2023
19

QW-172.2Acceptance.Theacceptancecriteriashallbe
inaccordancewiththatSectionrequiringdropweight
tests.
QW-172.3LocationandOrientationofTestSpecimen.
Thedropweighttestspecimen,thecrackstarterlocation,
andtheorientationshallbeasgivenintheSection
requiringsuchtests.
Whenqualifyingpipeinthe5Gor6Gposition,thetough-
nessspecimensshallberemovedfromtheshadedportion
ofFigureQW-463.1(f).
QW-180FILLET-WELDTESTS
QW-181PROCEDUREANDPERFORMANCE
QUALIFICATIONSPECIMENS
QW-181.1?23? Procedure.Thedimensionsandpreparation
ofthefillet-weldtestcouponforprocedurequalificationas
requiredinQW-202shallconformtotherequirementsin
FigureQW-462.4(a)orFigureQW-462.4(d). Bothsidesof
theverticalplateshowninFigureQW-462.4(a)shallbe
welded.Thetestcouponforplate-to-plateshallbecut
transverselytoprovidefivetestspecimensections,
eachapproximately2in.(50mm)long.Forpipe-to-
plateorpipe-to-pipe,thetestcouponshallbecuttrans-
verselytoprovidefourapproximatelyequaltestspecimen
sections.Thetestspecimensshallbemacro-examinedto
therequirementsofQW-183.
QW-181.1.1ProductionAssemblyMockups. Produc-
tionassemblymockupsmaybeusedinlieuof
QW-181.1. Whenaproductionassemblymockupis
used,therangequalifiedshallbelimitedtothebase
metalthickness,filletweldsize,andconfigurationof
themockup.Alternatively,multipleproductionassembly
mockupsmaybequalified.Therangeofthicknessesofthe
basemetalqualifiedshallbenotlessthanthethicknessof
thethinnermembertestedandnotgreaterthanthethick-
nessofthethickermembertested.Therangeforfilletweld
sizesqualifiedshallbelimitedtonolessthanthesmallest
filletweldtestedandnogreaterthanthelargestfilletweld
tested.Theconfigurationofproductionassembliesshall
bethesameasthatusedintheproductionassembly
mockup.Themockupsforplate-to-shapeshallbecut
transverselytoprovidefiveapproximatelyequaltest
specimensnottoexceedapproximately2in.(50mm)
inlength.Forpipe-to-shapemockups,themockup
shallbecuttransverselytoprovidefourapproximately
equaltestspecimens.Forsmallmockups,multiple
mockupsmayberequiredtoobtaintherequired
numberoftestspecimens.Thetestspecimensshallbe
macro-examinedtotherequirementsofQW-183.
QW-181.2Performance.Thedimensionsandthe
preparationofthefillet-weldtestcouponforperformance
qualificationshallconformtotherequirementsin
FigureQW-462.4(b)orFigureQW-462.4(c). Thetest
couponforplate-to-plateshallbecuttransverselyto
provideacentersectionapproximately4in.(100mm)
longandtwoendsections,eachapproximately1in.
(25mm)long.Forpipe-to-plateorpipe-to-pipe,the
testcouponshallbecuttoprovidetwoquartersections
testspecimensoppositetoeachother.Oneofthetest
specimensshallbefracturetestedinaccordancewith
QW-182andtheothermacro-examinedtotherequire-
mentsofQW-184. Whenqualifyingpipe-to-plateor
pipe-to-pipeinthe5Fposition,thetestspecimens
shallberemovedasindicatedinFigureQW-463.2(h).
QW-181.2.1ProductionAssemblyMockups. Produc-
tionassemblymockupsmaybeusedinlieuofthe
fillet-weldtestcouponrequirementsofQW-181.2.
Whenproductionassemblymockupsareused,the
rangequalifiedshallbelimitedtothefilletsizes,base
metalthicknesses,andconfigurationofthemockup.
(a)Plate-to-Shape
(1)Themockupforplate-to-shapeshallbecuttrans-
verselytoprovidethreeapproximatelyequaltestspeci-
mensnottoexceedapproximately2in.(50mm)inlength.
Thetestspecimenthatcontainsthestartandstopofthe
weldshallbefracturetestedinaccordancewithQW-182.
Acutendofoneoftheremainingtestspecimensshallbe
macro-examinedinaccordancewithQW-184.
(b)Pipe-to-Shape
(1)Themockupforpipe-to-shapeshallbecuttrans-
verselytoprovidetwoquartersectionsapproximately
oppositetoeachother.Thetestspecimenthatcontains
thestartandstopoftheweldshallbefracturetestedin
accordancewithQW-182. Acutendoftheotherquarter
sectionshallbemacro-examinedinaccordancewith
QW-184. Whenqualifyingpipe-to-shapeinthe5Fposi-
tion,thefracturespecimenshallberemovedfromthe
lower90-degsectionofthemockup.
QW-182FRACTURETESTS
Thestemofthe4in.(100mm)performancespecimen
centersectioninFigureQW-462.4(b)orthestemofthe
quartersectioninFigureQW-462.4(c), asapplicable,shall
beloadedlaterallyinsuchawaythattherootoftheweldis
intension.Theloadshallbesteadilyincreaseduntilthe
specimenfracturesorbendsflatuponitself.
Ifthespecimenfractures,thefracturedsurfaceshall
shownoevidenceofcracksorincompleterootfusion,
andthesumofthelengthsofinclusionsandporosity
visibleonthefracturedsurfaceshallnotexceed
3

8
in.
(10mm)inFigureQW-462.4(b)or10%ofthequarter
sectioninFigureQW-462.4(c).
QW-183MACRO-EXAMINATION —PROCEDURE
SPECIMENS
Onefaceofeachcrosssectionofthefivetestspecimens
inFigureQW-462.4(a)orfourtestspecimensinFigure
QW-462.4(d), asapplicableshallbesmoothedand
ASMEBPVC.IX-2023
20

etchedwithasuitableetchant(seeQW-470) togiveaclear
definitiontotheweldmetalandheat-affectedzone.The
examinationofthecrosssectionsshallincludeonlyone
sideofthetestspecimenattheareawheretheplateorpipe
isdividedintosectionsi.e.,adjacentfacesatthecutshall
notbeused.Inordertopassthetest
(a)visualexaminationofthecrosssectionsoftheweld
metalandheat-affectedzoneshallshowcompletefusion
andfreedomfromcracks
(b)thereshallbenotmorethan
1

8
in.(3mm)difference
inthelengthofthelegsofthefillet
QW-184MACRO-EXAMINATION —
PERFORMANCESPECIMENS
Thecutendofoneoftheendplatesections,approxi-
mately1in.(25mm)long,inFigureQW-462.4(b)orthe
cutendofoneofthepipequartersectionsinFigure
QW-462.4(c), asapplicable,shallbesmoothedand
etchedwithasuitableetchant(seeQW-470) togivea
cleardefinitionoftheweldmetalandheat-affected
zone.Visualexaminationofthecrosssectionofthe
weldmetalandheat-affectedzoneshallreveal
(a)noincompletefusion
(b)nocracks
(c)nootherlinearindicationswithalengthgreater
than
1

32
in.(0.8mm)
(d)noconcavityorconvexitygreaterthan
1

16
in.(1.5
mm)
(e)nomorethan
1

8
-in.(3-mm)differencebetweenthe
filletweldleglengths
QW-185DIFFUSIONWELDING—PROCEDURE
ANDPERFORMANCEQUALIFICATION
SPECIMENS
QW-185.1Thetestblockshallbeaminimumof8in.×8
in.(200mm×200mm)andofathicknesssuchthatthere
areatleast50interfaceplanesbeingwelded.
QW-185.2Aminimumofthreetensiontestspecimens
inaccordancewiththerequirementsofSA-370shallbe
takenperpendiculartotheinterfaceplanesandthree
paralleltotheinterfaceplanes.Thetensiontestresults
shallcomplywithQW-153.
QW-185.3Microstructuralevaluationshallbe
conductedinaccordancewiththerequirementsof
ASTME3onaminimumofthreecross-sections,one
eachfromthetop,center,andbottomone-thirdofthe
testcoupon.Thesamplesshallbepolished,etched,and
shallbefreefromcracksandshallshownoincomplete
bondorporosityonoradjacenttothebondlines.Size
ofeachsampleshallbethatwhichcanbemounted
andpolishedtoallowexaminationwithanopticalmicro-
scopeat50Xto100Xmagnification.
QW-190OTHERTESTSANDEXAMINATIONS
QW-191VOLUMETRICNDE
QW-191.1RadiographicExamination.
QW-191.1.1Method. Theradiographicexaminationin
QW-142forweldersandinQW-143forweldingoperators
shallmeettherequirementsofSectionV,Article2,except
asfollows:
(a)Awrittenradiographicexaminationprocedureis
notrequired.Demonstrationofimagequalityrequire-
mentsonproductionortechniqueradiographsshallbe
consideredsatisfactoryevidenceofcompliancewith
SectionV,Article2.
(b)Finalacceptanceofradiographsshallbebasedon
theabilitytoseetheprescribedimageandthespecified
holeofahole-typeimagequalityindicator(IQI)orthe
designatedwireofawire-typeIQI.Theacceptancestan-
dardsofQW-191.1.2shallbemet.
QW-191.1.2AcceptanceCriteria.
QW-191.1.2.1
?23?Terminology.
(a)LinearIndications. Cracks,incompletefusion,
inadequatepenetration,andslagarerepresentedon
theradiographaslinearindicationsinwhichthe
lengthismorethanthreetimesthewidth.
(b)RoundedIndications. Porosityandinclusionssuch
asslagortungstenarerepresentedontheradiographas
roundedindicationswithalengththreetimesthewidthor
less.Theseindicationsmaybecircular,elliptical,orirre-
gularinshape;mayhavetails;andmayvaryindensity.
(c)Thickness.Theterm“thickness”or“t”referstothe
thicknessoftheweldexcludinganyallowablereinforce-
ment.Foragrooveweldjoiningtwobasemetalshaving
differentthicknessesattheweld,thicknessisthethinner
ofthetwobasemetalsbeingjoined.
QW-191.1.2.2 ?23?QualificationTestWelds. Weldrein-
forcementmayberemovedorleftinplacebutshallnotbe
consideredwhendeterminingthethicknessforwhichthe
welderisqualified.
Welderandweldingoperatorperformancetestsby
radiographyofweldsintestassembliesshallbejudged
unacceptablewhentheradiographexhibitsanyimperfec-
tionsinexcessofthelimitsspecifiedbelow
(a)LinearIndications
(1)anytypeofindicationcharacterizedasacrackor
zoneofincompletefusionorpenetration
(2)anyotherelongatedindicationthathasalength
greaterthan
(-a)
1

8
in.(3mm)fortupto
3

8
in.(10mm),inclu-
sive
(-b)
1

3
tfortgreaterthan
3

8
in.to2
1

4
in.(10mmto
57mm),inclusive
(-c)
3

4
in.(19mm)fortgreaterthan2
1

4
in.(57
mm)
ASMEBPVC.IX-2023
21

(3)anygroupofalignedindicationshavinganaggre-
gatelengthgreaterthantinalengthof12t,exceptwhen
thedistancebetweenthesuccessiveimperfections
exceeds6LwhereListhelengthofthelongestimperfec-
tioninthegroup
(b)RoundedIndications
(1)RelevantIndications.Onlythoseroundedindica-
tionsthatexceedthefollowingdimensionsshallbeconsid-
eredrelevant:
(-a)
1
/
10
tfortlessthan
1
/
8
in.(3mm)
(-b)
1
/
64
in.(0.4mm)fortequalto
1
/
8
in.to
1
/
4
in.
(3mmto6mm),inclusive
(-c)
1
/
32
in.(0.8mm)fortgreaterthan
1
/
4
in.to
2in.(6mmto50mm),inclusive
(-d)
1
/
16
in.(1.5mm)fortgreaterthan2in.
(50mm)
(2)MaximumSizeofRoundedIndications
(-a)Themaximumpermissibledimensionfor
roundedindicationsshallbe20%oftor
1

8
in.(3mm),whicheverissmaller.
(-b)Forweldsinmateriallessthan
1

8
in.(3mm)in
thickness,themaximumnumberofacceptablerounded
indicationsshallnotexceed12ina6in.(150mm)
lengthofweld.Aproportionatelyfewernumberof
roundedindicationsshallbepermittedinweldsless
than6in.(150mm)inlength.
(-c)Forweldsinmaterial
1

8
in.(3mm)orgreater
inthickness,thechartsin (b)(4)
QW-191.1.2.3ProductionWelds. Theacceptance
criteriaforweldersorweldingoperatorswhoqualify
onproductionweldsbyradiographyaspermittedin
QW-304.1orQW-305.1shall be perQW-191.1.2.2
QW-191.2UltrasonicExamination
QW-191.2.1Method
(a)TheultrasonicexaminationinQW-142forwelders
andinQW-143forweldingoperatorsmaybeconducted
ontestweldsinmaterial
1

4
in.(6mm)thickorgreater.
(b)Ultrasonicexaminationsshallbeperformedusinga
writtenprocedureincompliancewithSectionV,Article1,
T-150andtherequirementsofSectionV,Article4for
methodsandprocedures.
(c)Forterminology,seeQW-191.1.2.1.
QW-191.2.2AcceptanceCriteriaforQualificationTest
Welds.
Weldreinforcementmayberemovedorleftin
placebutshallnotbeconsideredwhendetermining
thedepositedweldthicknessforwhichthewelderisqual-
ified.
Indicationsshallbesizedusingtheapplicable
technique(s)providedinthewrittenprocedureforthe
examinationmethod.Indicationsshallbeevaluatedfor
acceptanceasfollows:
(a)Allindicationscharacterizedascracks,lackof
fusion,orincompletepenetrationareunacceptable
regardlessoflength.
(b)Indicationsexceeding
1

8
in.(3mm)inlengthare
consideredrelevant,andareunacceptablewhentheir
lengthsexceed
(1)
1

8
in.(3mm)forthicknessesupto
3

8
in.(10mm),
inclusive
(2)
1

3
thethicknessforthicknessesgreaterthan
3

8
in.upto2
1

4
in.(10mmto57mm),inclusive
(3)
3

4
in.(19mm)forthicknessesgreaterthan2
1

4
in.
(57mm)
QW-191.2.3AcceptanceCriteriaforProductionWelds.
Theacceptancecriteriaforweldersorweldingoperators
whoqualifyonproductionweldsbyultrasonicexamina-
tionaspermittedinQW-304.1orQW-305.1shallbeper
QW-191.2.2.
QW-191.3RecordofTests.Theresultsofwelderand
weldingoperatorperformancetestsevaluatedbyvolu-
metricNDEshallberecordedinaccordancewith
QW-301.4.
QW-191.4PersonnelQualificationsandCertifica-
tions.
(a)Allpersonnelperformingvolumetricexaminations
forwelderandweldingoperatorqualificationsshallbe
qualifiedandcertifiedinaccordancewiththeiremployer’s
writtenpractice.
(b)Theemployer’swrittenpracticeforqualification
andcertificationofexaminationpersonnelshallmeet
allapplicablerequirementsofSectionV,Article1.
(c)Iftheweldbeingexaminedisaproductionweld,the
examinermaybequalifiedandcertifiedinaccordance
withtherequirementsofthereferencingcodeasanalter-
nativetotherequirementsofthisparagraph.
QW-192STUD-WELDTESTS
QW-192.1ProcedureQualificationSpecimens.
QW-192.1.1RequiredTests. Tenstud-weldtestsare
requiredtoqualifyeachprocedure.Theequipment
usedforstudweldingshallbecompletelyautomatic
exceptformanualstarting.
Everyotherweldingstud(fivejoints)shallbetested
eitherbyhammeringoveruntilone-fourthofitslength
isflatonthetestpiece,orbybendingthestudtoan
angleofatleast15degandreturningittoitsoriginalposi-
tionusingatestjigandanadapterlocationdimensionthat
areinaccordancewithFigureQW-466.4.
Theremainingfiveweldedstudjointsshallbetestedin
torqueusingatorquetestingarrangementthatissubstan-
tiallyinaccordancewithFigureQW-466.5.Alternatively,
wheretorquingisnotfeasible,tensiletestingmaybeused,
andthefixturefortensiletestingshallbesimilartothat
showninFigureQW-466.6,exceptthatstudswithout
ASMEBPVC.IX-2023
22
.
represent the maximumacceptable types of rounded
indications illustrated in typically clustered, assorted, and
randomly dispersed configurations.
QW-191.1.2.2
Figure

FigureQW-191.1.2.2(b)(4)
RoundedIndicationChartsTypical Quantity and Size Permitted
in 6 in. (150 mm) Length of Weld
1
/
8
 in. (3 mm) to 
1
/
4
 in. (6 mm)
Thickness
Typical Quantity and Size Permitted
in 6 in. (150 mm) Length of Weld
Over 
1
/
4
 in. (6 mm) to 
1
/
2
 in. (13 mm)
Thickness
Typical Quantity and Size Permitted
in 6 in. (150 mm) Length of Weld
Over 
1
/
2
 in. (13 mm) to 1 in. (25 mm)
Thickness
Typical Quantity and Size Permitted
in 6 in. (150 mm) Length of Weld
Over 1 in. (25 mm) Thickness
ASMEBPVC.IX-2023
23

headsmaybegrippedontheunweldedendinthejawsof
thetensiletestingmachine.
QW-192.1.2AcceptanceCriteria—BendandHammer
Tests.
Inordertopassthetest(s),eachofthefivestud
weldsandheat-affectedzonesshallbefreeofvisiblesep-
arationorfractureafterbendingandreturnbendingor
afterhammering.
QW-192.1.3AcceptanceCriteria—TorqueTests. In
ordertopassthetest(s),eachofthefivestudwelds
shallbesubjectedtotherequiredtorqueshowninthe
followingtablebeforefailureoccurs.
RequiredTorqueforTestingThreadedCarbonSteelStuds
NominalDiameter
ofStuds,in.(mm)
Threads/in.and
SeriesDesignated
TestingTorque,
ft-lb(J)
1

4
(6.4) 28UNF 5.0(6.8)
1

4
(6.4) 20UNC 4.2(5.7)
5

16
(7.9) 24UNF 9.5(12.9)
5

16
(7.9) 18UNC 8.6(11.7)
3

8
(9.5) 24UNF 17(23.0)
3

8
(9.5) 16UNC 15(20.3)
7

16
(11.1) 20UNF 27(36.6)
7

16
(11.1) 14UNC 24(32.5)
1

2
(12.7) 20UNF 42(57.0)
1

2
(12.7) 13UNC 37(50.2)
9

16
(14.3) 18UNF 60(81.4)
9

16
(14.3) 12UNC 54(73.2)
5

8
(15.9) 18UNF 84(114.0)
5

8
(15.9) 11UNC 74(100.0)
3

4
(19.0) 16UNF 147(200.0)
3

4
(19.0) 10UNC 132(180.0)
7

8
(22.2) 14UNF 234(320.0)
7

8
(22.2) 9UNC 212(285.0)
1(25.4) 12UNF 348(470.0)
1(25.4) 8UNC 318(430.0)
RequiredTorqueforTestingThreadedAustenitic
StainlessSteelStuds
NominalDiameter
ofStuds,in.(mm)
Threads/in.and
SeriesDesignated
TestingTorque,
ft-lb(J)
1

4
(6.4) 28UNF 4.5(6.1)
1

4
(6.4) 20UNC 4.0(5.4)
5

16
(7.9) 24UNF 9.0(12.2)
5

16
(7.9) 18UNC 8.0(10.8)
3

8
(9.5) 24UNF 16.5(22.4)
3

8
(9.5) 16UNC 14.5(19.7)
7

16
(11.1) 20UNF 26.0(35.3)
7

16
(11.1) 14UNC 23.0(31.2)
1

2
(12.7) 20UNF 40.0(54.2)
1

2
(12.7) 13UNC 35.5(48.1)
5

8
(15.9) 18UNF 80.00(108.5)
5

8
(15.9) 11UNC 71.00(96.3)
3

4
(19.0) 16UNF 140.00(189.8)
3

4
(19.0) 10UNC 125.00(169.5)
7

8
(22.2) 14UNF 223.00(302.3)
7

8
(22.2) 9UNC 202.00(273.9)
1(25.4) 14UNF 339.00(459.6)
1(25.4) 8UNC 303.00(410.8)
Alternatively,wheretorquingtodestructionisnot
feasible,tensiletestingmaybeused.Forcarbonandaus-
teniticstainlesssteelstuds,thefailurestrengthshallbe
notlessthan35,000psi(240MPa)and30,000psi(210
MPa),respectively.Forothermetals,thefailurestrength
shallnotbelessthanhalfoftheminimumspecifiedtensile
strengthofthestudmaterial.Thefailurestrengthshallbe
basedontheminordiameterofthethreadedsectionof
externallythreadedstuds,exceptwheretheshank
diameterislessthantheminordiameter,orontheoriginal
cross-sectionalareawherefailureoccursina
nonthreaded,internallythreaded,orreduced-diameter
stud.
QW-192.1.4Macro-Examination. Inordertopassthe
macro-examination,eachofthefivesectionedspecimens
shallbesmoothedandetchedwithasuitableetchant(see
QW-470) togivecleardefinitionofthestudweldsandthe
heat-affectedzones.Theweldsandheat-affectedzones
shallbefreeofcrackswhenexaminedat10Xmagnifica-
tion.
QW-192.2PerformanceQualificationSpecimens.
QW-192.2.1RequiredTests. Fivestud-weldtestsare
requiredtoqualifyeachstud-weldingoperator.The
equipmentusedforstudweldingshallbecompletelyauto-
maticexceptformanualstarting.Theperformancetest
ASMEBPVC.IX-2023
24

shallbeweldedinaccordancewithaqualifiedWPSper
QW-301.2.
Eachstud(fivejoints)shallbetestedeitherby
hammeringoveruntilone-fourthofitslengthisflaton
thetestpieceorbybendingthestudtoanangleofat
least15degandreturningittoitsoriginalposition
usingatestjigandanadapterlocationdimensionthat
areinaccordancewithFigureQW-466.4.
QW-192.2.2AcceptanceCriteria—BendandHammer
Tests.
Inordertopassthetest(s),eachofthefivestud
weldsandheataffectedzonesshallbefreeofvisiblesep-
arationorfractureafterbendingandreturnbendingor
afterhammering.
QW-193TUBE-TO-TUBESHEETTESTS
WhentheapplicableCodeSectionrequirestheuseof
thisparagraphfortube-to-tubesheetdemonstration
mockupqualification,QW-193.1throughQW-193.1.3
shallapply.
QW-193.1ProcedureQualificationSpecimens.Ten
mockupweldsarerequiredforqualifyingeachtube-to-
tubesheetweldingprocedure.Themockupassembly
shallessentiallyduplicatethetube-to-tubesheetweld
jointdesigntobeusedinproduction,withinthelimits
oftheessentialvariablesofQW-288. Themockuptest
assemblyshallbepreparedwiththetubesheetelement
havingathicknessnotlessthanthelesserofthethickness
oftheproductiontubesheetor2in.(50mm).Fortube-to-
tubesheetweldstocladtubesheets,thecladdingor
overlaymayberepresentedbyabasematerialwitha
chemicalcompositionthatisessentiallyequivalentto
thecladdingcomposition.Allweldsinthemockup
assemblyshallbesubjectedtothefollowingtestsand
shallmeettheapplicableacceptancecriteria.
QW-193.1.1VisualExamination. Theaccessible
surfacesoftheweldsshallbeexaminedvisuallywith
nomagnificationrequired.Theweldsshallshowcomplete
fusion,befreefromvisualcracksorporosityindications,
andhavenoevidenceofburningthroughthetubewall.
?23? QW-193.1.2LiquidPenetrant. Theliquidpenetrant
examinationshallmeettherequirementsofSectionV,
Article6.Theweldsurfacesshallmeettherequirements
ofQW-195.2. Liquidpenetrantexaminersshallmeetthe
requirementsinQW-195.3.
QW-193.1.3Macro-Examination. Themockupwelds
shallbesectionedthroughthecenterofthetubefor
macro-examination.Thefourexposedsurfacesshallbe
smoothedandetchedwithasuitableetchant(see
QW-470) togiveacleardefinitionoftheweldand
heat-affectedzone.Usingamagnificationof10Xto
20X,theexposedcrosssectionsoftheweldshallconfirm
(a)minimumleakpathdimensionrequiredbythe
design
(b)nocracking
(c)completefusionofthewelddepositintothetube-
sheetandtubewallface
QW-193.2PerformanceQualificationSpecimens.A
minimumoffivemockuptube-to-tubesheetweldsare
requiredtoqualifyeachwelderorweldingoperator.
Thesamerulesasthoseapplicableforprocedurequali-
fication(seeQW-193.1) shallbefollowed,withthe
followingadditionalrequirementsandexceptions:
(a)TheessentialvariablesinQW-387shallapply.
(b)Essentialperformancequalificationvariablesap-
plicableforeachweldingprocesslistedinQW-350or
QW-360shallalsobeobservedinadditiontothevariables
ofTableQW-388.
(c)Postweldheattreatmentmaybeomitted.
Onlyonemockupweldisrequiredtorenewawelder’s
orweldingoperator’squalificationwhenthatqualification
hasexpiredorhasbeenrevokedpertherequirementsof
QW-322.
QW-194VISUALEXAMINATION—
PERFORMANCE
Performancetestcouponsshallshownocracksand
completejointpenetrationwithcompletefusionof
weldmetalandbasemetal.
QW-195LIQUIDPENETRANTEXAMINATION
QW-195.1 ?©W?Theliquidpenetrantexaminationin
QW-214forcorrosion-resistantweldmetaloverlay
shallmeettherequirementsofSectionV,Article6.
Theliquidpenetrantexaminersshallmeettherequire-
mentsinQW-195.3. Theacceptancestandardsof
QW-195.2shallbemet.
QW-195.2LiquidPenetrantAcceptanceCriteria.
QW-195.2.1Terminology.
relevantindications:indicationswithmajordimensions
greaterthan
1

16
in.(1.5mm)
linearindications:anindicationhavingalengthgreater
thanthreetimesthewidth.
roundedindications:anindicationofcircularorelliptical
shapewiththelengthequaltoorlessthanthreetimesthe
width.
QW-195.2.2AcceptanceStandards. Procedureand
performancetestsexaminedbyliquidpenetranttechni-
quesshallbejudgedunacceptablewhentheexamination
exhibitsanyindicationinexcessofthelimitsspecifiedin
thefollowing:
(a)relevantlinearindications
(b)relevantroundedindicationsgreaterthan
3

16
in.(5mm)
(c)fourormorerelevantroundedindicationsinaline
separatedby
1

16
in.(1.5mm)orless(edge-to-edge)
ASMEBPVC.IX-2023
25

QW-195.3?©W? PersonnelCertification.Theorganization
shallcertifythatpersonnelperformingliquidpenetrant
examinationsmeetthefollowingminimumrequirements:
(a)Thepersonnelshallhavevision,withcorrectionif
necessary,toenablethereadingofaJaegerTypeNo.2
StandardChartatadistanceofnotlessthan12in.
(300mm).Theyshallalsobecapableofdistinguishing
anddifferentiatingcontrastbetweencolorsused.
Theserequirementsshallbecheckedannually.
(b)Thepersonnelshallbecompetentinthetechniques
oftheliquidpenetrantexaminationmethodforwhichthey
arecertified.Thisincludesmakingtheexaminationand
interpretingandevaluatingtheresults.Wheretheexam-
inationmethodconsistsofmorethanoneoperation,the
examinermaybecertifiedasbeingqualifiedforonlyone
operationorformultipleoperations.
QW-196RESISTANCEWELDTESTING
QW-196.1Macro-Examination.
QW-196.1.1 Weldsshallbecross-sectioned,polished,
andetchedtorevealtheweldmetal.Thesectionshallbe
examinedat10Xmagnification.Seamweldingspecimens
shallbepreparedasshowninFigureQW-462.7.3. The
sectionedweldmentshallbefreeofcracks,incomplete
penetration,expulsions,andinclusions.Porosityshall
notexceedonevoidinthetransversecrosssectionor
threevoidsinthelongitudinalcrosssectionofaspecimen.
Themaximumdimensionofanyvoidshallnotexceed10%
ofthethicknessoftheweldbead.
QW-196.1.2 Forspotandseamwelds,theminimum
diameterorwidthoftheweldnuggetshallbeas
followsinrelationtothickness,T,ofthethinnermember.
MaterialThickness,T,in.(mm) WeldNuggetWidth
<0.010(0.25) 6T
≥0.010(0.25)and<0.020(0.50) 5T
≥0.020(0.50)and<0.040(1.00) 4T
≥0.040(1.00)and<0.069(1.75) 3T
≥0.069(1.75)and<0.100(2.54) 2.50T
≥0.100(2.54)and<0.118(3.00) 2.25T
≥0.118(3.00)and<0.157(4.00) 2T
≥0.157(4.00) 1.80T
Thewelddepth(extentoffusion)shallbeaminimumof
20%ofthethicknessofthethinnerply(ineachmember)
andamaximumof80%ofthetotalthicknessofallplies.
QW-196.1.3 Forprojectionwelds,thewidthofthe
nuggetshallbenotlessthan80%ofthewidthofthe
projection.
QW-196.2MechanicalTesting.
QW-196.2.1 Sheartestspecimensshallbepreparedas
shownonFigureQW-462.9. Forspotandprojectionwelds,
eachtestspecimenshallproduceastrengththat,when
calculatedaccordingtothefollowingequation,isno
lessthanthatspecifiedinTableQW/QB-422forthe
weakerofthetwobasemetalsjoined:=strength
loadtofailure
areaofthenugget
wheretheareaofthenugget=π×d
2
/4anddequalsthe
minimumdiameterofthespotorprojectionweldatthe
fayingsurface.Thediametershallbenolessthanthat
specifiedinthetableinQW-196.1.2forthethinnerof
thetwomembersjoined.
QW-196.2.2 Peeltestspecimensshallbepreparedas
showninFigureQW-462.8.1forspotandprojection
weldingandperFigureQW-462.8.2forseamwelding.
Thespecimensshallbepeeledorseparatedmechanically,
andfractureshalloccurinthebasemetalbytearingoutof
theweldinorderforthespecimentobeacceptable.
QW-197LASERBEAMWELDING(LBW)LAPJOINT
TESTS
QW-197.1ProcedureQualificationSpecimens.
QW-197.1.1RequiredTests. Sixtensionshearspeci-
mensandeightmacrospecimensarerequiredto
qualifyeachprocedure.Thequalificationtestcoupon
shallbepreparedinaccordancewithFigureQW-464.1.
Thetensionshearspecimensshallconformtothedimen-
sionsindicatedinthetableofFigureQW-464.1. Thelon-
gitudinalandtransversesectionsindicatedinFigure
QW-464.1shallbecross-sectionedascloselyaspossible
throughthecenterlineoftheweld.Aminimumof1in.(25
mm)shallbeprovidedforexaminationofeachlongitu-
dinalspecimen.Thetransversespecimensshallbeofsuffi-
cientlengthtoincludeweld,theheat-affectedzone,and
portionsoftheunaffectedbasematerial.Cross-sections
shallbesmoothedandetchedwithasuitableetchant
(seeQW-470), andexaminedataminimummagnification
of25X.Thedimensionsofthefusionzoneandpenetration
ofeachweldofthetransversespecimensshallbe
measuredtothenearesthundredthofaninchand
recorded.
QW-197.1.2AcceptanceCriteria—TensionShear
Tests.
Inordertopassthetensionsheartest(s),there-
quirementsofQW-153shallapply.
QW-197.1.3AcceptanceCriteria—Macro-Examina-
tion.
Inordertopassthemacro-examination,eachof
theeightspecimensshallmeetthefollowingcriteria:
(a)Theoutlineofthefusionzoneshallbegenerally
consistentinsizeandregularinshapeanduniformity
ofpenetration.
(b)Theexaminationoftheweldareashallrevealsound
weldmetal,completefusionalongthebondline,and
completefreedomfromcracksintheweldmetaland
heat-affectedzone.
ASMEBPVC.IX-2023
26

QW-197.2PerformanceQualificationSpecimens.
QW-197.2.1RequiredTests. Apeeltestspecimenat
least6in.(150mm)longshallbepreparedasshown
inFigureQW-464.2illustration(a)andmacrospecimens
asshowninFigureQW-464.2illustration(b).Thepeeltest
specimensshallbepeeledaparttodestructionandthe
fusionzoneandpenetrationmeasuredtothenearest
hundredthofaninch.Theendofeachstripofthe
macrocouponshallbepolishedandetchedtoclearly
revealtheweldmetal.Thewidthanddepthofpenetration
ofeachweldshallbemeasuredtothenearesthundredthof
aninch.Eachspecimenshallbeexaminedinaccordance
withQW-197.1.
QW-197.2.2AcceptanceCriteria—PeelTestand
Macro-Examination.
Inordertopassthepeeltestand
macro-examination,thedimensionsofthefusionzone
(averaged)andthepenetration(averaged)shallbe
withintherangeofdimensionsofthosespecifiedon
theWPSthatwasusedtomakethetestcoupon.
QW-199FLASHWELDING
QW-199.1ProcedureQualificationTestCouponsand
Testing.
QW-199.1.1TestCouponPreparation. Forcoupons
NPS1(DN25)andsmaller,fourtestweldsshallbe
made,andforpipesoverNPS1(DN25),threetest
couponsshallbemadeusingonesetofweldingparam-
eters(i.e.,thesameequipment,basemetals,jointprepara-
tion,andotheressentialvariablestobeutilizedfor
productionwelding.)Thesevariablesshallberecorded
onthequalificationrecord.
QW-199.1.2TensileTests. ForpipesNPS1(DN25)and
smaller,andnontubularcrosssections,twofull-section
tensilespecimensshallbepreparedinaccordancewith
FigureQW-462.1(e). ForpipesgreaterthanNPS1(DN
25),tworeducedsectiontensionspecimensshallbe
preparedinaccordancewithFigureQW-462.1(b)or
FigureQW-462.1(c)fromonecoupon.Fornontubular
crosssections,tworeducedsectiontensionspecimens
shallbepreparedinaccordancewithFigure
QW-462.1(a)orFigureQW-462.1(d)fromtwoofthe
coupons.Thespecimensshallbetestedinaccordance
withQW-150.
QW-199.1.3SectionandBendTesting. Theentire
circumferenceofeachremainingpipecouponshallbe
cutalongtheaxisofthepipeintoanevennumberof
stripsofalengthsufficienttoperformbendtests.The
maximumwidthofeachstripshallbe1
1

2
in.
(38mm)andtheminimumwidth= +w T D4for pipesNPS2(DN50)and smaller = +w T D8for pipes greater thanNPS2(DN50)
where
D=ODofthetube
T=nominalwallthickness
w=widthofthespecimen
Oneedgeofonestripfromeachcouponshallbe
polishedtoa600gritfinishwiththefinalgrindingparallel
tothelongaxisofthestrip.Thepolishedsurfaceshallbe
examinedat5Xmagnification.Noincompletefusionor
otheropenflawsonthepolishedsurfaceareacceptable.
Defectsoccurringinthebasemetalnotassociatedwiththe
weldmaybedisregarded.Fornontubularcrosssections,
fourside-bendspecimensshallbepreparedfromthetwo
remainingcouponsasspecifiedinFigureQW-462.2and
polishedforexamination.
Allflashshallberemovedfromthestripsandthewelds
shallbevisuallyexaminedperQW-194. Halfofthestrips
fromeachpipespecimenshallthenbepreparedasroot
bendspecimensandtheremainingstripsshallbe
preparedasfacebendspecimensinaccordancewith
QW-160. Thespecimensshallbetestedinaccordance
withQW-160, exceptforthefollowing:
(a)ForP-No.1,Groups2through4materials,the
minimumbendradius(dimensionBinFigure
QW-466.1) shallbethreetimesthethicknessofthe
specimen.
(b)InlieuofQW-163, thesumoflengthsofindividual
openflawsontheconvexsurfaceofallthebendtestspeci-
menstakenfromeachpipeindividuallyshallnotexceed
5%oftheoutsidecircumferenceofthattestpipe.
QW-199.2FlashWelding—PerformanceQualifica-
tionTestCouponsandTesting.Onetestcouponshall
bewelded,cutintostrips,visuallyexamined,andbend
testedinaccordancewithQW-199.1.3. Polishingand
examinationofacross-sectionisnotrequired.
ASMEBPVC.IX-2023
27

APPENDIXI
ROUNDEDINDICATIONCHARTS
IllustrationthatappearedinthisAppendixinthepreviouseditionandaddendahasbeendesignatedas
FigureQW-191.1.2.2(b)(4), whichfollowsQW-191.1.2.2(b)(3).
ASMEBPVC.IX-2023
28

ARTICLEII
WELDINGPROCEDUREQUALIFICATIONS
QW-200GENERAL
QW-200.1?©W? AWeldingProcedureSpecificationis
definedasfollows:
(a)WeldingProcedureSpecification(WPS). AWPSisa
writtenqualifiedweldingprocedurepreparedtoprovide
directionformakingproductionweldstoCoderequire-
ments.TheWPSorotherdocumentsmaybeusedto
providedirectiontothewelderorweldingoperatorto
assurecompliancewiththeCoderequirements.
(b)ContentsoftheWPS. ThecompletedWPSshall
describealltheessential,nonessential,and,when
required,supplementaryessentialvariablesforeach
weldingprocessusedintheWPS.Thesevariablesare
listedforeachprocessinQW-250andaredefinedin
ArticleIV,WeldingData.
TheWPSshallreferencethesupportingProcedure
QualificationRecord(s)(PQR)describedinQW-200.2.
TheWPSmayincludeanyotherinformationthat
mightbehelpfulinmakingaweldingjoint.
(c)ChangestotheWPS.Changesmaybemadeinthe
nonessentialvariablesofaWPStosuitproductionre-
quirementswithoutrequalificationprovidedsuch
changesaredocumentedwithrespecttotheessential,
nonessential,and,whenrequired,supplementaryessen-
tialvariablesforeachprocess.Thismaybebyamendment
totheWPSorbyuseofanewWPS.
Changesinessentialorsupplementaryessentialvari-
ablesrequirerequalificationoftheWPS(i.e.,neworaddi-
tionalPQRstosupportthechangeinessentialor
supplementaryessentialvariables).
(d)FormatoftheWPS.Theinformationrequiredtobe
intheWPSmaybeinanyformat,writtenortabular,tofit
theneedsofeachorganization,aslongaseveryessential,
nonessential,and,whenrequired,supplementaryessen-
tialvariablesoutlinedinQW-250isincludedorrefer-
enced.
FormQW-482(seeNonmandatoryAppendixB)has
beenprovidedasaguidefortheWPS.ThisFormincludes
therequireddatafortheSMAW,SAW,GMAW,andGTAW
processes.Itisonlyaguideanddoesnotlistallrequired
dataforotherprocesses.Italsolistssomevariablesthatdo
notapplytoallprocesses(e.g.,listingshieldinggaswhich
isnotrequiredforSAW).Theguidedoesnoteasilylend
itselftomultipleprocessprocedurespecification(e.g.,
GTAWrootwithSMAWfill).
QW-200.2
?23?AProcedureQualificationRecordisdefined
asfollows:
(a)ProcedureQualificationRecord(PQR). ThePQRisa
recordofvariablesrecordedduringtheweldingofthetest
coupons.Italsocontainsthetestresultsofthetested
specimens.Recordedvariablesnormallyfallwithina
smallrangeoftheactualvariablesthatwillbeusedin
productionwelding.
(b)ContentsofthePQR.ThecompletedPQRshalldocu-
mentallessentialand,whenrequired,supplementary
essentialvariablesofQW-250foreachweldingprocess
usedduringtheweldingofthetestcoupon.Nonessential
orothervariablesusedduringtheweldingofthetest
couponmayberecordedattheorganization'soption.
Allvariables,ifrecorded,shallbetheactualvariables
(includingranges)usedduringtheweldingofthetest
coupon.Ifvariablesarenotmonitoredduringwelding,
theyshallnotberecorded.Itisnotintendedthatthe
fullrangeortheextremeofagivenrangeofvariables
tobeusedinproductionbeusedduringqualification
unlessrequiredduetoaspecificessentialor,when
required,supplementaryessentialvariable.
ThePQRshallbecertifiedaccuratebytheorganization.
Theorganizationmaynotsubcontractthecertification
function.Thiscertificationisintendedtobetheorgani-
zation'sverificationthattheinformationinthePQRis
atruerecordofthevariablesthatwereusedduring
theweldingofthetestcouponandthattheresulting
tensile,bend,ormacro(asrequired)testresultsarein
compliancewithSectionIX.
Oneormorecombinationsofweldingprocesses,filler
metal,andothervariablesmaybeusedwhenweldinga
testcoupon.Theapproximatethicknessofweldmetal
deposited,excludingweldreinforcement,shallbe
recordedforeachsetofessentialand,whenrequired,
supplementaryessentialvariables.Weldmetaldeposited
usingeachsetofvariablesshallbeincludedinthetension,
bend,toughness,andothermechanicaltestspecimens
thatarerequired.
(c)ChangestothePQR.ChangestothePQRarenot
permittedexceptasdescribedbelow.Editorialcorrec-
tionsoraddendatothePQRarepermitted.An
exampleofaneditorialcorrectionisanincorrectP-
Number,F-Number,orA-Numberthatwasassignedto
aparticularbasemetalorfillermetal.Anexampleof
anaddendumwouldbeachangeresultingfroma
ASMEBPVC.IX-2023
29

Codechange.Forexample,SectionIXmayassignanewF-
Numbertoafillermetaloradoptanewfillermetalunder
anestablishedF-Number.Thismaypermit,dependingon
theparticularconstructionCoderequirements,anorga-
nizationtouseotherfillermetalsthatfallwithinthatparti-
cularF-Numberwhere,priortotheCoderevision,the
organizationwaslimitedtotheparticularelectrodeclas-
sificationthatwasusedduringqualification.Additional
informationcanbeincorporatedintoaPQRatalater
dateprovidedtheinformationissubstantiatedas
havingbeenpartoftheoriginalqualificationcondition
bylabrecordorsimilardata.
AllchangestoaPQRrequirerecertification(including
date)bytheorganization.
(d)FormatofthePQR. FormQW-483(see
NonmandatoryAppendixB)hasbeenprovidedasa
guideforthePQR.Theinformationrequiredtobein
thePQRmaybeinanyformattofittheneedsofeach
organization.Everyessentialand,whenrequired,supple-
mentaryessentialvariabledescribedinQW-250shallbe
includedinthePQR.Also,thetypeoftests,numberoftests,
andtestresultsshallbelistedinthePQR.
FormQW-483doesnoteasilylenditselftocovercombi-
nationsofweldingprocessesormorethanoneF-Number
fillermetalinonetestcoupon.Additionalsketchesor
informationmaybeattachedorreferencedtorecord
therequiredvariables.
(e)AvailabilityofthePQR.ThePQRshallbeavailablefor
reviewbutneednotbemadeavailabletothewelderor
weldingoperator.
(f)MultipleWPSsWithOnePQRorMultiplePQRsWith
OneWPS.SeveralWPSsmaybepreparedfromthedataon
asinglePQR(e.g.,a1GplatePQRmaysupportWPSsforthe
F,V,H,andOpositionsonplateorpipewithinallother
essentialvariables).AsingleWPSmaycoverseveralsets
ofessentialvariablerangesaslongasasupportingPQR
existsforeachessentialand,whenrequired,supplemen-
taryessentialvariable[e.g.,asingleWPSmaycovera
thicknessrangefrom
1

16
in.(1.5mm)through1
1

4
in.
(32mm)ifPQRsexistforboththe
1

16
in.(1.5mm)
through
3

16
in.(5mm)and
3

16
in.(5mm)through
1
1

4
in.(32mm)thicknessranges].
QW-200.3Toreducethenumberofweldingprocedure
qualificationsrequired,P-Numbersareassignedtobase
metalsdependentoncharacteristicssuchascomposition,
weldability,andmechanicalproperties,wherethiscan
logicallybedone;andforsteelandsteelalloys(see
TableQW/QB-422) GroupNumbersareassignedaddi-
tionallytoP-Numbers.TheseGroupNumbersclassify
themetalswithinP-Numbersforthepurposeofprocedure
qualificationwheretoughnessrequirementsarespecified.
Theassignmentsdonotimplythatbasemetalsmaybe
indiscriminatelysubstitutedforabasemetalwhich
wasusedinthequalificationtestwithoutconsideration
ofthecompatibilityfromthestandpointofmetallurgical
properties,postweldheattreatment,design,mechanical
properties,andservicerequirements.Wheretoughnessis
aconsideration,itispresupposedthatthebasemetals
meetthespecificrequirements.
Ingeneral,toughnessrequirementsaremandatoryfor
allP-No.11quenchedandtemperedmetals,forlow
temperatureapplicationsofothermetalsasappliedto
SectionVIII,andforvariousclassesofconstruction
requiredbySectionIII.Acceptancecriteriaforthetough-
nesstestsareasestablishedintheotherSectionsofthe
Code.
QW-200.4CombinationofWeldingProcedures.
(a)MorethanoneWPShavingdifferentessential,
supplementaryessential,ornonessentialvariablesmay
beusedinasingleproductionjoint.EachWPSmay
includeoneoracombinationofprocesses,filler
metals,orothervariables.Theseprovisionsalsoapply
tospecialprocessWPSsasdefinedinQW-251.4.
WheremorethanoneWPSspecifyingdifferent
processes,fillermetals,orotheressentialorsupplemen-
taryessentialvariablesisused,QW-451orTableQW-453,
asapplicable,shallbeusedtodeterminetherangeofbase
metalthicknessandmaximumweldmetalthicknessqual-
ifiedforeachprocess,fillermetal,orsetofvariables,and
thoselimitsshallbeobserved.
WhenfollowingaWPSthathasmorethanonewelding
process,fillermetal,orsetofvariables,eachprocess,filler
metal,orsetofvariablesmaybeusedindividuallyorin
differentcombinations,provided
(1)theessential,nonessential,andrequiredsupple-
mentaryessentialvariablesassociatedwiththeprocess,
fillermetal,orsetofvariablesareapplied
(2)thebasemetalanddepositedweldmetalthick-
nesslimitsofQW-451orTableQW-453, asapplicable,for
eachprocess,fillermetal,orsetofvariablesareapplied
(b)Asanalternativeto(a),aproductionweldmaybe
madeusingaWPSthatissupportedbymorethanonePQR,
providedthefollowingconditionsaremet:
(1)AllPQRswerequalified
(-a)withGTAW,SMAW,GMAW,FCAW,PAW,
LBW,LLBW,orSAW,orcombinationsoftheseprocesses
(-b)ontestcouponsatleast
1

2
in.(13mm)thick
(2)Note(1)ofTablesQW-451.1andQW-451.2shall
applytotheWPS.TheWPSmaybeusedtodeposit
(-a)rootlayerswiththeprocessorcombinations
ofprocessesononePQRforweldmetaldepositsupto2t
(-b)filllayerswiththeprocess(es)ontheother
PQR(s)onbasemetaluptothemaximumthicknessqual-
ifiedbytheotherPQR(s)
QW-201ORGANIZATIONALRESPONSIBILITY
Theorganizationshallcertifythattheyhavequalified
eachWeldingProcedureSpecification,performedthe
procedurequalificationtest,anddocumenteditwith
thenecessaryProcedureQualificationRecord(PQR).
ASMEBPVC.IX-2023
30

QW-202TYPEOFTESTSREQUIRED
QW-202.1MechanicalTests.Thetypeandnumberof
testspecimensthatshallbetestedtoqualifyagrooveweld
procedurearegiveninQW-451, andshallberemovedina
mannersimilartothatshowninFiguresQW-463.1(a)
throughQW-463.1(f). Ifanytestspecimenrequiredby
QW-451failstomeettheapplicableacceptancecriteria,
thetestcouponshallbeconsideredasfailed.
Whenitcanbedeterminedthatthecauseoffailureisnot
relatedtoweldingparameters,anothertestcouponmay
beweldedusingidenticalweldingparameters.
Alternatively,ifadequatematerialoftheoriginaltest
couponexists,additionaltestspecimensmaybe
removedascloseaspracticabletotheoriginalspecimen
locationtoreplacethefailedtestspecimens.
Whenithasbeendeterminedthatthetestfailurewas
causedbyanessentialorsupplementaryessentialvari-
able,anewtestcouponmaybeweldedwithappropriate
changestothevariable(s)thatwasdeterminedtocause
thetestfailure.Ifthenewtestpasses,theessentialand
supplementaryessentialvariablesshallbedocumented
onthePQR.
Whenitisdeterminedthatthetestfailurewascausedby
oneormoreweldingrelatedfactorsotherthanessentialor
supplementaryessentialvariables,anewtestcouponmay
beweldedwiththeappropriatechangestothewelding
relatedfactorsthatweredeterminedtocausethetest
failure.Ifthenewtestpasses,theweldingrelated
factorsthatweredeterminedtocausetheprevious
testfailureshallbeaddressedbytheorganizationto
ensurethattherequiredpropertiesareachievedinthe
productionweldment.
Wherequalificationisforfilletweldsonly,therequire-
mentsaregiveninQW-202.2(c); andwherequalification
isforstudweldsonly,therequirementsaregivenin
QW-202.5.
QW-202.2GrooveandFilletWelds.
(a)QualificationforGrooveFullPenetrationWelds.
Groove-weldtestcouponsshallqualifythethickness
rangesofbothbasemetalanddepositedweldmetalto
beusedinproduction.Limitsofqualificationshallbe
inaccordancewithQW-451. Thethickness,t,ofdeposited
weldmetalinQW-451shallbeexclusiveofweldreinforce-
ment.WPSqualificationforgrooveweldsshallbemadeon
grooveweldsusingtensionandguided-bendspecimens.
Toughnesstestsshallbemadewhenrequiredbyother
Section(s)oftheCode.TheWPSshallbequalifiedfor
usewithgrooveweldswithintherangeofessentialvari-
ableslisted.
Whendissimilarthicknesstestcouponsarewelded,the
“RangeofThicknessTofBaseMetal,Qualified”inQW-451
shallbedeterminedindividuallyforeachbasemetalinthe
testcoupon.Whenthethickertestcouponistaperedto
provideathicknesstransitionattheweld,thequalified
rangeshallbebasedonthebasemetalthicknessadjacent
tothetoeoftheweldatthethinnestendofthetransition.
Thetestspecimensfortensileandbendtestsmaybe
machinedtothethicknessrequiredforthethinner
basemetalpriortotesting.
(b)QualificationforPartialPenetrationGrooveWelds.
Partialpenetrationgrooveweldsshallbequalifiedin
accordancewiththerequirementsofQW-451forboth
basemetalanddepositedweldmetalthickness,except
thereneedbenoupperlimitonthebasemetalthickness
providedqualificationwasmadeonbasemetalhavinga
thicknessof1
1

2
in.(38mm)ormore.Whendissimilar
thicknesstestcouponsarewelded,theprovisionsof
(a)fordissimilarthicknesstestcouponsshallbemet.
(c)QualificationforFilletWelds. WPSqualificationfor
filletweldsshallbemadeongroove-weldtestcoupons
usingtestspecimensspecifiedin(a)or(b).Thesequali-
ficationsmaybeusedforweldingallthicknessesofbase
metalforallsizesoffilletwelds,andalldiametersofpipe
ortubeinaccordancewithTableQW-451.4. Non-pres-
sure-retainingfilletwelds,asdefinedinotherSections
oftheCode,mayasanalternatebequalifiedwithfillet
weldqualificationtests.Testsshallbemadeinaccordance
withQW-180. Limitsofqualificationshallbeinaccor-
dancewithTableQW-451.3.
QW-202.3WeldRepairandBuildup.WPSqualifiedon
grooveweldsshallbeapplicableforweldrepairstogroove
andfilletweldsandforweldbuildupunderthefollowing
provisions:
(a)Thereisnolimitationonthethicknessofbasemetal
ordepositedweldmetalforfilletwelds.
(b)Forotherthanfilletwelds,thethicknessrangefor
basemetalanddepositedweldmetalforeachwelding
processshallbeinaccordancewithQW-451, except
thereneedbenoupperlimitonthebasemetalthickness
providedqualificationwasmadeonbasemetalhavinga
thicknessof1
1

2
in.(38mm)ormore.
QW-202.4
?23?DissimilarBaseMetalThicknesses.WPS
qualifiedongrooveweldsshallbeapplicableforproduc-
tionweldsbetweendissimilarbasemetalthicknesses
provided:
(a)thethicknessofthethinnermembershallbewithin
therangepermittedbyQW-451
(b)thethicknessofthethickermembershallbeas
follows:
(1)ForP-No.8,P-No.41,P-No.42,P-No.43,P-No.44,
P-No.45,P-No.46,P-No.49,P-No.51,P-No.52,P-No.53,P-
No.61,andP-No.62metal,thereshallbenolimitationon
themaximumthicknessofthethickerproductionmember
providedqualificationwasmadeonbasemetalhavinga
thicknessof
1

4
in.(6mm)orgreater.
(2)Forallothermetal,thethicknessofthethicker
membershallbewithintherangepermittedbyQW-451,
exceptthereneedbenolimitationonthemaximumthick-
nessofthethickerproductionmemberprovided
ASMEBPVC.IX-2023
31

qualificationwasmadeonbasemetalhavingathicknessof
1
1

2
in.(38mm)ormore.
Morethanoneprocedurequalificationmayberequired
toqualifyforsomedissimilarthicknesscombinations.
QW-202.5StudWelding.Procedurequalificationtests
forstudweldsshallbemadeinaccordancewithQW-192.
Theprocedurequalificationtestsshallqualifythewelding
proceduresforusewithintherangeoftheessentialvari-
ablesofTableQW-261. Exceptforstudsusedforextended
heatingsurfacesandstudsweldedtoP-No.1metals,five
additionalweldsshallbemadeandsubjectedtoamacro-
testinaccordancewithQW-192.1.4
QW-202.6Tube-to-TubesheetQualification.When
theapplicableCodeSectionrequirestheuseof
QW-193fortube-to-tubesheetdemonstrationmockup
qualificationtests,QW-193.1shallapply.Ifspecificquali-
ficationtestrequirementsarenotspecifiedbytheappli-
cableCodeSection,tube-to-tubesheetweldsshallbe
qualifiedwithoneofthefollowingmethods:
(a)grooveweldspertherequirementsofQW-202.2
andQW-202.4
(b)ademonstrationmockuppertherequirementsof
QW-193.1
(c)filletweldspertherequirementsofQW-202.2(c)
(fornon-pressure-retainingtube-to-tubesheetwelds
only)
QW-203LIMITSOFQUALIFIEDPOSITIONSFOR
PROCEDURES
Unlessspecificallyrequiredotherwisebythewelding
variables(seeQW-250), aqualificationinanyposition
qualifiestheprocedureforallpositions.Thewelding
processandelectrodesmustbesuitableforuseintheposi-
tionspermittedbytheWPS.Awelderorweldingoperator
makingandpassingtheWPSqualificationtestisqualified
forthepositiontested.seeQW-301.2.
QW-210PREPARATIONOFTESTCOUPON
QW-211BASEMETAL
Thebasemetalsmayconsistofeitherplate,pipe,or
otherproductforms.Qualificationinplatealsoqualifies
forpipeweldingandviceversa.Thedimensionsofthetest
couponshallbesufficienttoprovidetherequiredtest
specimens.
QW-211.1Aweldmetaloverlaydepositedonthebase
metalfollowingaqualifiedWPSmaybeconsideredasthe
sameP-Numberasanybasemetalhavinganominally
matchingchemicalanalysis.
QW-212TYPEANDDIMENSIONSOFGROOVE
WELDS
ExceptasotherwiseprovidedinQW-250, thetypeand
dimensionsoftheweldinggroovearenotessentialvari-
ables.
QW-214CORROSION-RESISTANTWELDMETAL
OVERLAY
QW-214.1Thesizeoftestcoupons,limitsofqualifica-
tion,requiredexaminationsandtests,andtestspecimens
shallbeasspecifiedinQW-214.2andTableQW-453.
QW-214.2
?23?Thequalificationtestcouponforprocedure
qualificationshallconsistofbasemetalnotlessthan6in.
(150mm)×6in.(150mm).Theweldoverlaycladding
shallbeaminimumof1
1

2
in.(38mm)widebyapproxi-
mately6in.(150mm)long.Forqualificationonpipe,the
pipelengthshallbeaminimumof6in.(150mm)andthe
diametershallbetheminimumneededtoallowthe
requirednumberoftestspecimens.Theweldoverlay
shallbecontinuousaroundthecircumferenceofthe
testcoupon.
(a)Thecorrosion-resistantsurfaceshallbeexamined
bytheliquidpenetrantmethodandshallmeettherequire-
mentsspecifiedinQW-195.
(b)Followingtheliquidpenetrantexamination,four
guidedside-bendtestsshallbemadefromthetest
couponinaccordancewithQW-161. Thetestspecimens
shallbecutsothatthereareeithertwospecimensparallel
andtwospecimensperpendiculartothedirectionofthe
welding,orfourspecimensperpendiculartothedirection
ofthewelding.Forcouponsthatarelessthan
3

8
in.(10
mm)thick,thewidthoftheside-bendspecimensmaybe
reducedtothethicknessofthetestcoupon.Theside-bend
specimensshallberemovedfromlocationsspecifiedin
FigureQW-462.5(c)orFigureQW-462.5(d).
(c)Whenachemicalcompositionisspecifiedinthe
WPS,chemicalanalysisspecimensshallberemovedat
locationsspecifiedinFigureQW-462.5(b)orFigure
QW-462.5(e). Thechemicalanalysisshallbeperformed
inaccordancewithFigureQW-462.5(a)andshallbe
withintherangespecifiedintheWPS.Thischemical
analysisisnotrequiredwhenachemicalcomposition
isnotspecifiedontheWPS.
QW-214.3Essentialvariablesshallbeasspecifiedin
QW-250fortheapplicableweldingprocess.
QW-215ELECTRONBEAMWELDING,LASERBEAM
WELDING,ANDLOW-POWERDENSITY
LASERBEAMWELDING
QW-215.1Forelectronbeamweldingandlaserbeam
welding(excludinglow-powerdensitylaserbeam
welding),theWPSqualificationtestcouponshallbe
preparedwiththejointgeometryduplicatingthatto
beusedinproduction.Iftheproductionweldisto
ASMEBPVC.IX-2023
32

includealap-over(completingtheweldbyreweldingover
thestartingareaoftheweld,asforagirthweld),suchlap-
overshallbeincludedintheWPSqualificationtest
coupon.
QW-215.2Themechanicaltestingrequirementsof
QW-451shallapply.
QW-215.3Essentialvariablesshallbeasspecifiedin
TablesQW-260, QW-264, andQW-264.2fortheapplicable
weldingprocess.
QW-215.4AlaserbeamWPSorelectronbeamWPS
previouslyqualifiedinaccordancewithQW-215.1
throughQW-215.3forgrooveweldsmaybefurtherqual-
ifiedfordepositingpartial-penetrationgroovewelds
providedthefollowingconditionsaremet:
(a)Thepartial-penetrationgrooveweldsaredeposited
inP-No.8,P-No.41,P-No.42,P-No.43,P-No.44,P-No.45,
P-No.46,P-No.49,P-No.51,P-No.52,P-No.53,P-No.61,or
P-No.62metalsoranycombinationofthesemetals.
(b)Aworkmanshiptestcouponispreparedfollowing
thepreviouslyqualifiedWPS,withthefollowingexcep-
tions:
(1)Theworkmanshiptestcouponshallconsistof
productionpartsjoinedbyapartial-penetrationgroove
weldwithajointgeometryanddimensionsfalling
withinthespecifiedtolerancesoftheproductionweld.
(2)Forelectronbeamwelding,thefollowingvari-
ablesmayberevisedfromthosegiveninthepreviously
qualifiedWPS:QW-402.6, QW-404.1, QW-404.8(change
inamountonly),QW-409.6, QW-409.7, andQW-410.7.
(3)Forlaserbeamwelding,thefollowingvariables
mayberevisedfromthosegiveninthepreviouslyqual-
ifiedWPS:QW-402.26, QW-403.3, QW-404.8(changein
amountonly),QW-408.12, QW-409.21, QW-410.7,
QW-410.14, QW-410.37, QW-410.66, andQW-410.80.
(c)Aminimumoffourcrosssectionsofthepartial-
penetrationgrooveweldineachworkmanshiptest
couponshallbesectioned,polished,andetchedwitha
suitableetchanttorevealtheweldandheat-affected
zone(seeQW-470). Iftheworkmanshiptestcoupon
includesalap-over,thenoneofthecrosssectionsshall
betakenfromthatlocation.
(d)Theworkmanshiptestcouponshallbeacceptable
whentheweldandheat-affectedzonesofeachcross
sectionexhibitcompletefusionandarefreeofcracks
whenvisuallyexaminedat10Xmagnification.Anyindica-
tions
1

32
in.(0.8mm)inlengthattherootoftheweldmay
bedisregarded.Thedepthofpenetrationofeachcross
sectionshallbemeasuredtowithin0.01in.(0.3mm)
andshallmeetthespecifiedproductionrequirements.
(e)AworkmanshipPQRshallbepreparedtodocument
theworkmanshiptestandshallincludetheinformation
listedin(1)through(4).
(1)theessentialvariablesobservedwhenpreparing
theworkmanshiptestcoupon
(2)thegeometricconfigurationanddimensionsof
theproductionpartsattheweldjoint
(3)aphotomicrographofatleastonecrosssection
(4)theobserveddepthofweld-jointpenetration,
measuredtowithin0.01in.(0.3mm),forallfour
crosssections
(f)AworkmanshipWPSshallbepreparedbasedonthe
workmanshipPQRandshallincludetheinformationlisted
in(1)through(4).
(1)referencetothepreviouslyqualifiedgroove-
weldPQRandtheworkmanshipPQR
(2)theessentialvariablerangesbasedonthe
observedandrecordedinformationontheworkmanship
PQR
(3)thegeometricconfigurationanddimensionsof
theproductionpartstobewelded
(4)theminimumrequireddepthofweldpenetration
(g)WhenmorethanoneworkmanshipPQRhasbeen
developedtoaddressdifferentconfigurationsofthe
productionparts,aseparateworkmanshipWPSshall
bepreparedforeachoftheproductionconfigurations
tobewelded.
QW-216HARD-FACINGWELDMETALOVERLAY
Hard-facingweldmetaloverlayreferstowelddeposits
made,usingavarietyofprocesses,todetertheeffectsof
wearand/orabrasion.Therequirementsspecifiedin
QW-216.1throughQW-216.5applyregardlessofwhich
hard-facingprocessisused.
QW-216.1Thesizeoftestcoupons,limitsofqualifica-
tion,requiredexaminationsandtests,andtestspecimens
shallbeasspecifiedinTableQW-453.
QW-216.2
?23?Thetestbasemetalcouponforprocedure
qualificationshallhaveminimumdimensionsof6in.(150
mm)wide×approximately6in.(150mm)longwitha
hard-facedlayeraminimumof1
1

2
in.(38mm)wide×
6in.(150mm)long.Theminimumhard-facedthickness
shallbeasspecifiedintheWPS.Alternatively,thequali-
ficationmaybeperformedonatestbasemetalcoupon
thatrepresentsthesizeoftheproductionpart.Forquali-
ficationonpipe,thepipelengthshallbe6in.(150mm)
minimumandthediametershallbetheminimumneeded
toallowtherequirednumberoftestspecimens.Theweld
overlayshallbecontinuousaroundthecircumferenceof
thetestcoupon.
(a)Thehard-facingsurfaceshallbeexaminedbythe
liquidpenetrantmethodandshallmeettheacceptance
standardsinQW-195.2orasspecifiedintheWPS.
Liquidpenetrantexaminersshallmeettherequirements
inQW-195.3. Surfaceconditioningpriortoliquidpene-
trantexaminationispermitted.
(b)Aftersurfaceconditioningtotheminimumthick-
nessspecifiedintheWPS,aminimumofthreehardness
readingsshallbemadeoneachofthespecimensfromthe
locationsshowninFigureQW-462.5(b)orFigure
ASMEBPVC.IX-2023
33

QW-462.5(e). Allreadingsshallmeettherequirementsof
theWPS.
(c)Thebasemetalshallbesectionedtransverselyto
thedirectionofthehard-facingoverlay.Thetwofaces
ofthehardfacingexposedbysectioningshallbepolished
andetchedwithasuitableetchantandshallbevisually
examinedwith5Xmagnificationforcracksinthebase
metalortheheat-affectedzone,lackoffusion,orother
lineardefects.Theoverlayandbasemetalshallmeet
therequirementsspecifiedintheWPS.Allexposed
facesshallbeexamined.SeeFigureQW-462.5(b)for
pipeandFigureQW-462.5(e)forplate.
(d)Whenachemicalcompositionisspecifiedinthe
WPS,chemicalanalysisspecimensshallberemovedat
locationsspecifiedinFigureQW-462.5(b)orFigure
QW-462.5(e). Thechemicalanalysisshallbeperformed
inaccordancewithFigureQW-462.5(a)andshallbe
withintherangespecifiedintheWPS.Thischemical
analysisisnotrequiredwhenachemicalcomposition
isnotspecifiedontheWPS.
QW-216.3Weldingvariablesshallbeasspecifiedin
QW-250fortheapplicableprocess.
QW-216.4WhereSprayFusemethodsofhardfacing
(e.g.,OxyfuelandPlasmaArc)aretobeused,thecoupons
forthesemethodsshallbepreparedandweldingvariables
appliedinaccordancewithQW-216.1andQW-216.3,
respectively.
QW-216.5Ifawelddepositistobeusedunderahard-
facingweldmetaloverlay,abasemetalwithanassignedP-
Numberandachemicalanalysisnominallymatchingthe
welddepositchemicalanalysismaybesubstitutedto
qualifythePQR.
QW-217?23? JOININGOFCLADMATERIALS
TheWPSforgrooveweldsincladmetalshallbequal-
ifiedbymethodA[see(a)]whenanypartofthecladding
thickness,aspermittedbythereferencingCodeSection,is
includedinthedesigncalculations.EithermethodA[see
(a)]ormethodB[see(b)]maybeusedwhenthecladding
thicknessisnotincludedinthedesigncalculations.
(a)MethodA.
(1)Theessentialandnonessentialvariablesof
QW-250shallapplyforeachweldingprocessusedin
production.
(2)Thecladmaterial(basemetalwithcladding)
procedurequalificationtestcouponshallbemade
usingthesameP-Numberorunassignedbasemetal,clad-
ding(majoralloyingelementsnominalchemicalcomposi-
tion),weldingprocess(es),andfillermetalcombinations
tobespecifiedintheWPS.
(3)Thequalifiedthicknessrangeforthebasemetals
(P-Numberorunassignedbasemetalandcladding)and
fillermetal(s)usedtoweldeachmaterialshallbebasedon
theactualtestcouponthicknessforeachmaterial(base
metalandcladding)asappliedtoQW-451, exceptthatthe
minimumthicknessoffillermetaljoiningthecladding
portionoftheweldmentshallbebasedonachemical
analysisperformedinaccordancewithQW-216.2(d).
(4)Thegrooveweldtensionandside-bendtest
specimens(onlytypebendspecimenspermittedfor
thismethod)andnumberrequiredbyQW-451shall
containasmuchofthefullthicknessbasemetalandclad-
dingthicknessinthetestedportionofthespecimensas
possible.
(5)Theacceptancecriteriafortensiletestsshallbe
basedonthetensilestrengthoftheP-Numberorunas-
signedbasemetalappliedtothefullthicknessofthe
testcoupontotherequirementsofQW-151.1(a),
QW-151.1(b), orQW-151.1(c), unlessspecifiedotherwise
bytheapplicableConstructionCode.
(6)Thebendtestrequirementsandacceptance
criteriaforside-bendspecimensshallbeaccordingto
QW-162andQW-163. Fortheside-bendspecimens,
thebondlinebetweentheoriginalcladdingandbase
metalmaybedisregardedwhenevaluatingthetested
bendspecimensifthecladdingwasappliedbya
processotherthanfusionwelding.
(b)MethodB.
(1)Theessentialandnonessentialvariablesof
QW-250shallapplyforeachweldingprocessusedin
productionforjoiningthebasemetalportionoftheweld-
ment.ThePQRsthatsupportthisportionoftheWPSneed
notbebasedontestcouponsmadewithcladmetal.Forthe
corrosion-resistantoverlayportionoftheweld,theessen-
tialvariablesofQW-251.4shallapplyandthetestcoupon
andtestingshallbeinaccordancewithTableQW-453. The
WPSshalllimitthedepthofthegroove,whichwillreceive
thecorrosion-resistantoverlayinordertoensuredevel-
opmentofthefullstrengthoftheunderlyingweldinthe
basemetal.
(2)Forqualificationofsingle-sidedjointsinwhich
claddingislocatedattherootarea,separatequalification
forbasemetalandcladdingaccordingtoQW-202.2maybe
performed.Alternatively,qualificationusingcladmaterial
maybemadeaccordingtorulesinmethodAwiththe
followingexceptions:
(-a)Thequalifiedthicknessrangeforthebase
metals(P-Numberorunassignedbasemetalandcladding)
andfillermetalsusedtoweldeachmaterialshallbebased
ontheactualtestcouponthicknessforeachmaterial(base
metalandcladding)asappliedtoQW-451.
(-b)Thetensilespecimensshallnotcontainthe
cladportionofthetestcoupon.
(-c)Theacceptancecriteriaforthetensiletest
shallbebasedonthetensilestrengthoftheP-Number
ortheunassignedbasemetal.
(-d)Thechemicalanalysis,ifrequired,shallbe
performedinaccordancewithQW-216.2(d).
(-e)ThevariablesofQW-250applytothebase
metal,cladding,andfillermetal.
ASMEBPVC.IX-2023
34

QW-218APPLIEDLININGS
QW-218.1WPSsforattachingappliedliningsshallbe
qualifiedinaccordancewithQW-202.2(a), QW-202.2(b),
orQW-202.2(c).
QW-218.2
?23? Asanalternativetotheabove,eachprocess
tobeusedinattachingappliedliningstobasemetalshall
bequalifiedonatestcouponweldedintotheformand
arrangementtobeusedinconstructionusingmaterials
thatarewithintherangeofchemicalcompositionofthe
metaltobeusedforthebaseplate,thelining,andtheweld
metal.TheweldingvariablesofQW-250shallapplyexcept
forthoseregardingbasemetalorweldmetalthickness.
Qualificationinanypositionqualifiestheprocedureforall
positions.Onecrosssectionforeachpositiontestedshall
besectioned,polished,andetchedtoclearlyshowthe
demarcationbetweenthebasemetalandtheweld
metal.Inordertobeacceptable,eachspecimenshall
exhibitcompletefusionoftheweldmetalwiththe
basemetalandfreedomfromcracks.
QW-218.3Whenchemicalanalysisofthewelddeposit
foranyelementsisrequired,achemicalanalysisshallbe
performedperQW-216.2(d)forthoseelements.
QW-219FLASHWELDING
Flashweldingshallbelimitedtoautomaticelectrical
resistanceflashwelding.Procedurequalificationtests
shallbeconductedinaccordancewithQW-199.1.
QW-219.1TolerancesonVariables.Flashwelding
variablesthatmayrequireadjustmentduringproduction
weldingaresynergisticallyrelated.Accordingly,even
thoughthevariablesshowninTableQW-265provide
tolerancesonmanyweldingvariables,theWPSshall
specifythesamespecificvariablesshownonthePQR
withtoleranceshownfornomorethanonevariable
(e.g.,ifitisdesiredtoprovideatoleranceontheupset
current,allothervariablesshownontheWPSmustbe
thesameastheyareshownonthePQR).Ifitis
desiredtoprovidetolerancesintheWPSfortwovariables,
thefirstvariablewithatoleranceshallbesetatthe
midpointofitstoleranceandtwotestcouponsshallbe
weldedwitheachoftheupperandlowerextremesof
thetoleranceforthesecondvariable(i.e.,fourcoupons
mustbewelded).Thesecouponsshallbeexamined
andtestedinaccordancewithQW-199.1.3.
Ifitisdesiredtoprovidetoleranceforathirdvariable,
thefirsttwovariablesshallbesetatthemidpointoftheir
tolerance,andtwotestcouponsshallbeweldedwitheach
oftheupperandlowerextremesofthenewtolerancesfor
thethirdvariable(i.e.,fourcouponsmustbewelded).
Thesecouponsshallbeexaminedandtestedinaccordance
withQW-199.1.3.
NomorethanthreeessentialvariablesonaWPSmay
showtolerances.
Productiontestsconductedinaccordancewiththere-
quirementsofotherSectionsmaybeusedtosatisfythis
requirement.
QW-220HYBRIDWELDINGPROCEDURE
VARIABLES
RequirementsofQW-221throughQW-223shallbe
observedforallhybridweldingprocedurequalifications.
QW-221ESSENTIALVARIABLESFORHYBRID
WELDING
Thefollowingessentialvariablesareinadditiontothe
weldingvariablesforeachweldingprocessusedduring
hybridweldingprovidedinQW-250:
(a)anadditionordeletionofweldingprocessesusedin
ahybridweldingprocessfromthoseusedduringquali-
fication.
(b)achangeintheprocesssequenceusedinahybrid
weldingprocessfromthatusedduringqualification.
(c)achangeintheprocessseparationusedinahybrid
weldingprocessgreaterthan10%fromthatusedduring
qualification(e.g.,measuredattheweldsurface,measured
betweentheweldingtorchandlaser,etc.)
(d)achangeinanyangle,betweeneachindividual
weldingprocessusedinahybridweldingprocessora
changeinanyanglebetweenthehybridwelding
processandthematerialtobewelded,ofgreaterthan
10degfromthatusedduringqualification.
(e)achangeintheheightbetweentheindividual
weldingprocessesusedinahybridweldingprocess
andthematerialsurfaceorachangeintheheight
betweenthehybridweldingprocessandthematerial
surfacegreaterthan10%fromthatusedduringqualifica-
tion.
QW-222WELDINGPROCESSRESTRICTIONS
Thehybridweldingprocessshallbelimitedtomachine
orautomaticwelding.
QW-223TESTCOUPONPREPARATIONAND
TESTING
Thehybridweldingprocedurequalificationtestcoupon
shallbepreparedinaccordancewiththerulesinQW-210
andtestedinaccordancewiththerulesinQW-202.
QW-250WELDINGVARIABLES
QW-251GENERAL
QW-251.1TypesofVariablesforWeldingProcedure
Specifications(WPS).Thesevariables(listedforeach
weldingprocessinTablesQW-252throughQW-267)
aresubdividedintoessentialvariables,supplementary
essentialvariables,andnonessentialvariables(see
ASMEBPVC.IX-2023
35

QW-401). The“BriefofVariables”listedinthetablesare
forreferenceonly.SeethecompletevariableinWelding
DataofArticleIV.
QW-251.2EssentialVariables.Essentialvariablesare
thoseinwhichachange,asdescribedinthespecificvari-
ables,isconsideredtoaffectthemechanicalpropertiesof
theweldmentandthereforeshallrequirerequalification
oftheWPS.
Supplementaryessentialvariablesarerequiredfor
metalsforwhichthereferencingcode,standard,orspec-
ificationrequirestoughnesstestsandareinadditiontothe
essentialvariablesforeachweldingprocess.
Whentoughnessrequirementsareinvokedbyarefer-
encingcode,standard,orspecification,thesupplementary
essentialvariablesareapplicabletobothgrooveandfillet
welds.
QW-251.3NonessentialVariables.Nonessentialvari-
ablesarethoseinwhichachange,asdescribedinthespe-
cificvariables,maybemadeintheWPSwithout
requalification.
QW-251.4
?23?SpecialProcesses.
(a)Thespecialprocessessentialvariablesforcorro-
sion-resistantandhard-facingweldmetaloverlaysare
asindicatedinthefollowingtablesforthespecified
process.Onlythevariablesspecifiedforspecialprocesses
shallapply.Achangeinthecorrosion-resistantorhard-
facingweldingprocessshallrequirerequalification.
(b)WPSqualifiedforcorrosion-resistantandhard-
facingoverlaywelding,inaccordancewithotherSections
whensuchqualificationruleswereincludedinthose
Sections,maybeusedwiththesameprovisionsas
providedinQG-101.
ASMEBPVC.IX-2023
36

TableQW-252
WeldingVariablesProcedureSpecifications(WPS)—OxyfuelGasWelding(OFW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.2±Backing X
.3ϕBackingcomp. X
.10ϕRootspacing X
QW-403
BaseMetals
.1ϕP-Number X
.2 Max.TQualified X
QW-404
FillerMetals
.3ϕSize X
.4ϕF-Number X
.5ϕA-Number X
.12ϕClassification X
QW-405
Positions
.1+Position X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.7ϕTypefuelgas X
QW-410
Technique
.1ϕStringorweave X
.2ϕFlamecharacteristics X
.4ϕ
Technique X
.5ϕMethodcleaning X
.26±Peening X
.64…Useofthermalprocesses X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
37

TableQW-252.1
WeldingVariablesProcedureSpecifications(WPS)—OxyfuelGasWelding(OFW)
Paragraph
SpecialProcessEssentialVariables
Hard-FacingSprayFuse
(SeeQW-216)
Hard-FacingOverlay
(SeeQW-216)
Corrosion-ResistantOverlay
(SeeQW-214)
QW-402
Joint
.16<Finishedt
.17 >Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified ϕTQualified
QW-404
FillerMetals
.12ϕClassification ϕClassification
.42 >5%Particlesizerange
.46 ϕPowderfeedrate
QW-405
Positions
.4+Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat
>Interpass
Dec.>100°F(55°C)preheat
>Interpass
.5 ϕPreheatmaint.
QW-407
PWHT
.6ϕPWHT ϕPWHT
.7 ϕPWHTafterfusing
QW-408
Gas
.7ϕTypeoffuelgas
.14ϕOxyfuelgaspressure
.16 ϕ>5%Gasfeedrate
.19 ϕPlasmaorfeedgascomp.
QW-410
Technique
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
.39ϕTorchtype,tipsizer
.44 ϕ>15%Torchtoworkpiece
.45 ϕSurfaceprep.
.46 ϕSpraytorch
.47 ϕ>10%Fusingtemp.ormethod
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
38

TableQW-253
?23?WeldingVariablesProcedureSpecifications(WPS)—ShieldedMetal-ArcWelding(SMAW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.4−Backing X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.5ϕGroupNumber X
.6 TLimitstoughness X
.8ϕTQualified X
.9 tPass>
1

2
in.(13mm) X
.11ϕP-No.qualified X
QW-404
FillerMetals
.4ϕF-Number X
.5ϕA-Number X
.6ϕDiameter X
.12ϕClassification X
.30ϕt X
.33ϕClassification X
QW-405
Positions
.1+Position X
.3ϕ↑↓Verticalwelding X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
.2ϕPreheatmaint. X
.3 Increase>100°F(55°C)(IP) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.4ϕCurrentorpolarity X
.8ϕI&Erange X
.30ϕCurrentorpolarity X
QW-410
Technique
.1ϕStringorweave X
.5ϕMethodcleaning X
.6ϕMethodbackgouge X
.9ϕMultipletosinglepass/side X
.25ϕManualorautomatic X
.26±Peening X
.64 Useofthermalprocesses X
.87ϕMultipletosinglepass/side X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
39

TableQW-253.1
WeldingVariablesProcedureSpecifications(WPS)—ShieldedMetal-ArcWelding(SMAW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariables
forHFOandCRO
Hard-FacingOverlay(HFO)
(SeeQW-216)
Corrosion-ResistantOverlay
(CRO)
(SeeQW-214)
QW-402
Joints
.16<Finishedt <Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified
QW-404
FillerMetals
.12ϕClassification
.37 ϕA-Number
.38 ϕDiameter(1stlayer)
QW-405
Positions
.4+Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat>
Interpass
Dec.>100°F(55°C)preheat>
Interpass
QW-407
PWHT
.6ϕPWHT
.9 ϕPWHT
QW-409
Electrical
Characteristics
.4ϕCurrentorpolarity ϕCurrentorpolarity
.8 ϕI&Erange
.22 Inc.>10%1stlayer Inc.>10%1stlayer
QW-410
Technique
.1 ϕStringorweave
.5 ϕMethodofcleaning
.26 ±Peening
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
40

TableQW-254
?23?WeldingVariablesProcedureSpecifications(WPS)—Submerged-ArcWelding(SAW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.4−Backing X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.5ϕGroupNumber X
.6 TLimits X
.8ϕTQualified X
.9 tPass
1

2
in.(13mm) X
.11ϕP-No.qualified X
QW-404
FillerMetals
.4ϕF-Number X
.5ϕA-Number X
.6ϕDiameter X
.9ϕFlux-wireclass. X
.10ϕAlloyflux X
.24±orϕSupplemental X
.27ϕAlloyelements X
.29ϕFluxdesignation X
.30ϕt X
.33ϕClassification X
.34ϕFluxtype X
.35ϕFlux-wireclass. X X
.36 Recrushedslag X
QW-405
Positions
.1+Position X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
.2ϕPreheatmaint. X
.3 Increase>100°F(55°C)(IP) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.4ϕCurrentorpolarity X
.8ϕI&Erange X
.30ϕCurrentorpolarity X
QW-410
Technique
.1ϕStringorweave X
.5ϕMethodcleaning X
.6ϕMethodbackgouge X
.7ϕOscillation X
.8ϕTube-workdistance X
.9ϕMultitosinglepassperside X
.10ϕSingletomultielectrodes X X
.15ϕElectrodespacing X
.25ϕManualorautomatic X
.26±Peening X
.64 Useofthermalprocesses X
.87ϕMultipletosinglepass/side X
ASMEBPVC.IX-2023
41

TableQW-254
WeldingVariablesProcedureSpecifications(WPS)—Submerged-ArcWelding(SAW)(Cont’d)
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
42

TableQW-254.1
WeldingVariablesProcedureSpecifications(WPS)—Submerged-ArcWelding(SAW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariablesforHFO
andCRO
Hard-FacingOverlay(HFO)
(SeeQW-216)
Corrosion-ResistantOverlay
(CRO)(SeeQW-214)
QW-402
Joints
.16<Finishedt <Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified
QW-404
FillerMetals
.6 ϕNominalsizeofelectrode
.12ϕClassification
.24±orϕ>10%insupplemental
fillermetal
±orϕ>10%insupplemental
fillermetal
.27ϕAlloyelements
.37 ϕA-Number
.39ϕNominalfluxcomp. ϕNominalfluxcomp.
.57>Stripthicknessorwidth >Stripthicknessorwidth
QW-405
Positions
.4+Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat>
Interpass
Dec.>100°F(55°C)preheat>
Interpass
QW-407
PWHT
.6ϕPWHT
.9 ϕPWHT
QW-409
Electrical
Characteristics
.4ϕCurrentorpolarity ϕCurrentorpolarity
.8 ϕI&Erange
.26 1stlayer—Heatinput>10% 1stlayer—Heatinput>10%
QW-410
Technique
.1 ϕStringorweave
.5 ϕMethodofcleaning
.7 ϕOscillation
.8 ϕTubetoworkdistance
.15 ϕElectrodespacing
.25 ϕManualorautomatic
.26 ±Peening
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
.40 −Supplementaldevice
.50ϕNo.ofelectrodes ϕNo.ofelectrodes
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
43

TableQW-255
?23? WeldingVariablesProcedureSpecifications(WPS)—GasMetal-ArcWelding(GMAWandFCAW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.4−Backing X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.5ϕGroupNumber X
.6 TLimits X
.8ϕTQualified X
.9 tPass>
1

2
in.(13mm) X
.11ϕP-No.qualified X
QW-404
FillerMetals
.4ϕF-Number X
.5ϕA-Number X
.6ϕDiameter X
.12ϕClassification X
.23ϕFillermetalproductform X
.24±orϕSupplemental X
.27ϕAlloyelements X
.30ϕt X
.33ϕClassification X
QW-405
Positions
.1+Position X
.3ϕ↑↓Verticalwelding X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
.2ϕPreheatmaint. X
.3 Increase>100°F(55°C)(IP) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-408
Gas
.1±Trailorϕcomp. X
.2ϕSingle,mixture,or% X
.3ϕFlowrate X
.5±orϕBackingflow X
.9−Backingorϕcomp. X
.10−Trailorϕcomp. X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.4ϕCurrentorpolarity X
.8ϕI&Erange X
.30ϕCurrentorpolarity X
.32ϕTransfermode X
ASMEBPVC.IX-2023
44

TableQW-255
WeldingVariablesProcedureSpecifications(WPS)—GasMetal-ArcWelding(GMAWandFCAW)(Cont’d)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-410
Technique
.1ϕStringorweave X
.3ϕOrifice,cup,ornozzlesize X
.5ϕMethodcleaning X
.6ϕMethodbackgouge X
.7ϕOscillation X
.8ϕTube-workdistance X
.9ϕMultipletosinglepassperside X
.10ϕSingletomultipleelectrodes X X
.15ϕElectrodespacing X
.25ϕManualorautomatic X
.26±Peening X
.64 Useofthermalprocesses X
.87ϕMultipletosinglepass/side X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
45

TableQW-255.1
WeldingVariablesProcedureSpecifications(WPS)—GasMetal-ArcWelding(GMAWandFCAW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariablesforHFO
andCRO
Hard-FacingOverlay(HFO)
(SeeQW-216)
Corrosion-ResistantOverlay
(CRO)(SeeQW-214)
QW-402
Joints
.16<Finishedt <Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified
QW-404
FillerMetals
.6 ϕNominalsizeofelectrode
.12ϕClassification
.23ϕFillermetalproductform ϕFillermetalproductform
.24±orϕ>10%insupplemental
fillermetal
±orϕ>10%insupplemental
fillermetal
.27ϕAlloyelements
.37 ϕA-Number
QW-405
Positions
.4+Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat>
Interpass
Dec.>100°F(55°C)preheat>
Interpass
QW-407
PWHT
.6ϕPWHT
.9 ϕPWHT
QW-408
Gas
.2ϕSingle,mixture,or% ϕSingle,mixture,or%
.3 ϕFlowrate
QW-409
Electrical
Characteristics
.4ϕCurrentorpolarity ϕCurrentorpolarity
.8 ϕI&Erange
.26 1stlayer—Heatinput>10% 1stlayer—Heatinput>10%
QW-410
Technique
.1 ϕStringorweave
.3 ϕOrifice,cup,ornozzlesize
.5 ϕMethodofcleaning
.7 ϕOscillation
.8 ϕTubetoworkdistance
.25 ϕManualorautomatic
.26 ±Peening
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
.50ϕNo.ofelectrodes ϕNo.ofelectrodes
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
46

TableQW-256
?23?WeldingVariablesProcedureSpecifications(WPS)—GasTungsten-ArcWelding(GTAW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.5+Backing X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.5ϕGroupNumber X
.6 TLimits X
.8 TQualified X
.11ϕP-No.qualified X
QW-404
FillerMetals
.3ϕSize X
.4ϕF-Number X
.5ϕA-Number X
.12ϕClassification X
.14±Filler X
.22±Consum.insert X
.23ϕFillermetalproductform X
.30ϕt X
.33ϕClassification X
.50±Flux X
QW-405
Positions
.1+Position X
.3ϕ↑↓Verticalwelding X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
.3 Increase>100°F(55°C)(IP) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-408
Gas
.1±Trailorϕcomp. X
.2ϕSingle,mixture,or% X
.3ϕFlowrate X
.5±orϕBackingflow X
.9−Backingorϕcomp. X
.10−Trailorϕcomp. X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.3±PulsingI X
.4ϕCurrentorpolarity X
.8ϕI&Erange X
.12ϕTungstenelectrode X
.30ϕCurrentorpolarity X
ASMEBPVC.IX-2023
47

TableQW-256
WeldingVariablesProcedureSpecifications(WPS)—GasTungsten-ArcWelding(GTAW)(Cont’d)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-410
Technique
.1ϕStringorweave X
.3ϕOrifice,cup,ornozzlesize X
.5ϕMethodcleaning X
.6ϕMethodbackgouge X
.7ϕOscillation X
.9ϕMultitosinglepassperside X
.10ϕSingletomultielectrodes X X
.11ϕClosedtooutchamber X
.15ϕElectrodespacing X
.25ϕManualorautomatic X
.26±Peening X
.64 Useofthermalprocesses X
.87ϕMultipletosinglepass/side X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
48

TableQW-256.1
WeldingVariablesProcedureSpecifications(WPS)—GasTungsten-ArcWelding(GTAW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariables
forHFOandCRO
Hard-FacingOverlay(HFO)
(SeeQW-216)
Corrosion-ResistantOverlay
(CRO)(SeeQW-214)
QW-402
Joints
.16<Finishedt <Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified
QW-404
FillerMetals
.3 ϕWiresize
.12ϕClassification
.14±Fillermetal ±Fillermetal
.23ϕFillermetalproductform ϕFillermetalproductform
.37 ϕA-Number
QW-405
Positions
.4+Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat>
Interpass
Dec.>100°F(55°C)preheat>
Interpass
QW-407
PWHT
.6ϕPWHT
.9 ϕPWHT
QW-408
Gas
.2ϕSingle,mixture,or% ϕSingle,mixture,or%
.3 ϕFlowrate
QW-409
Electrical
Characteristics
.4ϕCurrentorpolarity ϕCurrentorpolarity
.8 ϕI&Erange
.12 ϕTungstenelectrode
.26 1stlayer—Heatinput>10% 1stlayer—Heatinput>10%
QW-410
Technique
.1 ϕStringorweave
.3 ϕOrifice,cup,ornozzlesize
.5 ϕMethodofcleaning
.7 ϕOscillation
.15 ϕElectrodespacing
.25 ϕManualorautomatic
.26 ±Peening
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
.50ϕNo.ofelectrodes ϕNo.ofelectrodes
.52 ϕFillermetaldelivery
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
49

TableQW-257
?23? WeldingVariablesProcedureSpecifications(WPS)—Plasma-ArcWelding(PAW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.5+Backing X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.5ϕGroupNumber X
.6 TLimits X
.8ϕTQualified X
.12ϕP-Numberormelt-in X
QW-404
FillerMetals
.3ϕSize X
.4ϕF-Number X
.5ϕA-Number X
.12ϕClassification X
.14±Fillermetal X
.22±Consum.insert X
.23ϕFillermetalproductform X
.27ϕAlloyelements X
.30ϕt X
.33ϕClassification X
QW-405
Positions
.1+Position X
.3ϕ↑↓Verticalwelding X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
.3 Increase>100°F(55°C)(IP) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-408
Gas
.1±Trailorϕcomp. X
.4ϕComposition X
.5±orϕbackingflow X
.9−Backingorϕcomp. X
.10−Trailorϕcomp. X
.21ϕFlowrate X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.4ϕCurrentorpolarity X
.8ϕI&Erange X
.12ϕTungstenelectrode X
.30ϕCurrentorpolarity X
QW-410
Technique
.1ϕStringorweave X
.3ϕOrifice,cup,ornozzlesize X
.5ϕMethodcleaning X
.6ϕMethodbackgouge X
.7ϕOscillation X
.9ϕMultipletosinglepassperside X
.10ϕSingletomultipleelectrodes X X
.11ϕClosedtooutchamber X
.15ϕElectrodespacing X
.26±Peening X
.64 Useofthermalprocesses X
.87ϕMultipletosinglepass/side X
ASMEBPVC.IX-2023
50

TableQW-257
WeldingVariablesProcedureSpecifications(WPS)—Plasma-ArcWelding(PAW)(Cont’d)
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
51

TableQW-257.1
WeldingVariablesProcedureSpecifications(WPS)—Plasma-ArcWelding(PAW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariables
forHFO,CRO,andHFSF
Hard-FacingOverlay
(HFO)(SeeQW-216)
Corrosion-Resistant
Overlay(CRO)
(SeeQW-214)
Hard-FacingSprayFuse
(HFSF)(SeeQW-216)
QW-402
Joints
.16<Finishedt <Finishedt
.17 >Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified
QW-404
FillerMetals
.12ϕClassification ϕClassification
.14±Fillermetal ±Fillermetal
.23ϕFillermetalproduct
form
ϕFillermetalproduct
form
.37 ϕA-Number
.41ϕ>10%Powderfeedrateϕ>10%Powderfeed
rate
.42 ϕ>5%Particlesize
.43ϕParticlesize ϕParticlesize
.44ϕPowdertype ϕPowdertype
.46 ϕPowderfeedrate
QW-405
Positions
.4+Position +Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)
preheat>Interpass
Dec.>100°F(55°C)
preheat>Interpass
Dec.>100°F(55°C)
preheat>Interpass
.5 ϕPreheatmaintenance
QW-407
PWHT
.6ϕPWHT ϕPWHT
.7 ϕPWHTafterfusing
.9 ϕPWHT
QW-408
Gas
.1 ±Trailorπcomp.
.16ϕ>5%Arcormetalfeed
gas
ϕ>5%Arcormetalfeed
gas
ϕ>5%Arcormetalfeed
gas
.17ϕTypeormixture ϕTypeormixture
.18ϕ>10%Mix.comp. ϕ>10%Mix.comp.
.19 ϕPlasmaorfeedgas
comp.
.20 ϕPlasmagasflow-rate
range
QW-409
Electrical
Characteristics
.4ϕCurrentorpolarity ϕCurrentorpolarity
.8 ϕI&Erange
.12 ϕTypeorsizeof
electrode
.23 ϕ>10%I&E
.24ϕ>10%Fillerwirewatt.ϕ>10%Fillerwirewatt.
.25ϕ>10%I&E ϕ>10%I&E
ASMEBPVC.IX-2023
52

TableQW-257.1
WeldingVariablesProcedureSpecifications(WPS)—Plasma-ArcWelding(PAW)(Cont’d)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariables
forHFO,CRO,andHFSF
Hard-FacingOverlay
(HFO)(SeeQW-216)
Corrosion-Resistant
Overlay(CRO)
(SeeQW-214)
Hard-FacingSprayFuse
(HFSF)(SeeQW-216)
QW-410
Technique
.1 ϕStringorweave(HFO
andCROonly)
.3 ϕOrifice,cup,ornozzle
size
.5 ϕMethodofcleaning
.7 ϕOscillation
.25 ϕManualorautomatic
.26 ±Peening
.38ϕMultipletosinglelayerϕMultipletosinglelayerϕMultipletosinglelayer
.41ϕ>15%Travelspeed ϕ>15%Travelspeed
.43 ϕ>10%Travelspeed
range
.44 ϕ>15%Torchto
workplace
.45 ϕSurfacepreparation
.46 ϕSpraytorch
.47 ϕ>10%Fusingtemp.or
method
.48ϕTransfermode ϕTransfermode ϕTransfermode
.49ϕTorchorificediameterϕTorchorificediameter
.52ϕFillermetaldel. ϕFillermetaldel.
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
53

TableQW-258
?23? WeldingVariablesProcedureSpecifications(WPS)—ElectroslagWelding(ESW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.1ϕP-Number X
.4ϕGroupNumber X
.9 tPass>
1

2
in.(13mm) X
QW-404
FillerMetals
.4ϕF-Number X
.5ϕA-Number X
.6ϕDiameter X
.12ϕClassification X
.17ϕFluxtypeorcomp. X
.18ϕWiretoplate X
.19ϕConsum.guide X
.33ϕClassification X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-409
ElectricalCharacteristics
.5ϕ±15%I&Erange X
QW-410
Technique
.5ϕMethodcleaning X
.10ϕSingletomultipleelectrodes X
.15ϕElectrodespacing X
.26±Peening X
.64 Useofthermalprocesses X
.86ϕOscillation X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
54

TableQW-258.1
WeldingVariablesProcedureSpecifications(WPS)—ElectroslagWelding(ESW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariablesforHFO
andCRO
Hard-FacingOverlay(HFO)
(SeeQW-216)
Corrosion-ResistantOverlay
(CRO)(SeeQW-214)
QW-402
Joints
.16<Finishedt <Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
.23ϕTQualified ϕTQualified
QW-404
FillerMetals
.6 ϕNominalsizeofelectrode
.12ϕClassification
.24±orϕ>10%insupplemental
fillermetal
±orϕ>10%insupplemental
fillermetal
.37 ϕA-Number
.39ϕNominalfluxcomp. ϕNominalfluxcomp.
.57>Stripthicknessorwidth >Stripthicknessorwidth
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat>
Interpass
Dec.>100°F(55°C)preheat>
Interpass
QW-407
PWHT
.6ϕPWHT
.9 ϕPWHT
QW-409
Electrical
Characteristics
.4ϕCurrentorpolarity ϕCurrentorpolarity
.8 ϕI&Erange
.26 1stlayer—Heatinput>10% 1stlayer—Heatinput>10%
QW-410
Technique
.5 ϕMethodofcleaning
.7 ϕOscillation(CROonly)
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
.40−Supplementaldevice −Supplementaldevice
.50ϕNo.ofelectrodes ϕNo.ofelectrodes
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
55

TableQW-259
?23? WeldingVariablesProcedureSpecifications(WPS)—ElectrogasWelding(EGW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.1ϕP-Number X
.5ϕGroupNumber X
.6 TLimits X
.8ϕTQualified X
.9 tPass>
1

2
in.(13mm) X
QW-404
FillerMetals
.4ϕF-Number X
.5ϕA-Number X
.6ϕDiameter X
.12ϕClassification X
.23ϕFillermetalproductform X
.33ϕClassification X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-408
Gas
.2ϕSingle,mixture,or% X
.3ϕFlowrate X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.4ϕCurrentorpolarity X
.8ϕI&Erange X
.30ϕCurrentorpolarity X
QW-410
Technique
.5ϕMethodcleaning X
.7ϕOscillation X
.8ϕTube-workdistance X
.9ϕMultipletosinglepassperside X
.10ϕSingletomultipleelectrodes X
.15ϕElectrodespacing X
.26±Peening X
.64 Useofthermalprocesses X
.87ϕMultipletosinglepass/side X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
GENEALNOTE:Automatedverticalgasmetal-arcweldingforverticalpositiononly.
ASMEBPVC.IX-2023
56

TableQW-260
?23?WeldingVariablesProcedureSpecifications(WPS)—ElectronBeamWelding(EBW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.2−Backing X
.6>Fit-upgap X
QW-403
BaseMetals
.1ϕP-Number X
.3ϕPenetration X
.15ϕP-Number X
QW-404
FillerMetals
.1ϕCrosssectionorspeed X
.2<torϕcomp. X
.8±orϕChem.comp. X
.14±Filler X
.20ϕMethodofaddition X
.21ϕAnalysis X
.33ϕClassification X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.6ϕEnvironment X
QW-409
ElectricalCharacteristics
.6ϕI,E,speed,distance,osc. X
.7ϕPulsingfrequency X
QW-410
Technique
.5ϕMethodcleaning X
.14ϕAngleofbeamaxis X
.17ϕTypeequip. X
.18>Pressureofvacuum X
.19ϕFilamenttype,size,etc. X
.20+Washpass X
.21 1vs.2sidewelding X
.64 Useofthermalprocesses X
.86ϕOscillation X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
57

TableQW-261
WeldingVariablesProcedureSpecifications(WPS)—StudWelding
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.8ϕStudshapesize X
.9−Fluxorferrule X
QW-403
BaseMetal
.17ϕBasemetalorstudmetal
P-No.
X
QW-405
Positions
.1+Position X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.2ϕSingle,mixture,or% X
QW-409
ElectricalCharacteristics
.4ϕCurrentorpolarity X
.9ϕArctiming X
.10ϕAmperage X
.11ϕPowersource X
QW-410
Technique
.22ϕGunmodelorlift X
.64 Useofthermalprocesses X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
58

TableQW-262
WeldingVariablesProcedureSpecifications(WPS)—InertiaandContinuousDriveFrictionWelding
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.12ϕ±10deg X
ϕCrosssection>10% X
ϕO.D.>±10% X
ϕSolid-to-tube X
QW-403
BaseMetals
.19ϕBasemetal X
QW-406
Preheat
.1ϕDecrease>100°F(55°C) X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.6ϕEnvironment X
QW-410
Technique
.27ϕSpp.>±10% X
.28ϕLoad>±10% X
.29ϕEnergy>±10% X
.30ϕUpset>±10% X
.64 Useofthermalprocesses X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
59

TableQW-263
WeldingVariablesProcedureSpecifications(WPS)—ResistanceWelding
Paragraph BriefofVariables Essential Nonessential
QW-402
Joints
.13ϕSpot,projection,seam X
.14ϕOverlap,spacing X
.15ϕProjection,shape,size X
QW-403
BaseMetals
.1ϕP-No. X
.21±Coating,plating X
.22±T X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.23−Gases X
QW-409
Electrical
.13ϕRWMAclass X
.14±ϕSlope X
.15ϕPressure,current,time X
.17ϕPowersupply X
.18 Tipcleaning X
QW-410
Technique
.31ϕCleaningmethod X
.32ϕPressure,time X
.33ϕEquipment X
.34ϕCoolingmedium X
.35ϕThroat X
.64 Useofthermalprocesses X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
60

TableQW-264
?23?WeldingVariablesProcedureSpecifications(WPS)—LaserBeamWelding(LBW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.2±Backing X
.6>Fit-upgap X
.18ϕLapjointconfig. X
.25ϕLaptogroove X
.26<Bevelangle>5deg X
QW-403
BaseMetals
.3ϕPenetration X
.35ϕBasemetal X
QW-404
FillerMetals
.1ϕCrosssectionorspeed X
.2<torϕcomp. X
.4ϕF-No. X
.5ϕA-No. X
.8±orϕchem.comp. X
.14±Fillermetal X
.20ϕMethodofaddition X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.2ϕSingle,mixture,or% X
.6ϕEnvironment X
.11±Gases X
.12 Decrease>10%flowrate X
QW-409
ElectricalCharacteristics
.19ϕPulse X
.20ϕMode,energy X
.21 Decreaseinpower X
QW-410
Technique
.5ϕMethodcleaning X
.14ϕAngleofbeamaxis X
.20+Washpass X
.21 1vs.2sidewelding X
.37ϕSingletomultiplepass X
.64 Useofthermalprocesses X
.66ϕTravel,Beamfactors X
.67ϕOpticaltechnique X
.68ϕTypeofequipment X
.77ϕWavelength X
.80ϕSpotsize X
.86ϕOscillation X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
61

TableQW-264.1
WeldingVariablesProcedureSpecifications(WPS)—LaserBeamWelding(LBW)
SpecialProcessVariables
Paragraph
EssentialVariables
NonessentialVariablesforHFO
andCRO
Hard-FacingOverlay(HFO)
(SeeQW-216)
Corrosion-ResistantOverlay
(CRO)(SeeQW-214)
QW-402
Joints
.16<Finishedt <Finishedt
QW-403
BaseMetals
.20ϕP-Number ϕP-Number
QW-404
FillerMetals
.12ϕClassification ϕClassification
.27ϕAlloyelements ϕAlloyelements
.44ϕParticletype ϕParticletype
.47ϕFillerorpowdermetalsizeϕFillerorpowdermetalsize
.48ϕPowdermetaldensity ϕPowdermetaldensity
.49ϕFillermetalpowderfeedrateϕFillermetalpowderfeedrate
QW-405
Positions
.1+Position +Position
QW-406
Preheat
.4 Dec.>100°F(55°C)preheat>
Interpass
Dec.>100°F(55°C)preheat>
Interpass
QW-407
PWHT
.6ϕPWHT
.9 ϕPWHT
QW-408
Gas
.2ϕSingle,mixture,or% ϕSingle,mixture,or%
.6ϕEnvironment ϕEnvironment
.11±Gases ±Gases
.12 Decrease>10%flowrate Decrease>10%flowrate
QW-409
Electrical
Characteristics
.19ϕPulse ϕPulse
.20ϕMode,energy ϕMode,energy
.21 Decreaseinpower Decreaseinpower
QW-410
Technique
.5 ϕMethodofcleaning
.17ϕTypeormodelofequipmentϕTypeormodelofequipment
.38ϕMultipletosinglelayer ϕMultipletosinglelayer
.45ϕMethodofsurfaceprep. ϕMethodofsurfaceprep.
.52ϕFillermetaldelivery ϕFillermetaldelivery
.53ϕOverlap,spacing ϕOverlap,spacing
.77ϕWavelength ϕWavelength
.80ϕSpotsize ϕSpotsize
.86ϕOscillation ϕOscillation
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
62

TableQW-264.2
WeldingVariablesProcedureSpecifications(WPS)—Low-PowerDensityLaserBeamWelding(LLBW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.1ϕGroovedesign X
.5+Backing X
.10ϕRootspacing X
.11±Retainers X
QW-403
BaseMetals
.5ϕGroupnumber X
.6 TLimits X
.8 TQualified X
.11ϕP-No.qualified X
QW-404
FillerMetals
.3ϕSize X
.4ϕF-Number X
.5ϕA-Number X
.12ϕClassification X
.14±Filler X
.22±Consum.insert X
.23ϕFillermetalproductform X
.30ϕt X
.33ϕClassification X
.50±Flux X
QW-405
Positions
.1+Position X
.3ϕ↑↓Verticalwelding X
QW-406
Preheat
.1 Decrease>100°F(55°C) X
.3 Increase>100°F(55°C)(IP) X
QW-407
PWHT
.1ϕPWHT X
.2ϕPWHT(T&Trange) X
QW-408
Gas
.1±Trailorϕcomp. X
.2ϕSingle,mixture,or% X
.3ϕFlowrate X
.5±orϕBackingflow X
.9–Backingorϕcomp. X
.10ϕShieldingortrailing X
QW-409
ElectricalCharacteristics
.1>Heatinput X
.19ϕPulse X
.20ϕMode,energy X
.21 Decreaseinpower X
ASMEBPVC.IX-2023
63

TableQW-264.2
WeldingVariablesProcedureSpecifications(WPS)—Low-PowerDensityLaserBeamWelding(LLBW)(Cont’d)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-410
Technique
.3ϕOrifice,cup,ornozzlesize X
.5ϕMethodcleaning X
.6ϕMethodbackgouge X
.7ϕOscillation X
.9ϕMultitosinglepassperside X X
.11ϕClosedtooutchamber X
.26±Peening X
.64 Useofthermalprocesses X
.66ϕTravel,Beamfactors X
.67ϕOpticaltechnique X
.68ϕTypeofequipment X
.77ϕWavelength X
.80ϕSpotsize X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
64

TableQW-265
WeldingVariablesProcedureSpecifications(WPS)—FlashWelding
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.19ϕDiameterorthickness X
.20ϕJointconfiguration X
.21ϕMethodorequip.usedto
minimizeIDflash
X
.22ϕEndpreparationmethod X
QW-403
BaseMetals
.24ϕSpec.,type,orgrade X
QW-406
Preheat
.7ϕ>10%Amperageornumberof
preheatcycles,ormethod,or>
25°F(15°C)temperature
X
QW-407
PWHT
.8ϕPWHT,PWHTcycles,orseparate
PWHTtimeortemperature
X
QW-408
Gas
.22ϕShieldinggascomposition,
pressure,orpurgetime
X
QW-409
ElectricalCharacteristics
.27ϕ>10%Flashingtime X
.28ϕ>10%Upsetcurrenttime X
QW-410
Technique
.17ϕTypeormodelofequipment X
.54ϕ>10%Upsetlengthorforce X
.55ϕ>10%Distancebetween
clampingdiesorpreparation
ofclampingarea
X
.56ϕClampingforce X
.57ϕ10%Forwardorreversespeed X
.64 Useofthermalprocesses X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
65

TableQW-266
WeldingVariablesProcedureSpecifications(WPS)—DiffusionWelding(DFW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-403
BaseMetals
.28 Basemetalgrade X
.29ϕSurfacefinish X
QW-404
FillerMetal
.53±Fillermetalandcomposition X
QW-407
PWHT
.10±PWHTtemperature,time,cooling
rate
X
QW-408
Gas
.25ϕFurnaceAtmosphere X
QW-410
Technique
.70ϕPreassemblyCleaning X
.71<BlockCompression X
.72<Weldingtimeortemperature X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
66

TableQW-267
WeldingVariablesProcedureSpecifications—FrictionStirWelding(FSW)
Paragraph BriefofVariables Essential
Supplementary
Essential Nonessential
QW-402
Joints
.27ϕFixedbacking X
.28ϕJointdesign X
.29ϕJointspacing>10% X
QW-403
BaseMetals
.19ϕTypeorgrade X
.30ϕTqualified>20% X
QW-404FillerMetals .14±Fillermetal X
.55>Thicknessorwidthofpreplaced
fillermetal
X
.56ϕType/grade X
QW-407
PWHT
.1ϕPWHT X
QW-408
Gas
.26ϕShieldinggas X
QW-410
Technique
.21 1-sidevs.2-sidewelding X
.73ϕJointrestraint X
.74ϕControlmethod X
.75ϕTooldesign X
.76ϕTooloperation X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
67

QW-283WELDSWITHBUTTERING
QW-283.1Scope.Thisparagraphonlyapplieswhen
theessentialvariablesforthebutteringprocessare
differentthantheessentialvariablesfortheprocess
usedforsubsequentcompletionofthejoint.Common
examplesare
(a)thebutteredmemberisheattreatedandthe
completedweldisnotheattreatedafterwelding
(b)thefillermetalusedforbutteringhasadifferentF-
Numberfromthatusedforthesubsequentcompletionof
theweld
QW-283.2TestsRequired.Theprocedureshallbe
qualifiedbybutteringthetestcoupon(includingheat
treatingofthebutteredmemberwhenthiswillbe
doneinproductionwelding)andthenmakingthesubse-
quentweldjoiningthemembers.Thevariablesforthe
butteringandforthesubsequentweldshallbeinaccor-
dancewithQW-250, exceptthatQW-409.1shallbean
essentialvariablefortheweldingprocess(es)usedto
completetheweldwhentheminimumbutteringthickness
islessthan
3

16
in.(5mm).Mechanicaltestingofthe
completedweldmentshallbeinaccordancewith
QW-202.2(a).
Ifthebutteringisdonewithfillermetalofthesame
compositionasthefillermetalusedtocompletethe
weld,oneweldtestcouponmaybeusedtoqualifythe
dissimilarmetaljointbyweldingthefirstmemberdirectly
tothesecondmemberinaccordancewithSectionIX.
QW-283.3ButteringThickness.Thethicknessof
butteringwhichshallremainontheproductionbuttered
memberafterallmachiningandgrindingiscompletedand
beforesubsequentcompletionofthejointshallbe
requiredbytheWPS.Whenthisthicknessislessthan
3

16
in.(5mm),thethicknessofbutteringonthetest
couponshallbemeasuredbeforethebutteredmember
isweldedtothesecondmember.Thisthicknessshall
becometheminimumqualifiedthicknessofbuttering.
QW-283.4QualificationAlternative.Whenanessen-
tialvariableischangedintheportionoftheweldtobe
madeafterbutteringorwhenadifferentorganizationis
performingtheportionoftheweldtobemadeafter
buttering,anewqualificationshallbeperformedinaccor-
dancewithoneofthefollowingmethods:
(a)QualifyinaccordancewithQW-283.2and
QW-283.3. Whentheoriginalqualificationbutteringthick-
nessislessthan
3

16
in.(5mm),thebutteringthickness
shallnotbegreater,northeheatinputhigherthanwas
usedontheoriginalqualification.
(b)Whentheoriginalqualificationbutteringthickness
is
3

16
in.(5mm)orgreater,qualifytheportionoftheweld
tobemadeafterbutteringusinganyP-Numbermaterial
thatnominallymatchesthechemicalanalysisofthe
butteringweldmetalforthebutteredbasemetalof
thetestcoupon.
QW-284RESISTANCEWELDINGMACHINE
QUALIFICATION
Eachresistanceweldingmachineshallbetestedto
determineitsabilitytomakeweldsconsistentlyand
reproducibly.Amachineshallberequalifiedwhenever
itisrebuilt,movedtoanewlocationrequiringa
changeinpowersupply,whenthepowersupplyis
changed,oranyothersignificantchangeismadeto
theequipment.Spotandprojectionweldingmachine
qualificationtestingshallconsistofmakingasetof
100consecutivewelds.Everyfifthoftheseweldsshall
besubjectedtomechanicalsheartests.Fivewelds,
whichshallincludeoneofthefirstfiveandoneofthe
lastfiveofthesetshallbemetallographicallyexamined.
Seamweldingmachinequalificationtestingshallbethe
sameasprocedurequalificationtestingrequiredper
QW-286. Maintenanceoradjustmentofthewelding
machineshallnotbepermittedduringweldingofaset
oftestwelds.QualificationtestingonanyP-No.21
throughP-No.26aluminumalloyshallqualifythe
machineforallmaterials.QualificationonP-No.1
throughP-No.15Firon-basealloysandanyP-No.41
throughP-No.49nickel-basealloysshallqualifythe
machineforallP-No.1throughP-No.15FandP-No.
41throughP-No.49metals.Qualificationtestingofthe
machineusingbasemetalsassignedtoP-No.51
throughP-No.53,P-No.61,orP-No.62qualifiesthe
weldingmachinetoweldallbasemetalsassignedtoP-
No.51throughP-No.53,P-No.61,andP-No.62.
Testingandacceptancecriteriashallbeinaccordance
withQW-196.
QW-285RESISTANCESPOTANDPROJECTION
WELDPROCEDUREQUALIFICATION
Procedurequalificationtestingforspotorprojection
weldsshallbedonefollowingaWeldingProcedureSpec-
ification,anditshallconsistofmakingasetoftencon-
secutivewelds.Fiveoftheseweldsshallbesubjectedto
mechanicalsheartestsandfivetometallographicexam-
ination.Examination,testing,andacceptancecriteriashall
beinaccordancewithQW-196.
QW-286RESISTANCESEAMWELDPROCEDURE
QUALIFICATION
QW-286.1Testcouponsdescribedbelowshallconsist
ofthesamenumberofmembers,orientation,material
gradesortypes,andthicknessestobeusedinproduction
welding.
QW-286.2AtestcouponasshowninFigure
QW-462.7.1shallbepreparedbydrillingaholeinthe
centerofoneoftheoutercouponmembers.Inthe
caseofatestcouponcontainingmorethantwo
members,aholeshallbedrilledineachmember
exceptforoneoftheoutermembers.Apipenipple
ASMEBPVC.IX-2023
68

shallbeweldedorbrazedtotheoutermemberatthehole.
Thetestcouponshallthenbeweldedaroundtheedges,
sealingthespacebetweenthemembersasshownin
FigureQW-462.7.1. Thecouponshallbepressurized
hydrostaticallyuntilfailureoccurs.Theprocedurequali-
ficationisacceptableiffailureoccursinthebasemetal.
QW-286.3Atestcouponatleast10in.(250mm)long
shallbemadeperFigureQW-462.7.2. Thistestcoupon
shallbecuttransversetothelengthoftheweldinto
tenpieces,eachapproximately1in.(25mm)long.
Fourtransverseweldspecimensandfourlongitudinal
weldcrosssectionspecimensshallbecutandprepared
asdetailedinFigureQW-462.7.2. Thespecimensshallbe
metallographicallyexaminedforcompliancewiththere-
quirementsofQW-196.
QW-287VARIATIONOFSETTINGSFORELECTRIC
RESISTANCEWELDING
Settingsforpreheatingcycles,electrodepressure,
weldingcurrent,weldingtimecycle,orpostheating
cyclesmaybevariedby±5%fromthevaluesrecorded
onthePQR,orby±10%whenonlyoneoftheabove
settingsischanged.
QW-288TUBE-TO-TUBESHEETQUALIFICATION
ESSENTIALVARIABLES
Essentialvariablesapplicabletotube-to-tubesheet
weldingprocedurequalificationsinaccordancewith
QW-193arelistedinTableQW-288.1forallwelding
processesexceptexplosionweldingandTable
QW-288.2forexplosionwelding.Essentialprocedure
qualificationvariablesapplicableforeachwelding
processlistedinQW-250shallalsobeobservedinaddi-
tiontothevariablesofQW-288. Achangeinthewelding
processusedshallrequirerequalification.
TableQW-288.1
EssentialVariablesforProcedureQualificationofTube-
to-TubesheetWelding(AllWeldingProcessesExcept
ExplosionWelding)
Paragraph BriefofVariables
QW-402
Joints
.31<Ligamentsize
.32ϕJointconfiguration
QW-403
BaseMetals
.18ϕP-NumberorA-Number
.32ϕTubethickness
.33ϕP-Number
QW-404
FillerMetals
.3ϕFillermetalsize
.58±Preplacedfillermetal
.59ϕA-number
QW-405
Positions
.3ϕ↑↓Verticalwelding
.4ϕPosition
QW-406
Preheat
.1 Jointspacing>10%
.3 Increase>100°F(55°C)(IP)
QW-407
PWHT
.1ϕPWHT
QW-409
Electrical
Characteristics
.4ϕPolarity
.10ϕAmperage
QW-410
Technique
.5ϕMethodofcleaning
.37ϕSingletomultiplepass
.81+Tubeexpansion
Legend:
+Addition <Decreaseorlessthan
−Deletion ϕChange
GENERALNOTE:QW-403.32, QW-404.59, QW-405.3, QW-406.1,
QW-406.3, QW-409.4, QW-409.10, QW-410.25, andQW-410.37do
notapplytoexplosionwelding.
TableQW-288.2
EssentialVariablesforProcedureQualificationofTube-
to-TubesheetWelding(ExplosionWelding)
Paragraph BriefofVariables
QW-403
BaseMetals
.34ϕTubethickness
QW-410
Technique
.82ϕPressureapplication
.83ϕExplosive
.84ϕDistancechargetotubesheet
.85ϕSpecifiedclearance
Legend:
ϕChange
ASMEBPVC.IX-2023
69

QW-289LOW-ENERGYCAPACITORDISCHARGE
WELDING
Thefollowingrequirementsapplytolow-energycapa-
citordischargewelding:
(a)Theenergyoutputshallbelimitedto125W-sec.
(b)AWeldingProcedureSpecificationdescribingthe
capacitordischargeequipment,thecombinationofmate-
rialstobejoined,andthetechniqueofapplicationshallbe
prepared;qualificationoftheweldingprocedureisnot
required.
QW-290TEMPERBEADWELDING
Whenthereferencingcode,standard,orspecification
specifiestheuseofthisparagraphfortemperbead
welding,QW-290.1throughQW-290.6shallapply.
QW-290.1BasicQualificationandUpgradingof
ExistingWeldingProcedureSpecifications(WPSs).All
WPSsfortemperbeadweldingofgrooveandfillet
weldshallbequalifiedforgrooveweldinginaccordance
withtherulesinQW-202forqualificationbygroove
weldingortherulesinQW-283forweldswithbuttering.
WPSsforoverlayshallbequalifiedinaccordancewith
QW-214orQW-216. Oncetheserequirementsandany
additionalqualificationrequirementsofthereferencing
code,standard,orspecificationhavebeensatisfied,
thenitisnecessaryonlytoprepareanadditionaltest
couponusingthesameprocedurewiththesameessential
variablesand,whenrequired,thesamesupplementary
essentialvariableswiththecouponlongenoughto
obtaintherequiredtemperbeadtestspecimens.Qualifi-
cationforgroovewelding,weldingwithbutteringorclad-
ding,andtemperbeadweldingmayalsobedoneinasingle
testcoupon.
WhenaWPShasbeenpreviouslyqualifiedtosatisfyall
requirementsincludingtemperbeadwelding,butoneor
moretemperbeadweldingvariablesarechanged,thenit
isnecessaryonlytoprepareanadditionaltestcoupon
usingthesameWPSwiththesamevariablesandnew
temperbeadweldingessentialvariable(s)withthe
couponlongenoughtoobtaintherequiredtestspecimens.
QW-290.2WeldingProcessRestrictions.Temper
beadweldingislimitedtoSMAW,GTAW,SAW,GMAW
(includingFCAW),LLBW,andPAW.Manualandsemiau-
tomaticGTAWandPAWareprohibited,exceptfortheroot
passofgrooveweldsmadefromonesideandasdescribed
formakingrepairstotemperbeadweldsinQW-290.6. The
variableslistedinTableQW-290.4applyinadditiontothe
variablesapplicablefortheprocess(es)qualifiedasgiven
inQW-250. Whentoughnesstestingisrequiredbythe
referencingcode,standard,orspecificationforaccep-
tance,thesupplementaryessentialvariablesof
QW-250applicabletotheprocessbeingqualifiedshall
apply.WhenthevariableslistedinTableQW-290.4
conflictwithorprovidemorestringentlimitations
thanthoseofQW-250, thevariableslistedinTable
QW-290.4shallgovern.
QW-290.3VariablesforTemperBeadWeldingQuali-
fications.TableQW-290.4liststheadditionalessential
andnonessentialvariablesthatapplywhentemper
beadqualificationisrequired.Theessentialvariables
listedincolumnAshallapplywhenthereferencing
code,standard,orspecificationspecifieshardnesscriteria
fortemperbeadqualificationacceptance.Theessential
variableslistedincolumnBshallapplywhentherefer-
encingcode,standard,orspecificationspecifiestoughness
testingcriteriafortemperbeadqualificationacceptance.
TheessentialvariableslistedincolumnCshallapplywhen
thereferencingcode,standard,orspecificationspecifies
neitherhardnessnortoughnesstestcriteria.Thevariables
listedinthe“NonessentialVariables”columnapplyinall
cases.
ASMEBPVC.IX-2023
70

TableQW-290.4
WeldingVariablesforTemperBeadProcedureQualification
Paragraph BriefofVariables
EssentialVariables[Note(1)]
Nonessential
VariablesA B C
QW-402 .23+Fluidbacking X
.24+Fluidbacking X X
QW-403 .25ϕP-No.orGr.No. X X
.26>Carbonequivalent X
.27>T X X
QW-404 .51 Storage X
.52 Diffusiblehydrogen X X X
QW-406
.9<Preheattemperature X
.10 Preheatsoaktime X
.11 Postweldbakeout X
QW-408 .24 Gasmoisture X
QW-409 .29ϕHeatinputratio X X X
QW-410 .10ϕSingletomultiple
electrode
X X X
.58−Surfacetemperbeads X X X
.59ϕTypeofwelding X X X
.60+Thermalpreparation X X X
.61 Surfacebeadplacement X X X
.62 Surfacebeadremoval
method
X
.63 Beadoverlap X X X
.65±Grinding X X X
Legend:
+Addition >Increaseorgreaterthan ϕChange
−Deletion <Decreaseorlessthan
NOTE:(1)ConstructioncodeordesignspecificationrequirementsforEssentialVariablecolumns:
A=wheremaximumhardnessisspecified
B=wheretoughnesstestingisspecified
C=wheremaximumhardnessortoughnesstestingisnotspecified
ASMEBPVC.IX-2023
71

QW-290.5TestCouponPreparationandTesting.
(a)Thetestcouponmaybeanygeometrythatis
suitableforremovaloftherequiredspecimens.Itshall
consistofagrooveweld,acavityinaplate,overlay,or
othersuitablegeometry.Thedistancefromeachedge
oftheweldpreparationtotheedgeofthetestcoupon
shallbeatleast3in.measuredtransversetothedirection
ofwelding.Thedepthofpreparationshallbesuchthatat
leasttwolayersofweldmetalaredeposited,oneofwhich
maybethesurfacetemperbeadlayeranddeepenoughto
removetherequiredtestspecimens.
(b)OnlybendtestsinaccordancewithQW-451are
requiredfortheadditionaltemperbeadqualification
wheneitherhardnessortoughnesstestingisalso
required.Noqualifiedlimitationsorprocessessential
orsupplementaryessentialvariables,ifapplicable,per
QW-250maybeaffected.Whereneithermaximumhard-
nessnortoughnesstestingisspecifiedbythereferencing
code,standard,orspecification,allofthetestrequire-
mentsofQW-451apply.
(c)WhenhardnesstestingisspecifiedbyaConstruc-
tionCodeorDesignSpecification,measurementsshallbe
takenacrosstheweldmetal,heat-affectedzone,andbase
metalusingtheVickersmethodwitha10-kgload.Incre-
mentsbetweenmeasurementsshallbeasspecifiedin
ASTME384.AsanalternativetotheVickersmethod,
InstrumentedIndentationTestinginaccordancewith
ASTME2546maybeusedwithtestforcesinthe
macrorangeof2.2lbfto265lbf(1kgfto120kgf)
andincrementsbetweenmeasurementsasdetermined
inaccordancewithASTME2546.
(1)Measurementsshallbetakenalongalineat
approximatelymid-planeofthethicknessofthetest
couponweldmetal.Alongthisline,thereshallbe
(-a)aminimumoftwomeasurementsintheweld
metalfilllayers.
(-b)atleastonemeasurementoneach:theweld
beadsagainstbasemetal,first-layertemperingbeads,and
thesecond-layertemperingbeads.
(-c)aminimumofthreemeasurementsinthe
heat-affectedzone.Thesemeasurementsmaybetaken
inalineapproximatelyparalleltotheHAZwhen
spacingbetweenimpressionsdoesnotallowforthree
measurementstobetakeninasinglelinetransverse
totheHAZ.
(-d)aminimumoftwomeasurementsintheunaf-
fectedbasemetal.
(2)Additionalmeasurementsshallbetakenalonga
lineapproximately0.04in.(1mm)belowtheoriginalbase
metalsurface.Alongthisline,thereshallbe
(-a)aminimumoftwomeasurementsintheweld
metalfilllayers
(-b)atleastonemeasurementoneach:theweld
beadsagainstbasemetal,first-layertemperingbeads,and
thesecond-layertemperingbeads
(-c)onemeasurementlocatedimmediatelybelow
thetoeoftheweldbeadandatleastonemeasurementon
eachsideofthatimpression
(3)Whenthecouponisafull-penetrationgroove
weldmadefromoneside,additionalmeasurements
shallbetakenalongalineapproximately0.04in.
(1mm)abovetherootsidesurface.Alongthisline,
thereshallbeaminimumoftwomeasurementsinthe
weldmetal,twointheheat-affectedzone,andtwoin
theunaffectedbasemetal.
Full-penetrationgrooveweldtestcouponsqualifyfull
andpartialpenetrationgroovewelds,filletwelds,and
weldbuild-up.Partialpenetrationgrooveweldtest
couponsonlyqualifypartialpenetrationgroovewelds,
filletwelds,andbuild-up.Overlaytestcouponsonly
qualifyoverlaywelds.
Hardnessreadingsshallnotexceedthehardnesslimits
specifiedbytheConstructionCodeorDesignSpecifica-
tion.
(d)Whentoughnesstestingisspecifiedbytheappli-
cableConstructionCodeorDesignSpecification,the
testcouponshallbetestedfortoughness.Theextent
oftesting(i.e.,weldmetal,HAZ,unaffectedbase
metal),thetestingtemperature,andtheacceptance
criteriashallbeasprovidedintheapplicableConstruction
CodeorDesignSpecification.
QW-290.6In-ProcessRepairWelding.
(a)In-processrepairstoweldsmadeusingtemper
beadweldingarepermitted.In-processrepairsare
definedasrepairsinwhichaflawismechanically
removedandarepairweldismadebeforeweldingof
ajointispresentedforfinalvisualinspection.Examples
ofsuchrepairsareareasofremovalofporosity,incom-
pletefusion,etc.,wheresufficientmetalhasbeenmechani-
callyremovedthatlocalizedadditionofweldmetalis
necessaryinordertomakethesurfacegeometrysuitable
forcontinuationofnormalwelding.
(b)Surfacestoberepairedshallbepreparedby
mechanicalremovalofflawsandpreparationofthe
surfacetoasuitablegeometry.
(c)Forprocessesotherthanmanualandsemiauto-
maticGTAWandPAW,repairsshallbemadeusingthe
parametersgivenintheWPSforproductiontemper
beadwelding.Theapproximatelocationofbeadstobe
depositedrelativetotheoriginalbasemetalsurface
shallbeidentified,andtheapplicableparametersshall
beusedforthelayerstobedepositedasspecifiedby
theWPS.
(d)Whenitisnecessarytomakerepairsusingmanual
orsemiautomaticGTAWorPAW,aWPSshallbeprepared
basedonPQRsdevelopedfortemperbeadweldingusing
machineorautomaticGTAWorPAW,respectively.This
WPSshalldescribethesizeofthebeadstobedeposited
andthevolts,amps,andtravelspeedtobeusedforthe
beadsagainstthebasemetal,foreachtemperbeadlayer
ASMEBPVC.IX-2023
72

andforthefillandsurfacetemperbeadlayerscorre-
spondingtothelocationswhererepairweldingisto
bedone.Theseshallbewithintheequivalentpower
ratioformachineorautomaticweldingfortherespective
layersgiveninQW-409.29.
(e)Welderswhowillusemanualandsemiautomatic
GTAWorPAWshallbequalifiedtousethesewelding
processesasrequiredbyQW-300. Inaddition,each
weldershallcompleteaproficiencydemonstration.For
thisdemonstration,eachweldershalldeposittwoor
moreweldbeadsusingWPSparametersforeach
depositlayer.Thetestcouponsizeshallbesufficiently
largetomaketherequiredweldbeadpasses.The
minimumpasslengthshallbe4in.(100mm).The
heatinputusedbytheweldershallbemeasuredfor
eachpass,andthesizeofeachweldbeadshallbe
measuredforeachpass,andtheyshallbeasrequired
bytheWPS.Thefollowingessentialvariablesshall
applyforthisdemonstration:
(1)achangefromoneweldingproceduretoanother
(2)achangefrommanualtosemiautomaticwelding
andviceversa
(3)achangeinpositionbasedonagrooveweldin
eitherplateorpipeasshowninTableQW-461.9
(4)continuityofqualificationinaccordancewith
QW-322shallbebasedonfollowingtheWPSthatwas
demonstratedinadditiontousingtheprocessasrequired
byQW-322
ASMEBPVC.IX-2023
73

ARTICLEIII
WELDINGPERFORMANCEQUALIFICATIONS
QW-300GENERAL
QW-300.1?©W? ThisArticleliststheweldingprocesses
separately,withtheessentialvariablesthatapplyto
welderandweldingoperatorperformancequalifications.
Thewelderqualificationislimitedbytheessentialvari-
ablesgivenforeachweldingprocess.Thesevariablesare
listedinQW-350, andaredefinedinArticleIVWelding
Data.Theweldingoperatorqualificationislimitedby
theessentialvariablesgiveninQW-360foreachtype
ofweld.
WeldersandweldingoperatorsmayfollowanyWPS
specifyingtheprocessforwhichtheyarequalified
withinthelimitsoftheessentialvariables.
Awelderorweldingoperatormaybequalifiedbyvolu-
metricNDEofatestcouponortheirinitialproduction
weldingwithinthelimitationsofQW-304andQW-305
orbybendteststakenfromatestcoupon.
Forthepurposeofestablishingperformancequalifica-
tioncontinuity,thewelder’sorweldingoperator’squali-
ficationcontinuitybeginsfromthedateweldingofthetest
piece(s)wascompleted,providedtherequiredtesting
wasperformedandthetestresultsobtainedwereaccept-
able.
QW-301TESTS
QW-301.1IntentofTests.Theperformancequalifica-
tiontestsareintendedtodeterminetheabilityofwelders
andweldingoperatorstomakesoundwelds.
QW-301.2QualificationTests.Eachorganizationshall
qualifyeachwelderorweldingoperatorforeachwelding
processtobeusedinproductionwelding.Theperfor-
mancequalificationtestshallbeweldedinaccordance
withqualifiedWeldingProcedureSpecifications(WPS),
orStandardWeldingProcedureSpecifications(SWPS)
listedinMandatoryAppendixE,exceptthatwhenperfor-
mancequalificationisdoneinaccordancewithaWPSor
SWPSthatrequiresapreheatorpostweldheattreatment,
thesemaybeomitted.Changesbeyondwhichrequalifi-
cationisrequiredaregiveninQW-350forwelders
andinQW-360forweldingoperators.Allowable
visual,mechanical,andradiographicexaminationrequire-
mentsaredescribedinQW-304andQW-305. Retestsand
renewalofqualificationaregiveninQW-320.
Thewelderorweldingoperatorwhopreparesthe
grooveweldWPSqualificationtestcouponsmeeting
therequirementsofQW-200isalsoqualifiedwithin
thelimitsoftheperformancequalifications,listedin
QW-304forweldersandinQW-305forweldingoperators.
Thewelderorweldingoperatorisqualifiedonlywithin
thelimitsforpositionsspecifiedinQW-303.
Thewelderorweldingoperatorwhopreparesthefillet
weldWPSqualificationtestcouponsmeetingtherequire-
mentsofQW-200isqualifiedtoweldnon-pressure-
retainingfilletweldsonlywithinthelimitsoftheperfor-
mancequalificationslistedinQW-304forweldersandin
QW-305forweldingoperators.Thewelderorwelding
operatorisqualifiedonlywithinthelimitsforpositions
specifiedinQW-303.
QW-301.3IdentificationofWeldersandWelding
Operators.Eachqualifiedwelderandweldingoperator
shallbeassignedanidentifyingnumber,letter,or
symbolbytheorganization,whichshallbeusedtoidentify
theworkofthatwelderorweldingoperator.
QW-301.4RecordofTests.TherecordofWelder
PerformanceQualification(WPQ)testsshallinclude
theessentialvariables(seeQW-350), thetypeoftest
andtestresults,andtherangesqualifiedinaccordance
withQW-452foreachwelder.TherecordofWelding
OperatorPerformanceQualification(WOPQ)testsshall
includetheessentialvariables(seeQW-360) andthe
typeoftestandtestresultsforeachweldingoperator.
SuggestedformsfortheserecordsaregiveninForms
QW-484AandQW-484B(seeNonmandatoryAppendixB).
QW-302TYPEOFTESTREQUIRED
QW-302.1MechanicalTests.Exceptasmaybespeci-
fiedforspecialprocesses(seeQW-380), thetypeand
numberoftestspecimensrequiredformechanical
testingshallbeinaccordancewithQW-452. Groove
weldtestspecimensshallberemovedinamanner
similartothatshowninFiguresQW-463.2(a)through
QW-463.2(g). Filletweldtestspecimensshallbe
removedinamannersimilartothatshowninFigures
QW-462.4(a)throughQW-462.4(d)andFigure
QW-463.2(h).
Allmechanicaltestsshallmeettherequirements
prescribedinQW-160orQW-180, asapplicable.
ASMEBPVC.IX-2023
74

QW-302.2VolumetricNDE.Whenthewelderor
weldingoperatorisqualifiedbyvolumetricNDE,as
permittedinQW-304forweldersandQW-305for
weldingoperators,theminimumlengthofcoupon(s)
tobeexaminedshallbe6in.(150mm)andshall
includetheentireweldcircumferenceforpipe(s),
exceptthatforsmalldiameterpipe,multiplecoupons
ofthesamediameterpipemayberequired,butthe
numberneednotexceedfourconsecutivelymadetest
coupons.Theexaminationtechniqueandacceptance
criteriashallbeinaccordancewithQW-191.
QW-302.3TestCouponsinPipe.Fortestcoupons
madeonpipeinposition1Gor2GofFigure
QW-461.4, twospecimensshallberemovedasshown
forbendspecimensinFigureQW-463.2(d)orFigure
QW-463.2(e), omittingthespecimensintheupper-
rightandlower-leftquadrants,andreplacingtheroot-
bendspecimenintheupper-leftquadrantofFigure
QW-463.2(d)withaface-bendspecimen.Fortest
couponsmadeonpipeinposition5Gor6GofFigure
QW-461.4, specimensshallberemovedinaccordance
withFigureQW-463.2(d)orFigureQW-463.2(e)and
allfourspecimensshallpassthetest.Fortestcoupons
madeinbothpositions2Gand5Gonasinglepipetest
coupon,specimensshallberemovedinaccordance
withFigureQW-463.2(f)orFigureQW-463.2(g).
QW-302.4VisualExamination.Forplatecouponsall
surfaces(exceptareasdesignated“discard”)shallbe
examinedvisuallyperQW-194beforecuttingofbend
specimens.Pipecouponsshallbevisuallyexamined
perQW-194overtheentirecircumference,insideand
outside.
QW-303LIMITSOFQUALIFIEDPOSITIONSAND
DIAMETERS(SEEQW-461)
QW-303.1GrooveWelds—General.Weldersand
weldingoperatorswhopasstherequiredtestsfor
grooveweldsinthetestpositionsofTableQW-461.9
shallbequalifiedforthepositionsofgroovewelds,
tackweldsinjointstobegrooveorfilletwelded,and
filletweldsshowninTableQW-461.9. Inaddition,
weldersandweldingoperatorswhopasstherequired
testsforgrooveweldsshallalsobequalifiedtomake
filletweldsinallthicknessesandpipediametersof
anysizewithinthelimitsoftheweldingvariablesof
QW-350orQW-360andtackweldsinjointstobe
grooveorfilletweldedaslimitedinTableQW-461.9,
asapplicable.
QW-303.2FilletWelds—General.Weldersand
weldingoperatorswhopasstherequiredtestsforfillet
weldsinthetestpositionsofTableQW-461.9shallbe
qualifiedforthepositionsoffilletwelds,andtack
weldsinjointstobefilletwelded,showninTable
QW-461.9. Weldersandweldingoperatorswhopass
thetestsforfilletweldsshallbequalifiedtomaketack
weldsinjointstobefilletweldedaslimitedinTable
QW-461.9andfilletweldsonlyinthethicknessesofmate-
rial,sizesoffilletwelds,anddiametersofpipeandtube2
7

8
in.(73mm)O.D.andover,asshowninTableQW-452.5,
withintheapplicableessentialvariables.Weldersand
weldingoperatorswhomakefilletweldsonpipeor
tubelessthan2
7

8
in.(73mm)O.D.mustpassthepipe
filletweldtestperTableQW-452.4ortherequired
mechanicaltestsinQW-304andQW-305asapplicable.
QW-303.3SpecialPositions.Anorganizationwho
doesproductionweldinginaspecialorientationmay
makethetestsforperformancequalificationinthisspe-
cificorientation.Suchqualificationsarevalidonlyforthe
flatpositionandforthespecialpositionsactuallytested,
exceptthatanangulardeviationof±15degispermittedin
theinclinationoftheweldaxisandtherotationoftheweld
face,asdefinedinFiguresQW-461.1andQW-461.2.
QW-303.4Stud-WeldPositions.Qualificationinthe4S
positionalsoqualifiesforthe1Sposition.Qualificationin
the4Sand2Spositionsqualifiesforallpositions.
QW-304 ?23?WELDERS
ExceptforthespecialrequirementsofQW-380, each
welderwhoweldsundertherulesoftheCodeshall
havepassedthemechanicalandvisualexaminations
prescribedinQW-302.1andQW-302.4respectively.Alter-
natively,weldersmaybequalifiedbyvolumetricNDEper
QW-191whenmakingagrooveweldusingSMAW,SAW,
GTAW,PAW,andGMAW(exceptshort-circuitingmodefor
radiographicexamination)oracombinationofthese
processes,exceptforP-No.21throughP-No.26,P-No.
51throughP-No.53,andP-No.61throughP-No.62
metals.WeldersmakinggrooveweldsinP-No.21
throughP-No.26,P-No.51throughP-No.53,P-No.61,
andP-No.62metalswiththeGTAWprocessmayalso
bequalifiedbyvolumetricNDEperQW-191. TheVolu-
metricNDEshallbeinaccordancewithQW-302.2.
QW-304.1Examination.Weldsmadeintestcoupons
forperformancequalificationmaybeexaminedbyvisual
andmechanicalexaminations(seeQW-302.1, QW-302.4)
orbyvolumetricNDE(seeQW-302.2) fortheprocess(es)
andmodeofarctransferspecifiedinQW-304. Alterna-
tively,aminimum6in.(150mm)lengthofthefirst
productionweld(s)madebyawelderusingthe
process(es)and/ormodeofarctransferspecifiedin
QW-304maybeexaminedbyvolumetricNDE.
(a)Forpipe(s)weldedinthe5G,6G,orspecialposi-
tions,theentireproductionweldcircumferencemadeby
theweldershallbeexamined.
(b)Forsmalldiameterpipewheretherequired
minimumlengthofweldcannotbeobtainedfroma
singleproductionpipecircumference,additionalconsec-
utivecircumferencesofthesamepipediametermadeby
ASMEBPVC.IX-2023
75

theweldershallbeexamined,exceptthatthetotalnumber
ofcircumferencesneednotexceedfour.
(c)Theexaminationtechniqueandacceptancecriteria
forproductionweldsshallbeinaccordancewithQW-191.
QW-304.2FailuretoMeetExaminationStandards.If
aproductionweldisselectedforwelderperformance
qualificationanditdoesnotmeettheexaminationstan-
dards,thewelderhasfailedthetest.Inthisevent,the
entireproductionweldmadebythisweldershallbeexam-
inedandrepairedbyaqualifiedwelderorwelding
operator.Alternatively,retestsmaybemadeaspermitted
inQW-320.
QW-305?23? WELDINGOPERATORS
ExceptforthespecialrequirementsofQW-380, each
weldingoperatorwhoweldsundertherulesofthis
Codeshallhavepassedthemechanicalandvisualexam-
inationsprescribedinQW-302.1andQW-302.4, respec-
tively.Alternatively,weldingoperatorsmaybequalified
byvolumetricNDEperQW-191whenmakingagroove
weldusingSMAW,SAW,GTAW,PAW,EGW,LLBW,and
GMAW(exceptshort-circuitingmodeforradiographic
examination)oracombinationoftheseprocesses,
exceptforP-No.21throughP-No.26,P-No.51
throughP-No.53,P-No.61,andP-No.62metals.
WeldingoperatorsmakinggrooveweldsinP-No.21
throughP-No.26,P-No.51throughP-No.53,P-No.61,
andP-No.62metalswiththeGTAWprocessmayalso
bequalifiedbyvolumetricNDE.ThevolumetricNDE
shallbeinaccordancewithQW-302.2.
QW-305.1Examination.Weldsmadeintestcoupons
maybeexaminedbyvolumetricNDE(seeQW-302.2)
orbyvisualandmechanicalexaminations(see
QW-302.1, QW-302.4). Alternatively,aminimum3ft(1
m)lengthofthefirstproductionweld(s)madeentirely
bytheweldingoperatorinaccordancewithaqualified
WPSmaybeexaminedbyvolumetricNDE.
(a)Forpipe(s)weldedinthe5G,6G,orspecialposi-
tions,theentireproductionweldcircumferencemadeby
theweldingoperatorshallbeexamined.
(b)Forsmalldiameterpipewheretherequired
minimumlengthofweldcannotbeobtainedfroma
singleproductionpipecircumference,additionalconsec-
utivecircumferencesofthesamepipediametermadeby
theweldingoperatorshallbeexaminedexceptthatthe
totalnumberofcircumferencesneednotexceedfour.
(c)Theexaminationtechniqueandacceptancecriteria
forproductionweldsshallbeinaccordancewithQW-191.
QW-305.2FailuretoMeetExaminationStandards.If
aportionofaproductionweldisselectedforwelding
operatorperformancequalification,anditdoesnot
meettheexaminationstandards,theweldingoperator
hasfailedthetest.Inthisevent,theentireproduction
weldmadebythisweldingoperatorshallbeexamined
completelyandrepairedbyaqualifiedwelderor
weldingoperator.Alternatively,retestsmaybemade
aspermittedinQW-320.
QW-306 ?23?COMBINATIONOFWELDINGPROCESSES
Eachwelderorweldingoperatorshallbequalified
withinthelimitsgiveninQW-301foreachwelding
processhewilluseinproductionwelding.Awelderor
weldingoperatormaybequalifiedbymakingtests
witheachweldingprocessusingfilletorgroove-weld
testcoupons,orwithacombinationofweldingprocesses
inasinglegroove-weldtestcoupon.Asinglegroove-weld
testcouponmayalsobeusedtoqualifytwoormore
weldersorweldingoperators,eachusingthesameor
adifferentprocess.Forcombinationqualificationsina
singletestcoupon,thelimitsforthicknessesofdeposited
weldmetalandthenumberofbendtestspecimensare
giveninQW-452andshallbeconsideredindividually
foreachwelderorweldingoperatorforeachwelding
processorwheneverthereisachangeinanessentialvari-
able.Awelderorweldingoperatorqualifiedincombina-
tiononasingletestcouponisqualifiedtoweldin
productionusinganyofhisqualifiedprocessesindividu-
allyorindifferentcombinationswithinthelimitsofquali-
ficationforeachprocess.
Failureofanyportionofacombinationtestinasingle
testcouponconstitutesfailureoftheentirecombination.
QW-310QUALIFICATIONTESTCOUPONS
QW-310.1TestCoupons.Thetestcouponsmaybe
plate,pipe,orotherproductforms.Whenallposition
qualificationsforpipeareaccomplishedbywelding
onepipeassemblyinboththe2Gand5Gpositions
(seeFigureQW-461.4), NPS6(DN150),NPS8(DN
200),NPS10(DN250),orlargerdiameterpipeshall
beemployedtomakeupthetestcouponasshownin
FigureQW-463.2(f)forNPS10(DN250)orlarger
pipeandinFigureQW-463.2(g)forNPS6(DN150)or
NPS8(DN200)diameterpipe.
QW-310.2WeldingGrooveWithBacking.Thedimen-
sionsoftheweldinggrooveonthetestcouponusedin
makingqualificationtestsfordouble-weldedgroove
weldsorsingle-weldedgrooveweldswithbacking
shallbethesameasthoseforanyWeldingProcedure
Specification(WPS)qualifiedbytheorganization,or
shallbeasshowninFigureQW-469.1.
Asingle-weldedgroove-weldtestcouponwithbacking
oradouble-weldedgroove-weldtestcouponshallbe
consideredweldingwithbacking.Partialpenetration
grooveweldsandfilletweldsareconsideredwelding
withbacking.
QW-310.3WeldingGrooveWithoutBacking.The
dimensionsoftheweldinggrooveofthetestcoupon
usedinmakingqualificationtestsforsingle-welded
ASMEBPVC.IX-2023
76

grooveweldswithoutbackingshallbethesameasthose
foranyWPSqualifiedbytheorganization,orasshownin
FigureQW-469.2.
QW-320RETESTSANDRENEWALOF
QUALIFICATION
QW-321RETESTS
Awelderorweldingoperatorwhofailsoneormoreof
thetestsprescribedinQW-304orQW-305, asapplicable,
mayberetestedunderthefollowingprovisions.
QW-321.1ImmediateRetestUsingVisualExamina-
tion.Whenthequalificationcouponhasfailedthe
visualexaminationofQW-302.4, retestingshallbeby
visualexaminationbeforeconductingthemechanical
testing.
Whenanimmediateretestismade,thewelderor
weldingoperatorshallmaketwoconsecutivetest
couponsforeachpositionwhichhehasfailed,allof
whichshallpassthevisualexaminationrequirements.
Theexaminermayselectoneofthesuccessfultest
couponsfromeachsetofretestcouponswhichpass
thevisualexaminationforconductingthemechanical
testing.
QW-321.2ImmediateRetestUsingMechanical
Testing.Whenthequalificationcouponhasfailedthe
mechanicaltestingofQW-302.1, retestingshallbeby
mechanicaltesting.
Whenanimmediateretestismade,thewelderor
weldingoperatorshallmaketwoconsecutivetest
couponsforeachpositionwhichhehasfailed,allof
whichshallpassthetestrequirements.
QW-321.3ImmediateRetestUsingVolumetricNDE.
Whenthequalificationcouponhasfailedthevolumetric
NDEofQW-302.2, theimmediateretestshallbebythe
sameexaminationmethod.
(a)Forweldersandweldingoperatorstheretestshall
betoexaminetwo6in.(150mm)platecoupons;forpipe,
toexaminetwoormorepipecouponsofthesame
diameterforatotalof12in.(300mm)ofweld,which
shallincludetheentireweldcircumferenceforpipeor
pipes(forsmalldiameterpipethetotalnumberofconse-
cutivelymadetestcouponsneednotexceedeight).
(b)Attheoptionoftheorganization,thewelderwho
hasfailedtheproductionweldalternativetestmaybe
retestedbyexaminingadditionalweldareasequalto
twicetherequiredlengthornumberofpipecircumfer-
encesofthesameorconsecutivelymadeproduction
weld(s)specifiedinQW-304.1. Ifthislengthofweld
passesthetest,thewelderisqualifiedandtheareaof
weldonwhichhehadpreviouslyfailedthetestshall
berepairedbyhimoranotherqualifiedwelder.Ifthis
lengthdoesnotmeettheexaminationstandards,the
welderhasfailedtheretestandalloftheproduction
weldsmadebythisweldershallbeexaminedcompletely
andrepairedbyaqualifiedwelderorweldingoperator.
(c)Attheoptionoftheorganization,thewelding
operatorwhohasfailedtheproductionweldalternative
testmayberetestedbyexaminingadditionalweldareas
equaltotwicetherequiredlengthornumberofpipe
circumferencesofthesameorconsecutivelymade
productionweld(s)specifiedinQW-305.1. Ifthis
lengthofweldpassesthetest,theweldingoperatoris
qualifiedandtheareaofweldonwhichhehadpreviously
failedthetestshallberepairedbyhimoranotherqualified
welderorweldingoperator.Ifthislengthdoesnotmeet
theexaminationstandards,theweldingoperatorhas
failedtheretestandalloftheproductionweldsmade
bythisweldingoperatorshallbeexaminedcompletely
andrepairedbyaqualifiedwelderorweldingoperator.
QW-321.4FurtherTraining.Whenthewelderorthe
weldingoperatorhashadfurthertrainingorpractice,
anewtestshallbemadeforeachpositiononwhich
hefailedtomeettherequirements.
QW-322EXPIRATION,REVOCATION,AND
RENEWALOFQUALIFICATION
QW-322.1 ?23?Expiration.Thequalificationofawelderor
weldingoperatorforaprocessremainsvalidprovidedno
morethan6monthshavepassedsincethewelderor
weldingoperatorlastusedthatprocess.Continuityof
qualificationshallbeconfirmedbythequalifyingorparti-
cipatingorganization(s)asidentifiedinQG-106.2and
QG-106.3, respectively.
Awelderusingmanualorsemiautomaticwelding
prolongsqualificationforbothmanualandsemiautomatic
weldingforthatprocess.Aweldingoperatorusing
machineweldingprolongsqualificationformachine
andautomaticweldingforthatprocess.Awelding
operatorusingautomaticweldingprolongsqualification
forautomaticweldingforthatprocess.
QW-322.2Revocation.Whenthereisaspecificreason
toquestionthewelder’sortheweldingoperator’sability
tomakeweldsthatmeetthespecification,thequalifica-
tionsthatsupporttheweldingbeingperformedshallbe
revoked.Allotherqualificationsnotquestionedremainin
effect.
QW-322.3RenewalofQualification.
(a)Renewalofqualificationthathasexpiredunderthe
rulesofQW-322.1maybeachievedforanyprocessby
weldingasingletestcouponofeitherplateorpipe,of
anymaterial,thicknessordiameter,inanyposition,as
requiredbyQW-301andsuccessfullycompletingthe
testingrequiredbyQW-302. Thissuccessfultest
renewsthewelderorweldingoperator’spreviousquali-
ficationsforthatprocessforthosematerials,thicknesses,
diameters,positions,andothervariablesforwhichhewas
previouslyqualified.
ASMEBPVC.IX-2023
77

ProvidingtherequirementsofQW-304andQW-305are
satisfied,renewalofqualificationunderQW-322.1maybe
doneonproductionwork.
(b)Weldersandweldingoperatorswhose
qualification(s)havebeenrevokedundertheprovisions
ofQW-322.2aboveshallrequalify.Qualificationshall
utilizeatestcouponappropriatefortherevokedqualifi-
cation(s).Thecouponshallbeweldedasrequiredby
QW-301andtestedasrequiredbyQW-302. Successful
completionofthequalificationtestrestoresthe
revokedqualification(s).
QW-350WELDINGVARIABLESFORWELDERS
QW-351GENERAL
Aweldershallberequalifiedwheneverachangeismade
inoneormoreoftheessentialvariableslistedforeach
weldingprocess.
Whereacombinationofweldingprocessesisrequired
tomakeaweldment,eachweldershallbequalifiedforthe
particularweldingprocessorprocesseshewillbe
requiredtouseinproductionwelding.Aweldermay
bequalifiedbymakingtestswitheachindividual
weldingprocess,orwithacombinationofwelding
processesinasingletestcoupon.
Thelimitsofweldmetalthicknessforwhichhewillbe
qualifiedaredependentupontheapproximatethickness
oftheweldmetalhedepositswitheachweldingprocess,
exclusiveofanyweldreinforcement,thisthicknessshall
beconsideredthetestcouponthicknessasgivenin
QW-452.
Inanygivenproductionweldment,weldersmaynot
depositathicknessgreaterthanthatpermittedby
QW-452foreachweldingprocessinwhichtheyarequal-
ified.
TableQW-352
OxyfuelGasWelding(OFW)
EssentialVariables
Paragraph BriefofVariables
QW-402
Joints
.7 +Backing
QW-403
BaseMetals
.2 …Maximumqualified
.18 ϕP-Number
QW-404
FillerMetals
.14 ±Filler
.15 ϕF-Number
.31 ϕtWelddeposit
QW-405
Positions
.1 +Position
QW-408
Gas
.7 ϕTypefuelgas
TableQW-353
ShieldedMetal-ArcWelding(SMAW)
EssentialVariables
Paragraph BriefofVariables
QW-402
Joints
.4 −Backing
QW-403
BaseMetals
.16 ϕPipediameter
.18 ϕP-Number
QW-404
FillerMetals
.15 ϕF-Number
.30 ϕtWelddeposit
QW-405
Positions
.1 +Position
.3 ϕ↑↓Verticalwelding
TableQW-354
SemiautomaticSubmerged-ArcWelding(SAW)
EssentialVariables
Paragraph BriefofVariables
QW-403
BaseMetals
.16 ϕPipediameter
.18 ϕP-Number
QW-404
FillerMetals
.15 ϕF-Number
.30 …tWelddeposit
QW-405
Positions
.1 +Position
TableQW-355
SemiautomaticGasMetal-ArcWelding(GMAW)
[ThisIncludesFlux-CoredArcWelding(FCAW)]
EssentialVariables
Paragraph BriefofVariables
QW-402
Joints
.4 −Backing
QW-403
BaseMetals
.16 ϕPipediameter
.18 ϕP-Number
QW-404
FillerMetals
.15 ϕF-Number
.30 ϕtWelddeposit
.32 …tLimit(S.Cir.Arc.)
QW-405
Positions
.1 +Position
.3 ϕ↑↓Verticalwelding
QW-408
Gas
.8 −Backinggas
QW-409
Electrical
.2 ϕTransfermode
ASMEBPVC.IX-2023
78

TableQW-356
ManualandSemiautomaticGas
Tungsten-ArcWelding(GTAW)
EssentialVariables
Paragraph BriefofVariables
QW-402
Joints
.4 −Backing
QW-403
BaseMetals
.16 ϕPipediameter
.18 ϕP-Number
QW-404
FillerMetals
.14 ±Filler
.15 ϕF-Number
.22 ±Inserts
.23 ϕFillermetalproductform
.30 ϕtWelddeposit
QW-405
Positions
.1 +Position
.3 ϕ↑↓Verticalwelding
QW-408
Gas
.8 −Backinggas
QW-409
Electrical
.4 ϕCurrentorpolarity
Legend:
ϕChange ↑Uphill
+Addition ↓Downhill
−Deletion
TableQW-357
ManualandSemiautomaticPlasma-ArcWelding(PAW)
EssentialVariables
Paragraph BriefofVariables
QW-402
Joints
.4 −Backing
QW-403
BaseMetals
.16 ϕPipediameter
.18 ϕP-Number
QW-404
FillerMetals
.14 ±Filler
.15 ϕF-Number
.22 ±Inserts
.23 ϕFillermetalproductform
.30 ϕtWelddeposit
QW-405
Positions
.1 +Position
.3 ϕ↑↓Verticalwelding
QW-408
Gas
.8 −Backinggas
Legend:
ϕChange ↑Uphill
+Addition ↓Downhill
−Deletion
TableQW-358
?23?ManualandSemiautomaticLaserBeamWelding(LBW)
Paragraph BriefofVariables
QW-402
Joints
.4 −Backing
QW-403
BaseMetals
.16 ϕPipediameter
.18 ϕP-Number
QW-404
FillerMetals
.14 ±Filler
.15 ϕF-Number
.22 ±Inserts
.23 ϕFillermetalproductform
.30 ϕtWelddeposit
QW-405
Positions
.1 +Position
.3 ϕ↑↓Verticalwelding
QW-408
Gas
.8 −Backinggas
QW-410
Technique
.68 ϕTypeofequipment
.88 ϕTechnique
.89 ±Oscillation
.90 ϕModeofoperation
Legend:
ϕChange ↑Uphill
+Addition ↓Downhill
−Deletion
QW-360WELDINGVARIABLESFORWELDING
OPERATORS
QW-361GENERAL
Aweldingoperatorshallberequalifiedwhenevera
changeismadeinoneofthefollowingessentialvariables
(seeQW-361.1andQW-361.2). Theremaybeexceptions
oradditionalrequirementsfortheprocessesofQW-362,
QW-363, andthespecialprocessesofQW-380.
QW-361.1
?23?EssentialVariables—AutomaticWelding.
(a)Achangefromautomatictomachinewelding.
(b)Achangeintheweldingprocess.
(c)Forelectronbeamandlaserwelding,theadditionor
deletionoffillermetal.
(d)Forlaserweldingandhybridweldingusinglasers,a
changeinlasertype(e.g.,achangefromCO
2
toYAG).
(e)Forfrictionwelding(excludingfrictionstir
welding),achangefromcontinuousdrivetoinertia
weldingorviceversa.
(f)Forelectronbeamwelding,achangefromvacuum
toout-of-vacuumequipment,andviceversa.
QW-361.2EssentialVariables—MachineWelding.
(a)Achangeintheweldingprocess.
(b)Achangefromdirectvisualcontroltoremotevisual
controlandviceversa.
ASMEBPVC.IX-2023
79

(c)Thedeletionofanautomaticarcvoltagecontrol
systemforGTAW.
(d)Thedeletionofautomaticjointtracking.
(e)Theadditionofweldingpositionsotherthanthose
alreadyqualified(seeQW-120, QW-130, andQW-303).
(f)ForGTAW,PAW,andLLBW,thedeletionofconsum-
ableinserts,exceptthatqualificationwithconsumable
insertsshallalsoqualifyforfilletweldsandwelds
withbacking.
(g)Thedeletionofbacking.Double-weldedgroove
weldsareconsideredweldingwithbacking.
(h)Achangefromsinglepasspersidetomultiple
passespersidebutnotthereverse.
(i)Forhybridplasma-GMAWwelding,theessential
variableforweldingoperatorqualificationshallbein
accordancewithTableQW-357.
QW-362?23? ELECTRONBEAMWELDING(EBW),LASER
BEAMWELDING(LBW),HYBRID
WELDING,ANDFRICTIONWELDING
(FRW)
Theweldingoperatorperformancequalificationtest
couponshallbeproductionpartsortestcouponsthat
havejointdesignspermittedbyanyqualifiedWPS.The
couponshallbemechanicallytestedinaccordance
withQW-452. Alternatively,whenthepartorcoupon
doesnotreadilylenditselftothepreparationofbend
testspecimens,thepartmaybecutsothatatleast
twofull-thicknessweldcrosssectionsareexposed.
Thosecrosssectionsshallbesmoothedandetched
withasuitableetchant(seeQW-470) togiveacleardefi-
nitionoftheweldmetalandheat-affectedzone.Theweld
metalandheat-affectedzoneshallexhibitcompletefusion
andfreedomfromcracks.Theessentialvariablesfor
weldingoperatorqualificationshallbeinaccordance
withQW-361.
QW-363STUDWELDING
Studweldingoperatorsshallbeperformancequalified
inaccordancewiththetestrequirementsofQW-192.2and
thepositionrequirementsofQW-303.4.
QW-380SPECIALPROCESSES
QW-381CORROSION-RESISTANTWELDMETAL
OVERLAY
QW-381.1?23? Forwelders,thelimitsofbasemetalthick-
nessqualificationshallbeasspecifiedinTableQW-453.
Weldingoperatorqualificationsarenotlimitedbybase
metalthicknessesotherthanasstatedintheWPS.For
weldersandweldingoperators,therequiredexamina-
tions,tests,andtestspecimensshallbeasspecifiedin
QW-381.2andTableQW-453. Basematerialtest
couponsmaybeaspermittedinQW-423.
QW-381.2Thequalificationtestcouponforperfor-
mancequalificationshallconsistofbasemetalnotless
than6in.(150mm)×6in.(150mm).Theweld
overlaycladdingshallbeaminimumof1
1

2
in.(38
mm)widebyapproximately6in.(150mm)long.For
qualificationonpipe,thepipelengthshallbea
minimumof6in.(150mm)andthediametershallbe
theminimumneededtoallowtherequirednumberof
testspecimens.Theweldoverlayshallbecontinuous
aroundthecircumferenceofthetestcoupon.For
processesdepositingaweldbeadwidthgreaterthan
1

2
in.(13mm)wide,theweldoverlayshallconsistof
aminimumofthreeweldbeadsinthefirstlayer.
(a)Thetestcouponshallbesectionedtomakeside-
bendtestspecimensperpendiculartothedirectionof
theweldinginaccordancewithQW-161. Forcoupons
thatarelessthan
3

8
in.(10mm)thick,thewidthof
theside-bendspecimensmaybereducedtothethickness
ofthetestcoupon.Testspecimensshallberemovedat
locationsspecifiedinFigureQW-462.5(c)orFigure
QW-462.5(d).
(b)Weldersorweldingoperatorswhopassthetestsfor
corrosion-resistantweldmetaloverlaycladdingshallonly
bequalifiedtoapplycorrosion-resistantweldmetal
overlayportionofagrooveweldjoiningcladmaterials
orlinedmaterials.
(c)TheessentialvariablesofQW-350andQW-360
shallapplyforweldersandweldingoperators,respec-
tively,exceptthereisnolimitonthemaximumthickness
ofcorrosion-resistantoverlaythatmaybeappliedin
production.Whenspecifiedasessentialvariables,the
limitationsofpositionanddiameterqualifiedfor
grooveweldsshallapplytooverlaywelds,exceptthe
limitationsondiameterqualifiedshallapplyonlyto
weldsdepositedinthecircumferentialdirection.
QW-381.3QualificationonCladMaterials.Awelder
orweldingoperatorwhohasqualifiedoncladmaterialor
linedmaterialasprovidedinQW-383.1(b)isalsoqualified
todepositcorrosion-resistantweldmetaloverlay.
QW-381.4AlternativeQualificationWithGroove
WeldTests.Whenachemicalcompositionisnotspecified
intheWPS,weldersorweldingoperatorswhosuccess-
fullycompleteagrooveweldperformancequalification
testmeetingthecorrosion-resistantoverlaybendtestre-
quirementsofQW-163maybeconsideredqualifiedfor
corrosion-resistantoverlayweldingwithintheranges
definedinQW-350orQW-360.
QW-382HARD-FACINGWELDMETALOVERLAY
(WEARRESISTANT)
QW-382.1 ?23?QualificationTest.
(a)Thetestbasemetalcouponforperformancequali-
ficationshallhaveminimumdimensionsof6in.(150mm)
wide×approximately6in.(150mm)longwithahard-
ASMEBPVC.IX-2023
80

facedlayeraminimumof1
1

2
in.(38mm)wide×6in.(150
mm)long.Theminimumhard-facedthicknessshallbeas
specifiedintheWPS.Alternatively,thequalificationmay
beperformedonatestbasemetalcouponthatrepresents
thesizeoftheproductionpart.Forqualificationonpipe,
thepipelengthshallbe6in.(150mm)minimumandthe
diametershallbetheminimumneededtoallowthe
requirednumberoftestspecimens.Theweldoverlay
shallbecontinuousaroundthecircumferenceofthe
testcoupon.
(b)Thebasemetalshallbesectionedtransverselyto
thedirectionofthehard-facingoverlay.Thetwofacesof
thehardfacingexposedbysectioningshallbepolished
andetchedwithasuitableetchantandshallbevisually
examinedwith5Xmagnificationforcracksinthebase
metalortheheat-affectedzone,lackoffusion,orother
lineardefects.Theoverlayandbasemetalshallmeet
therequirementsspecifiedintheWPS.Allexposed
facesshallbeexamined.SeeFigureQW-462.5(b)for
pipeandFigureQW-462.5(e)forplate.
(c)Atathicknessgreaterthanorequaltotheminimum
thicknessspecifiedintheWPS,theweldsurfaceshallbe
examinedbytheliquidpenetrantmethodandshallmeet
theacceptancestandardsinQW-195.2orasspecifiedin
theWPS.Liquidpenetrantexaminersshallmeetthere-
quirementsinQW-195.3. Surfaceconditioningpriorto
liquidpenetrantexaminationispermitted.
(d)Forwelders,thelimitsofbasemetalthickness
qualificationshallbeasspecifiedinTableQW-453.
Weldingoperatorqualificationsarenotlimitedbybase
metalthicknessesotherthanasstatedintheWPS.For
weldersandweldingoperators,therequiredexamina-
tions,tests,andtestspecimensshallbeasspecifiedin
TableQW-453. Basematerialtestcouponsmaybeas
permittedinQW-423.
(e)Weldersandweldingoperatorswhopassthetests
forhard-facingweldmetaloverlayarequalifiedforhard-
facingoverlayonly.
(f)Theessentialvariable,ofQW-350andQW-360, shall
applyforweldersandweldingoperators,respectively,
exceptthereisnolimitonthemaximumthicknessof
hard-facingoverlaythatmaybeappliedinproduction.
Whenspecifiedasessentialvariables,thelimitationsof
positionanddiameterqualifiedforgrooveweldsshall
applytooverlayweldsexceptthelimitationsondiameter
qualifiedshallapplyonlytoweldsdepositedinthecircum-
ferentialdirection.
(g)Forwelders,qualificationwithoneAWSclassifica-
tionwithinanSFAspecificationqualifiesforallotherAWS
classificationsinthatSFAspecification.Weldingoperator
qualificationsarenotlimitedbyAWSclassificationother
thanasstatedintheWPS.
QW-383JOININGOFCLADMATERIALSAND
APPLIEDLININGS
QW-383.1CladMaterials.
(a)Weldersandweldingoperatorswhowilljointhe
basematerialportionofcladmaterialsshallbequalified
forgrooveweldinginaccordancewithQW-301. Welders
andweldingoperatorswhowillapplythecladdingportion
ofaweldbetweencladmaterialsshallbequalifiedin
accordancewithQW-381. Weldersandweldingoperators
needonlybequalifiedfortheportionsofcladmaterial
weldsthattheywillmakeinproduction.
(b)Asanalternativeto(a),weldersandweldingopera-
torsmaybequalifiedusingcladmaterialtestcoupons.The
testcouponshallbeatleast
3

8
in.(10mm)thickandof
dimensionssuchthatagrooveweldcanbemadetojoin
thebasematerialsandthecorrosion-resistantweldmetal
overlaycanbeappliedtothecompletedgrooveweld.Four
side-bendtestspecimensshallberemovedfromthe
completedtestcouponandtested.Thegrooveweld
portionandthecorrosion-resistantweldmetaloverlay
portionofthetestcouponshallbeevaluatedusingthe
respectivecriteriainQW-163. Weldersandwelding
operatorsqualifiedusingcladmaterialtestcoupons
arequalifiedtojoinbasematerialsasprovidedby
QW-301, andtheyarequalifiedtoapplycorrosion-resis-
tantweldmetaloverlayasprovidedbyQW-381.
QW-383.2AppliedLinings.
(a)Weldersandweldingoperatorsshallbequalified
followingtherulesformakinggrooveorfilletweldsin
accordancewithQW-301. Plugweldsforattaching
appliedliningsshallbeconsideredequivalenttofillet
weldsforthepurposeofperformancequalification.
(b)Analternatetestcouponshallconsistofthe
geometrytobewelded,exceptthebasematerialneed
notexceed1in.(25mm)inthickness.Theweldedtest
couponshallbesectionedandetchedtorevealthe
weldandheat-affectedzone.Theweldshallshowpene-
trationintothebasemetal.
QW-384RESISTANCEWELDINGOPERATOR
QUALIFICATION
Eachweldingoperatorshallbetestedoneachmachine
typewhichhewilluse.QualificationtestingonanyP-No.
21throughP-No.26metalshallqualifytheoperatorforall
metals.QualificationonanyP-No.1throughP-No.15For
anyP-No.41throughP-No.49metalsshallqualifythe
operatorforallP-No.1throughP-No.15FandP-No.
41throughP-No.49metals.Qualificationtestingon
anyP-No.51throughP-No.53,P-No.61,orP-No.62
metalshallqualifytheoperatorforallP-No.51
throughP-No.53,P-No.61,andP-No.62metals.
ASMEBPVC.IX-2023
81

(a)Qualificationforspotandprojectionweldingshall
consistofmakingasetoftenconsecutivewelds,fiveof
whichshallbesubjectedtomechanicalsheartestsorpeel
tests,andfivetomacro-examination.Examination,
testing,andacceptancecriteriashallbeinaccordance
withQW-196.
(b)Qualificationforseamweldingshallconsistofthat
testingspecifiedinQW-286.3, exceptthatonlyonetrans-
versecrosssectionandonelongitudinalcrosssectionare
required.
QW-385FLASHWELDINGOPERATOR
QUALIFICATION
Eachweldingoperatorshallbetestedbyweldingatest
couponfollowinganyWPS.Thetestcouponshallbe
weldedandtestedinaccordancewithQW-199. Qualifica-
tionfollowinganyflashweldingWPSqualifiesthe
operatortofollowallflashweldingWPSs.
Productionweldsamplingtestsrequiredbyother
Sectionsmaybeusedtoqualifyweldingoperators.The
testmethod,extentoftests,andacceptancecriteriaof
theotherSectionsandQW-199.2shallbemetwhen
thisisdone.
QW-386DIFFUSIONWELDINGOPERATOR
QUALIFICATION
Eachweldingoperatorshallbetestedbyweldinga
procedurequalificationtestcouponinaccordancewith
QW-185.1. Thecouponshallbemetallographicallyexam-
inedinaccordancewithQW-185.3.
QW-387TUBE-TO-TUBESHEETWELDERAND
WELDINGOPERATORQUALIFICATION
(a)WhentheapplicableCodeSectionrequirestheuse
ofQW-193fortube-to-tubesheetdemonstrationmockup
qualificationtests,QW-193.2shallapply.
(b)Essentialperformancequalificationvariablesap-
plicableforeachweldingprocesslistedinQW-350or
QW-360shallapply,inadditiontoanyapplicablevariables
showninTableQW-388.
(c)Ifspecificqualificationtestrequirementsarenot
invokedbytheapplicableCodeSection,weldersand
weldingoperatorsshallbequalifiedwithoneofthe
followingmethods:
(1)ademonstrationmockuppertherequirementsof
QW-193.2, exceptthatforweldingoperators
(-a)theholepatterndoesnotneedtobedupli-
cated
(-b)thetypeormodelofequipmentisanessential
variable
(2)agroove-weldqualificationpertherequirements
ofQW-303.1
(3)afilletweldqualificationpertherequirementsof
QW-303.2whenatube-to-tubesheetjointismadewitha
filletweld
TableQW-388
EssentialVariablesforTube-to-Tubesheet
PerformanceQualification
(AllWeldingProcesses)
Paragraph BriefofVariables
QW-402
Joints
.31 ≤Ligamentsize
.32 ϕJointconfiguration
QW-403
BaseMetals
.16 ϕTubediameter
.32 ϕTubethickness
QW-404
FillerMetals
.58 ±Preplacedfillermetal
QW-409
Electrical
.10 ϕAmperage
Legend:
ϕChange ≤Lessthanorequalto
±Additionordeletion
QW-389CAPACITORDISCHARGEWELDING
OPERATORQUALIFICATION
Weldingoperatorsusinglow-energycapacitor
dischargeweldinginaccordancewithQW-289arenot
requiredtobequalified.
ASMEBPVC.IX-2023
82

ARTICLEIV
WELDINGDATA
QW-400VARIABLES
QW-401GENERAL
EachweldingvariabledescribedinthisArticleisappli-
cableasanessential,supplementaryessential,ornones-
sentialvariableforprocedurequalificationwhen
referencedinQW-250foreachspecificwelding
process.Essentialvariablesforperformancequalification
arereferencedinQW-350foreachspecificwelding
process.Achangefromoneweldingprocessto
anotherweldingprocessisanessentialvariableand
requiresrequalification.
QW-401.1
?23? SupplementaryEssentialVariable(Proce-
dure).Supplementaryessentialvariablesareinaddition
totheessentialvariablesforeachweldingprocess.
Whenaprocedurehasbeenpreviouslyqualifiedto
satisfyallrequirementsotherthantoughness,itis
thennecessaryonlytoprepareanadditionaltest
couponusingthesameprocedurewiththesameessential
variables,butadditionallywithalloftherequiredsupple-
mentaryessentialvariables,withthecouponlongenough
toprovidethenecessarytoughnessspecimens.
Whenaprocedurehasbeenpreviouslyqualifiedto
satisfyallrequirementsincludingtoughness,butone
ormoresupplementaryessentialvariablesare
changed,thenitisonlynecessarytoprepareanadditional
testcouponusingthesameweldingprocedureandthe
newsupplementaryessentialvariable(s),withthe
couponlongenoughtoprovidethenecessarytoughness
specimens.
Whenessentialvariablesarequalifiedbyoneormore
PQRsandsupplementaryessentialvariablesarequalified
byotherPQRs,therangesofessentialvariablesestab-
lishedbytheformerPQRsareonlyaffectedbythe
lattertotheextentspecifiedintheapplicablesupplemen-
taryessentialvariable(e.g.,essentialvariableQW-403.8
governstheminimumandmaximumthicknessofbase
metalqualified.Whensupplementaryessentialvariable
QW-403.6applies,itmodifiesonlytheminimumthickness
qualified,notthemaximum).
QW-401.2Theweldingdataincludestheweldingvari-
ablesgroupedasjoints,basemetals,fillermetals,position,
preheat,postweldheattreatment,gas,electricalcharac-
teristics,andtechnique.Forconvenience,variablesfor
eachweldingprocessaresummarizedinTable
QW-416forperformancequalification.
QW-402JOINTS
QW-402.1Achangeinthetypeofgroove(Vee-groove,
U-groove,single-bevel,double-bevel,etc.).
QW-402.2Theadditionordeletionofabacking.
QW-402.3Achangeinthenominalcompositionofthe
backing.
QW-402.4Thedeletionofthebackinginsingle-welded
groovewelds.Double-weldedgrooveweldsareconsid-
eredweldingwithbacking.
QW-402.5Theadditionofabackingorachangeinits
nominalcomposition.
QW-402.6Anincreaseinthefit-upgap,beyondthat
initiallyqualified.
QW-402.7Theadditionofbacking.
QW-402.8Achangeinnominalsizeorshapeofthe
studatthesectiontobewelded.
QW-402.9Instudwelding,achangeinshieldingasa
resultofferruleorfluxtype.
QW-402.10Achangeinthespecifiedrootspacing.
QW-402.11Theadditionordeletionofnonmetallic
retainersornonfusingmetalretainers.
QW-402.12Theweldingprocedurequalificationtest
shallduplicatethejointconfigurationtobeusedin
productionwithinthelimitslisted,exceptthatpipeor
tubetopipeortubemaybeusedforqualificationofa
pipeortubetoothershapes,andsolidroundtosolid
roundmaybeusedforqualificationofasolidroundto
othershapes
(a)anychangeexceeding±10degintheangle
measuredfortheplaneofeitherfacetobejoined,to
theaxisofrotation
(b)achangeincross-sectionalareaoftheweldjoint
greaterthan10%
(c)achangeintheoutsidediameterofthecylindrical
weldinterfaceoftheassemblygreaterthan±10%
(d)achangefromsolidtotubularcrosssectionatthe
jointorviceversaregardlessof(b)
ASMEBPVC.IX-2023
83

QW-402.13Achangeinthemethodofjoiningfrom
spottoprojectiontoseamorviceversa.
QW-402.14Anincreaseordecreaseofmorethan10%
inthespacingoftheweldswhentheyarewithintwo
diametersofeachother.
QW-402.15Achangeinthesizeorshapeoftheprojec-
tioninprojectionwelding.
QW-402.16Adecreaseinthedistancebetweenthe
approximateweldinterfaceandthefinalsurfaceofthe
productioncorrosion-resistantorhard-facingweld
metaloverlaybelowtheminimumthicknessqualified
asshowninFiguresQW-462.5(a) through
QW-462.5(e). Thereisnolimitonthemaximumthickness
forcorrosion-resistantorhard-facingweldmetaloverlay
thatmaybeusedinproduction.
QW-402.17Anincreaseinthethicknessoftheproduc-
tionsprayfusehard-facingdepositabovethethickness
depositedontheprocedurequalificationtestcoupon.
QW-402.18Forlapjoints,
(a)adecreaseofmorethan10%inthedistancetothe
edgeofthematerial
(b)anincreaseinthenumberoflayersofmaterial
(c)achangeinsurfacepreparationorfinishfromthat
qualified
QW-402.19Achangeinthenominaldiameteror
nominalthicknessfortubularcrosssections,oran
increaseinthetotalcrosssectionareabeyondthatqual-
ifiedforallnontubularcrosssections.
QW-402.20Achangeinthejointconfiguration.
QW-402.21Achangeinthemethodorequipmentused
tominimizeinternalflash.
QW-402.22Achangeintheendpreparationmethod.
QW-402.23Fortestcouponslessthan1
1

2
in.(38mm)
thick,theadditionofacoolingmedium(water,flowinggas,
etc.)tothebacksideoftheweld.Qualificationontest
couponslessthan1
1

2
in.(38mm)thickwithacooling
mediumonthebacksideoftheweldqualifiesbase
metalthicknessequaltoorgreaterthanthetest
couponthicknesswithandwithoutcoolant.
QW-402.24Qualificationwithacoolingmedium
(water,flowinggas,etc.)ontherootsideofatest
couponweldthatisweldedfromonesidequalifiesall
thicknessesofbasemetalwithcoolingmediumdown
tothethicknessofthetestcouponattherootor
1

2
in.
(13mm),whicheverisless.
QW-402.25Achangefromlapjointtogroovewelding,
andviceversa.
QW-402.26Areductionofmorethan5degintheedge
preparationbevelangleforgroovewelds.
QW-402.27Achangeinmaterialoffixedbackinganvils
(whenused).Achangeinbackinganvildesignthataffects
theweldcoolingrate(e.g.,achangefromair-cooledto
water-cooled,andviceversa).Thisvariableisnotappli-
cabletotube-to-tubesheetordouble-sidedweldswith
overlappingfusionzones,orweldscompletedusing
self-reactingpins.
QW-402.28Achangeinjointdesignfromthatquali-
fied,includingedgepreparationgeometry(e.g.,achange
fromsquarebuttedgetobevelededge),reductionsinthe
smallestjointpathradiustolessthantheshoulderradius,
orjointpathscrossingthemselvesoranotherHAZ.
QW-402.29Achangeinjointspacinggreaterthan
±10%ofthequalificationtestcouponthickness.For
WPSsqualifiedusingintimateedgecontact,the
maximumallowablejointspacingis
1

16
in.(1.5mm).
QW-402.31Adecreaseof10%ormoreinthespecified
widthoftheligamentbetweentubeholeswhenthespeci-
fiedwidthoftheligamentislessthanthegreaterof
3

8
in.
(10mm)orthreetimesthespecifiedtubewallthickness.
QW-402.32Fortube-to-tubesheetwelding:an
increaseinthedepthbymorethan10%,anincrease
ordecreaseinthepreparationangleoftheweld
groovebymorethan5deg,orachangeinthegroovetype.
QW-403BASEMETALS
QW-403.1Achangefromabasemetallistedunderone
P-NumberinTableQW/QB-422toametallistedunder
anotherP-Numberortoanyotherbasemetal.When
jointsaremadebetweentwobasemetalsthathave
differentP-Numbers,aprocedurequalificationshallbe
madefortheapplicablecombinationofP-Numbers,
eventhoughqualificationtestshavebeenmadefor
eachofthetwobasemetalsweldedtoitself.
QW-403.2Themaximumthicknessqualifiedisthe
thicknessofthetestcoupon.
QW-403.3
(a)Forfullpenetrationsingle-sidedweldswithout
backingwheretheverificationofpenetrationcanbe
made,anincreaseofmorethan20%inbasemetalthick-
nesswhenthetestcouponthicknessislessthanorequalto
1in.(25mm),andmorethan10%inbasemetalthickness
whenthetestcouponthicknessisgreaterthan1in.(25
mm).
(b)Forallotherwelds,anincreaseofmorethan10%in
basemetalthicknesswhenthetestcouponthicknessis
lessthanorequalto1in.(25mm),andmorethan5%
inbasemetalthicknesswhenthetestcouponthickness
isgreaterthan1in.(25mm).
QW-403.4Weldingprocedurequalificationsshallbe
madeusingabasemetalofthesametypeorgradeor
anotherbasemetallistedinthesamegroup(see
ASMEBPVC.IX-2023
84

TableQW/QB-422) asthebasemetaltobeusedinproduc-
tionwelding.Whenjointsaretobemadebetweenbase
metalsfromtwodifferentgroups,aprocedurequalifica-
tionmustbemadefortheapplicablecombinationofbase
metals,eventhoughprocedurequalificationtestshave
beenmadeforeachofthetwobasemetalsweldedtoitself.
QW-403.5Weldingprocedurespecificationsshallbe
qualifiedusingoneofthefollowing:
(a)thesamebasemetal(includingtypeorgrade)tobe
usedinproductionwelding
(b)forferrousmaterials,abasemetallistedinthesame
P-NumberGroupNumberinTableQW/QB-422asthe
basemetaltobeusedinproductionwelding
(c)fornonferrousmaterials,abasemetallistedwith
thesameP-NumberUNSNumberinTableQW/QB-422as
thebasemetaltobeusedinproductionwelding
ForferrousmaterialsinTableQW/QB-422, aprocedure
qualificationshallbemadeforeachP-NumberGroup
Numbercombinationofbasemetals,eventhoughproce-
durequalificationtestshavebeenmadeforeachofthetwo
basemetalsweldedtoitself.If,however,twoormore
qualificationrecordshavethesameessentialandsupple-
mentaryessentialvariables,exceptthatthebasemetals
areassignedtodifferentGroupNumberswithinthesame
P-Number,thenthecombinationofbasemetalsisalso
qualified.Inaddition,whenbasemetalsoftwodifferent
GroupNumberswithinthesameP-Numberarequalified
usingasingletestcoupon,thatcouponqualifiesthe
weldingofthosetwoGroupNumberswithinthesame
P-Numbertothemselvesaswellastoeachotherusing
thevariablesqualified.
Thisvariabledoesnotapplywhentoughnesstestingof
theheat-affectedzoneisnotrequiredbythereferencing
code,standard,orspecification.
QW-403.6Theminimumbasemetalthicknessquali-
fiedisthethicknessofthetestcouponTor
5

8
in.(16mm),
whicheverisless.However,whereTis
1

4
in.(6mm)or
less,theminimumthicknessqualifiedis
1

2
T.Thisvariable
doesnotapplyforanyofthefollowingconditions:
(a)WPSisqualifiedwithaheattreatmentabovethe
uppertransformationtemperature.
(b)WPSisforweldingausteniticorP-10Hmaterialand
isqualifiedwithasolutionheattreatment.
(c)BasemetalsareassignedtoP-No.8,P-Nos.21
through26,andP-Nos.41through49.
QW-403.8Achangeinbasemetalthicknessbeyond
therangequalifiedinQW-451, exceptasotherwise
permittedbyQW-202.4(b).
QW-403.9Forsingle-passormultipassweldingin
whichanypassisgreaterthan
1

2
in.(13mm)thick,
anincreaseinbasemetalthicknessbeyond1.1times
thatofthequalificationtestcoupon.
QW-403.10
?23?
DELETED
QW-403.11BasemetalsspecifiedintheWPSshallbe
qualifiedbyaprocedurequalificationtestthatwasmade
usingbasemetalsinaccordancewithQW-424.
QW-403.12Achangefromabasemetallistedunder
oneP-NumberofTableQW/QB-422toabasemetallisted
underanotherP-Number.Whenjointsaremadebetween
twobasemetalsthathavedifferentP-Numbers,requal-
ificationisrequiredeventhoughthetwobasemetalshave
beenindependentlyqualifiedusingthesameprocedure.
Whenthemelt-intechniqueisusedforjoiningP-No.1,P-
No.3,P-No.4,andP-No.5A,aprocedurequalificationtest
withoneP-NumbermetalshallalsoqualifyforthatP-
NumbermetalweldedtoeachofthelowerP-Number
metals,butnotviceversa.
QW-403.15Weldingprocedurequalificationsforelec-
tronbeamweldingshallbemadeusingabasemetalofthe
sametypeorgradeoranotherbasemetallistedinthe
sameP-Number(andthesamegroupwheregiven—
seeTableQW/QB-422) asthebasemetaltobeusedin
productionwelding.Whenjointsaretobemade
betweenbasemetalsfromtwodifferentP-Numbers
(ortwodifferentgroups),aprocedurequalification
mustbemadefortheapplicablecombinationofbase
metalseventhoughprocedurequalificationtestshave
beenmadeforeachofthetwobasemetalsweldedtoitself.
QW-403.16Achangeinthepipediameterbeyondthe
rangequalifiedinQW-452, exceptasotherwisepermitted
inQW-303.1, QW-303.2, QW-381.2(c), orQW-382.1(f).
Fortube-to-tubesheetwelding:anincreaseordecrease
greaterthan10%ofthespecifiedtubediameter.
(a)Foragrooveweldattachingaset-onnozzleor
branch(withtheweldpreparationonthenozzleor
branch),therangequalifiedfromTableQW-452.3shall
bebasedonthenozzleorbranchpipeO.D.
(b)Foragrooveweldattachingaset-innozzleor
branch(withtheweldpreparationontheshell,head,
orrunpipe),therangequalifiedfromTableQW-452.3
shallbebasedontheshell,head,orrunpipeO.D.
QW-403.17Instudwelding,achangeincombinationof
basemetallistedunderoneP-Number in
TableQW/QB-422andstudmetalP-Number(as
definedinthefollowingNote),ortoanyotherbase
metalandstudmetalcombination.
NOTE:Studmetalshallbeclassifiedbynominalchemicalcompo-
sitionandcanbeassignedaP-Numberwhenitmeetsthenominal
compositionofanyoneoftheP-Numbermetals.
QW-403.18AchangefromoneP-Numbertoanyother
P-Number ortoabasemetalnotlistedin
TableQW/QB-422, exceptaspermittedinQW-423,
andinQW-420. Fortube-to-tubesheetwelding:a
ASMEBPVC.IX-2023
85

changeintheP-NumberorA-Numberofthetubesheet
claddingmaterial(ifthecladdingmaterialispartof
theweld).
QW-403.19Achangetoanotherbasematerialtypeor
grade(typeorgradearematerialsofthesamenominal
chemicalanalysisandmechanicalpropertyrange,even
thoughofdifferentproductform),ortoanyotherbase
materialtypeorgrade.Whenjointsaremadebetween
twodifferenttypesorgradesofbasematerial,aprocedure
qualificationmustbemadefortheapplicablecombina-
tionsofmaterials,eventhoughprocedurequalification
testshavebeenmadeforeachofthetwobasematerials
weldedtoitself.
QW-403.20Ifthechemicalcompositionoftheweld
metaloverlayisspecifiedintheWPS,achangeinthe
P-NumberlistedinTableQW/QB-422toanotherP-
Numberorunlistedbasemetal,orachangeinGroup
NumberforP-No.10orP-No.11basemetals.
Ifthechemicalcompositionoftheweldmetaloverlayis
notspecifiedintheWPS,qualificationonP-No.5Aorany
lowerP-Numberbasemetalalsoqualifiesforweldmetal
overlayonalllowerP-Numberbasemetals.
QW-403.21Theadditionordeletionofacoating,
platingorcladding,orachangeinthenominalchemical
analysisorthicknessrangeoftheplatingorcladding,ora
changeintypeofcoatingasspecifiedintheWPS.
QW-403.22Achangeinthebasemetalthickness
exceeding10%ofthethicknessofthetotaljointfrom
thatqualified.
QW-403.23Achangeinbasemetalthicknessbeyond
therangequalifiedinTableQW-453.
QW-403.24Achangeinthespecification,type,or
gradeofthebasemetal.Whenjointsaretobemade
betweentwodifferentbasemetals,aprocedurequalifica-
tionmustbemadefortheapplicablecombinationeven
thoughprocedurequalificationshavebeenmadefor
eachofthetwobasemetalsweldedtothemselves.
QW-403.25Weldingprocedurequalificationsshallbe
madeusingabasemetalofthesameP-NumberandGroup
Numberasthebasemetaltobetemperbeadwelded.
Whenjointsaretobemadebetweenbasemetalsfrom
twodifferentP-NumberandGroupNumbercombinations,
atemperbeadprocedurequalificationmustbemadefor
eachbasemetalP-NumberandGroupNumbercombina-
tiontobeusedinproduction;thismaybedoneinseparate
testcouponsorincombinationonasingletestcoupon.
WhenbasemetalsofdifferentP-NumberandGroup
Numbercombinationsaretestedinthesamecoupon,
theweldingvariablesutilizedandtestresultsoneach
memberofthecouponshallbedocumentedindepen-
dentlybutmaybereportedonthesamequalification
record.Wheretemperbeadweldingistobeappliedto
onlyonememberofajoint(e.g.,ontheP-No.1
memberofajointbetweenP-No.1andP-No.8
metals)orwherecladdingisbeingappliedorrepaired
usingtemperbeadtechniques,qualificationinaccordance
withQW-290isrequiredonlyfortheportionoftheWPS
thatappliestoweldingonthemembertobetemperbead
welded.
QW-403.26Anincreaseinthebasemetalcarbon
equivalentusingthefollowingequation:= + +
+ +
+
+
CEC
Mn
6
CrMoV
5
NiCu
15
QW-403.27Themaximumthicknessqualifiedisthe
thicknessofthetestcoupon,T,oritisunlimitedifthe
testcouponis1
1

2
in.(38mm)thickorthicker.
However,whereTis
1

4
in.(6mm)orless,the
maximumthicknessqualifiedis2T.Thislimitation
appliestofilletweldsaswellastogroovewelds.
QW-403.28Achangetoanotherbasemetaltype,
grade,orUNSnumber.
QW-403.29Achangeinthesurfacefinishasdefinedby
thematerialspecificationorestablishedsurfacerough-
nessrangeasmeasuredinaccordancewithASME
B46.1–2006.
QW-403.30Achangeinbasemetalthicknessgreater
than20%
(a)ofthetestcouponthicknessforfixed-pinand
retracting-pinrotatingtools
(b)beyondtheminimumandmaximumthicknessor
thicknesstransitionslopesofthetestcouponforself-
reactingrotatingtools
QW-403.32Fortubesofspecifiedwallthicknessof
0.100in.(2.5mm)orless,achangeintubewallthickness
toincreaseittomorethan2Tortodecreaseittolessthan
1

2
T.Fortubesofspecifiedwallthicknessgreaterthan
0.100in.(2.5mm),onlyonequalificationtestisrequired.
QW-403.33AchangeintheP-Numberofeitherthe
tubeortubesheetmaterial.Wherethecladdingor
overlaymaterialispartoftheweld,achangeintheP-
NumberorA-Numberorinthenominalcomposition
ofthetubesheetcladdingoroverlaymaterialwhena
P-NumberorA-Numberisnotassigned.
QW-403.34Achangeinthespecifiedtubewallthick-
nessordiametergreaterthan10%foralldiametersand
wallthicknesses.
QW-403.35
?23?Achangefromabasemetallistedunder
oneP-NumberinTableQW/QB-422toabasemetallisted
underanotherP-Numberortoanunassignedbasemetal.
Inaddition,forbasemetalslistedinP-Nos.1through7and
9Athrough15F,anincreaseinthecarbonequivalentas
definedbytheformulainQW-403.26. Whenjointsare
madebetweenbasemetalswithdifferentP-Numbers
orunassignedbasemetals,aprocedurequalification
ASMEBPVC.IX-2023
86

shallbemadefortheapplicablecombinationofP-Number
orunassignedbasemetal,eventhoughqualificationtests
havebeenmadeforeachofthetwobasemetalsweldedto
themselves.
QW-403.36
?23? Achangeinthelayerwidthbeyondthe
rangequalified,asshowninTableQW-613.
QW-404FILLERMETALS
QW-404.1Anincreaseofgreaterthan10%inthe
cross-sectionalareaofthefillermetaladded(excluding
buttering)orinthewire-feedspeedbeyondthatqualified.
QW-404.2Adecreaseinthethicknessorchangein
nominalspecifiedchemicalanalysisofweldmetal
butteringbeyondthatqualified.(Butteringorsurfacing
isthedepositionofweldmetalononeorbothfacesof
thejointpriortopreparationofthejointforfinalelectron
beamwelding.)
QW-404.3Achangeinthesizeofthefillermetal.
QW-404.4 AchangefromoneF-Numberin
TableQW-432toanyotherF-Numberortoanyother
fillermetalnotlistedinTableQW-432.
QW-404.5(Applicableonlytoferrousmetals.)A
changeinthechemicalcompositionoftheweld
depositfromoneA-NumbertoanyotherA-Numberin
TableQW-442. QualificationwithA-No.1shallqualify
forA-No.2andviceversa.
Theweldmetalchemicalcompositionmaybedeter-
minedbyanyofthefollowing:
(a)Forallweldingprocesses—fromthechemical
analysisofthewelddeposittakenfromtheprocedure
qualificationtestcoupon.
(b)ForSMAW—fromthechemicalanalysisofanundi-
lutedwelddepositsuchasthatpreparedaccordingtoSFA-
5.5fillermetalspecification,includingthechemical
compositionasreportedeitherinthefillermetalspeci-
ficationorthemanufacturer’sorsupplier’scertificateof
conformance.
(c)ForGTAW,LBW,andPAW—fromthechemical
analysisofanundilutedwelddepositsuchasthat
preparedaccordingtoSFA-5.28GTAWfillermetalspec-
ificationorfromthechemicalcompositionofafully
metallicsolidweldingconsumableasreportedin
eitherthefillermetalspecificationorthemanufacturer’s
orsupplier’scertificateofconformance.
(d)ForGMAWandEGW—fromthechemicalanalysis
ofanundilutedwelddepositsuchasthatprepared
accordingtoSFA-5.28fillermetalspecification,including
themanufacturer’sorsupplier’scertificateofconfor-
mancewhentheshieldinggasusedwasthesameas
thatusedtoweldtheprocedurequalificationtestcoupon.
(e)ForSAW—fromthechemicalanalysisofanundi-
lutedwelddepositsuchasthatpreparedaccordingtoSFA-
5.23multiplepassfillermetalspecification,includingthe
manufacturer’sorsupplier’scertificateofconformance
whenthefluxusedwasthesameasthatusedtoweld
theprocedurequalificationtestcoupon.
InlieuofanA-Numberdesignation,thenominalchem-
icalcompositionofthewelddepositshallbeindicatedon
theWPSandonthePQR.Designationofnominalchemical
compositionmayalsobebyreferencetotheAWSclassi-
ficationexceptforthe“G”suffixclassification,bythe
manufacturer’stradename,orbyotherestablished
procurementdocuments.
QW-404.6Achangeinthenominalsizeoftheelec-
trodeorelectrodesspecifiedintheWPS.
QW-404.8Additionordeletion,orachangeofmore
than10%inthenominalamountorcompositionof
supplementarydeoxidationmaterial(inadditionto
fillermetal)beyondthatqualified.
QW-404.9
(a)Achangeintheindicatorforminimumtensile
strength(e.g.,the7inF7A2-EM12K)whentheflux
wirecombinationisclassifiedinSectionII,PartC.
(b)Achangeineitherthefluxtradenameorwiretrade
namewhenneitherthefluxnorthewireisclassifiedin
SectionII,PartC.
(c)Achangeinthefluxtradenamewhenthewireis
classifiedinSectionII,PartCbutthefluxisnotclassified.A
changeinthewireclassificationwithintherequirements
ofQW-404.5doesnotrequirerequalification.
(d)AchangeinthefluxtradenameforA-No.8deposits.
QW-404.10Wherethealloycontentoftheweldmetal
islargelydependentuponthecompositionofthefluxused,
anychangeinanypartoftheweldingprocedurewhich
wouldresultintheimportantalloyingelementsinthe
weldmetalbeingoutsideofthespecificationrangeof
chemistrygivenintheWeldingProcedureSpecification.
QW-404.12
?23?Achangeinanyofthefollowing:
(a)fillermetalclassificationwithinanSFAspecifica-
tion
(b)tradenameofthefillermetalwhenthefillermetalis
notclassifiedwithinanSFAspecification
(c)tradenameofthefillermetalwhenthefillermetal
classificationwithinanSFAspecificationincludesa“G”
suffix
Whenafillermetalconformstoafillermetalclassifica-
tionwithinanSFAspecification,exceptforthe“G”suffix
classification,requalificationisnotrequiredifachangeis
madeinanyofthefollowing:
–fromafillermetalthatisdesignatedasmoisture-
resistanttoonethatisnotdesignatedasmoisture-resis-
tantandviceversa(e.g.,fromE7018RtoE7018)
–fromonediffusiblehydrogenleveltoanother(e.g.,
fromE7018-H8toE7018-H16)
ASMEBPVC.IX-2023
87

–forcarbon,lowalloy,andstainlesssteelfillermetals
havingthesameminimumtensilestrengthandthesame
nominalchemicalcomposition,achangefromonelow
hydrogencoatingtypetoanotherlowhydrogen
coatingtype(e.g.,achangeamongEXX15,16,or18or
EXXX15,16,or17classifications)
–fromoneposition-usabilitydesignationtoanother
forflux-coredelectrodes(e.g.,achangefromE70T-1to
E71T-1orviceversa)
–fromaclassificationthatrequirestoughnesstesting
tothesameclassificationwhichhasasuffixwhichindi-
catesthattoughnesstestingwasperformedatalower
temperatureorexhibitedgreatertoughnessatthe
requiredtemperatureorboth,ascomparedtotheclassi-
ficationwhichwasusedduringprocedurequalification
(e.g.,achangefromE7018toE7018-1)
–fromtheclassificationqualifiedtoanotherfiller
metalwithinthesameSFAspecificationwhenthe
weldmetalisexemptfromtoughnesstestingbyother
Sections
Thisexemptiondoesnotapplytohard-facingandcorro-
sion-resistantoverlays
QW-404.14Thedeletionoradditionoffillermetal.
QW-404.15 AchangefromoneF-Numberin
TableQW-432toanyotherF-Numberortoanyother
fillermetal,exceptaspermittedinQW-433.
QW-404.17Achangeinthetypeoffluxorcomposition
oftheflux.
QW-404.18Achangefromwiretoplateelectrodes,
andviceversa.
QW-404.19Achangefromconsumableguideto
nonconsumableguide,andviceversa.
QW-404.20Anychangeinthemethodbywhichfiller
metalisadded,suchaspreplacedshim,topstrip,wire,
wirefeed,orpriorweldmetalbutteringofoneorboth
jointfaces.
QW-404.21Forfillermetaladditions,anychangefrom
thenominalspecifiedanalysisofthefillermetalqualified.
QW-404.22Theomissionoradditionofconsumable
inserts.Qualificationinasingle-weldedbuttjoint,withor
withoutconsumableinserts,qualifiesforfilletweldsand
single-weldedbuttjointswithbackingordouble-welded
buttjoints.ConsumableinsertsthatconformtoSFA-5.30,
exceptthatthechemicalanalysisoftheinsertconformsto
ananalysisforanybarewiregiveninanySFAspecification
orAWSClassification,shallbeconsideredashavingthe
sameF-Numberasthatbarewireasgivenin
TableQW-432.
QW-404.23Achangefromoneofthefollowingfiller
metalproductformstoanother:
(a)bare(solidormetalcored)
(b)fluxcored
(c)fluxcoated(solidormetalcored)
(d)powder
QW-404.24Theaddition,deletion,orchangeofmore
than10%inthevolumeofsupplementalfillermetal.
QW-404.27Wherethealloycontentoftheweldmetal
islargelydependentuponthecompositionofthesupple-
mentalfillermetal(includingpowderfillermetalfor
PAW),anychangeinanypartoftheweldingprocedure
thatwouldresultintheimportantalloyingelementsinthe
weldmetalbeingoutsideofthespecificationrangeof
chemistrygivenintheWeldingProcedureSpecification.
QW-404.29Achangeinthefluxtradenameanddes-
ignation.
QW-404.30Achangeindepositedweldmetalthick-
nessbeyondthatqualifiedinaccordancewithQW-451for
procedurequalificationorQW-452forperformancequali-
fication,exceptasotherwisepermittedinQW-303.1and
QW-303.2. Whenawelderisqualifiedusingvolumetric
examination,themaximumthicknessstatedinTable
QW-452.1(b)applies.
QW-404.31Themaximumthicknessqualifiedisthe
thicknessofthetestcoupon.
QW-404.32Forthelowvoltageshort-circuitingtypeof
gasmetal-arcprocesswhenthedepositedweldmetal
thicknessislessthan
1

2
in.(13mm),anincreaseindepos-
itedweldmetalthicknessbeyond1.1timesthatofthe
qualificationtestdepositedweldmetalthickness.For
weldmetalthicknessesof
1

2
in.(13mm)andgreater,
useTableQW-451.1, TableQW-451.2, orTables
QW-452.1(a)andQW-452.1(b), asapplicable.
QW-404.33Achangeinthefillermetalclassification
withinanSFAspecification,or,ifnotconformingtoafiller
metalclassificationwithinanSFAspecification,achange
inthemanufacturer’stradenameforthefillermetal.When
optionalsupplementaldesignators,suchasthosewhich
indicatemoistureresistance(i.e.,XXXXR),diffusible
hydrogen(i.e.,XXXXH16,H8,etc.),andsupplemental
toughnesstesting(i.e.,XXXX-1orEXXXXM),arespecified
ontheWPS,onlyfillermetalswhichconformtotheclas-
sificationwiththeoptionalsupplementaldesignator(s)
specifiedontheWPSshallbeused.
QW-404.34Achangeinfluxtype(i.e.,neutraltoactive
orviceversa)formultilayerdepositsinP-No.1materials.
QW-404.35Achangeintheflux-wireclassificationora
changeineithertheelectrodeorfluxtradenamewhenthe
flux-wirecombinationisnotclassifiedtoanSFAspecifi-
cation.Requalificationisnotrequiredwhenaflux-wire
combinationconformstoanSFAspecificationandthe
changeinclassificationis
(a)fromonediffusiblehydrogenleveltoanother(e.g.,a
changefromF7A2-EA1-A1-H4toF7A2-EA1-A1-H16),or
ASMEBPVC.IX-2023
88

(b)toalargernumberintheindicatorfortoughness,
indicatingclassificationatalowertoughnesstesting
temperature(e.g.,achangefromF7A2-EM12Kto
F7A4-EM12K)
Thisvariabledoesnotapplywhentheweldmetalis
exemptfromtoughnesstestingbyotherSections.This
exemptiondoesnotapplytohard-facingandcorro-
sion-resistantoverlays.
QW-404.36Whenfluxfromrecrushedslagisused,
eachbatchorblend,asdefinedinSFA-5.01,shallbe
testedinaccordancewithSectionII,PartCbyeither
themanufacturerortheuser.
QW-404.37Achangeinthecompositionofthedepos-
itedweldmetalfromoneA-NumberinTableQW-442to
anyotherA-Number,ortoananalysisnotlistedinthe
table.AchangeintheUNSnumberforeachAWSclassi-
ficationofA-No.8orA-No.9analysisofTableQW-442, or
eachnonferrousalloyinTableQW-432, shallrequiresepa-
rateWPSqualification.A-Numbersmaybedeterminedin
accordancewithQW-404.5.
QW-404.38Achangeinthenominalelectrode
diameterusedforthefirstlayerofdeposit.
QW-404.39Forsubmerged-arcweldingandelectro-
slagwelding,achangeinthenominalcompositionortype
offluxused.Requalificationisnotrequiredforachangein
fluxparticlesize.
QW-404.41Achangeofmorethan10%inthe
powderedmetalfeedraterecordedonthePQR.
QW-404.42Achangeofmorethan5%intheparticle
sizerangeofthepowder.
QW-404.43Achangeinthepowderedmetalparticle
sizerangerecordedonthePQR.
QW-404.44Achangefromahomogeneouspowdered
metaltoamechanicalmixedpowderedmetalorvice
versa.
QW-404.46Achangeinthepowderfeedraterange
qualified.
QW-404.47Achangeofmorethan10%inthefiller
metalsizeand/orpowdermetalparticlesize.
QW-404.48Achangeofmorethan10%inthepowder
metaldensity.
QW-404.49Achangeofmorethan10%inthefiller
metalorpowdermetalfeedrate.
QW-404.50Theadditionordeletionoffluxtotheface
ofaweldjointforthepurposeofaffectingweldpenetra-
tion.
QW-404.51Themethodofcontrolofmoisturepickup
duringstorageanddistributionforSMAWandGMAW-FC
electrodesandfluxforSAW(e.g.,purchasinginhermeti-
callysealedcontainersandstorageinheatedovens,
controlleddistributiontime,high-temperaturebaking
priortouse).
QW-404.52Anincreaseinthediffusiblehydrogen
designator(e.g.,fromE7018-H8toE7018-H16)orto
nodiffusiblehydrogendesignator.
QW-404.53Theadditionordeletionoffillermetaland,
whenused,achangeinthefillermetalnominalcomposi-
tion.
QW-404.55Anincreaseinthethicknessorwidthof
preplacedfillermetal.
QW-404.56Achangetoanothertypeorgradeof
preplacedfillermetal(typeorgradearematerialsof
thesamenominalchemicalanalysisandmechanicalprop-
ertyrange,eventhoughofdifferentproductform).
QW-404.57Anincreaseinthenominalthicknessor
widthoftheelectrodeforstripfillermetalsusedwith
theSAWandESWprocessesforcorrosion-resistant
andhard-facingweldmetaloverlay.
QW-404.58Theadditionordeletionofpreplacedfiller
metal.
QW-404.59Iffillermetalisadded,achangeintheA-
Numberofthewelddepositorachangeinthenominal
compositionofthedepositedweldmetalwhenanA-
Numberisnotassigned.
QW-405POSITIONS
QW-405.1Theadditionofotherweldingpositions
thanthosealreadyqualified.seeQW-120, QW-130,
QW-203, andQW-303.
QW-405.3Achangefromupwardtodownward,or
fromdownwardtoupward,intheprogressionspecified
foranypassofaverticalweld,exceptthatthecoveror
washpassmaybeupordown.Therootpassmayalsobe
runeitherupordownwhentherootpassisremovedto
soundweldmetalinthepreparationforweldingthe
secondside.
QW-405.4Exceptasspecifiedbelow,theadditionof
otherweldingpositionsthanalreadyqualified.
(a)Qualificationinthehorizontal,vertical,oroverhead
positionshallalsoqualifyfortheflatposition.Qualifica-
tioninthehorizontalfixedposition,5G,shallqualifyfor
theflat,vertical,andoverheadpositions.Qualificationin
thehorizontal,vertical,andoverheadpositionsshall
qualifyforallpositions.Qualificationintheinclined
fixedposition,6G,shallqualifyforallpositions.
(b)Anorganizationwhodoesproductionweldingina
particularorientationmaymakethetestsforprocedure
qualificationinthisparticularorientation.Suchqualifica-
tionsarevalidonlyforthepositionsactuallytested,except
thatanangulardeviationof±15degispermittedinthe
ASMEBPVC.IX-2023
89

inclinationoftheweldaxisandtherotationoftheweld
faceasdefinedinFigureQW-461.1. Atestspecimenshall
betakenfromthetestcouponineachspecialorientation.
(c)Forhard-facingandcorrosion-resistantweldmetal
overlay,qualificationinthe3G,5G,or6Gpositions,where
5Gor6Gpipecouponsincludeatleastonevertical
segmentcompletedutilizingtheup-hillprogressionor
a3Gplatecouponiscompletedutilizingtheup-hill
progression,shallqualifyforallpositions.Chemical
analysis,hardness,macro-etch,andatleasttwoofthe
bendtests,asrequiredinTableQW-453, shallbe
removedfromtheverticaluphilloverlaidsegmentas
showninFigureQW-462.5(b).
(d)Achangefromtheverticaldowntoverticalup-hill
progressionshallrequirerequalification.
QW-406PREHEAT
QW-406.1Adecreaseofmorethan100°F(55°C)inthe
preheattemperaturequalified.Theminimumtempera-
tureforweldingshallbespecifiedintheWPS.
QW-406.2Achangeinthemaintenanceorreductionof
preheatuponcompletionofweldingpriortoanyrequired
postweldheattreatment.
QW-406.3Anincreaseofmorethan100°F(55°C)in
themaximuminterpasstemperaturerecordedonthe
PQR.Thisvariabledoesnotapplyforanyofthefollowing
conditions:
(a)WPSisqualifiedwithaheattreatmentabovethe
uppertransformationtemperature.
(b)WPSisforweldingausteniticorP-10Hmaterialand
isqualifiedwithasolutionheattreatment.
(c)BasemetalsareassignedtoP-No.8,P-Nos.21
through26,andP-Nos.41through49.
QW-406.4Adecreaseofmorethan100°F(55°C)inthe
preheattemperaturequalifiedoranincreaseinthe
maximuminterpasstemperaturerecordedonthePQR.
Theminimumtemperatureforweldingshallbespecifed
intheWPS.
QW-406.5Achangeinthemaintenanceorreductionof
preheatuponcompletionofsprayingandpriortofusing.
QW-406.7Achangeofmorethan10%intheamplitude
ornumberofpreheatingcyclesfromthatqualified,orif
otherpreheatingmethodsareemployed,achangeinthe
preheatingtemperatureofmorethan25°F(15°C).
QW-406.9Adecreaseinthepreheattemperaturefrom
thatachievedonthetestcouponandrecordedonthePQR.
QW-406.10Theminimumpreheatingsoakingtime
priortothestartofwelding.
QW-406.11Theadditionordeletionofapostweld
hydrogenbakeout.Whenspecified,theminimum
soakingtemperatureandtimeshallbespecified.
QW-406.12
?23?Anincreaseintheinterpasstemperature
ofahighheatinput/highinterpasstemperaturebracketed
qualificationoradecreaseofmorethan50°F(28°C)inthe
interpasstemperatureofalowheatinput/lowinterpass
temperaturebracketedqualification.Thisvariabledoes
notapplywhenaWPSisqualifiedwithaPWHTabove
theuppertransformationtemperature.
QW-407POSTWELDHEATTREATMENT
QW-407.1Aseparateprocedurequalificationis
requiredforeachofthefollowing:
(a)ForP-Numbers1through6and9through15F
materials,thefollowingpostweldheattreatmentcondi-
tionsapply:
(1)noPWHT
(2)PWHTbelowthelowertransformationtempera-
ture
(3)PWHTabovetheuppertransformationtempera-
ture(e.g.,normalizing)
(4)PWHTabovetheuppertransformationtempera-
turefollowedbyheattreatmentbelowthelowertrans-
formationtemperature(e.g.,normalizingorquenching
followedbytempering)
(5)PWHTbetweentheupperandlowertransforma-
tiontemperatures
(b)Forallothermaterials,thefollowingpostweldheat
treatmentconditionsapply:
(1)noPWHT
(2)PWHTwithinaspecifiedtemperaturerange
QW-407.2Achangeinthepostweldheattreatment
(seeQW-407.1) temperatureandtimerange
Theprocedurequalificationtestshallbesubjectedto
PWHTessentiallyequivalenttothatencounteredinthe
fabricationofproductionwelds,includingatleast80%
oftheaggregatetimesattemperature(s).ThePWHT
totaltime(s)attemperature(s)maybeappliedinone
heatingcycle.ThisvariabledoesnotapplytoaWPSqual-
ifiedforweldingbasemetalsthatareassignedtoP-No.8,
P-Nos.21through26,andP-Nos.41through49.
QW-407.6Achangeinpostweldheattreatmentcondi-
tioninQW-407.1oranincreaseof25%ormoreintotal
timeatpostweldheattreatingtemperature.
QW-407.7Achangeintheheattreatmenttemperature
rangequalifiedifheattreatmentisappliedafterfusing.
QW-407.8AseparatePQRisrequiredforeachofthe
following:
(a)noPWHT
(b)achangeofmorethan10%inthenumberofPWHT
heatingcurrentcyclesfollowingtheweldingcycle
(c)PWHTwithinaspecifiedtemperatureandtime
rangeifheattreatmentisperformedseparatelyfrom
theweldingoperation
ASMEBPVC.IX-2023
90

QW-407.9Aseparateprocedurequalificationis
requiredforeachofthefollowing:
(a)Forweldcorrosion-resistantoverlayofA-No.8on
allbasematerials,achangeinpostweldheattreatment
conditioninQW-407.1, orwhenthetotaltimeatpostweld
heattreatmentencounteredinfabricationexceeds20hr,
anincreaseof25%ormoreintotaltimeatpostweldheat
treatingtemperature.
(b)Forweldcorrosion-resistantoverlayofA-No.9on
allbasematerials,achangeinpostweldheattreatment
conditioninQW-407.1, oranincreaseof25%ormore
intotaltimeatpostweldheattreatingtemperature.
(c)Forallotherweldcorrosion-resistantoverlayson
allbasematerials,achangeinpostweldheattreatment
conditioninQW-407.1.
QW-407.10TheadditionordeletionofPWHT,ora
changeof±45°F(±25°C)inPWHTtemperatureoran
increaseintheholdingtimebymorethan25%or
changeinthemethodofcooling(e.g.,furnace,air,quench).
QW-408GAS
QW-408.1Theadditionordeletionoftrailinggasand/
orachangeinitscomposition.
QW-408.2
?©W? Aseparateprocedurequalificationis
requiredforeachofthefollowing:
(a)theadditionoromissionofshieldinggas.
(b)achangeinshieldinggascomposition,withthe
followingexception:ElectrodesclassifiedtoSFA-5.18,
SFA-5.20,SFA-5.28,orSFA-5.29thatincludeanoxygen
equivalentshieldinggasrangedesignator(e.g.,“OE
50/4”intheER70S-6OE50/4electrodeclassification)
donotrequireaseparatequalificationwhentheshielding
gasoxygenequivalentiswithintherangelistedintheclas-
sificationofthatelectrode.Theshieldinggasoxygen
equivalentshallbecalculatedasfollows:= + ×oxygenequivalent%oxygen(0.5%carbon dioxide)
ThegasdesignationofSFA-5.32maybeusedtospecify
theshieldinggascomposition.
QW-408.3Achangeinthespecifiedflowraterangeof
theshieldinggasormixtureofgases.
QW-408.4Achangeinthecompositionoftheorificeor
shieldinggas.
QW-408.5Theadditionordeletionofbackinggas,a
changeinbackinggascomposition,orachangeinthe
specifiedflowraterangeofthebackinggas.
QW-408.6Achangeofenvironmentshieldingsuchas
fromvacuumtoaninertgas,orviceversa.
QW-408.7Achangeinthetypeoffuelgas.
QW-408.8Theomissionofbackinggasexceptthatre-
qualificationisnotrequiredwhenweldingasingle-
weldedbuttjointwithabackingstriporadouble-
weldedbuttjointorafilletweld.Thisexceptiondoes
notapplytoP-No.51throughP-No.53,P-No.61
throughP-No.62,andP-No.10Imetals.
QW-408.9ForgrooveweldsinP-No.41throughP-No.
49andallweldsofP-No.10I,P-No.10J,P-No.10K,P-No.51
throughP-No.53,andP-No.61throughP-No.62metals,
thedeletionofbackinggasorachangeinthenominal
compositionofthebackinggasfromaninertgastoa
mixtureincludingnon-inertgas(es).
QW-408.10ForP-No.10I,P-No.10J,P-No.10K,P-No.
51throughP-No.53,andP-No.61throughP-No.62
metals,thedeletionoftrailinggas,orachangeinthe
nominalcompositionofthetrailinggasfromaninert
gastoamixtureincludingnon-inertgas(es),oradecrease
of10%ormoreinthetrailinggasflowrate.
QW-408.11Theadditionordeletionofoneormoreof
thefollowing:
(a)shieldinggas
(b)trailinggas
(c)backinggas
(d)plasma-removinggas
QW-408.12Adecreaseofmorethan10%intheflow
rateofoneormoreofthefollowing:shieldinggas,trailing
gas,backinggas,andplasma-removinggas.
QW-408.14Achangeintheoxygenorfuelgaspressure
beyondtherangequalified.
QW-408.16Achangeofmorethan5%intheflowrate
oftheplasma-arcgasorpowderedmetalfeedgas
recordedonthePQR.
QW-408.17Achangeintheplasma-arcgas,shielding
gas,orpowderedmetalfeedgasfromasinglegastoany
othersinglegas,ortoamixtureofgases,orviceversa.
QW-408.18Achangeofmorethan10%inthegas
mixturecompositionoftheplasma-arcgas,shielding
gas,orpowderedmetalfeedgasrecordedonthePQR.
QW-408.19Achangeinthenominalcompositionofthe
powderfeedgasor(plasma-arcspray)plasmagasqual-
ified.
QW-408.20Achangeofmorethan5%intheplasma
gasflowraterangequalified.
QW-408.21Achangeintheflowrateoftheorificeor
shieldinggas.
QW-408.22Achangeintheshieldinggastype,gas
pressure,orpurgingtime.
QW-408.23Fortitanium,zirconium,andtheiralloys,
thedeletionofoneormoreofthefollowing:
(a)shieldinggas
(b)trailinggas
(c)backinggas
ASMEBPVC.IX-2023
91

QW-408.24Forgas-shieldedprocesses,themaximum
moisturecontent(dewpoint)oftheshieldinggas.
Moisturecontrolmaybebyspecificationofshielding
gasclassificationsinSFA-5.32.
QW-408.25Achangeinthefurnaceatmospherefrom
thatqualified.
QW-408.26ForfrictionstirweldingofP-No.6,P-No.7,
P-No.8,P-No.10H,P-No.10I,P-No.41throughP-No.47,P-
No.51throughP-No.53,andP-No.61throughP-No.62,
theadditionordeletionoftrailingortoolshieldinggas,or
achangeingascompositionorflowrate.
QW-409ELECTRICALCHARACTERISTICS
QW-409.1?23? Anincreaseinheatinput,oranincreasein
volumeofweldmetaldepositedperunitlengthofweld,for
eachprocessrecordedonthePQR.Forarcwelding,the
increaseshallbedeterminedby(a),(b),or(c)fornonwa-
veformcontrolledwelding,orby(b)or(c)forwaveform
controlledwelding.SeeNonmandatoryAppendixH.For
low-powerdensitylaserbeamwelding(LLBW),the
increaseshallbedeterminedby(d).
(a)HeatInput[ ]=
× ×
[ ]
Heat inputJ/in. (J/mm)
voltageamperage60
travelspeedin./min(mm/min)
(b)Volume. Volumeofweldmetalmeasuredby
(1)anincreaseinbeadsize(width×thickness),or
(2)adecreaseinlengthofweldbeadperunitlength
ofelectrode
(c)HeatInputDeterminedUsingInstantaneousEnergy
orPower
(1)Forinstantaneousenergymeasurementsin
joules(J)[ ]=
[ ]
J
Heat inputJ/in. (J/mm)
energy()
weld bead lengthin.(mm)
(2)Forinstantaneouspowermeasurementsin
joulespersecond(J/s)orwatts(W)[ ]=
×
[ ]
Heat inputJ/in. (J/mm)
power(J/s or W)arctime(s)
weld bead lengthin.(mm)
(d)LLBWHeatInput[ ]
=
×
[ ]
(W)
LLBW heat inputJ/in. (J/mm)
power 60
travelspeedin./min(mm/min)
wherePoweristhepowerdeliveredtotheworksurfaceas
measuredbycalorimeterorothersuitablemethods.
Thisvariabledoesnotapplyforanyofthefollowing
conditions:
(1)WPSisqualifiedwithaheattreatmentabovethe
uppertransformationtemperature.
(2)WPSisforweldingausteniticorP-10Hmaterial
andisqualifiedwithasolutionheattreatment.
(3)BasemetalsareassignedtoP-No.8,P-Nos.21
through26,andP-Nos.41through49.
QW-409.2Achangefromglobular,sprayorpulsed
spraytransferweldingtoshort-circuitingtransfer
weldingorviceversa.
QW-409.3Theadditionordeletionofpulsingcurrent
todcpowersource.
QW-409.4
?23?AchangefromACtoDC,orviceversa;andin
DCwelding,achangefromelectrodenegative(straight
polarity)toelectrodepositive(reversepolarity),or
viceversa.
QW-409.5Achangeof±15%intheamperageor
voltagerange.
QW-409.6Achangeinthebeamcurrentofmorethan
±5%,voltageofmorethan±2%,weldingspeedofmore
than±2%,beamfocuscurrentofmorethan±5%,gun-to-
workdistanceofmorethan±5%,orachangeinoscillation
lengthorwidthofmorethan±20%.
QW-409.7Anychangeinthebeampulsingfrequency
duration.
QW-409.8Achangeintherangeofamperage,or
exceptforSMAW,GTAW,orwaveformcontrolled
welding,achangeintherangeofvoltage.Achangein
therangeofelectrodewirefeedspeedmaybeusedas
analternativetoamperage.SeeNonmandatory
AppendixH.
QW-409.9Achangeinthearctimingofmorethan±
1

10
sec.
QW-409.10Achangeinamperageofmorethan±10%.
QW-409.11Achangeinthepowersourcefromone
modeltoanother.
QW-409.12Achangeintypeorsizeoftungstenelec-
trode.
QW-409.13AchangefromoneResistanceWelding
Manufacturer’sAssociation(RWMA)electrodeclassto
another.Inaddition,achangeinthefollowing:
(a)forspotandprojectionwelding,achangeinthe
nominalshapeormorethan10%ofthecontactarea
oftheweldingelectrode
(b)forseamwelding,achangeofthickness,profile,
orientation,ordiameterofelectrodesexceeding10%
QW-409.14Additionordeletionofupslopeordown-
slopecurrentcontrol,orachangeofmorethan10%inthe
slopecurrenttimeoramplitude.
QW-409.15
(a)Achangeofmorethan5%inanyofthefollowing:
(1)preheatingcurrent
ASMEBPVC.IX-2023
92

(2)preheatingcurrentamplitude
(3)preheatingcurrenttimeduration
(4)electrodepressure
(5)weldingcurrent
(6)weldingcurrenttimeduration
(b)AchangefromACtoDCorviceversa.
(c)TheadditionordeletionofpulsingcurrenttoaDC
powersource.
(d)WhenusingpulsingDCcurrent,achangeofmore
than5%inthepulseamplitude,frequency,ornumberof
pulsespercycle.
(e)Achangeofmorethan5%inthepost-heating
currenttimeduration.
QW-409.17Achangeinthepowersupplyprimary
voltageorfrequency,orinthetransformerturnsratio,
tapsetting,chokeposition,secondaryopencircuit
voltageorphasecontrolsetting.
QW-409.18Achangeintheprocedureorfrequencyof
tipcleaning.
QW-409.19Anychangeofmorethan±10%inthe
beampulsingfrequencyandpulseduration.
QW-409.20ForLBWandLLBW,achangeinthe
followingvariables:modeofoperation(frompulsedto
continuousandviceversa),energydistributionacross
thebeam(i.e.,multimodeorGaussian).ForLBW,a
changeofmorethan±10%inthespatialprofile[e.g.,
M
2
(beamqualityfactor)oruniformity]ofthefocused
orunfocusedbeam.
QW-409.21ForLBW,adecreaseofmorethan5%in
thepowerdeliveredtotheworksurfaceasmeasuredby
calorimeterorothersuitablemethods.ForLLBWand
specialprocessLBW,adecreaseofmorethan10%in
thepowerdeliveredtotheworksurfaceasmeasured
bycalorimeterorothersuitablemethods.
QW-409.22Anincreaseofmorethan10%inthe
amperageusedinapplicationforthefirstlayer.
QW-409.23Achangeofmorethan10%intherangesof
amperageorvoltage.
QW-409.24Achangeofmorethan10%inthefiller
wirewattagerecordedonthePQR.Wattageisafunction
ofcurrentvoltage,andstickoutdimension.
QW-409.25Achangeofmorethan10%intheplasma-
arccurrentorvoltagerecordedonthePQR.
QW-409.26
?23? Forthefirstlayeronly,anincreaseinheat
inputofmorethan10%oranincreaseinvolumeof
weldmetaldepositedperunitlengthofweldofmore
than10%.
Forarcwelding,theheatinputshallbedeterminedby
(a),(b),or(c)fornonwaveformcontrolledweldingorby
(b)or(c)forwaveformcontrolledwelding(see
NonmandatoryAppendixH).ForLLBW,theincrease
shallbedeterminedby(d).
(a)HeatInput=
× ×
[ ]× [ ]
()( )Heat InputJ/in.J/mm
VoltageAmperage60
TravelSpeedin./min(mm/min)BeadWidthin.(mm)
2 2
(b)Volume. Volumeofweldmetalismeasuredbyoneof
thefollowing:
(1)beadsize(thicknesstimeswidthmeasured
transversetotheaxisoftheweld)
(2)lengthofweldbeadperunitlengthofelectrode
(c)HeatInputDeterminedUsingInstantaneousEnergy
orPower
(1)Forinstantaneousenergymeasurementsin
joules(J)=
[ ]× [ ]
()( )Heat InputJ/in.J/mm
Energy(J)
WeldBeadLengthin.(mm)BeadWidthin.(mm)
2 2
(2)Forinstantaneouspowermeasurementsin
joulespersecond(J/s)orWatts(W)=
×
[ ]× [ ]
()( )Heat InputJ/in.J/mm
Power(J/sorW)arctime(s)
WeldBeadLengthin.(mm)BeadWidthin.(mm)
2 2
(d)LLBWHeatInput=
×
× [ ]
()( )
W
LLBW Heat InputJ/in.J/mm
Power()60
TravelSpeed(in./min)(mm/min)BeadWidthin.(mm)
2 2
wherePoweristhepowerdeliveredtotheworksurfaceas
measuredbyacalorimeterorothersuitablemethods.
Whenusingstripfillermetal,thestripwidthshallbe
consideredasthebeadwidth.Thisvariabledoesnotapply
forbasemetalsassignedtoP-Nos.8,21through26,and41
through49.
QW-409.27Achangeintheflashingtimeofmorethan
10%.
QW-409.28Achangeintheupsetcurrenttimebymore
than10%.
QW-409.29
(a)Achangeinheatinputbeyondthefollowing(see
FigureQW-462.12):
(1)Anincreaseordecreaseintheratioofheatinput
betweenthefirsttemperingbeadlayerandtheweldbeads
depositedagainstthebasemetalofmorethan20%forP-
No.1andP-No.3metalsand10%forallotherP-Number
metals.
ASMEBPVC.IX-2023
93

(2)Anincreaseordecreaseintheratioofheatinput
betweenthesecondtemperingbeadlayerandthefirst
temperingbeadlayerofmorethan20%forP-No.1
andP-No.3metalsand10%forallotherP-Numbermetals.
(3)Theratioofheatinputbetweensubsequent
layersshallbemaintaineduntilaminimumof
3

16
in.
(5mm)ofweldmetalhasbeendepositedoverthe
basemetal.
(4)Wherethebasisforacceptanceistoughness
testingandthefillermetalisexemptfromtemper
beadqualification,theheatinputmaynotexceed50%
abovetheheatinputqualifiedfortheremainingfillpasses.
(5)Wherethebasisforacceptanceishardness
testing,adecreaseofmorethan20%inheatinputfor
theremainderofthefillpasses.
(b)Heatinputshallbedeterminedusingthefollowing
methods:
(1)FormachineorautomaticGTAWorPAW,an
increaseordecreaseof10%inthepowerratiomeasured
as:=
×
×
Ä
Ç
Å
Å
Å
Å
ÅÅ
É
Ö
Ñ
Ñ
Ñ
Ñ
ÑÑ( )A
power ratio
amperagevoltage
WFSTS
f
where
A
f
=cross-sectionareaofthefillermetalwire
TS=weldingtravelspeed
WFS=fillermetalwirefeedspeed
(2)Forprocessesotherthanmachineorautomatic
GTAWorPAW,heatinputshallbedeterminedbythe
methodofQW-409.1.
(3)IfmanualGTAWorPAWisusedformakingin-
processrepairsinaccordancewithQW-290.5, arecordof
beadsizeshallbemade.
QW-409.30
?23? AchangefromACtoDC,orviceversa;and
inDCwelding,achangefromelectrodenegative(straight
polarity)toelectrodepositive(reversepolarity),orvice
versa.ThisvariabledoesnotapplytoaWPSqualifiedfor
weldingbasemetalsthatareassignedtoP-Nos.8,21
through26,and41through49.
QW-409.31
?23? Aheatinputbelowthatqualifiedinalow
heatinput/lowinterpasstemperaturebracketedqualifi-
cationoraheatinputabovethatqualifiedinahighheat
input/highinterpasstemperaturebracketedqualifica-
tion.Heatinputshallbecalculatedusingtheequations
inQW-409.1.
QW-409.32
?©W? Atleastoneofthefollowingtransfer
modesshallbespecified:
(a)short-circuiting
(b)globular
(c)spray
(d)pulsed-spray
QW-410TECHNIQUE
QW-410.1Formanualorsemiautomaticwelding,a
changefromthestringerbeadtechniquetotheweave
beadtechnique,orviceversa.
QW-410.2Achangeinthenatureoftheflame,
oxidizingtoreducing,orviceversa.
QW-410.3Achangeintheorifice,cup,ornozzlesize.
QW-410.4Achangeintheweldingtechnique,fore-
handtobackhand,orviceversa.
QW-410.5Achangeinthemethodofinitialandinter-
passcleaning(brushing,grinding,etc.).
QW-410.6Achangeinthemethodofbackgouging.
QW-410.7Forthemachineorautomaticwelding
process,achangeinwidth,frequency,ordwelltimeof
oscillationtechnique.
QW-410.8Achangeinthecontacttubetowork
distance.
QW-410.9
?23?Achangefrommultiplepassespersideto
singlepassperside.
QW-410.10Achangefromsingleelectrodetomultiple
electrode,orviceversa,formachineorautomaticwelding
only.ThisvariabledoesnotapplywhenaWPSisqualified
withaPWHTabovetheuppertransformationtempera-
tureorwhenanausteniticorP-No.10Hmaterialissolu-
tionannealedafterwelding.
QW-410.11Achangefromclosedchambertoout-of-
chamberconventionaltorchweldinginP-No.51through
P-No.53metals,butnotviceversa.
QW-410.14ForLBW,achangeofmorethan±5degin
therelativeanglebetweentheaxisofthebeamandthe
workpiece.ForEBW,achangeofmorethan±10deginthe
relativeanglebetweentheaxisofthebeamandthework-
piece.
QW-410.15Achangeinthespacingofmultipleelec-
trodesformachineorautomaticwelding.
QW-410.17Achangeinthetypeormodelofthe
weldingequipment.
QW-410.18Anincreaseintheabsolutepressureofthe
vacuumweldingenvironmentbeyondthatqualified.
QW-410.19Anychangeinfilamenttype,size,orshape.
QW-410.20Theadditionofawashpass.
QW-410.21Forfullpenetrationgroovewelds,achange
ofweldingfrombothsidestoweldingfromonesideonly,
butnotviceversa.
QW-410.22Achangeineitherofthefollowingstud
weldingparameters:achangeofstudgunmodel;a
changeintheliftmorethan±
1

32
in.(0.8mm).
ASMEBPVC.IX-2023
94

QW-410.25Achangefrommanualorsemiautomaticto
machineorautomaticweldingandviceversa.
QW-410.26Theadditionordeletionofpeening.
QW-410.27Achangeintherotationalspeedproducing
achangeintheoutsidesurfacevelocity[ft/min(m/min)]
greaterthan±10%oftheoutsidesurfacevelocityquali-
fied.
QW-410.28Achangeinthethrustloadgreaterthan
±10%ofthethrustloadqualified.
QW-410.29Achangeintherotationalenergygreater
than±10%oftherotationalenergyqualified.
QW-410.30Anychangeinupsetdimension(overall
lossinlengthofpartsbeingjoined)greaterthan±10%
oftheupsetqualified.
QW-410.31Achangeinthemethodofpreparingthe
basemetalpriortowelding(e.g.,changingfrommechan-
icalcleaningtochemicalcleaningortoabrasivecleaning,
orviceversa).
QW-410.32Achangeofmorethan10%intheholding
(forging)pressurepriortoorafterwelding.Achangeof
morethan10%intheelectrodeholdingtime(electrode
durationsequence).
QW-410.33Achangefromoneweldingtypeto
another,ormodificationofequipment,includingManu-
facturer,controlpanel,modelnumber,electricalrating
orcapacity,typeofelectricalenergysource,ormethod
ofapplyingpressure.
QW-410.34Additionordeletionofanelectrode
coolingmediumandwhereitisused.
QW-410.35Achangeinthedistancebetweenarmsora
changeinthethroatdepth.
QW-410.37Achangefromsingletomultiplepassor
viceversa.
QW-410.38
?©W? Achangefrommultiplelayertosingle
layerorviceversa.
QW-410.39Achangeinthetorchtypeortipsize.
QW-410.40Forsubmerged-arcweldingandelectro-
slagwelding,thedeletionofasupplementarydevice
forcontrollingthemagneticfieldactingontheweld
puddle.
QW-410.41Achangeofmorethan15%inthetravel
speedrangerecordedonthePQR.
QW-410.43Forthetorchorworkpiece,achangeof
morethan10%inthetravelspeedrangequalified.
QW-410.44Achangeofmorethan15%inthespray-
torchtoworkpiecedistancequalified.
QW-410.45Achangeinthemethodofsurfaceprepara-
tionofthebasemetaltobehard-faced(example:sand-
blastingversuschemicalcleaning).
QW-410.46Achangeinthespray-torchmodelortip
orificesize.
QW-410.47Achangeofmorethan10%inthefusing
temperaturerangequalified.Achangeintherateof
coolingfromthefusingtemperatureofmorethan
50°F/hr(28°C/h),achangeinthefusingmethod(e.g.,
torch,furnace,induction).
QW-410.48Achangeintheconstrictedarcfromtrans-
ferabletonontransferableorviceversa.
QW-410.49Achangeinthediameteroftheplasma
torch-arcconstrictingorifice.
QW-410.50Achangeinthenumberofelectrodes
actingonthesameweldingpuddle.
QW-410.52Achangeinthemethodofdeliveringthe
fillermetaltothemoltenpool,suchasfromtheleadingor
trailingedgeofthetorch,thesidesofthetorch,orthrough
thetorch.
QW-410.53Achangeofmorethan20%inthecenter-
to-centerweldbeaddistance.
QW-410.54Achangeintheupsetlengthorforceof
morethan10%.
QW-410.55Achangeinthedistancebetweenthe
clampingdiesofmorethan10%orachangeinthe
surfacepreparationoftheclampingarea.
QW-410.56Achangeintheclampingforcebymore
than10%.
QW-410.57Achangeinmorethan10%oftheforward
orreversespeed.
QW-410.58Thedeletionofsurfacetemperbeads(see
FigureQW-462.12) orachangefromsurfacetemperbeads
thatcovertheweldsurfacetobeadsthatareonlydepos-
itedalongthetoesoftheweld.
QW-410.59Achangefrommachineorautomatic
weldingtomanualorsemiautomaticwelding.
QW-410.60Theadditionofthermalmethodsto
preparethesurfacetobeweldedunlesstheWPSrequires
thatthemetalbegroundtobrightmetalbeforewelding.
QW-410.61Thedistance,S,fromthetoeoftheweldto
theedgeofanytemperingbeadshallbelimitedtothe
distancemeasuredonthetestcoupon±
1

16
in.
(±1.5mm)(seeFigureQW-462.12). Alternatively,a
rangeforSmaybeestablishedbylocatingtemper
beadsatvariousdistancesfromthetoeoftheweld
followedbyhardnesstraversesortoughnesstesting,
asapplicable.Temperreinforcingbeadsshallnotbe
permittedtotouchthetoeoftheweld.Inaddition,the
ASMEBPVC.IX-2023
95

ratiosofheatinputdescribedinQW-409.29shallapplyto
temperbeads.
QW-410.62Themethodofremovalofsurfacetemper
beadreinforcinglayerwhenitwillberemoved,including
provisionstopreventoverheatingoftheweldsurface.
QW-410.63Forweldbeadsagainstthebasemetaland
foreachtemperingbeadlayer,therangeofbeadwidth,b,
relativetooverlapofthepreviousbeadwidth,a,asshown
inFigureQW-462.13, shallbespecifiedontheWPS.
Overlapbetween25%and75%doesnotrequirequali-
fication.
(a)Overlapgreaterthan75%shallbequalifiedby
weldingatestcouponusingthedesiredoverlap.The
overlapqualifiedshallbethemaximumoverlappermitted
andtheminimumoverlapshallbe50%.
(b)Overlaplessthan25%shallbequalifiedbywelding
atestcouponusingthedesiredoverlap.Theoverlapqual-
ifiedshallbetheminimumoverlappermittedandthe
maximumoverlapshallbe50%.
QW-410.64Forvesselsorpartsofvesselsconstructed
withP-No.11AandP-No.11Bbasemetals,weldgrooves
forthicknesseslessthan
5

8
in.(16mm)shallbeprepared
bythermalprocesseswhensuchprocessesaretobe
employedduringfabrication.Thisgroovepreparation
shallalsoincludebackgouging,backgrooving,or
removalofunsoundweldmetalbythermalprocesses
whentheseprocessesaretobeemployedduringfabrica-
tion.
QW-410.65Theadditionordeletionofgrinding
beyondthatrequiredtocleanthesurfaceorremove
minorsurfaceflaws(i.e.,useornonuseofhalf-beadtech-
niqueorsimilartechnique).
QW-410.66Achangeofmorethan±10%inthetravel
speed,theratioofthebeamdiametertofocallength,orthe
lenstoworkdistance.
QW-410.67Achangeintheopticaltechniqueusedto
focustheweldingenergyfromthatqualified.
QW-410.68Achangeinweldingequipmenttype(e.g.,
YAG,TAG,etc.).
QW-410.70Achangeinthemethodofpreparingthe
basemetalsurfacepriortoinsertionintothefurnace.
QW-410.71Adecreaseinthepercentageofblock
compression(originalstackheightcomparedtoheight
afterwelding)fromthatofthetestcoupon.
QW-410.72Adecreaseintheweldingtemperatureor
timefromthatusedontheprocedurequalificationtest
coupon.
QW-410.73Achangeinjointrestraintfixturesfrom
thatqualified(e.g.,fixedanviltoself-reacting,andvice
versa)orfromsingle-sidedtotwo-sidedwelding,and
viceversa.
QW-410.74Achangeintheweldingcontrolmethod
fromthatqualified(e.g.,forcecontrolmethodtoposition
controlmethod,orviceversa,intheplungedirection;and
forcecontrolmethodtotravelcontrolmethod,orvice
versa,inthetraveldirection).
QW-410.75Achangeintherotatingtool
(a)typeordesignfromthequalified“family”toanother
(i.e.,threadedpin,smoothpin,fluted,self-reacting,
retracting-pin,orothertooltypes)
(b)configurationordimensionsfromthatqualified
beyondthefollowinglimits(asapplicable):
(1)shoulderdiametergreaterthan10%
(2)shoulderscrollpitchgreaterthan10%
(3)shoulderprofile(e.g.,additionordeletionof
shoulderfeature)
(4)pindiametergreaterthan5%
(5)pinlengthgreaterthanthelesserof5%ofqual-
ifiedpinlengthor1%ofbasemetalthickness(not
minimumpinlengthforretracting-pintools,andnotap-
plicableforself-reactingrotatingtools)
(6)pintaperanglegreaterthan5deg
(7)flutepitchgreaterthan5%
(8)pintipgeometryorshape
(9)threadpitchgreaterthan10%(asapplicable)
(10)flatdesignresultinginachangeofthetotalflat
surfaceareagreaterthan20%
(11)numberofflats
(12)coolingcharacteristicsoftherotatingpin(e.g.,
changefromwater-cooledtoair-cooled,andviceversa)
(c)pinmaterialspecification,nominalchemical
composition,andminimumhardness
QW-410.76Achangeintherotatingtooloperation
fromthatqualifiedbeyondthefollowinglimits(asappli-
cable):
(a)decreaseinrotationspeed,orincreasegreaterthan
10%
(b)directionofrotation
(c)plungeforcegreaterthan10%orplungeposition
setpointgreaterthan5%whencontrollingtheplunge
direction(exceptduringramp-upandramp-down
whenstartingandstopping)
(d)angulartiltgreaterthan1deginanydirection
(e)travelforceortravelspeedgreaterthan10%when
controllingtraveldirection(exceptduringramp-upand
ramp-downwhenstartingandstopping)
(f)rangeofrelativemotionbetweentoolcomponents
whenusingself-reactingorretractable-pintools
(g)reductioninthesmallestradiusoftravelpath
curvaturethatresultsinreversingthetraveldirection
ofthepinortheshoulder
(h)mannerorangleofintersection,ornumberofcoin-
cidentintersections,withinthesameweldorbetweenthe
weldandtheHAZofotherwelds
QW-410.77Achangeinthelaserwavelength(e.g.,CO
2
,
Nd:YAG,fiber,disk,diode)fromthatqualified.
ASMEBPVC.IX-2023
96

QW-410.80Achangeof±5%inthediameterofthe
focusedspotsize.
QW-410.81Theadditionoftubeexpansionpriorto
welding.
QW-410.82Achangeinthemethodofpressureappli-
cation.
QW-410.83Achangeinthetypeofexplosiveora
changeintheenergycontentgreaterthan±10%.
QW-410.84Achangeinthedistancebetweenthe
explosivechargeandthetubesheetfacegreaterthan
±10%.
QW-410.85Achangeinthespecifiedclearance
betweenthetubeandthetubesheetgreaterthan±10%.
QW-410.86Forthemachineorautomaticwelding
process,achangeofmorethan±10%inwidth,frequency,
ordwelltimeofoscillationtechnique.
QW-410.87 ?23?Achangefrommultiplepassespersidetoa
singlepassperside.Thisvariabledoesnotapplytoanyof
thefollowingconditions:
(a)TheWPSisqualifiedwithaheattreatmentabove
theuppertransformationtemperature.
(b)TheWPSisforweldingausteniticorP-10Hmaterial
andisqualifiedwithasolutionheattreatment.
(c)ThebasemetalsareassignedtoP-Nos.8,21through
26,and41through49.
QW-410.88
?23?AchangefromkeyholeLBWtoLLBW,and
viceversa.
QW-410.89
?23?Anadditionordeletionoftorch-controlled
oscillation.
QW-410.90
?23?Achangefrompulsedmodeofoperationto
continuousmodeofoperation,andviceversa.
ASMEBPVC.IX-2023
97

TableQW-416
?23? WeldingVariablesWelderPerformance
Paragraph[Note(1)] BriefofVariables
Essential
OFW
Table
QW-352
SMAW
Table
QW-353
SAW
Table
QW-354
GMAW
[Note(2)]
Table
QW-355
GTAW
Table
QW-356
PAW
Table
QW-357
LBW
Table
QW-358
QW-402
Joints
.4 −Backing X X X X X
.7 +Backing X
QW-403
BaseMetal
.2 Maximumqualified X
.16ϕPipediameter X X X X X X
.18ϕP-Number X X X X X X X
QW-404
FillerMetals
.14±Filler X X X X
.15ϕF-Number X X X X X X X
.22±Inserts X X X
.23ϕFillermetalproduct
form
X X X
.30ϕtWelddeposit X X X X X X
.31ϕtWelddeposit X
.32 tLimit(s.cir.arc) X
QW-405
Positions
.1 +Position X X X X X X X
.3 ϕ↑↓Vert.welding X X X X X
QW-408
Gas
.7 ϕTypefuelgas X
.8 −Backinggas X X X X
QW-409
Electrical
.2 ϕTransfermode X
.4 ϕCurrentorpolarity X
QW-410
Technique
.68ϕTypeofequipment X
.88ϕTechnique X
.89±Oscillation X
.90ϕModeofoperation X
WeldingProcesses:
OFW=Oxyfuelgaswelding
SMAW=Shieldedmetal-arcwelding
SAW=Submerged-arcwelding
GMAW=Gasmetal-arcwelding
GTAW=Gastungsten-arcwelding
PAW=Plasma-arcwelding
LBW=Laserbeamwelding
Legend:
ϕChange tThickness
+Addition ↑Uphill
−Deletion ↓Downhill
NOTES:
(1)Fordescription,seeArticleIV.
(2)Flux-coredarcweldingasshowninTableQW-355, withorwithoutadditionalshieldingfromanexternallysuppliedgasorgasmixture,is
included.
ASMEBPVC.IX-2023
98

QW-420P-NUMBERS
QW-421P-NUMBERSANDGROUPNUMBERS
(a)P-Numbers. P-Numbers(P-No.)areassignedtobase
metalsforthepurposeofreducingthenumberofwelding
andbrazingprocedurequalificationsrequired.
P-Numbersarealphanumericdesignations;accord-
ingly,eachP-Numberdesignationshallbeconsidereda
separateP-Number(e.g.,basemetalsassignedP-No.
5AareconsideredaseparateP-Numberfromthose
assignedP-No.5BorP-No.5C).
(b)GroupNumbers. Ferrousbasemetalshavebeen
assignedGroupNumberscreatingsubsetsofP-
NumbersthatareusedwhenWPSsarerequiredtobe
qualifiedbytoughnesstestingbyotherSectionsorCodes.
QW-421.1
?©W? AssignmentsofP-NumbersandGroup
Numbers.
(a)P-NumberandGroupNumberassignmentsare
listedinTableQW/QB-422. Ifanunlistedbasemetal
hasthesameUNSnumberdesignationasabasemetal
listedinTableQW/QB-422, thatbasemetalisalso
assignedthatP-NumberorP-NumberplusGroupNumber.
Theseassignmentsarebasedessentiallyoncomparable
basemetalcharacteristics,suchascomposition,weld-
ability,brazeability,andmechanicalproperties,where
thiscanlogicallybedone.Theseassignmentsdonot
implythatbasemetalsmaybeindiscriminatelysubsti-
tutedforabasemetalthatwasusedinthequalification
testwithoutconsiderationofcompatibilityfromthe
standpointofmetallurgicalproperties,postweldheat
treatment,design,mechanicalproperties,andservicere-
quirements.
P-numberassignmentslistedathttps://pnumbers.org
butnotincludedinTableQW/QB-422mayalsobeused.
TableQW/QB-421.2showstheassignmentgroupsfor
variousalloysystems.
(b)Materialspecificationsthathavebeenadoptedby
ASMEforuseintheASMEBoilerandPressureVesselCode
areprovidedtheprefixSA,SB,orSFA,andP-Numbersare
assignedperTableQW/QB-422
Materialproducedtothesourcematerialspecification
isunassignedunlessseparatelyclassifiedin
TableQW/QB-422.
QW-421.3
?©W? OtherGroupings.TableQW/QB-422
containsothergroupings.
(a)In2023,brazingP‐NumberswerereplacedbyAWS
BaseMetalNumbers(BMNo.)byadoptionofthebrazing
basemetalclassificationofAWSB2.2/B2.2M,Specification
forBrazingProcedureandPerformanceQualification.
(b)Thecolumn“ISO/TR15608Group”inTable
QW/QB-422isalistingoftheassignmentsofmaterials
inaccordancewiththegroupingcriteriaofISO/TR
15608,Welding—Guidelinesforametallicmaterials
groupingsystem, anditisconsistentwiththeassignments
foundinISO/TR20173,Groupingsystemsformaterials—
Americanmaterials.Whilethislistingisprovidedasa
conveniencetousersworldwide,itisprovidedforinfor-
mationonly.SectionIXdoesnotrefertothisgroupingasa
basisforestablishingtherangeofbasemetalsqualifiedfor
eitherprocedureorperformancequalification.
(c)In2009,S-Numberswereremovedfrom
TableQW/QB-422. S-Numberswereassignedtomaterials
thatwereacceptableforusebytheASMEB31Codefor
PressurePiping,orbyselectedBoilerandPressureVessel
CodeCases,butwhichwerenotincludedwithinASME
BoilerandPressureVesselCodeMaterialSpecifications
(SectionII).BasemetalspreviouslyassignedS-
NumberswerereassignedthecorrespondingP-
NumbersorP-NumbersplusGroupNumbers.
QW-421.4
?23?ReassignmentsofP-NumbersandGroup
Numbers.Thereareinstanceswherematerialsassigned
tooneP-orS-NumberorGroupNumberhavebeenreas-
signedtoadifferentP-orS-NumberorGroupNumberin
latereditions.Procedureandperformancequalifications
thatwerequalifiedunderthepreviousP-,S-,orBM-
NumbersorGroupNumberassignmentmaycontinue
tobeusedunderthenewP-NumberorGroupNumber
assignment[seeQW-200.2(c)orQB‐200.2(c)],provided
theWPSorBPSisrevisedtolimitthematerialsqualified
forweldingorbrazingtothoseassignedtothenewP-
Number(s)orGroupNumber(s)forthespecificmate-
rial(s)originallyusedfortheprocedurequalification
testcoupon.OthermaterialsfromtheoriginalP-,S-,or
BM-NumberorGroupNumbermustbereassignedto
thesameP-NumberorGroupNumbertobeconsidered
qualifiedforweldingorbrazingundertherevisedWPSor
BPS.
TableQW/QB-421.2
BaseMetalAssignmentGroups
BaseMetal Welding Brazing
Steelandsteel
alloys
P-No.1through
P-No.15F
P-No.101through
P-No.103
Aluminumand
aluminum-
basealloys
P-No.21through
P-No.26
P-No.104and
P-No.105
Copperand
copper-base
alloys
P-No.31through
P-No.35
P-No.107and
P-No.108
Nickelandnickel-
basealloys
P-No.41through
P-No.49
P-No.110through
P-No.112
Titaniumand
titanium-base
alloys
P-No.51through
P-No.53
P-No.115
Zirconiumand
zirconium-base
alloys
P-No.61and
P-No.62
P-No.117
ASMEBPVC.IX-2023
99

QW-421.5AcceptanceTensileValues.
(a)BaseMetalsListedinTableQW/QB-422. Thecolumn
“MinimumSpecifiedTensile”inTableQW/QB-422lists
theacceptancevaluesforthetensiletestsofthe
weldingorbrazingprocedurequalification,exceptas
otherwiseallowedinQW-153orQB-153.
Basemetalslistedwithminimumspecifiedtensile
valuesmaybeusedforprocedurequalification.
Basemetalslistedwithoutaminimumspecifiedtensile
valueshallnotbeusedforthepurposeofgrooveweld
procedurequalification.
(b)BaseMetalsNotListedinTableQW/QB-422. Ifan
unlistedbasemetalhavingthesameUNSnumberofa
listedbasemetalisusedforprocedurequalification,
theminimumtensilevalueofthelistedbasemetal
shallapplyforthetensiontestspecimens.
Forunassignedunlistedbasemetals,theminimum
tensilestrengthdefinitionrequirementsofQW-424.1
apply.
ASMEBPVC.IX-2023
100

TableQW/QB-422
BaseMetalP-Numbers
?23?
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous
AorSA–36 … … 58(400)1 1 11.1 100 C–Mn–Si Plate,bar&shapes …
AorSA–53 E,A K02504 48(330)1 1 1.1 100 C Resistanceweldedpipe…
AorSA–53 S,A K02504 48(330)1 1 1.1 100 C Smls.pipe …
AorSA–53 E,B K03005 60(415)1 1 11.1 100 C–Mn Resistanceweldedpipe…
AorSA–53 F K03005 48(330)1 1 11.1 100 C Furnaceweldedpipe …
AorSA–53 S,B K03005 60(415)1 1 11.1 100 C–Mn Smls.pipe …
AorSA–105 … K03504 70(485)1 2 11.1 100 C Flanges&fittings …
AorSA–106 A K02501 48(330)1 1 1.1 100 C–Si Smls.pipe …
AorSA–106 B K03006 60(415)1 1 11.1 100 C–Mn–Si Smls.pipe …
AorSA–106 C K03501 70(485)1 2 11.1 100 C–Mn–Si Smls.pipe …
A108 1015 G10150 …1 1 1.1 100 C Bar …
A108 1018 G10180 …1 1 1.1 100 C Bar …
A108 1020 G10200 …1 1 1.1 100 C Bar …
A108 8620 G86200 …3 3 4.1 100 0.5Ni–0.5Cr–Mo Bar …
AorSA–134 SA283A K01400 45(310)1 1 1.1 100 C Weldedpipe …
AorSA–134 SA285A K01700 45(310)1 1 1.1 100 C Weldedpipe …
AorSA–134 SA283B K01702 50(345)1 1 1.1 100 C Weldedpipe …
AorSA–134 SA285B K02200 50(345)1 1 1.1 100 C Weldedpipe …
AorSA–134 SA283C K02401 55(380)1 1 1.1 100 C Weldedpipe …
AorSA–134 SA283D K02702 60(415)1 1 11.1 100 C Weldedpipe …
AorSA–134 SA285C K02801 55(380)1 1 11.1 100 C Weldedpipe …
AorSA–135 A K02509 48(330)1 1 1.1 100 C E.R.W.pipe …
AorSA–135 B K03018 60(415)1 1 11.1 100 C E.R.W.pipe …
A139 A K02508 48(330)1 1 1.1 100 C Weldedpipe …
A139 B K03003 60(415)1 1 11.1 100 C Weldedpipe …
A139 C K03004 60(415)1 1 11.1 100 C Weldedpipe …
A139 D K03010 60(415)1 1 11.1 100 C Weldedpipe …
ASMEBPVC.IX-2023
101

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
A139 E K03012 66(455)1 1 11.1 100 C Weldedpipe …
A167 302B S30215 75(515)8 1 8.1 130 18Cr–8Ni–2Si Plate,sheet&strip …
A167 308 S30800 75(515)8 2 8.2 130 20Cr–10Ni Plate,sheet&strip …
A167 309 S30900 75(515)8 2 8.2 130 23Cr–12Ni Plate,sheet&strip …
A167 310 S31000 75(515)8 2 8.2 130 25Cr–20Ni Plate,sheet&strip …
AorSA–178 A K01200 47(325)1 1 1.1 100 C E.R.W.tube …
AorSA–178 D K02709 70(485)1 2 11.1 100 C–Mn–Si E.R.W.tube …
AorSA–178 C K03503 60(415)1 1 11.1 100 C E.R.W.tube …
AorSA–179 … K01200 47(325)1 1 1.1 100 C Smls.tube …
AorSA–181 Cl.60 K03502 60(415)1 1 11.1 100 C–Si Pipeflange&fittings…
AorSA–181 Cl.70 K03502 70(485)1 2 11.1 100 C–Si Pipeflange&fittings…
AorSA–182 F12,Cl.1 K11562 60(415)4 1 5.1 110 1Cr–0.5Mo Forgings …
AorSA–182 F12,Cl.2 K11564 70(485)4 1 5.1 110 1Cr–0.5Mo Forgings …
AorSA–182 F11,Cl.2 K11572 70(485)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–182 F11,Cl.3 K11572 75(515)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–182 F11,Cl.1 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–182 F2 K12122 70(485)3 2 4.2 100 0.5Cr–0.5Mo Forgings …
AorSA–182 F1 K12822 70(485)3 2 1.1 100 C–0.5Mo Forgings …
AorSA–182 F22,Cl.1 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Forgings …
AorSA–182 F22,Cl.3 K21590 75(515)5A 1 5.2 110 2.25Cr–1Mo Forgings …
AorSA–182 FR K22035 63(435)9A 1 9.1 100 2Ni–1Cu Forgings …
AorSA–182 F3VCb K31390 85(585)5C 1 6.2 110 3Cr–1Mo–0.25V–Cb–Ca Forgings …
AorSA–182 F21 K31545 75(515)5A 1 5.2 110 3Cr–1Mo Forgings …
AorSA–182 F3V K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Forgings …
AorSA–182 F22V K31835 85(585)5C 1 6.2 110 2.25Cr–1Mo–V Forgings …
AorSA–182 F5 K41545 70(485)5B 1 5.3 110 5Cr–0.5Mo Forgings …
AorSA–182 F5a K42544 90(620)5B 1 5.3 110 5Cr–0.5Mo Forgings …
AorSA–182 F91 K90901 90(620)15E 1 6.4 110 9Cr–1Mo–V Forgings …
AorSA–182 F9 K90941 85(585)5B 1 5.4 110 9Cr–1Mo Forgings …
ASMEBPVC.IX-2023
102

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–182 F92 K92460 90(620)15E 1 6.4 110 9Cr–2W Forgings …
AorSA–182 … N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NForgings …
AorSA–182 F904L N08904 71(490)45 … 8.2 420 44Fe–25Ni–21Cr–Mo Forgings …
AorSA–182 FXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Forgings …
AorSA–182 FXM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Forgings …
AorSA–182 F304 S30400 70(485)8 1 8.1 130 18Cr–8Ni Forgings >5(125)
AorSA–182 F304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Forgings ≤5(125)
AorSA–182 F304L S30403 65(450)8 1 8.1 130 18Cr–8Ni Forgings >5(125)
AorSA–182 F304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Forgings ≤5(125)
AorSA–182 F304H S30409 70(485)8 1 8.1 130 18Cr–8Ni Forgings >5(125)
AorSA–182 F304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Forgings ≤5(125)
AorSA–182 F304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Forgings …
AorSA–182 F304LN S30453 70(485)8 1 8.1 130 18Cr–8Ni–N Forgings >5(125)
AorSA–182 F304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Forgings ≤5(125)
AorSA–182 F46 S30600 78(540)8 1 8.1 130 18Cr–15Ni–4Si Forgings …
AorSA–182 F45 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Forgings …
AorSA–182 F310 S31000 70(485)8 2 8.2 130 25Cr–20Ni Forgings >5(125)
AorSA–182 F310 S31000 75(515)8 2 8.2 130 25Cr–20Ni Forgings ≤5(125)
AorSA–182 F310H S31009 70(485)8 2 8.2 130 25Cr–20Ni Forgings >5(125)
AorSA–182 F310H S31009 75(515)8 2 8.2 130 25Cr–20Ni Forgings ≤5(125)
AorSA–182 F310MoLN S31050 78(540)8 2 8.2 130 25Cr–22Ni–2Mo–N Forgings …
AorSA–182 F50 S31200 100(690)10H 1 10.2 145 25Cr–6Ni–Mo–N Forgings …
AorSA–182 F44 S31254 94(650)8 4 8.2 130 20Cr–18Ni–6Mo Forgings …
AorSA–182 F58 S31266 109(750)45 … 8.2 420 24Cr–22Ni–6Mo–3Mn–
Cu–W–N
Forgings …
AorSA–182 F316 S31600 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Forgings >5(125)
AorSA–182 F316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Forgings ≤5(125)
AorSA–182 F316L S31603 65(450)8 1 8.1 130 16Cr–12Ni–2Mo Forgings >5(125)
AorSA–182 F316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Forgings ≤5(125)
AorSA–182 F316H S31609 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Forgings >5(125)
AorSA–182 F316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Forgings ≤5(125)
AorSA–182 F316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Forgings …
ASMEBPVC.IX-2023
103

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–182 F316LN S31653 70(485)8 1 8.1 130 16Cr–12Ni–2Mo–N Forgings >5(125)
AorSA–182 F316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Forgings ≤5(125)
AorSA–182 F317 S31700 70(485)8 1 8.1 130 18Cr–13Ni–3Mo Forgings >5(125)
AorSA–182 F317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Forgings ≤5(125)
AorSA–182 F317L S31703 65(450)8 1 8.1 130 18Cr–13Ni–3Mo Forgings >5(125)
AorSA–182 F317L S31703 70(485)8 1 8.1 130 18Cr–13Ni–3Mo Forgings ≤5(125)
AorSA–182 F51 S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Forgings …
AorSA–182 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Forgings …
AorSA–182 F321 S32100 70(485)8 1 8.1 140 18Cr–10Ni–Ti Forgings >5(125)
AorSA–182 F321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Forgings ≤5(125)
AorSA–182 F321H S32109 70(485)8 1 8.1 140 18Cr–10Ni–Ti Forgings >5(125)
AorSA–182 F321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Forgings ≤5(125)
AorSA–182 … S32202 94(650)10H 1 10.3 145 22Cr–2Ni–Mo–N Forgings …
AorSA–182 F60 S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Forgings …
AorSA–182 … S32506 90(620)10H 1 10.2 145 25Cr–6Ni–Mo–N Forgings …
AorSA–182 F53 S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Forgings …
AorSA–182 F55 S32760 109(750)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Forgings …
AorSA–182 F10 S33100 80(550)8 2 8.1 130 20Ni–8Cr Forgings …
AorSA–182 F49 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Forgings …
AorSA–182 F347 S34700 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings >5(125)
AorSA–182 F347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Forgings ≤5(125)
AorSA–182 F347H S34709 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings >5(125)
AorSA–182 F347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Forgings ≤5(125)
AorSA–182 F348 S34800 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings >5(125)
AorSA–182 F348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Forgings ≤5(125)
AorSA–182 F348H S34809 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings >5(125)
AorSA–182 F348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Forgings ≤5(125)
AorSA–182 F54 S39274 116(800)10H 1 10.2 145 25Cr–7Ni–3Mo–2W–Cu–
N
Forgings …
AorSA–182 F6a,Cl.1 S41000 70(485)6 1 7.2 150 13Cr Forgings …
AorSA–182 F6a,Cl.2 S41000 85(585)6 3 7.2 150 13Cr Forgings …
AorSA–182 F6a,Cl.3 S41000 110(760)6 3 7.2 150 13Cr Forgings …
ASMEBPVC.IX-2023
104

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–182 F6a,Cl.4 S41000 130(895)6 3 7.2 150 13Cr Forgings …
AorSA–182 F6b S41026 110(760)6 3 7.2 150 13Cr–0.5Mo Forgings …
AorSA–182 F6NM S41500 115(795)6 4 7.2 150 13Cr–4.5Ni–Mo Forgings …
AorSA–182 F429 S42900 60(415)6 2 7.2 150 15Cr Forgings …
AorSA–182 F430 S43000 60(415)7 2 7.1 150 17Cr Forgings …
AorSA–182 FXM–27Cb S44627 60(415)10I 1 7.1 150 27Cr–1Mo Forgings …
AorSA–192 … K01201 47(325)1 1 1.1 100 C–Si Smls.tube …
A199 T11 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Smls.tube …
A199 T22 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Smls.tube …
A199 T21 K31545 60(415)5A 1 ... 110 3Cr–1Mo Smls.tube …
A199 T5 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Smls.tube …
A199 T9 K81590 60(415)5B 1 5.4 110 9Cr–1Mo Smls.tube …
AorSA–203 F … 75(515)9B 1 9.2 100 3.5Ni Plate >2(50)
AorSA–203 F … 80(550)9B 1 9.2 100 3.5Ni Plate ≤2(50)
AorSA–203 A K21703 65(450)9A 1 9.1 100 2.25Ni Plate …
AorSA–203 B K22103 70(485)9A 1 9.1 100 2.25Ni Plate …
AorSA–203 D K31718 65(450)9B 1 9.2 100 3.5Ni Plate …
AorSA–203 E K32018 70(485)9B 1 9.2 100 3.5Ni Plate …
AorSA–204 A K11820 65(450)3 1 1.1 100 C–0.5Mo Plate …
AorSA–204 B K12020 70(485)3 2 1.1 100 C–0.5Mo Plate …
AorSA–204 C K12320 75(515)3 2 1.2 100 C–0.5Mo Plate …
AorSA–209 T1b K11422 53(365)3 1 1.1 100 C–0.5Mo Smls.tube …
AorSA–209 T1 K11522 55(380)3 1 1.1 100 C–0.5Mo Smls.tube …
AorSA–209 T1a K12023 60(415)3 1 1.1 100 C–0.5Mo Smls.tube …
AorSA–210 A–1 K02707 60(415)1 1 11.1 100 C–Si Smls.tube …
AorSA–210 C K03501 70(485)1 2 11.1 100 C–Mn–Si Smls.tube …
A211 A570–30 K02502 49(340)1 1 1.1 100 C Weldedpipe …
ASMEBPVC.IX-2023
105

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
A211 A570–33 K02502 52(360)1 1 1.1 100 C Weldedpipe …
A211 A570–40 K02502 55(380)1 1 1.1 100 C Weldedpipe …
AorSA–213 T2 K11547 60(415)3 1 4.2 100 0.5Cr–0.5Mo Smls.tube …
AorSA–213 T12 K11562 60(415)4 1 5.1 110 1Cr–0.5Mo Smls.tube …
AorSA–213 T11 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Smls.tube …
AorSA–213 T17 K12047 60(415)10B 1 4.1 110 1Cr–V Smls.tube …
AorSA–213 T22 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Smls.tube …
AorSA–213 T21 K31545 60(415)5A 1 5.2 110 3Cr–1Mo Smls.tube …
AorSA–213 T5c K41245 60(415)5B 1 5.3 120 5Cr–0.5Mo–Ti Smls.tube …
AorSA–213 T5 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Smls.tube …
AorSA–213 T5b K51545 60(415)5B 1 5.3 110 5Cr–0.5Mo–Si Smls.tube …
AorSA–213 T91 K90901 85(585)15E 1 6.4 110 9Cr–1Mo–V Smls.tube …
AorSA–213 T9 K90941 60(415)5B 1 5.4 110 9Cr–1Mo Smls.tube …
AorSA–213 T92 K92460 90(620)15E 1 6.4 110 9Cr–2W Smls.tube …
AorSA–213 TP201 S20100 95(655)8 3 8.3 130 17Cr–4Ni–6Mn Smls.tube …
AorSA–213 TP202 S20200 90(620)8 3 8.3 130 18Cr–5Ni–9Mn Smls.tube …
AorSA–213 XM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Smls.tube …
AorSA–213 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Smls.tube …
AorSA–213 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Smls.tube …
AorSA–213 TP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Smls.tube …
AorSA–213 … S30432 86(595)8 1 8.1 130 18Cr–9Ni–3Cu–Cb–N Smls.tube …
AorSA–213 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Smls.tube …
AorSA–213 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Smls.tube …
AorSA–213 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Smls.tube …
AorSA–213 TP309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Smls.tube …
AorSA–213 TP309H S30909 75(515)8 2 8.2 130 23Cr–12Ni Smls.tube …
AorSA–213 TP309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Smls.tube …
AorSA–213 TP309HCb S30941 75(515)8 2 8.2 130 23Cr–12Ni–Cb Smls.tube …
AorSA–213 … S31002 73(505)8 2 8.2 130 25Cr–20Ni–N Smls.tube …
AorSA–213 TP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Smls.tube …
AorSA–213 TP310H S31009 75(515)8 2 8.2 130 25Cr–20Ni Smls.tube …
ASMEBPVC.IX-2023
106

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–213 TP310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Smls.tube …
AorSA–213 TP310HCb S31041 75(515)8 2 8.2 130 25Cr–20Ni–Cb Smls.tube …
AorSA–213 TP310HCbN S31042 95(655)8 3 8.2 130 25Cr–20Ni–Cb–N Smls.tube …
AorSA-213 … S31043 95(655)8 3 8.2 130 25Cr–20Ni–Cb–Ta–N Smls.tube …
AorSA–213 TP310MoLN S31050 78(540)8 2 8.2 130 25Cr–22Ni–2Mo–N Smls.tube >0.25(6)
AorSA–213 TP310MoLN S31050 84(580)8 2 8.2 130 25Cr–22Ni–2Mo–N Smls.tube ≤0.25(6)
AorSA–213 … S31254 95(655)8 4 8.2 130 20Cr–18Ni–6Mo Smls.tube >0.187(5)
AorSA–213 … S31254 98(675)8 4 8.2 130 20Cr–18Ni–6Mo Smls.tube ≤0.187(5)
AorSA–213 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Smls.tube …
AorSA–213 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Smls.tube …
AorSA–213 TP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Smls.tube …
AorSA–213 TP316Ti S31635 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–Ti Smls.tube …
AorSA–213 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Smls.tube …
AorSA–213 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Smls.tube …
AorSA–213 TP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Smls.tube …
AorSA–213 TP317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Smls.tube …
AorSA–213 TP317LM S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Smls.tube …
AorSA–213 TP317LMN S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Smls.tube …
AorSA–213 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Smls.tube …
AorSA–213 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Smls.tube …
AorSA–213 S32615 S32615 80(550)8 1 8.1 130 18Cr–20Ni–5.5Si Smls.tube …
AorSA–213 S34565 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Smls.tube …
AorSA–213 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.tube …
AorSA–213 TP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.tube …
AorSA–213 TP347HFG S34710 80(550)8 1 8.1 130 18Cr–10Ni–Cb Smls.tube …
AorSA–213 TP347LN S34751 75(515)8 1 8.1 130 18Cr–10Ni–Cb–N Smls.tube …
AorSA–213 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.tube …
AorSA–213 TP348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.tube …
AorSA–213 XM–15 S38100 75(515)8 1 8.1 130 18Cr–18Ni–2Si Smls.tube …
AorSA–213 … S38815 78(540)8 1 8.1 130 14Cr–16Ni–6Si–Cu–Mo Smls.tube …
AorSA–214 … K01807 47(325)1 1 1.1 100 C E.R.W.tube …
ASMEBPVC.IX-2023
107

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–216 WCA J02502 60(415)1 1 1.1 100 C–Si Castings …
AorSA–216 WCC J02503 70(485)1 2 1.1 100 C–Mn–Si Castings …
AorSA–216 WCB J03002 70(485)1 2 1.1 100 C–Si Castings …
AorSA–217 WC6 J12072 70(485)4 1 5.1 110 1.25Cr–0.5Mo Castings …
AorSA–217 WC4 J12082 70(485)4 1 9.1 100 1Ni–0.5Cr–0.5Mo Castings …
AorSA–217 WC1 J12524 65(450)3 1 1.1 100 C–0.5Mo Castings …
AorSA–217 WC9 J21890 70(485)5A 1 5.2 110 2.25Cr–1Mo Castings …
AorSA–217 WC5 J22000 70(485)4 1 4.2 100 0.75Ni–1Mo–0.75Cr Castings …
AorSA–217 C5 J42045 90(620)5B 1 5.3 110 5Cr–0.5Mo Castings …
AorSA–217 C12 J82090 90(620)5B 1 5.4 110 9Cr–1Mo Castings …
AorSA–217 C12A J84090 85(585)15E 1 6.4 110 9Cr–1Mo–V Castings …
AorSA–217 CA15 J91150 90(620)6 3 7.2 150 13Cr Castings …
AorSA–225 D K12004 75(515)10A 1 2.1 100 Mn–0.5Ni–V Plate >3(75)
AorSA–225 D K12004 80(550)10A 1 2.1 100 Mn–0.5Ni–V Plate ≤3(75)
AorSA–225 C K12524 105(725)10A 1 4.1 100 Mn–0.5Ni–V Plate …
AorSA–234 WP11,Cl.1 … 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Pipingfittings …
AorSA–234 WP11,Cl.3 … 75(515)4 1 5.1 110 1.25Cr–0.5Mo–Si Pipingfittings …
AorSA–234 WPB K03006 60(415)1 1 11.1 100 C–Mn–Si Pipingfittings …
AorSA–234 WPC K03501 70(485)1 2 11.1 100 C–Mn–Si Pipingfittings …
AorSA–234 WP12,Cl.1 K12062 60(415)4 1 5.1 110 1Cr–0.5Mo Pipingfittings …
AorSA–234 WP12,Cl.2 K12062 70(485)4 1 5.1 110 1Cr–0.5Mo Pipingfittings …
AorSA–234 WP1 K12821 55(380)3 1 11.2 100 C–0.5Mo Pipingfittings …
AorSA–234 WP22,Cl.1 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Pipingfittings …
AorSA–234 WP22,Cl.3 K21590 75(515)5A 1 5.2 110 2.25Cr–1Mo Pipingfittings …
AorSA–234 WPR K22035 63(435)9A 1 9.1 100 2Ni–1Cu Pipingfittings …
AorSA–234 WP5,Cl.1 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Pipingfittings …
AorSA–234 WP5,Cl.3 K41545 75(515)5B 1 5.3 110 5Cr–0.5Mo Pipingfittings …
AorSA–234 WP91 K90901 85(585)15E 1 6.4 110 9Cr–1Mo–V Pipingfittings …
AorSA–234 WP9,Cl.1 K90941 60(415)5B 1 5.4 110 9Cr–1Mo Pipingfittings …
ASMEBPVC.IX-2023
108

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–234 WP9,Cl.3 K90941 75(515)5B 1 5.4 110 9Cr–1Mo Pipingfittings …
AorSA–234 WP92 K92460 90(620)15E 1 6.4 110 9Cr–2W Pipingfittings …
AorSA–240 … N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NPlate ≥0.187(5)
AorSA–240 … N08367 100(690)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NSheet&strip <0.187(5)
AorSA–240 904L N08904 71(490)45 … 8.2 420 44Fe–25Ni–21Cr–Mo Plate,sheet&strip …
AorSA–240 201–1 S20100 75(515)8 3 8.3 130 17Cr–4Ni–6Mn Plate,sheet&strip …
AorSA–240 201–2 S20100 95(655)8 3 8.3 130 17Cr–4Ni–6Mn Plate,sheet&strip …
AorSA–240 201LN S20153 95(655)8 3 8.3 130 16Cr–4Ni–6Mn Plate,sheet&strip …
AorSA–240 202 S20200 90(620)8 3 8.3 130 18Cr–5Ni–9Mn Plate,sheet&strip …
AorSA–240 … S20400 95(655)8 3 8.3 130 16Cr–9Mn–2Ni–N Plate,sheet&strip …
AorSA–240 XM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Plate ≥0.187(5)
AorSA–240 XM–19 S20910 105(725)8 3 8.3 130 22Cr–13Ni–5Mn Sheet&strip <0.187(5)
AorSA–240 XM–17 S21600 90(620)8 3 8.3 130 19Cr–8Mn–6Ni–Mo–N Plate ≥0.187(5)
AorSA–240 XM–17 S21600 100(690)8 3 8.3 130 19Cr–8Mn–6Ni–Mo–N Sheet&strip <0.187(5)
AorSA–240 XM–18 S21603 90(620)8 3 8.3 130 19Cr–8Mn–6Ni–Mo–N Plate ≥0.187(5)
AorSA–240 XM–18 S21603 100(690)8 3 8.3 130 19Cr–8Mn–6Ni–Mo–N Sheet&strip <0.187(5)
AorSA–240 S21800 S21800 95(655)8 3 8.1 130 18Cr–8Ni–8Mn–4Si–N Plate,sheet&strip …
AorSA–240 XM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Plate,sheet&strip …
AorSA–240 301 S30100 75(515)8 1 8.1 130 17Cr–7Ni Plate,sheet&strip …
AorSA–240 302 S30200 75(515)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–240 304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–240 304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–240 304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–240 304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Plate,sheet&strip …
AorSA–240 XM–21 S30452 85(585)8 1 8.1 130 18Cr–8Ni–N Plate ≥0.187(5)
AorSA–240 XM–21 S30452 90(620)8 1 8.1 130 18Cr–8Ni–N Sheet&strip <0.187(5)
AorSA–240 304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Plate,sheet&strip …
AorSA–240 305 S30500 70(485)8 1 8.1 130 18Cr–11Ni Plate,sheet&strip …
AorSA–240 S30600 S30600 78(540)8 1 8.1 130 18Cr–15Ni–4Si Plate,sheet&strip …
AorSA–240 S30601 S30601 78(540)8 1 8.1 130 17.5Cr–17.5Ni–5.3Si Plate,sheet&strip …
AorSA–240 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Plate,sheet&strip …
ASMEBPVC.IX-2023
109

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–240 309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Plate,sheet&strip …
AorSA–240 309H S30909 75(515)8 2 8.2 130 23Cr–12Ni Plate,sheet&strip …
AorSA–240 309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Plate,sheet&strip …
AorSA–240 309HCb S30941 75(515)8 2 8.2 130 23Cr–12Ni–Cb Plate,sheet&strip …
AorSA–240 310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Plate,sheet&strip …
AorSA–240 310H S31009 75(515)8 2 8.2 130 25Cr–20Ni Plate,sheet&strip …
AorSA–240 310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Plate,sheet&strip …
AorSA–240 310HCb S31041 75(515)8 2 8.2 130 25Cr–20Ni–Cb Plate,sheet&strip …
AorSA–240 310MoLN S31050 78(540)8 2 8.2 130 25Cr–22Ni–2Mo–N Plate >0.25(6)
AorSA–240 310MoLN S31050 84(580)8 2 8.2 130 25Cr–22Ni–2Mo–N Sheet&strip ≤0.25(6)
AorSA–240 S31200 S31200 100(690)10H 1 10.2 145 25Cr–6Ni–Mo–N Plate,sheet&strip …
AorSA–240 S31254 S31254 95(655)8 4 8.2 130 20Cr–18Ni–6Mo Plate ≥0.187(5)
AorSA–240 S31254 S31254 100(690)8 4 8.2 130 20Cr–18Ni–6Mo Sheet&strip <0.187(5)
AorSA–240 S31260 S31260 100(690)10H 1 10.2 145 25Cr–6.5Ni–3Mo–N Plate,sheet&strip …
AorSA–240 … S31266 109(750)45 … 8.2 420 24Cr–22Ni–6Mo–3Mn–
Cu–W–N
Plate,sheet&strip …
AorSA–240 S31277 S31277 112(770)45 … 8.2 420 27Ni–22Cr–7Mo–Mn–Cu Plate,sheet&strip …
AorSA–240 316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Plate,sheet&strip …
AorSA–240 316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Plate,sheet&strip …
AorSA–240 316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Plate,sheet&strip …
AorSA–240 316Ti S31635 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–Ti Plate,sheet&strip …
AorSA–240 316Cb S31640 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–Cb Plate,sheet&strip …
AorSA–240 316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Plate,sheet&strip …
AorSA–240 316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Plate,sheet&strip …
AorSA–240 … S31655 92(635)8 3 8.2 130 20.5Cr–8.8Ni–Mo–N Plate,sheet&strip …
AorSA–240 317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Plate,sheet&strip …
AorSA–240 317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Plate,sheet&strip …
AorSA–240 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Plate,sheet&strip …
AorSA–240 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Plate,sheet&strip …
AorSA–240 S31753 S31753 80(550)8 1 8.1 130 18Cr–13Ni–3Mo–N Plate,sheet&strip …
AorSA–240 S31803 S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Plate,sheet&strip …
AorSA–240 … S32003 90(620)10H 1 10.3 145 21Cr–3.5Ni–Mo–N Plate,sheet&strip …
ASMEBPVC.IX-2023
110

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–240 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Plate,sheet&strip …
AorSA–240 321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Plate,sheet&strip …
AorSA–240 … S32101 94(650)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Plate >0.187(5)
AorSA–240 … S32101 101(700)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Sheet&strip ≤0.187(5)
AorSA–240 321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Plate,sheet&strip …
AorSA–240 … S32202 94(650)10H 1 10.3 145 22Cr–2Ni–Mo–N Plate,sheet&strip …
AorSA–240 2205 S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Plate,sheet&strip …
AorSA–240 … S32304 87(600)10H 1 10.1 145 23Cr–4Ni–Mo–Cu–N Plate,sheet&strip …
AorSA–240 … S32506 90(620)10H 1 10.2 145 25Cr–6Ni–Mo–N Plate,sheet&strip …
AorSA–240 S32550 S32550 110(760)10H 1 10.2 145 25Cr–5Ni–3Mo–2Cu Plate,sheet&strip …
AorSA–240 S32615 S32615 80(550)8 1 8.1 130 18Cr–20Ni–5.5Si Plate,sheet&strip …
AorSA–240 … S32654 109(750)8 4 8.2 130 24Cr–22Ni–7Mo–3Mn Plate,sheet&strip …
AorSA–240 S32750 S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Plate,sheet&strip …
AorSA–240 S32760 S32760 108(745)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Plate,sheet&strip …
AorSA–240 329 S32900 90(620)10H 1 10.2 145 26Cr–4Ni–Mo Plate,sheet&strip …
AorSA–240 S32906 S32906 109(750)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Plate ≥0.40(10)
AorSA–240 S32906 S32906 116(800)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Plate,sheet&strip <0.40(10)
AorSA–240 S32950 S32950 100(690)10H 1 10.2 145 26Cr–4Ni–Mo–N Plate,sheet&strip …
AorSA–240 S34565 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Plate,sheet&strip …
AorSA–240 347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Plate,sheet&strip …
AorSA–240 347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Plate,sheet&strip …
AorSA–240 348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Plate,sheet&strip …
AorSA–240 348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Plate,sheet&strip …
AorSA–240 XM–15 S38100 75(515)8 1 8.1 130 18Cr–18Ni–2Si Plate,sheet&strip …
AorSA–240 … S38815 78(540)8 1 8.1 130 14Cr–16Ni–6Si–Cu–Mo Plate,sheet&strip …
AorSA–240 405 S40500 60(415)7 1 7.1 160 12Cr–Al Plate,sheet&strip …
AorSA–240 409 S40910 55(380)7 1 7.1 150 11Cr–Ti Plate,sheet&strip …
AorSA–240 409 S40920 55(380)7 1 7.1 150 11Cr–Ti Plate,sheet&strip …
AorSA–240 409 S40930 55(380)7 1 7.1 150 11Cr–Ti Plate,sheet&strip …
AorSA–240 410 S41000 65(450)6 1 7.2 150 13Cr Plate,sheet&strip …
AorSA–240 410S S41008 60(415)7 1 7.2 150 13Cr Plate,sheet&strip …
ASMEBPVC.IX-2023
111

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–240 S41500 S41500 115(795)6 4 7.2 150 13Cr–4.5Ni–Mo Plate,sheet&strip …
AorSA–240 429 S42900 65(450)6 2 7.2 150 15Cr Plate,sheet&strip …
AorSA–240 430 S43000 65(450)7 2 7.1 150 17Cr Plate,sheet&strip …
AorSA–240 439 S43035 60(415)7 2 7.1 150 18Cr–Ti Plate,sheet&strip …
AorSA–240 S43932 S43932 60(415)7 2 7.1 150 18Cr–Ti–Cb Plate,sheet&strip …
AorSA–240 S43940 S43940 62(425)7 2 7.1 150 18Cr–Ti–Cb Plate,sheet&strip …
AorSA–240 … S44100 60(415)7 2 7.1 150 18Cr–Cb–Ti Plate,sheet&strip …
AorSA–240 S44400 S44400 60(415)7 2 7.1 150 18Cr–2Mo Plate,sheet&strip …
AorSA–240 XM–33 S44626 68(470)10I 1 7.1 150 27Cr–1Mo–Ti Plate,sheet&strip …
AorSA–240 XM–27 S44627 65(450)10I 1 7.1 150 27Cr–1Mo Plate,sheet&strip …
AorSA–240 S44635 S44635 90(620)10I 1 7.1 150 25Cr–4Ni–4Mo–Ti Plate,sheet&strip …
AorSA–240 S44660 S44660 85(585)10K 1 7.1 150 26Cr–3Ni–3Mo Plate,sheet&strip …
AorSA–240 S44700 S44700 80(550)10J 1 7.1 150 29Cr–4Mo Plate,sheet&strip …
AorSA–240 S44800 S44800 80(550)10K 1 7.1 150 29Cr–4Mo–2Ni Plate,sheet&strip …
AorSA–240 … S82012 94(650)10H 1 10.3 145 20Cr–1Ni–Mo–N Plate >0.187(5)
AorSA–240 … S82012 102(705)10H 1 10.3 145 20Cr–1Ni–Mo–N Sheet&strip ≤0.187(5)
AorSA–240 … S82031 94(650)10H 1 10.3 145 21Cr–3Ni–1Mo–N Plate >0.187(5)
AorSA–240 … S82031 102(705)10H 1 10.3 145 21Cr–3Ni–1Mo–N Sheet&strip ≤0.187(5)
AorSA–240 … S82441 99(680)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NPlate ≥0.40(10)
AorSA–240 … S82441 107(740)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NPlate,sheet&strip <0.40(10)
AorSA–249 … N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NWeldedtube >0.187(5)
AorSA–249 … N08367 100(690)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NWeldedtube ≤0.187(5)
AorSA–249 … N08904 71(490)45 … 8.2 420 44Fe–25Ni–21Cr–Mo Weldedtube …
AorSA–249 TP201 S20100 95(655)8 3 8.3 130 17Cr–4Ni–6Mn Weldedtube …
AorSA–249 TP202 S20200 90(620)8 3 8.3 130 18Cr–5Ni–9Mn Weldedtube …
AorSA–249 TPXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Weldedtube …
AorSA–249 TPXM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Weldedtube …
AorSA–249 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Weldedtube …
AorSA–249 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Weldedtube …
AorSA–249 TP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Weldedtube …
AorSA–249 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Weldedtube …
ASMEBPVC.IX-2023
112

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–249 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Weldedtube …
AorSA–249 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Weldedtube …
AorSA–249 TP309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Weldedtube …
AorSA–249 TP309H S30909 75(515)8 2 8.2 130 23Cr–12Ni Weldedtube …
AorSA–249 TP309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Weldedtube …
AorSA–249 TP309HCb S30941 75(515)8 2 8.2 130 23Cr–12Ni–Cb Weldedtube …
AorSA–249 TP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Weldedtube …
AorSA–249 TP310H S31009 75(515)8 2 8.2 130 25Cr–20Ni Weldedtube …
AorSA–249 TP310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Weldedtube …
AorSA–249 TP310HCb S31041 75(515)8 2 8.2 130 25Cr–20Ni–Cb Weldedtube …
AorSA–249 TP310MoLN S31050 78(540)8 2 8.2 130 25Cr–22Ni–2Mo–N Weldedtube >0.25(6)
AorSA–249 TP310MoLN S31050 84(580)8 2 8.2 130 25Cr–22Ni–2Mo–N Weldedtube ≤0.25(6)
AorSA–249 S31254 S31254 95(655)8 4 8.2 130 20Cr–18Ni–6Mo Weldedtube >0.187(5)
AorSA–249 S31254 S31254 98(675)8 4 8.2 130 20Cr–18Ni–6Mo Weldedtube ≤0.187(5)
AorSA–249 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Weldedtube …
AorSA–249 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Weldedtube …
AorSA–249 TP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Weldedtube …
AorSA–249 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Weldedtube …
AorSA–249 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Weldedtube …
AorSA–249 … S31655 92(635)8 3 8.2 130 20.5Cr–8.8Ni–Mo–N Weldedtube …
AorSA–249 TP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Weldedtube …
AorSA–249 TP317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Weldedtube …
AorSA–249 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Weldedtube …
AorSA–249 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Weldedtube …
AorSA–249 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Weldedtube …
AorSA–249 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedtube …
AorSA–249 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedtube …
AorSA–249 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedtube …
AorSA–249 TP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedtube …
AorSA–249 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedtube …
AorSA–249 TP348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedtube …
AorSA–249 TPXM–15 S38100 75(515)8 1 8.1 130 18Cr–18Ni–2Si Weldedtube …
ASMEBPVC.IX-2023
113

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–249 … S38815 78(540)8 1 8.1 130 14Cr–16Ni–6Si–Cu–Mo Weldedtube …
AorSA–250 T1b K11422 53(365)3 1 1.1 100 C–0.5Mo E.R.W.tube …
AorSA–250 T1 K11522 55(380)3 1 1.1 100 C–0.5Mo E.R.W.tube …
AorSA–250 T2 K11547 60(415)3 1 4.2 100 0.5Cr–0.5Mo E.R.W.tube …
AorSA–250 T12 K11562 60(415)4 1 5.1 110 1Cr–0.5Mo E.R.W.tube …
AorSA–250 T11 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si E.R.W.tube …
AorSA–250 T1a K12023 60(415)3 1 1.1 100 C–0.5Mo E.R.W.tube …
AorSA–250 T22 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo E.R.W.tube …
A254 Cl.1 K01001 42(290)… … NA 100 C Cubrazedtube …
A254 Cl.2 K01001 42(290)… … NA 100 C Cubrazedtube …
AorSA–266 4 K03017 70(485)1 2 11.1 100 C–Mn–Si Forgings …
AorSA–266 1 K03506 60(415)1 1 11.1 100 C–Si Forgings …
AorSA–266 2 K03506 70(485)1 2 11.1 100 C–Si Forgings …
AorSA–266 3 K05001 75(515)1 2 11.2 100 C–Si Forgings …
AorSA–268 TP405 S40500 60(415)7 1 7.1 160 12Cr–Al Smls.&weldedtube …
AorSA–268 S40800 S40800 55(380)7 1 7.1 150 12Cr–Ti Smls.&weldedtube …
AorSA–268 TP409 S40900 55(380)7 1 7.1 150 11Cr–Ti Smls.&weldedtube …
AorSA–268 TP410 S41000 60(415)6 1 7.2 150 13Cr Smls.&weldedtube …
AorSA–268 S41500 S41500 115(795)6 4 7.2 150 13Cr–4.5Ni–Mo Smls.&weldedtube …
AorSA–268 TP429 S42900 60(415)6 2 7.2 150 15Cr Smls.&weldedtube …
AorSA–268 TP430 S43000 60(415)7 2 7.1 150 17Cr Smls.&weldedtube …
AorSA–268 TP439 S43035 60(415)7 2 7.1 150 18Cr–Ti Smls.&weldedtube …
AorSA–268 TP430Ti S43036 60(415)7 2 7.1 160 18Cr–Ti Smls.&weldedtube …
AorSA–268 18Cr–2Mo S44400 60(415)7 2 7.1 150 18Cr–2Mo Smls.&weldedtube …
AorSA–268 TP446–1 S44600 70(485)10I 1 7.1 150 27Cr Smls.&weldedtube …
AorSA–268 TP446–2 S44600 65(450)10I 1 7.1 150 27Cr Smls.&weldedtube …
AorSA–268 TPXM–33 S44626 68(470)10I 1 7.1 150 27Cr–1Mo–Ti Smls.&weldedtube …
AorSA–268 TPXM–27 S44627 65(450)10I 1 7.1 150 27Cr–1Mo Smls.&weldedtube …
AorSA–268 25–4–4 S44635 90(620)10I 1 7.1 150 25Cr–4Ni–4Mo–Ti Smls.&weldedtube …
ASMEBPVC.IX-2023
114

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–268 26–3–3 S44660 85(585)10K 1 7.1 150 26Cr–3Ni–3Mo Smls.&weldedtube …
AorSA–268 29–4 S44700 80(550)10J 1 7.1 150 29Cr–4Mo Smls.&weldedtube …
AorSA–268 S44735 S44735 75(515)10J 1 7.1 150 29Cr–4Mo–Ti Smls.&weldedtube …
AorSA–268 29–4–2 S44800 80(550)10K 1 7.1 150 29Cr–4Mo–2Ni Smls.&weldedtube …
A269 TP304 S30400 …8 1 8.1 130 18Cr–8Ni Smls.&weldedtube …
A269 TP304L S30403 …8 1 8.1 130 18Cr–8Ni Smls.&weldedtube …
A269 TP316 S31600 …8 1 8.1 130 16Cr–12Ni–2Mo Smls.&weldedtube …
A269 TP316L S31603 …8 1 8.1 130 16Cr–12Ni–2Mo Smls.&weldedtube …
AorSA–276 304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Bars&shapes …
AorSA–276 304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Bars&shapes …
AorSA–276 314 S31400 …8 2 8.2 130 24Cr–20Ni–Si Bars&shapes …
AorSA–276 316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
AorSA–276 316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
AorSA–276 410 S41000 70(485)6 1 7.2 150 13Cr Bars&shapes …
AorSA–283 A K01400 45(310)1 1 1.1 100 C Plate …
AorSA–283 B K01702 50(345)1 1 1.1 100 C Plate …
AorSA–283 C K02401 55(380)1 1 1.1 100 C Plate …
AorSA–283 D K02702 60(415)1 1 1.1 100 C Plate …
AorSA–285 A K01700 45(310)1 1 1.1 100 C Plate …
AorSA–285 B K02200 50(345)1 1 1.1 100 C Plate …
AorSA–285 C K02801 55(380)1 1 11.1 100 C Plate …
AorSA–299 A K02803 75(515)1 2 11.1 100 C–Mn–Si Plate …
AorSA–299 B K02803 80(550)1 3 11.1 100 C–Mn–Si Plate …
AorSA–302 A K12021 75(515)3 2 1.1 100 Mn–0.5Mo Plate …
AorSA–302 B K12022 80(550)3 3 1.2 100 Mn–0.5Mo Plate …
AorSA–302 C K12039 80(550)3 3 ... 100 Mn–0.5Mo–0.5Ni Plate …
AorSA–302 D K12054 80(550)3 3 ... 100 Mn–0.5Mo–0.75Ni Plate …
ASMEBPVC.IX-2023
115

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–312 N08367 N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NSmls.&weldedpipe >0.187(5)
AorSA–312 N08367 N08367 100(690)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NSmls.&weldedpipe ≤0.187(5)
AorSA–312 … N08904 71(490)45 … 8.2 420 44Fe–25Ni–21Cr–Mo Smls.&weldedpipe …
AorSA–312 TP201LN S20153 95(655)8 3 8.3 130 16Cr–4Ni–6Mn Smls.&weldedpipe …
AorSA–312 TPXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Smls.&weldedpipe …
AorSA–312 TPXM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Smls.&weldedpipe …
AorSA–312 TPXM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Smls.&weldedpipe …
AorSA–312 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Smls.&weldedpipe …
AorSA–312 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Smls.&weldedpipe …
AorSA–312 TP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Smls.&weldedpipe …
AorSA–312 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Smls.&weldedpipe …
AorSA–312 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Smls.&weldedpipe …
AorSA–312 S30600 S30600 78(540)8 1 8.1 130 18Cr–15Ni–4Si Smls.&weldedpipe …
AorSA–312 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Smls.&weldedpipe …
AorSA–312 TP309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Smls.&weldedpipe …
AorSA–312 TP309H S30909 75(515)8 2 8.2 130 23Cr–12Ni Smls.&weldedpipe …
AorSA–312 TP309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Smls.&weldedpipe …
AorSA–312 TP309HCb S30941 75(515)8 2 8.2 130 23Cr–12Ni–Cb Smls.&weldedpipe …
AorSA–312 … S31002 73(505)8 2 8.2 130 25Cr–20Ni–N Smls.pipe …
AorSA–312 TP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Smls.&weldedpipe …
AorSA–312 TP310H S31009 75(515)8 2 8.2 130 25Cr–20Ni Smls.&weldedpipe …
AorSA–312 TP310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Smls.&weldedpipe …
AorSA–312 TP310HCb S31041 75(515)8 2 8.2 130 25Cr–20Ni–Cb Smls.&weldedpipe …
AorSA–312 TP310MoLN S31050 78(540)8 2 8.2 130 25Cr–22Ni–2Mo–N Smls.&weldedpipe >0.25(6)
AorSA–312 TP310MoLN S31050 84(580)8 2 8.2 130 25Cr–22Ni–2Mo–N Smls.&weldedpipe ≤0.25(6)
AorSA–312 S31254 S31254 95(655)8 4 8.2 130 20Cr–18Ni–6Mo Smls.&weldedpipe >0.187(5)
AorSA–312 S31254 S31254 98(675)8 4 8.2 130 20Cr–18Ni–6Mo Smls.&weldedpipe ≤0.187(5)
AorSA–312 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Smls.&weldedpipe …
AorSA–312 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Smls.&weldedpipe …
AorSA–312 TP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Smls.&weldedpipe …
AorSA–312 TP316Ti S31635 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–Ti Smls.&weldedpipe …
AorSA–312 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Smls.&weldedpipe …
ASMEBPVC.IX-2023
116

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–312 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Smls.&weldedpipe …
AorSA–312 TP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Smls.&weldedpipe …
AorSA–312 TP317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Smls.&weldedpipe …
AorSA–312 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Smls.&weldedpipe …
AorSA–312 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Smls.&weldedpipe …
AorSA–312 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Smls.&weldedpipe …
AorSA–312 TP321 S32100 70(485)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe >0.375(10)NPS
AorSA–312 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe ≤0.375(10)NPS
AorSA–312 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedpipe …
AorSA–312 TP321H S32109 70(485)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe >0.375(10)NPS
AorSA–312 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe ≤0.375(10)NPS
AorSA–312 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedpipe …
AorSA–312 S32615 S32615 80(550)8 1 8.1 130 18Cr–20Ni–5.5Si Smls.&weldedpipe …
AorSA–312 S34565 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Smls.&weldedpipe …
AorSA–312 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.&weldedpipe …
AorSA–312 TP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.&weldedpipe …
AorSA–312 TP347LN S34751 75(515)8 1 8.1 130 18Cr–10Ni–Cb–N Smls.&weldedpipe …
AorSA–312 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.&weldedpipe …
AorSA–312 TP348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.&weldedpipe …
AorSA–312 TPXM–15 S38100 75(515)8 1 8.1 130 18Cr–18Ni–2Si Smls.&weldedpipe …
AorSA–333 10 … 80(550)1 3 11.1 100 C–Mn–Si Smls.&weldedpipe …
AorSA–333 6 K03006 60(415)1 1 11.1 100 C–Mn–Si Smls.&weldedpipe …
AorSA–333 1 K03008 55(380)1 1 11.1 100 C–Mn Smls.&weldedpipe …
AorSA–333 4 K11267 60(415)4 2 4.1 120 0.75Cr–0.75Ni–Cu–Al Smls.&weldedpipe …
AorSA–333 7 K21903 65(450)9A 1 9.1 100 2.5Ni Smls.&weldedpipe …
AorSA–333 9 K22035 63(435)9A 1 9.1 100 2Ni–1Cu Smls.&weldedpipe …
AorSA–333 3 K31918 65(450)9B 1 9.2 100 3.5Ni Smls.&weldedpipe …
AorSA–333 8 K81340 100(690)11A 1 9.3 100 9Ni Smls.&weldedpipe …
AorSA–334 6 K03006 60(415)1 1 11.1 100 C–Mn–Si Weldedtube …
AorSA–334 1 K03008 55(380)1 1 11.1 100 C–Mn Weldedtube …
ASMEBPVC.IX-2023
117

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–334 7 K21903 65(450)9A 1 9.1 100 2.5Ni Weldedtube …
AorSA–334 9 K22035 63(435)9A 1 9.1 100 2Ni–1Cu Weldedtube …
AorSA–334 3 K31918 65(450)9B 1 9.2 100 3.5Ni Weldedtube …
AorSA–334 8 K81340 100(690)11A 1 9.3 100 9Ni Weldedtube …
AorSA–335 P1 K11522 55(380)3 1 1.1 100 C–0.5Mo Smls.pipe …
AorSA–335 P2 K11547 55(380)3 1 4.2 100 0.5Cr–0.5Mo Smls.pipe …
AorSA–335 P12 K11562 60(415)4 1 5.1 110 1Cr–0.5Mo Smls.pipe …
AorSA–335 P15 K11578 60(415)3 1 ... 100 1.5Si–0.5Mo Smls.pipe …
AorSA–335 P11 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Smls.pipe …
AorSA–335 P22 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Smls.pipe …
AorSA–335 P21 K31545 60(415)5A 1 5.2 110 3Cr–1Mo Smls.pipe …
AorSA–335 P5c K41245 60(415)5B 1 5.3 120 5Cr–0.5Mo–Ti Smls.pipe …
AorSA–335 P5 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Smls.pipe …
AorSA–335 P5b K51545 60(415)5B 1 5.3 110 5Cr–0.5Mo–Si Smls.pipe …
AorSA–335 P91 K90901 85(585)15E 1 6.4 110 9Cr–1Mo–V Smls.pipe …
AorSA–335 P9 K90941 60(415)5B 1 5.4 110 9Cr–1Mo Smls.pipe …
AorSA–335 P92 K92460 90(620)15E 1 6.4 110 9Cr–2W Smls.pipe …
AorSA–336 F12 K11564 70(485)4 1 5.1 110 1Cr–0.5Mo Forgings …
AorSA–336 F11,Cl.2 K11572 70(485)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–336 F11,Cl.3 K11572 75(515)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–336 F11,Cl.1 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–336 F1 K12520 70(485)3 2 1.1 100 C–0.5Mo Forgings …
AorSA–336 F22,Cl.1 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Forgings …
AorSA–336 F22,Cl.3 K21590 75(515)5A 1 5.2 110 2.25Cr–1Mo Forgings …
AorSA–336 F3VCb K31390 85(585)5C 1 6.2 110 3Cr–1Mo–0.25V–Cb–Ca Forgings …
AorSA–336 F21,Cl.1 K31545 60(415)5A 1 5.2 110 3Cr–1Mo Forgings …
AorSA–336 F21,Cl.3 K31545 75(515)5A 1 5.2 110 3Cr–1Mo Forgings …
AorSA–336 F3V K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Forgings …
AorSA–336 F22V K31835 85(585)5C 1 6.2 110 2.25Cr–1Mo–V Forgings …
AorSA–336 F5 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Forgings …
AorSA–336 F5A K42544 80(550)5B 1 5.3 110 5Cr–0.5Mo Forgings …
ASMEBPVC.IX-2023
118

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–336 F91 K90901 90(620)15E 1 6.4 110 9Cr–1Mo–V Forgings …
AorSA–336 F9 K90941 85(585)5B 1 5.4 110 9Cr–1Mo Forgings …
AorSA–336 F92 K92460 90(620)15E 1 6.4 110 9Cr–2W Forgings …
AorSA–336 F6 S41000 85(585)6 3 7.2 150 13Cr Forgings …
AorSA–350 LF1 K03009 60(415)1 1 11.1 100 C–Mn–Si Forgings …
AorSA–350 LF2 K03011 70(485)1 2 11.1 100 C–Mn–Si Forgings …
AorSA–350 LF6,Cl.2 K12202 75(515)1 3 4.1 100 C–Mn–Si–V Forgings …
AorSA–350 LF5Cl.1 K13050 60(415)9A 1 9.1 100 1.5Ni Forgings …
AorSA–350 LF5Cl.2 K13050 70(485)9A 1 9.1 100 1.5Ni Forgings …
AorSA–350 LF9 K22036 63(435)9A 1 9.1 100 2Ni–1Cu Forgings …
AorSA–350 LF3 K32025 70(485)9B 1 9.2 100 3.5Ni Forgings …
AorSA–351 CF3 J92500 70(485)8 1 8.1 130 18Cr–8Ni Castings …
AorSA–351 CF3A J92500 77(530)8 1 8.1 130 18Cr–8Ni Castings …
AorSA–351 CF10 J92590 70(485)8 1 8.1 130 19Cr–9Ni–0.5Mo Castings …
AorSA–351 CF8 J92600 70(485)8 1 8.1 130 18Cr–8Ni Castings …
AorSA–351 CF8A J92600 77(530)8 1 8.1 130 18Cr–8Ni Castings …
AorSA–351 CF8C J92710 70(485)8 1 8.1 130 18Cr–10Ni–Cb Castings …
AorSA–351 CF3M J92800 70(485)8 1 8.1 130 18Cr–12Ni–2Mo Castings …
AorSA–351 CE20N J92802 80(550)8 2 8.2 130 25Cr–8Ni–N Castings …
AorSA–351 CF8M J92900 70(485)8 1 8.1 130 18Cr–12Ni–2Mo Castings …
AorSA–351 CF10M J92901 70(485)8 1 8.1 130 19Cr–9Ni–2Mo Castings …
AorSA–351 CF10MC J92971 70(485)8 1 8.1 130 16Cr–14Ni–2Mo Castings …
AorSA–351 CG8M J93000 75(515)8 1 8.1 130 19Cr–10Ni–3Mo Castings …
AorSA–351 CK3MCuN J93254 80(550)8 4 8.2 130 20Cr–18Ni–6Mo Castings …
AorSA–351 CD3MWCuN J93380100(690)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Castings …
AorSA–351 CH8 J93400 65(450)8 2 8.2 130 25Cr–12Ni Castings …
AorSA–351 CH10 J93401 70(485)8 2 8.2 130 25Cr–12Ni Castings …
AorSA–351 CH20 J93402 70(485)8 2 8.2 130 25Cr–12Ni Castings …
AorSA–351 CG6MMN J93790 85(585)8 3 8.3 130 22Cr–12Ni–5Mn Castings …
AorSA–351 CK20 J94202 65(450)8 2 8.2 130 25Cr–20Ni Castings …
AorSA–351 HK30 J94203 65(450)8 2 8.2 130 25Cr–20Ni–0.5Mo Castings …
ASMEBPVC.IX-2023
119

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–351 HK40 J94204 62(425)8 2 8.2 130 25Cr–20Ni–0.5Mo Castings …
AorSA–351 CN3MN J94651 80(550)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–
Cu–N
Castings …
AorSA–351 CN7M N08007 62(425)45 … 8.2 420 28Ni–19Cr–Cu–Mo Castings …
AorSA–351 CT15C N08151 63(435)45 … 45 420 32Ni–45Fe–20Cr–Cb Castings …
AorSA–351 HT30 N08603 65(450)45 … 45 420 35Ni–15Cr–0.5Mo Castings …
AorSA–352 LCA J02504 60(415)1 1 11.1 100 C–Si Castings …
AorSA–352 LCC J02505 70(485)1 2 11.1 100 C–Mn–Si Castings …
AorSA–352 LCB J03003 65(450)1 1 1.1 100 C–Si Castings …
AorSA–352 LC1 J12522 65(450)3 1 1.1 100 C–0.5Mo Castings …
AorSA–352 LC2 J22500 70(485)9A 1 9.1 100 2.5Ni Castings …
AorSA–352 LC3 J31550 70(485)9B 1 9.3 100 3.5Ni Castings …
AorSA–352 LC4 J41500 70(485)9C 1 9.3 100 4.5Ni Castings …
AorSA–352 LC2–1 J42215105(725)11A 5 9.2 110 3Ni–1.5Cr–0.5Mo Castings …
AorSA–352 CA6NM J91540110(760)6 4 7.2 150 13Cr–4Ni Castings …
AorSA–353 … K81340 100(690)11A 1 9.3 100 9Ni Plate …
A356 1 J03502 70(485)1 2 11.1 100 C–Si Castings …
A356 8 J11697 80(550)4 1 6.2 110 1Cr–1Mo–V Castings …
A356 6 J12073 70(485)4 1 5.1 110 1.25Cr–0.5Mo Castings …
A356 2 J12523 65(450)3 1 1.1 100 C–0.5Mo Castings …
A356 9 J21610 85(585)4 1 6.2 110 1Cr–1Mo–V Castings …
A356 10 J22090 85(585)5A 1 5.2 110 2.25Cr–1Mo Castings …
A356 12A J84090 85(585)15E 1 6.4 110 9Cr–1Mo–V Castings …
AorSA–358 N08367 N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NFusionweldedpipe ≥0.187(5)
AorSA–358 N08367 N08367 100(690)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NFusionweldedpipe <0.187(5)
AorSA–358 201LN S20153 95(655)8 3 8.3 130 16Cr–4Ni–6Mn Fusionweldedpipe …
AorSA–358 XM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Fusionweldedpipe …
AorSA–358 XM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Fusionweldedpipe …
AorSA–358 304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Fusionweldedpipe …
ASMEBPVC.IX-2023
120

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–358 304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Fusionweldedpipe …
AorSA–358 304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Fusionweldedpipe …
AorSA–358 304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Fusionweldedpipe …
AorSA–358 304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Fusionweldedpipe …
AorSA–358 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Fusionweldedpipe …
AorSA–358 309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Fusionweldedpipe …
AorSA–358 309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Fusionweldedpipe …
AorSA–358 310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Fusionweldedpipe …
AorSA–358 310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Fusionweldedpipe …
AorSA–358 S31254 S31254 95(655)8 4 8.2 130 20Cr–18Ni–6Mo Fusionweldedpipe ≥0.187(5)
AorSA–358 S31254 S31254 100(690)8 4 8.2 130 20Cr–18Ni–6Mo Fusionweldedpipe <0.187(5)
AorSA–358 … S31266 109(750)45 … 8.2 420 24Cr–22Ni–6Mo–3Mn–
Cu–W–N
Fusionweldedpipe …
AorSA–358 316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Fusionweldedpipe …
AorSA–358 316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Fusionweldedpipe …
AorSA–358 316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Fusionweldedpipe …
AorSA–358 316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Fusionweldedpipe …
AorSA–358 316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Fusionweldedpipe …
AorSA–358 … S31655 92(635)8 3 8.2 130 20.5Cr–8.8Ni–Mo–N Fusionweldedpipe …
AorSA–358 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Fusionweldedpipe …
AorSA–358 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Fusionweldedpipe …
AorSA–358 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Fusionweldedpipe …
AorSA–358 321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Fusionweldedpipe …
AorSA–358 347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Fusionweldedpipe …
AorSA–358 348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Fusionweldedpipe …
AorSA–369 FPA K02501 48(330)1 1 1.1 100 C–Si Forgedpipe …
AorSA–369 FPB K03006 60(415)1 1 1.1 100 C–Mn–Si Forgedpipe …
AorSA–369 FP1 K11522 55(380)3 1 1.1 100 C–0.5Mo Forgedpipe …
AorSA–369 FP2 K11547 55(380)3 1 4.2 100 0.5Cr–0.5Mo Forgedpipe …
AorSA–369 FP12 K11562 60(415)4 1 5.1 110 1Cr–0.5Mo Forgedpipe …
AorSA–369 FP11 K11597 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Forgedpipe …
AorSA–369 FP22 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Forgedpipe …
ASMEBPVC.IX-2023
121

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–369 FP21 K31545 60(415)5A 1 5.2 110 3Cr–1Mo Forgedpipe …
AorSA–369 FP5 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Forgedpipe …
AorSA–369 FP91 K90901 85(585)15E 1 6.4 110 9Cr–1Mo–V Forgedpipe …
AorSA–369 FP9 K90941 60(415)5B 1 5.4 110 9Cr–1Mo Forgedpipe …
AorSA–369 FP92 K92460 90(620)15E 1 6.4 110 9Cr–2W Forgedpipe …
AorSA–372 A K03002 60(415)1 1 11.1 100 C–Si Forgings …
AorSA–372 B K04001 75(515)1 2 11.1 100 C–Mn–Si Forgings …
AorSA–376 16–8–2H S16800 75(515)8 1 8.1 130 16Cr–8Ni–2Mo Smls.pipe …
AorSA–376 TP304 S30400 70(485)8 1 8.1 130 18Cr–8Ni Smls.pipe ≥0.812(21)
AorSA–376 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Smls.pipe <0.812(21)
AorSA–376 TP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Smls.pipe …
AorSA–376 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Smls.pipe …
AorSA–376 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Smls.pipe …
AorSA–376 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Smls.pipe …
AorSA–376 TP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Smls.pipe …
AorSA–376 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Smls.pipe …
AorSA–376 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Smls.pipe …
AorSA–376 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Smls.pipe …
AorSA–376 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Smls.pipe …
AorSA–376 TP321 S32100 70(485)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe >0.375(10)
AorSA–376 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe ≤0.375(10)
AorSA–376 TP321H S32109 70(485)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe >0.375(10)
AorSA–376 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Smls.pipe ≤0.375(10)
AorSA–376 S34565 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Smls.pipe …
AorSA–376 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.pipe …
AorSA–376 TP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.pipe …
AorSA–376 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Smls.pipe …
A381 Y35 … 60(415)1 1 11.1 100 C Weldedpipe …
A381 Y42 … 60(415)1 1 11.1 100 C Weldedpipe …
ASMEBPVC.IX-2023
122

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
A381 Y46 … 63(435)1 1 11.1 100 C Weldedpipe …
A381 Y48 … 62(425)1 1 11.1 100 C Weldedpipe …
A381 Y50 … 64(440)1 1 11.1 100 C Weldedpipe …
A381 Y52 … 66(455)1 2 11.1 100 C Weldedpipe …
A381 Y56 … 71(490)1 2 11.1 100 C Weldedpipe …
A381 Y60 … 75(515)1 2 11.1 100 C Weldedpipe …
AorSA–387 12,Cl.1 K11757 55(380)4 1 5.1 110 1Cr–0.5Mo Plate …
AorSA–387 12,Cl.2 K11757 65(450)4 1 5.1 110 1Cr–0.5Mo Plate …
AorSA–387 11,Cl.1 K11789 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Plate …
AorSA–387 11,Cl.2 K11789 75(515)4 1 5.1 110 1.25Cr–0.5Mo–Si Plate …
AorSA–387 2,Cl.1 K12143 55(380)3 1 4.2 100 0.5Cr–0.5Mo Plate …
AorSA–387 2,Cl.2 K12143 70(485)3 2 4.2 100 0.5Cr–0.5Mo Plate …
AorSA–387 22,Cl.1 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Plate …
AorSA–387 22,Cl.2 K21590 75(515)5A 1 5.2 110 2.25Cr–1Mo Plate …
AorSA–387 21,Cl.1 K31545 60(415)5A 1 5.2 110 3Cr–1Mo Plate …
AorSA–387 21,Cl.2 K31545 75(515)5A 1 5.2 110 3Cr–1Mo Plate …
AorSA–387 5,Cl.1 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Plate …
AorSA–387 5,Cl.2 K41545 75(515)5B 1 5.3 110 5Cr–0.5Mo Plate …
AorSA–387 91,Cl.2 K90901 85(585)15E 1 6.4 110 9Cr–1Mo–V Plate …
AorSA–387 9,Cl.1 K90941 60(415)5B 1 5.4 110 9Cr–1Mo Plate …
AorSA–387 9,Cl.2 K90941 75(515)5B 1 5.4 110 9Cr–1Mo Plate …
A403 … N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NWroughtpipingfittings…
AorSA–403 … N08904 71(490)45 … 8.2 420 44Fe–25Ni–21Cr–Mo Wroughtpipingfittings…
AorSA–403 WPXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Wroughtpipingfittings…
AorSA–403 WP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Wroughtpipingfittings…
AorSA–403 WP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Wroughtpipingfittings…
AorSA–403 WP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Wroughtpipingfittings…
AorSA–403 WP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Wroughtpipingfittings…
AorSA–403 WP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Wroughtpipingfittings…
AorSA–403 WP309 S30900 75(515)8 2 8.2 130 23Cr–12Ni Wroughtpipingfittings…
AorSA–403 WP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Wroughtpipingfittings…
ASMEBPVC.IX-2023
123

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–403 … S31254 94(650)8 4 8.2 130 20Cr–18Ni–6Mo Wroughtpipingfittings…
AorSA–403 WP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Wroughtpipingfittings…
AorSA–403 WP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Wroughtpipingfittings…
AorSA–403 WP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Wroughtpipingfittings…
AorSA–403 WP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Wroughtpipingfittings…
AorSA–403 WP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Wroughtpipingfittings…
AorSA–403 WP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Wroughtpipingfittings…
AorSA–403 WP317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Wroughtpipingfittings…
AorSA–403 WPS31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Wroughtpipingfittings…
AorSA–403 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Wroughtpipingfittings…
AorSA–403 WP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Wroughtpipingfittings…
AorSA–403 WP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Wroughtpipingfittings…
AorSA–403 S34565 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Wroughtpipingfittings…
AorSA–403 WP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Wroughtpipingfittings…
AorSA–403 WP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Wroughtpipingfittings…
AorSA–403 WP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Wroughtpipingfittings…
AorSA–403 WP348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Wroughtpipingfittings…
AorSA–403 WPS38815 S38815 78(540)8 1 8.1 130 14Cr–16Ni–6Si–Cu–Mo Wroughtpipingfittings…
AorSA–409 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Weldedpipe …
AorSA–409 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Weldedpipe …
AorSA–409 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Weldedpipe …
AorSA–409 TP309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Weldedpipe …
AorSA–409 TP309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Weldedpipe …
AorSA–409 TP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Weldedpipe …
AorSA–409 TP310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Weldedpipe …
AorSA–409 S31254 S31254 94(650)8 4 8.2 130 20Cr–18Ni–6Mo Weldedpipe …
AorSA–409 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Weldedpipe …
AorSA–409 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Weldedpipe …
AorSA–409 TP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Weldedpipe …
AorSA–409 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Weldedpipe …
AorSA–409 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Weldedpipe …
ASMEBPVC.IX-2023
124

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–409 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Weldedpipe …
AorSA–409 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedpipe …
AorSA–409 S34565 S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Weldedpipe …
AorSA–409 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedpipe …
AorSA–409 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedpipe …
AorSA–414 A K01501 45(310)1 1 1.1 100 C Sheet …
AorSA–414 B K02201 50(345)1 1 1.1 100 C Sheet …
AorSA–414 C K02503 55(380)1 1 1.1 100 C Sheet …
AorSA–414 D K02505 60(415)1 1 1.1 100 C–Mn Sheet …
AorSA–414 E K02704 65(450)1 1 11.1 100 C–Mn Sheet …
AorSA–414 F K03102 70(485)1 2 11.1 100 C–Mn Sheet …
AorSA–414 G K03103 75(515)1 2 11.1 100 C–Mn Sheet …
AorSA–420 WPL6 K03006 60(415)1 1 11.1 100 C–Mn–Si Pipingfittings …
AorSA–420 WPL9 K22035 63(435)9A 1 9.1 100 2Ni–1Cu Pipingfittings …
AorSA–420 WPL3 K31918 65(450)9B 1 9.2 100 3.5Ni Pipingfittings …
AorSA–420 WPL8 K81340 100(690)11A 1 9.3 100 9Ni Pipingfittings …
AorSA–423 1 K11535 60(415)4 2 5.1 110 0.75Cr–0.5Ni–Cu Smls.&weldedtube …
AorSA–423 2 K11540 60(415)4 2 5.1 100 0.75Ni–0.5Cu–Mo Smls.&weldedtube …
AorSA–426 CP15 J11522 60(415)3 1 1.1 100 C–0.5Mo–Si Centrifugalcastpipe …
AorSA–426 CP2 J11547 60(415)3 1 4.2 100 0.5Cr–0.5Mo Centrifugalcastpipe …
AorSA–426 CP12 J11562 60(415)4 1 5.1 110 1Cr–0.5Mo Centrifugalcastpipe …
AorSA–426 CP11 J12072 70(485)4 1 5.1 110 1.25Cr–0.5Mo Centrifugalcastpipe …
AorSA–426 CP1 J12521 65(450)3 1 1.1 100 C–0.5Mo Centrifugalcastpipe …
AorSA–426 CP22 J21890 70(485)5A 1 5.2 110 2.25Cr–1Mo Centrifugalcastpipe …
AorSA–426 CP21 J31545 60(415)5A 1 5.2 110 3Cr–1Mo Centrifugalcastpipe …
AorSA–426 CP5 J42045 90(620)5B 1 5.3 110 5Cr–0.5Mo Centrifugalcastpipe …
AorSA–426 CP5b J51545 60(415)5B 1 5.3 110 5Cr–1.5Si–0.5Mo Centrifugalcastpipe …
AorSA–426 CP9 J82090 90(620)5B 1 5.4 110 9Cr–1Mo Centrifugalcastpipe …
ASMEBPVC.IX-2023
125

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–426 CPCA15 J91150 90(620)6 3 7.2 150 13Cr Centrifugalcastpipe …
AorSA–451 CPF3 J92500 70(485)8 1 8.1 130 18Cr–8Ni Centrifugalcastpipe …
AorSA–451 CPF3A J92500 77(530)8 1 8.1 130 18Cr–8Ni Centrifugalcastpipe …
AorSA–451 CPF8 J92600 70(485)8 1 8.1 130 18Cr–8Ni Centrifugalcastpipe …
AorSA–451 CPF8A J92600 77(530)8 1 8.1 130 18Cr–8Ni Centrifugalcastpipe …
AorSA–451 CPF8C J92710 70(485)8 1 8.1 130 18Cr–10Ni–Cb Centrifugalcastpipe …
AorSA–451 CPF3M J92800 70(485)8 1 8.1 130 18Cr–12Ni–2Mo Centrifugalcastpipe …
AorSA–451 CPE20N J92802 80(550)8 2 8.2 130 25Cr–8Ni–N Centrifugalcastpipe …
AorSA–451 CPF8M J92900 70(485)8 1 8.1 130 18Cr–12Ni–2Mo Centrifugalcastpipe …
AorSA–451 CPF10MC J92971 70(485)8 1 8.1 130 16Cr–14Ni–2Mo Centrifugalcastpipe …
AorSA–451 CPH8 J93400 65(450)8 2 8.2 130 25Cr–12Ni Centrifugalcastpipe …
AorSA–451 CPH20 J93402 70(485)8 2 8.2 130 25Cr–12Ni Centrifugalcastpipe …
AorSA–451 CPK20 J94202 65(450)8 2 8.2 130 25Cr–20Ni Centrifugalcastpipe …
AorSA–455 … K03300 70(485)1 2 11.2 100 C–Mn–Si Plate >0.580(15)≤0.75(19)
AorSA–455 … K03300 73(505)1 2 11.2 100 C–Mn–Si Plate >0.375(10)
≤0.580(15)
AorSA–455 … K03300 75(515)1 2 11.2 100 C–Mn–Si Plate ≤0.375(10)
AorSA–479 … N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NBars&shapes …
AorSA–479 904L N08904 71(490)45 … 8.2 420 44Fe–25Ni–21Cr–Mo Bars&shapes …
AorSA–479 XM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Bars&shapes …
AorSA–479 XM–17 S21600 90(620)8 3 8.3 130 19Cr–8Mn–6Ni–Mo–N Bars&shapes …
AorSA–479 XM–18 S21603 90(620)8 3 8.3 130 19Cr–8Mn–6Ni–Mo–N Bars&shapes …
AorSA–479 S21800 S21800 95(655)8 3 8.1 130 18Cr–8Ni–8Mn–4Si–N Bars&shapes …
AorSA–479 XM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Bars&shapes …
AorSA–479 XM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Bars&shapes …
AorSA–479 302 S30200 75(515)8 1 8.1 130 18Cr–8Ni Bars&shapes …
AorSA–479 304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Bars&shapes …
AorSA–479 304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Bars&shapes …
AorSA–479 304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Bars&shapes …
AorSA–479 304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Bars&shapes …
ASMEBPVC.IX-2023
126

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–479 304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Bars&shapes …
AorSA–479 S30600 S30600 78(540)8 1 8.1 130 18Cr–15Ni–4Si Bars&shapes …
AorSA–479 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Bars&shapes …
AorSA–479 309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Bars&shapes …
AorSA–479 309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Bars&shapes …
AorSA–479 310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Bars&shapes …
AorSA–479 310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Bars&shapes …
AorSA–479 S31254 S31254 95(655)8 4 8.2 130 20Cr–18Ni–6Mo Bars&shapes …
AorSA–479 316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
AorSA–479 316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
AorSA–479 316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
AorSA–479 316Ti S31635 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–Ti Bars&shapes …
AorSA–479 316Cb S31640 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–Cb Bars&shapes …
AorSA–479 316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Bars&shapes …
AorSA–479 316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Bars&shapes …
AorSA–479 S31725 S31725 75(515)8 4 8.1 130 19Cr–15Ni–4Mo Bars&shapes …
AorSA–479 S31726 S31726 80(550)8 4 8.1 130 19Cr–15.5Ni–4Mo Bars&shapes …
AorSA–479 … S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Bars&shapes …
AorSA–479 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Bars&shapes …
AorSA–479 321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Bars&shapes …
AorSA–479 … S32101 94(650)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Bars&shapes …
AorSA–479 321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Bars&shapes …
AorSA–479 … S32202 94(650)10H 1 10.3 145 22Cr–2Ni–Mo–N Bars&shapes …
AorSA–479 … S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Bars&shapes …
AorSA–479 … S32506 90(620)10H 1 10.2 145 25Cr–6Ni–Mo–N Bars&shapes …
AorSA–479 S32550 S32550 110(760)10H 1 10.2 145 25Cr–5Ni–3Mo–2Cu Bars&shapes …
AorSA–479 S32615 S32615 80(550)8 1 8.1 130 18Cr–20Ni–5.5Si Bars&shapes …
AorSA–479 S32750 S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Bars&shapes …
AorSA–479 S32906 S32906 109(750)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Bars&shapes …
AorSA–479 … S34565 115(795)8 4 8.3 130 24Cr–17Ni–6Mn–4.5Mo–
N
Bars&shapes …
AorSA–479 347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Bars&shapes …
ASMEBPVC.IX-2023
127

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–479 347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Bars&shapes …
AorSA–479 348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Bars&shapes …
AorSA–479 348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Bars&shapes …
AorSA–479 … S38815 78(540)8 1 8.1 130 14Cr–16Ni–6Si–Cu–Mo Bars&shapes …
AorSA–479 403 S40300 70(485)6 1 7.1 150 12Cr Bars&shapes …
AorSA–479 405 S40500 60(415)7 1 7.1 160 12Cr–Al Bars&shapes …
AorSA–479 410 S41000 70(485)6 1 7.2 150 13Cr Bars&shapes …
AorSA–479 414 S41400 115(795)6 4 7.2 150 12.5Cr–2Ni–Si Bars&shapes …
AorSA–479 S41500 S41500 115(795)6 4 7.2 150 13Cr–4.5Ni–Mo Bars&shapes …
AorSA–479 430 S43000 70(485)7 2 7.1 150 17Cr Bars&shapes …
AorSA–479 439 S43035 70(485)7 2 7.1 150 18Cr–Ti Bars&shapes …
AorSA–479 S44400 S44400 60(415)7 2 7.1 150 18Cr–2Mo Bars&shapes …
AorSA–479 XM–27 S44627 65(450)10I 1 7.1 150 27Cr–1Mo Bars&shapes …
AorSA–479 S44700 S44700 70(485)10J 1 7.1 150 29Cr–4Mo Bars&shapes …
AorSA–479 S44800 S44800 70(485)10K 1 7.1 150 29Cr–4Mo–2Ni Bars&shapes …
AorSA–479 … S82441 99(680)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NBars&shapes ≥0.4375(11)
AorSA–479 … S82441 107(740)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NBars&shapes <0.4375(11)
AorSA–487 1,Cl.A J13002 85(585)10A 1 2.1 100 Mn–V Castings …
AorSA–487 1,Cl.B J13002 90(620)10A 1 2.1 100 Mn–V Castings …
AorSA–487 2,Cl.A J13005 85(585)3 3 2.1 100 Mn–0.25Mo–V Castings …
AorSA–487 2,Cl.B J13005 90(620)3 3 2.1 100 Mn–0.25Mo–V Castings …
AorSA–487 4,Cl.A J13047 90(620)3 3 3.1 100 0.5Ni–0.5Cr–0.25Mo–VCastings …
AorSA–487 4,Cl.B J13047105(725)11A 3 3.1 100 0.5Ni–0.5Cr–0.25Mo–VCastings …
AorSA–487 4,Cl.E J13047115(795)11A 3 3.1 100 0.5Ni–0.5Cr–0.25Mo–VCastings …
AorSA–487 8,Cl.A J22091 85(585)5C 1 5.2 110 2.25Cr–1Mo Castings …
AorSA–487 8,Cl.B J22091105(725)5C 4 5.2 110 2.25Cr–1Mo Castings …
AorSA–487 8,Cl.C J22091100(690)5C 4 5.2 110 2.25Cr–1Mo Castings …
AorSA–487 16,Cl.A J31200 70(485)1 2 1.1 100 LowC–Mn–Ni Castings …
AorSA–487 CA15Cl.C J91150 90(620)6 3 7.2 150 13Cr Castings …
AorSA–487 CA15MCl.A J91151 90(620)6 3 7.2 150 13Cr–Mo Castings …
AorSA–487 CA15Cl.B J91171 90(620)6 3 7.2 150 13Cr Castings …
ASMEBPVC.IX-2023
128

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–487 CA15Cl.D J91171100(690)6 3 7.2 150 13Cr Castings …
AorSA–487 CA6NMCl.A J91540110(760)6 4 7.2 150 13Cr–4Ni Castings …
AorSA–487 CA6NMCl.B J91540100(690)6 4 7.2 150 13Cr–4Ni Castings …
AorSA–494 M35–2 N04020 65(450)42 … 42 400 67Ni–30Cu–Fe–Si Castings …
AorSA–494 CY40 N06040 70(485)43 … 43 420 72Ni–15Cr–8Fe–Si Castings …
AorSA–494 CU5MCuC N08826 75(515)45 … 45 420 42Ni–21.5Cr–3Mo–2.3CuCastings …
AorSA–494 M30C N24130 65(450)42 … 42 400 67Ni–30Cu–2Fe–Cb Castings …
AorSA–494 M35–1 N24135 65(450)42 … 42 400 67Ni–30Cu–2Fe–Cb Castings …
AorSA–494 CX2MW N26022 80(550)43 … 43 420 59Ni–22Cr–14Mo–4Fe–
3W
Castings …
AorSA–494 CW2M N26455 72(495)43 … 43 420 66Ni–16Mo–16Cr–Fe–W Castings …
AorSA–494 CW6MC N26625 70(485)43 … 43 420 60Ni–21.5Cr–9Mo–4Cb–
Fe
Castings …
AorSA–494 N7M N30007 76(525)44 … 44 410 65Ni–31.5Mo–1.5Fe–CrCastings …
AorSA–494 CW6M N30107 72(495)44 … 44 420 56Ni–19Mo–18Cr–2Fe Castings …
A500 C K02705 62(425)1 1 1.2 100 C Smls.&weldedtube …
A500 B K03000 58(400)1 1 11.1 100 C Smls.&weldedtube …
A501 A K03000 58(400)1 1 11.1 100 C Smls.&weldedtube …
A501 B K03000 70(485)1 2 1.2 100 C Smls.&weldedtube …
AorSA–508 3,Cl.1 K12042 80(550)3 3 3.1 100 0.75Ni–0.5Mo–Cr–V Forgings …
AorSA–508 3,Cl.2 K12042 90(620)3 3 3.1 100 0.75Ni–0.5Mo–Cr–V Forgings …
AorSA–508 2,Cl.1 K12766 80(550)3 3 3.1 100 0.75Ni–0.5Mo–0.3Cr–VForgings …
AorSA–508 2,Cl.2 K12766 90(620)3 3 3.1 100 0.75Ni–0.5Mo–0.3Cr–VForgings …
AorSA–508 1 K13502 70(485)1 2 11.1 100 C Forgings …
AorSA–508 1A K13502 70(485)1 2 11.1 100 C Forgings …
AorSA–508 22,Cl.3 K21590 85(585)5C 1 5.2 110 2.25Cr–1Mo Forgings …
AorSA–508 4N,Cl.1 K22375 105(725)11A 5 3.1 110 3.5Ni–1.75Cr–0.5Mo–VForgings …
AorSA–508 4N,Cl.2 K22375 115(795)11B 10 3.1 110 3.5Ni–1.75Cr–0.5Mo–VForgings …
AorSA–508 4N,Cl.3 K22375 90(620)3 3 3.1 110 3.5Ni–1.75Cr–0.5Mo–VForgings …
AorSA–508 3VCb K31390 85(585)5C 1 6.2 110 3Cr–1Mo–0.25V–Cb–Ca Forgings …
ASMEBPVC.IX-2023
129

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–508 3V K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Forgings …
AorSA–508 5,Cl.1 K42365 105(725)11A 5 3.1 110 3.5Ni–1.75Cr–0.5Mo–VForgings …
AorSA–508 5,Cl.2 K42365 115(795)11B 10 3.1 110 3.5Ni–1.75Cr–0.5Mo–VForgings …
AorSA–513 1008 G10080 42(290)1 1 1.1 100 C Tube …
AorSA–513 1010 G10100 45(310)1 1 1.1 100 C Tube …
AorSA–513 1015 G10150 48(330)1 1 1.1 100 C Tube …
A513 1015CW G10150 …1 1 1.1 100 C Tube …
A513 1020CW G10200 …1 2 1.1 100 C Tube …
A513 1025CW G10250 …1 2 1.2 100 C Tube …
A513 1026CW G10260 …1 3 11.1 100 C Tube …
A514 Q … 100(690)11B 9 3.1 100 1.3Ni–1.3Cr–0.5Mo–V Plate >2.5(65)≤6(150)
A514 Q … 110(760)11B 9 3.1 100 1.3Ni–1.3Cr–0.5Mo–V Plate ≤2.5(65)
A514 F K11576 110(760)11B 3 3.1 100 0.75Ni–0.5Cr–0.5Mo–VPlate ≤2.5(65)
A514 B K11630 110(760)11B 4 3.1 100 0.5Cr–0.2Mo–V Plate ≤1.25(32)
A514 A K11856 110(760)11B 1 3.1 100 0.5Cr–0.25Mo–Si Plate ≤1.25(32)
A514 E K21604 100(690)11B 2 3.1 110 1.75Cr–0.5Mo–Cu Plate >2.5(65)≤6(150)
A514 E K21604 110(760)11B 2 3.1 110 1.75Cr–0.5Mo–Cu Plate ≤2.5(65)
A514 P K21650 100(690)11B 8 3.1 110 1.25Ni–1Cr–0.5Mo Plate >2.5(65)≤6(150)
A514 P K21650 110(760)11B 8 3.1 110 1.25Ni–1Cr–0.5Mo Plate ≤2.5(65)
AorSA–515 60 … 60(415)1 1 11.1 100 C–Si Plate >1(25)
AorSA–515 60 K02401 60(415)1 1 1.1 100 C Plate ≤1(25)
AorSA–515 65 K02800 65(450)1 1 11.1 100 C–Si Plate …
AorSA–515 70 K03101 70(485)1 2 11.1 100 C–Si Plate …
AorSA–516 55 K01800 55(380)1 1 1.1 100 C–Si Plate …
AorSA–516 60 K02100 60(415)1 1 1.1 100 C–Mn–Si Plate …
AorSA–516 65 K02403 65(450)1 1 1.1 100 C–Mn–Si Plate …
AorSA–516 70 K02700 70(485)1 2 11.1 100 C–Mn–Si Plate …
AorSA–517 F K11576 115(795)11B 3 3.1 100 0.75Ni–0.5Cr–0.5Mo–VPlate ≤2.5(65)
ASMEBPVC.IX-2023
130

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–517 B K11630 115(795)11B 4 3.1 100 0.5Cr–0.2Mo–V Plate ≤1.25(32)
AorSA–517 A K11856 115(795)11B 1 3.1 100 0.5Cr–0.25Mo–Si Plate ≤1.25(32)
AorSA–517 E K21604 105(725)11B 2 3.1 110 1.75Cr–0.5Mo–Cu Plate >2.5(65)≤6(150)
AorSA–517 E K21604 115(795)11B 2 3.1 110 1.75Cr–0.5Mo–Cu Plate ≤2.5(65)
AorSA–517 P K21650 105(725)11B 8 3.1 110 1.25Ni–1Cr–0.5Mo Plate >2.5(65)≤4(100)
AorSA–517 P K21650 115(795)11B 8 3.1 110 1.25Ni–1Cr–0.5Mo Plate ≤2.5(65)
A519 1018CW G10180 …1 2 1.1 100 C Tube …
A519 1018HR G10180 …1 1 1.1 100 C Tube …
A519 1020CW G10200 …1 2 1.1 100 C Tube …
A519 1020HR G10200 …1 1 1.1 100 C Tube …
A519 1022CW G10220 …1 2 1.1 100 C Tube …
A519 1022HR G10220 …1 1 1.1 100 C Tube …
A519 1025CW G10250 …1 2 1.2 100 C Tube …
A519 1025HR G10250 …1 1 1.1 100 C Tube …
A519 1026CW G10260 …1 2 11.1 100 C Tube …
A519 1026HR G10260 …1 1 11.1 100 C Tube …
AorSA–522 II K71340 100(690)11A 1 9.3 100 8Ni Forgings …
AorSA–522 I K81340 100(690)11A 1 9.3 100 9Ni Forgings …
AorSA–524 I K02104 60(415)1 1 1.1 100 C–Mn–Si Smls.pipe …
AorSA–524 II K02104 55(380)1 1 1.1 100 C–Mn–Si Smls.pipe …
AorSA–533 A,Cl.1 K12521 80(550)3 3 3.1 100 Mn–0.5Mo Plate …
AorSA–533 A,Cl.2 K12521 90(620)3 3 3.1 100 Mn–0.5Mo Plate …
AorSA–533 A,Cl.3 K12521 100(690)11A 4 3.1 100 Mn–0.5Mo Plate …
AorSA–533 D,Cl.1 K12529 80(550)3 3 3.1 100 Mn–0.5Mo–0.25Ni Plate …
AorSA–533 D,Cl.2 K12529 90(620)3 3 3.1 100 Mn–0.5Mo–0.25Ni Plate …
AorSA–533 D,Cl.3 K12529 100(690)11A 4 3.1 100 Mn–0.5Mo–0.25Ni Plate …
AorSA–533 B,Cl.1 K12539 80(550)3 3 3.1 100 Mn–0.5Mo–0.5Ni Plate …
AorSA–533 B,Cl.2 K12539 90(620)3 3 3.1 100 Mn–0.5Mo–0.5Ni Plate …
AorSA–533 B,Cl.3 K12539 100(690)11A 4 3.2 100 Mn–0.5Mo–0.5Ni Plate …
ASMEBPVC.IX-2023
131

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–533 C,Cl.1 K12554 80(550)3 3 3.1 100 Mn–0.5Mo–0.75Ni Plate …
AorSA–533 C,Cl.2 K12554 90(620)3 3 3.1 100 Mn–0.5Mo–0.75Ni Plate …
AorSA–533 C,Cl.3 K12554 100(690)11A 4 3.2 100 Mn–0.5Mo–0.75Ni Plate …
AorSA–533 E,Cl.1 K12554 80(550)3 3 3.1 100 Mn–0.5Mo–0.75Ni Plate …
AorSA–533 E,Cl.2 K12554 90(620)3 3 3.1 100 Mn–0.5Mo–0.75Ni Plate …
AorSA–537 Cl.1 K12437 65(450)1 2 1.2 100 C–Mn–Si Plate >2.5(65)≤4(100)
AorSA–537 Cl.1 K12437 70(485)1 2 1.2 100 C–Mn–Si Plate ≤2.5(65)
AorSA–537 Cl.2 K12437 70(485)1 3 1.2 100 C–Mn–Si Plate >4(100)≤6(150)
AorSA–537 Cl.2 K12437 75(515)1 3 1.2 100 C–Mn–Si Plate >2.5(65)≤4(100)
AorSA–537 Cl.2 K12437 80(550)1 3 1.2 100 C–Mn–Si Plate ≤2.5(65)
AorSA–537 Cl.3 K12437 70(485)1 3 1.2 100 C–Mn–Si Plate >4(100)
AorSA–537 Cl.3 K12437 75(515)1 3 1.2 100 C–Mn–Si Plate >2.5(65)≤4(100)
AorSA–537 Cl.3 K12437 80(550)1 3 1.2 100 C–Mn–Si Plate ≤2.5(65)
AorSA–541 1A K03020 70(485)1 2 11.1 100 C–Mn–Si Forgings …
AorSA–541 1 K03506 70(485)1 2 11.1 100 C–Si Forgings …
AorSA–541 11,Cl.4 K11572 80(550)4 1 5.2 110 1.25Cr–0.5Mo–Si Forgings …
AorSA–541 3,Cl.1 K12045 80(550)3 3 4.1 100 0.5Ni–0.5Mo–V Forgings …
AorSA–541 3,Cl.2 K12045 90(620)3 3 4.1 100 0.5Ni–0.5Mo–V Forgings …
AorSA–541 2,Cl.1 K12765 80(550)3 3 4.2 100 0.75Ni–0.5Mo–0.3Cr–VForgings …
AorSA–541 2,Cl.2 K12765 90(620)3 3 4.2 100 0.75Ni–0.5Mo–0.3Cr–VForgings …
AorSA–541 22,Cl.3 K21390 85(585)5C 1 5.2 110 2.25Cr–1Mo Forgings …
AorSA–541 22,Cl.4 K21390 105(725)5C 4 5.2 110 2.25Cr–1Mo Forgings …
AorSA–541 22,Cl.5 K21390 115(795)5C 5 5.2 110 2.25Cr–1Mo Forgings …
AorSA–541 3VCb K31390 85(585)5C 1 6.2 110 3Cr–1Mo–0.25V–Cb–Ca Forgings …
AorSA–541 3V K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Forgings …
AorSA–541 22V K31835 85(585)5C 1 5.2 110 2.25Cr–1Mo–V Forgings …
AorSA–542 A,Cl.1 K21590 105(725)5C 4 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 A,Cl.2 K21590 115(795)5C 5 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 A,Cl.3 K21590 95(655)5C 3 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 A,Cl.4 K21590 85(585)5C 1 5.2 110 2.25Cr–1Mo Plate …
ASMEBPVC.IX-2023
132

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–542 A,Cl.4a K21590 85(585)5C 1 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 B,Cl.1 K21590 105(725)5C 4 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 B,Cl.2 K21590 115(795)5C 5 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 B,Cl.3 K21590 95(655)5C 3 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 B,Cl.4 K21590 85(585)5C 1 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 B,Cl.4a K21590 85(585)5C 1 5.2 110 2.25Cr–1Mo Plate …
AorSA–542 E,Cl.4a K31390 85(585)5C 1 6.2 110 3Cr–1Mo–0.25V–Cb–Ca Plate …
AorSA–542 C,Cl.1 K31830 105(725)5C 4 6.2 120 3Cr–1Mo–V–Ti–B Plate …
AorSA–542 C,Cl.2 K31830 115(795)5C 5 6.2 120 3Cr–1Mo–V–Ti–B Plate …
AorSA–542 C,Cl.3 K31830 95(655)5C 3 6.2 120 3Cr–1Mo–V–Ti–B Plate …
AorSA–542 C,Cl.4 K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Plate …
AorSA–542 C,Cl.4a K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Plate …
AorSA–542 D,Cl.4a K31835 85(585)5C 1 6.3 110 2.25Cr–1Mo–V Plate …
AorSA–543 C,Cl.1 … 105(725)11A 5 3.1 110 2.75Ni–1.5Cr–0.5Mo Plate …
AorSA–543 C,Cl.2 … 115(795)11B 10 3.1 110 2.75Ni–1.5Cr–0.5Mo Plate …
AorSA–543 C,Cl.3 … 90(620)3 3 3.1 110 2.75Ni–1.5Cr–0.5Mo Plate …
AorSA–543 B,Cl.1 K42339 105(725)11A 5 3.1 110 3Ni–1.75Cr–0.5Mo Plate …
AorSA–543 B,Cl.2 K42339 115(795)11B 10 3.1 110 3Ni–1.75Cr–0.5Mo Plate …
AorSA–543 B,Cl.3 K42339 90(620)3 3 3.1 110 3Ni–1.75Cr–0.5Mo Plate …
AorSA–553 III … 100(690)11A 1 9.2 100 7Ni Plate …
AorSA–553 II K71340 100(690)11A 1 9.3 100 8Ni Plate …
AorSA–553 I K81340 100(690)11A 1 9.3 100 9Ni Plate …
AorSA–556 A2 K01807 47(325)1 1 1.1 100 C Smls.tube …
AorSA–556 B2 K02707 60(415)1 1 11.1 100 C–Si Smls.tube …
AorSA–556 C2 K03006 70(485)1 2 11.1 100 C–Mn–Si Smls.tube …
AorSA–557 A2 K01807 47(325)1 1 1.1 100 C E.R.W.tube …
AorSA–557 B2 K03007 60(415)1 1 11.1 100 C E.R.W.tube …
AorSA–557 C2 K03505 70(485)1 2 11.1 100 C–Mn E.R.W.tube …
AorSA–562 … K11224 55(380)1 1 1.1 120 C–Mn–Ti Plate …
ASMEBPVC.IX-2023
133

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–572 42 … 60(415)1 1 1.2 100 C–Mn–Si Plate&shapes …
AorSA–572 50 … 65(450)1 1 1.2 100 C–Mn–Si Plate&shapes …
AorSA–572 55 … 70(485)1 2 1.3 100 C–Mn–Si Plate&shapes …
AorSA–572 60 … 75(515)1 2 11.1 100 C–Mn–Si Plate&shapes …
AorSA–572 65 … 80(550)1 3 1.3 100 C–Mn–Si Plate&shapes …
A573 58 … 58(400)1 1 11.1 100 C Plate …
A573 65 … 65(450)1 1 11.1 100 C Plate …
A573 70 … 70(485)1 2 11.1 100 C Plate …
A575 M1008 … …1 1 1.1 100 C Bar …
A575 M1010 … …1 1 1.1 100 C Bar …
A575 M1012 … …1 1 1.1 100 C Bar …
A575 M1015 … …1 1 1.1 100 C Bar …
A575 M1017 … …1 1 1.1 100 C Bar …
A575 M1020 … …1 1 11.1 100 C Bar …
A575 M1023 … …1 1 11.1 100 C Bar …
A575 M1025 … …1 1 11.1 100 C Bar …
A576 G10080 … …1 1 1.1 100 C Bar …
A576 G10100 … …1 1 1.1 100 C Bar …
A576 G10120 … …1 1 1.1 100 C Bar …
A576 G10150 … …1 1 1.1 100 C Bar …
A576 G10160 … …1 1 1.1 100 C Bar …
A576 G10170 … …1 1 1.1 100 C Bar …
A576 G10180 … …1 1 1.1 100 C Bar …
A576 G10190 … …1 1 1.1 100 C Bar …
A576 G10200 … …1 1 1.1 100 C Bar …
A576 G10210 … …1 1 11.1 100 C Bar …
A576 G10220 … …1 1 11.1 100 C Bar …
A576 G10230 … …1 1 11.1 100 C Bar …
A576 G10250 … …1 1 11.1 100 C Bar …
ASMEBPVC.IX-2023
134

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–587 … K11500 48(330)1 1 1.1 100 C E.R.W.pipe …
A588 A K11430 63(435)3 1 1.4 100 Mn–0.5Cr–0.3Cu–Si–V Plate&bar >5(125)≤8(200)
A588 A K11430 67(460)3 1 1.4 100 Mn–0.5Cr–0.3Cu–Si–V Plate&bar >4(100)≤5(125)
A588 A K11430 70(485)3 1 1.4 100 Mn–0.5Cr–0.3Cu–Si–V Shapes …
A588 A K11430 70(485)3 1 1.4 100 Mn–0.5Cr–0.3Cu–Si–V Plate&bar ≤4(100)
A588 B K12043 63(435)3 1 1.4 100 Mn–0.6Cr–0.3Cu–Si–V Plate&bar >5(125)≤8(200)
A588 B K12043 67(460)3 1 1.4 100 Mn–0.6Cr–0.3Cu–Si–V Plate&bar >4(100)≤5(125)
A588 B K12043 70(485)3 1 1.4 100 Mn–0.6Cr–0.3Cu–Si–V Shapes …
A588 B K12043 70(485)3 1 1.4 100 Mn–0.6Cr–0.3Cu–Si–V Plate&bar ≤4(100)
AorSA–592 F K11576 105(725)11B 3 3.1 100 0.75Ni–0.5Cr–0.5Mo–VForgings ≥2.5(65)≤4(100)
AorSA–592 F K11576 115(795)11B 3 3.1 100 0.75Ni–0.5Cr–0.5Mo–VForgings ≤2.5(65)
AorSA–592 E K11695 105(725)11B 2 3.1 110 1.75Cr–0.5Mo–Cu Forgings ≥2.5(65)≤4(100)
AorSA–592 E K11695 115(795)11B 2 3.1 110 1.75Cr–0.5Mo–Cu Forgings ≤2.5(65)
AorSA–592 A K11856 115(795)11B 1 3.1 100 0.5Cr–0.25Mo–Si Forgings ≤1.5(38)
AorSA–612 … K02900 81(560)10C 1 1.3 100 C–Mn–Si Plate >0.5(13)≤1(25)
AorSA–612 … K02900 83(570)10C 1 1.3 100 C–Mn–Si Plate ≤0.5(13)
A618 Ia … 67(460)1 2 1.2 100 Mn–Cu–V Tube >0.75(19)≤1.5(38)
A618 Ia … 70(485)1 2 1.2 100 Mn–Cu–V Tube ≤0.75(19)
A618 Ib K02601 67(460)1 2 1.2 100 Mn–Cu–V Tube >0.75(19)≤1.5(38)
A618 Ib K02601 70(485)1 2 1.2 100 Mn–Cu–V Tube ≤0.75(19)
A618 II K12609 67(460)1 2 1.2 100 Mn–Cu–V Tube >0.75(19)≤1.5(38)
A618 II K12609 70(485)1 2 1.2 100 Mn–Cu–V Tube ≤0.75(19)
A618 III K12700 65(450)1 1 1.2 100 Mn–V Tube …
A633 A K01802 63(435)1 1 1.1 100 Mn–Cb Plate …
A633 C K12000 65(450)1 1 1.1 100 Mn–Cb Plate >2.5(65)≤4(100)
A633 C K12000 70(485)1 2 1.1 100 Mn–Cb Plate ≤2.5(65)
A633 D K12037 65(450)1 1 1.1 100 C–Mn–Si Plate >2.5(65)≤4(100)
A633 D K12037 70(485)1 2 1.1 100 C–Mn–Si Plate ≤2.5(65)
A633 E K12202 75(515)1 3 4.1 100 C–Mn–Si–V Plate >4(100)≤6(150)
ASMEBPVC.IX-2023
135

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
A633 E K12202 80(550)1 3 4.1 100 C–Mn–Si–V Plate ≤4(100)
AorSA–645 A K41583 95(655)11A 2 9.2 100 5Ni–0.25Mo Plate …
AorSA–656 T3,50 … 60(415)1 1 1.2 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T3,60 … 70(485)1 2 1.3 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T3,70 … 80(550)1 3 2.2 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T3,80 … 90(620)1 4 2.2 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T7,50 … 60(415)1 1 1.2 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T7,60 … 70(485)1 2 1.3 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T7,70 … 80(550)1 3 2.2 100 C–Mn–Si–V–Cb Plate …
AorSA–656 T7,80 … 90(620)1 4 2.2 100 C–Mn–Si–V–Cb Plate …
AorSA–660 WCA J02504 60(415)1 1 11.1 100 C–Si Centrifugalcastpipe …
AorSA–660 WCC J02505 70(485)1 2 11.1 100 C–Mn–Si Centrifugalcastpipe …
AorSA–660 WCB J03003 70(485)1 2 1.1 100 C–Si Centrifugalcastpipe …
AorSA–662 A K01701 58(400)1 1 1.1 100 C–Mn–Si Plate …
AorSA–662 C K02007 70(485)1 2 1.1 100 C–Mn–Si Plate …
AorSA–662 B K02203 65(450)1 1 1.1 100 C–Mn–Si Plate …
A663 … … …1 1 ... 100 C Bar …
AorSA–666 201–1 S20100 75(515)8 3 8.3 130 17Cr–4Ni–6Mn Plate,sheet&strip …
AorSA–666 201–2 S20100 95(655)8 3 8.3 130 17Cr–4Ni–6Mn Plate,sheet&strip …
AorSA–666 XM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Plate,sheet&strip …
AorSA–666 302 S30200 75(515)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–666 304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–666 304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Plate,sheet&strip …
AorSA–666 304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Plate,sheet&strip …
AorSA–666 304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Plate,sheet&strip …
AorSA–666 316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Plate,sheet&strip …
AorSA–666 316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Plate,sheet&strip …
AorSA–666 316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Plate,sheet&strip …
ASMEBPVC.IX-2023
136

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–671 CC60 K02100 60(415)1 1 1.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–671 CE55 K02202 55(380)1 1 11.1 100 C Fusionweldedpipe …
AorSA–671 CB60 K02401 60(415)1 1 1.1 100 C Fusionweldedpipe …
AorSA–671 CE60 K02402 60(415)1 1 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–671 CC65 K02403 65(450)1 1 1.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–671 CC70 K02700 70(485)1 2 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–671 CB65 K02800 65(450)1 1 11.1 100 C–Si Fusionweldedpipe …
AorSA–671 CA55 K02801 55(380)1 1 11.1 100 C Fusionweldedpipe …
AorSA–671 CK75 K02803 75(515)1 2 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–671 CB70 K03101 70(485)1 2 11.1 100 C–Si Fusionweldedpipe …
AorSA–671 CD70 K12437 70(485)1 2 1.2 100 C–Mn–Si Fusionweldedpipe …
AorSA–671 CD80 K12437 80(550)1 3 1.2 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 J80 … 80(550)3 3 3.1 100 Mn–0.5Mo–0.75Ni Fusionweldedpipe …
AorSA–672 J90 … 90(620)3 3 3.1 100 Mn–0.5Mo–0.75Ni Fusionweldedpipe …
AorSA–672 A45 K01700 45(310)1 1 1.1 100 C Fusionweldedpipe …
AorSA–672 C55 K01800 55(380)1 1 1.1 100 C–Si Fusionweldedpipe …
AorSA–672 B55 K02001 55(380)1 1 1.1 100 C–Si Fusionweldedpipe …
AorSA–672 C60 K02100 60(415)1 1 1.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 A50 K02200 50(345)1 1 1.1 100 C Fusionweldedpipe …
AorSA–672 E55 K02202 55(380)1 1 11.1 100 C Fusionweldedpipe …
AorSA–672 B60 K02401 60(415)1 1 1.1 100 C Fusionweldedpipe …
AorSA–672 E60 K02402 60(415)1 1 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 C65 K02403 65(450)1 1 1.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 C70 K02700 70(485)1 2 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 B65 K02800 65(450)1 1 11.1 100 C–Si Fusionweldedpipe …
AorSA–672 A55 K02801 55(380)1 1 11.1 100 C Fusionweldedpipe …
AorSA–672 N75 K02803 75(515)1 2 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 B70 K03101 70(485)1 2 11.1 100 C–Si Fusionweldedpipe …
AorSA–672 L65 K11820 65(450)3 1 1.1 100 C–0.5Mo Fusionweldedpipe …
AorSA–672 L70 K12020 70(485)3 2 1.2 100 C–0.5Mo Fusionweldedpipe …
AorSA–672 H75 K12021 75(515)3 2 1.1 100 Mn–0.5Mo Fusionweldedpipe …
ASMEBPVC.IX-2023
137

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–672 H80 K12022 80(550)3 3 1.2 100 Mn–0.5Mo Fusionweldedpipe …
AorSA–672 L75 K12320 75(515)3 2 1.2 100 C–0.5Mo Fusionweldedpipe …
AorSA–672 D70 K12437 70(485)1 2 1.2 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 D80 K12437 80(550)1 3 1.2 100 C–Mn–Si Fusionweldedpipe …
AorSA–672 J100 K12521 100(690)11A 4 3.2 100 Mn–0.5Mo Fusionweldedpipe …
AorSA–675 45 … 45(310)1 1 11.1 100 C Bar …
AorSA–675 50 … 50(345)1 1 11.1 100 C Bar …
AorSA–675 55 … 55(380)1 1 11.1 100 C Bar …
AorSA–675 60 … 60(415)1 1 11.1 100 C Bar …
AorSA–675 65 … 65(450)1 1 11.1 100 C Bar …
AorSA–675 70 … 70(485)1 2 11.1 100 C Bar …
AorSA–688 XM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Weldedtube …
AorSA–688 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Weldedtube …
AorSA–688 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Weldedtube …
AorSA–688 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Weldedtube …
AorSA–688 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Weldedtube …
AorSA–688 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Weldedtube …
AorSA–688 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Weldedtube …
AorSA–688 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Weldedtube …
AorSA–688 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Weldedtube …
AorSA–691 CMS–75 K02803 75(515)1 2 11.1 100 C–Mn–Si Fusionweldedpipe …
AorSA–691 1CR,Cl.1 K11757 55(380)4 1 5.1 110 1Cr–0.5Mo Fusionweldedpipe …
AorSA–691 1CR,Cl.2 K11757 65(450)4 1 5.1 110 1Cr–0.5Mo Fusionweldedpipe …
AorSA–691 1.25CR,Cl.1 K11789 60(415)4 1 5.1 110 1.25Cr–0.5Mo–Si Fusionweldedpipe …
AorSA–691 1.25CR,Cl.2 K11789 75(515)4 1 5.1 110 1.25Cr–0.5Mo–Si Fusionweldedpipe …
AorSA–691 CM–65 K11820 65(450)3 1 1.1 100 C–0.5Mo Fusionweldedpipe …
AorSA–691 CM–70 K12020 70(485)3 2 1.2 100 C–0.5Mo Fusionweldedpipe …
AorSA–691 0.5CR,Cl.1 K12143 55(380)3 1 4.2 100 0.5Cr–0.5Mo Fusionweldedpipe …
AorSA–691 0.5CR,Cl.2 K12143 70(485)3 2 4.2 100 0.5Cr–0.5Mo Fusionweldedpipe …
AorSA–691 CM–75 K12320 75(515)3 2 1.2 100 C–0.5Mo Fusionweldedpipe …
ASMEBPVC.IX-2023
138

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–691 CMSH–70 K12437 65(450)1 2 1.2 100 C–Mn–Si Fusionweldedpipe >2.5(65)≤4(100)
AorSA–691 CMSH–70 K12437 70(485)1 2 1.2 100 C–Mn–Si Fusionweldedpipe ≤2.5(65)
AorSA–691 CMSH–80 K12437 75(515)1 3 1.2 100 C–Mn–Si Fusionweldedpipe >2.5(65)≤4(100)
AorSA–691 CMSH–80 K12437 80(550)1 3 1.2 100 C–Mn–Si Fusionweldedpipe ≤2.5(65)
AorSA–691 2.25CR,Cl.1 K21590 60(415)5A 1 5.2 110 2.25Cr–1Mo Fusionweldedpipe …
AorSA–691 2.25CR,Cl.2 K21590 75(515)5A 1 5.2 110 2.25Cr–1Mo Fusionweldedpipe …
AorSA–691 3CR,Cl.1 K31545 60(415)5A 1 5.2 110 3Cr–1Mo Fusionweldedpipe …
AorSA–691 3CR,Cl.2 K31545 75(515)5A 1 5.2 110 3Cr–1Mo Fusionweldedpipe …
AorSA–691 5CR,Cl.1 K41545 60(415)5B 1 5.3 110 5Cr–0.5Mo Fusionweldedpipe …
AorSA–691 5CR,Cl.2 K41545 75(515)5B 1 5.3 110 5Cr–0.5Mo Fusionweldedpipe …
AorSA–691 91 K90901 85(585)15E 1 6.4 110 9Cr–1Mo–V Fusionweldedpipe …
A694 F42 K03014 60(415)1 1 11.1 100 C–Mn Forgings …
A694 F46 K03014 60(415)1 1 11.1 100 C–Mn Forgings …
A694 F48 K03014 62(425)1 1 11.1 100 C–Mn Forgings …
A694 F50 K03014 64(440)1 1 11.1 100 C–Mn Forgings …
A694 F52 K03014 66(455)1 1 11.1 100 C–Mn Forgings …
A694 F56 K03014 68(470)1 2 11.1 100 C–Mn Forgings …
A694 F60 K03014 75(515)1 2 11.1 100 C–Mn Forgings …
A694 F65 K03014 77(530)1 2 11.1 100 C–Mn Forgings …
A694 F70 K03014 82(565)1 3 11.1 100 C–Mn Forgings …
AorSA–696 B K03200 60(415)1 1 11.1 100 C–Mn–Si Bar …
AorSA–696 C K03200 70(485)1 2 11.1 100 C–Mn–Si Bar …
A707 L1,Cl.1 K02302 …1 1 1.2 100 C–Mn Forgings …
A707 L1,Cl.2 K02302 …1 1 1.2 100 C–Mn Forgings …
A707 L2,Cl.1 K03301 …1 1 11.1 100 C–Mn Forgings …
A707 L2,Cl.2 K03301 …1 1 11.1 100 C–Mn Forgings …
A707 L2,Cl.3 K03301 …1 2 11.1 100 C–Mn Forgings …
A707 L3,Cl.1 K12510 …1 1 1.2 100 C–Mn–V–N Forgings …
A707 L3,Cl.2 K12510 …1 1 1.2 100 C–Mn–V–N Forgings …
A707 L3,Cl.3 K12510 …1 2 1.3 100 C–Mn–V–N Forgings …
ASMEBPVC.IX-2023
139

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
A714 V K22035 65(450)9A 1 9.1 100 2Ni–1Cu Smls.&weldedpipe …
A714 V,E K22035 65(450)9A 1 9.1 100 2Ni–1Cu Smls.&weldedpipe …
AorSA–724 A K11831 90(620)1 4 3.1 100 C–Mn–Si Plate …
AorSA–724 B K12031 95(655)1 4 3.1 100 C–Mn–Si Plate …
AorSA–724 C K12037 90(620)1 4 1.1 100 C–Mn–Si Plate …
AorSA–727 … K02506 60(415)1 1 11.1 100 C–Mn–Si Forgings …
AorSA–731 S41500 S41500 115(795)6 4 7.2 150 13Cr–4.5Ni–Mo Smls.&weldedpipe …
AorSA–731 TP439 S43035 60(415)7 2 7.1 150 18Cr–Ti Smls.&weldedpipe …
AorSA–731 18Cr–2Mo S44400 60(415)7 2 7.1 150 18Cr–2Mo Smls.&weldedpipe …
AorSA–731 TPXM–33 S44626 65(450)10I 1 7.1 150 27Cr–1Mo–Ti Smls.&weldedpipe …
AorSA–731 TPXM–27 S44627 65(450)10I 1 7.1 150 27Cr–1Mo Smls.&weldedpipe …
AorSA–731 S44660 S44660 85(585)10K 1 7.1 150 26Cr–3Ni–3Mo Smls.&weldedpipe …
AorSA–731 S44700 S44700 80(550)10J 1 7.1 150 29Cr–4Mo Smls.&weldedpipe …
AorSA–731 S44800 S44800 80(550)10K 1 7.1 150 29Cr–4Mo–2Ni Smls.&weldedpipe …
AorSA–737 B K12001 70(485)1 2 11.1 100 C–Mn–Si–Cb Plate …
AorSA–737 C K12202 80(550)1 3 4.1 100 C–Mn–Si–V Plate …
AorSA–738 C K02008 70(485)1 3 11.1 100 C–Mn–Si Plate >4(100)≤6(150)
AorSA–738 C K02008 75(515)1 3 11.1 100 C–Mn–Si Plate >2.5(65)≤4(100)
AorSA–738 C K02008 80(550)1 3 11.1 100 C–Mn–Si Plate ≤2.5(65)
AorSA–738 B K12007 85(585)1 3 11.1 100 C–Mn–Si–Cb Plate …
AorSA–738 A K12447 75(515)1 2 11.1 100 C–Mn–Si Plate …
AorSA–739 B11 K11797 70(485)4 1 5.1 110 1.25Cr–0.5Mo Bar …
AorSA–739 B22 K21390 75(515)5A 1 5.2 110 2.25Cr–1Mo Bar …
AorSA–765 IV K02009 80(550)1 3 1.1 100 C–Mn–Si Forgings …
AorSA–765 I K03046 60(415)1 1 11.1 100 C–Mn–Si Forgings …
AorSA–765 II K03047 70(485)1 2 11.1 100 C–Mn–Si Forgings …
ASMEBPVC.IX-2023
140

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–765 III K32026 70(485)9B 1 9.2 100 3.5Ni Forgings …
AorSA–789 S31200 S31200 100(690)10H 1 10.2 145 25Cr–6Ni–Mo–N Smls.&weldedtube …
AorSA–789 S31260 S31260 100(690)10H 1 10.2 145 25Cr–6.5Ni–3Mo–N Smls.&weldedtube …
AorSA–789 S31500 S31500 92(635)10H 1 10.1 145 18Cr–5Ni–3Mo–N Smls.&weldedtube …
AorSA–789 S31803 S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Smls.&weldedtube …
AorSA–789 … S32003 100(690)10H 1 10.3 145 21Cr–3.5Ni–Mo–N Smls.&weldedtube …
AorSA–789 … S32101 94(650)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Smls.&weldedtube >0.187(5)
AorSA–789 … S32101 101(700)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Smls.&weldedtube ≤0.187(5)
AorSA–789 … S32202 94(650)10H 1 10.3 145 22Cr–2Ni–Mo–N Smls.&weldedtube …
AorSA–789 … S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Smls.&weldedtube …
AorSA–789 S32304 S32304 87(600)10H 1 10.1 145 23Cr–4Ni–Mo–Cu–N Smls.&weldedtube >1(25)O.D.
AorSA–789 S32304 S32304 100(690)10H 1 10.1 145 23Cr–4Ni–Mo–Cu–N Smls.&weldedtube ≤1(25)O.D.
AorSA–789 … S32506 90(620)10H 1 10.2 145 25Cr–6Ni–Mo–N Smls.&weldedtube …
AorSA–789 S32550 S32550 110(760)10H 1 10.2 145 25Cr–5Ni–3Mo–2Cu Smls.&weldedtube …
AorSA–789 … S32707 133(915)10H 1 10.2 145 27Cr–6.5Ni–4.5Mo–Co–
Cu–N
Smls.&weldedtube …
AorSA–789 S32750 S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Smls.&weldedtube …
AorSA–789 S32760 S32760 109(750)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Smls.&weldedtube …
AorSA–789 S32900 S32900 90(620)10H 1 10.2 145 26Cr–4Ni–Mo Smls.&weldedtube …
AorSA–789 S32906 S32906 109(750)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Smls.&weldedtube ≥0.40(10)
AorSA–789 S32906 S32906 116(800)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Smls.&weldedtube <0.40(10)
AorSA–789 S32950 S32950 100(690)10H 1 10.2 145 26Cr–4Ni–Mo–N Smls.&weldedtube …
AorSA–789 S39274 S39274 116(800)10H 1 10.2 145 25Cr–7Ni–3Mo–2W–Cu–
N
Smls.&weldedtube …
AorSA–789 … S82011 95(655)10H 1 10.3 145 22Cr–1.5Ni–Mo–N Smls.&weldedtube >0.187(5)
AorSA–789 … S82011 101(700)10H 1 10.3 145 22Cr–1.5Ni–Mo–N Smls.&weldedtube ≤0.187(5)
AorSA–789 … S82441 99(680)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NSmls.&weldedtube ≥0.40(10)
AorSA–789 … S82441 107(740)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NSmls.&weldedtube <0.40(10)
AorSA–790 S31200 S31200 100(690)10H 1 10.2 145 25Cr–6Ni–Mo–N Smls.&weldedpipe …
AorSA–790 S31260 S31260 100(690)10H 1 10.2 145 25Cr–6.5Ni–3Mo–N Smls.&weldedpipe …
AorSA–790 S31500 S31500 92(635)10H 1 10.1 145 18Cr–5Ni–3Mo–N Smls.&weldedpipe …
ASMEBPVC.IX-2023
141

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–790 S31803 S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Smls.&weldedpipe …
AorSA–790 … S32003 90(620)10H 1 10.3 145 21Cr–3.5Ni–Mo–N Smls.&weldedpipe …
AorSA–790 … S32101 94(650)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Smls.&weldedpipe >0.187(5)
AorSA–790 … S32101 101(700)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Smls.&weldedpipe ≤0.187(5)
AorSA–790 … S32202 94(650)10H 1 10.3 145 22Cr–2Ni–Mo–N Smls.&weldedpipe …
AorSA–790 2205 S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Smls.&weldedpipe …
AorSA–790 S32304 S32304 87(600)10H 1 10.1 145 23Cr–4Ni–Mo–Cu–N Smls.&weldedpipe …
AorSA–790 … S32506 90(620)10H 1 10.2 145 25Cr–6Ni–Mo–N Smls.&weldedpipe …
AorSA–790 S32550 S32550 110(760)10H 1 10.2 145 25Cr–5Ni–3Mo–2Cu Smls.&weldedpipe …
AorSA–790 … S32707 133(915)10H 1 10.2 145 27Cr–6.5Ni–4.5Mo–Co–
Cu–N
Smls.&weldedpipe …
AorSA–790 S32750 S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Smls.&weldedpipe …
AorSA–790 S32760 S32760 109(750)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Smls.&weldedpipe …
AorSA–790 S32900 S32900 90(620)10H 1 10.2 145 26Cr–4Ni–Mo Smls.&weldedpipe …
AorSA–790 S32906 S32906 109(750)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Smls.&weldedpipe ≥0.40(10)
AorSA–790 S32906 S32906 116(800)10H 1 10.2 145 29Cr–6.5Ni–2Mo–N Smls.&weldedpipe <0.40(10)
AorSA–790 S32950 S32950 100(690)10H 1 10.2 145 26Cr–4Ni–Mo–N Smls.&weldedpipe …
AorSA–790 S39274 S39274 116(800)10H 1 10.2 145 25Cr–7Ni–3Mo–2W–Cu–
N
Smls.&weldedpipe …
AorSA–790 … S82011 95(655)10H 1 10.3 145 22Cr–1.5Ni–Mo–N Smls.&weldedpipe ≥0.187(5)
AorSA–790 … S82011 101(700)10H 1 10.3 145 22Cr–1.5Ni–Mo–N Smls.&weldedpipe <0.187(5)
AorSA–790 … S82441 99(680)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NSmls.&weldedpipe ≥0.40(10)
AorSA–790 … S82441 107(740)10H 1 10.1 145 24Cr–4Ni–3Mn–1.5Mo–NSmls.&weldedpipe <0.40(10)
AorSA–803 TP439 S43035 60(415)7 2 7.1 150 18Cr–Ti Weldedtube …
AorSA–803 26–3–3 S44660 85(585)10K 1 7.1 150 26Cr–3Ni–3Mo Weldedtube …
AorSA–813 N08367 N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NWeldedpipe >0.187(5)
AorSA–813 N08367 N08367 100(690)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NWeldedpipe ≤0.187(5)
AorSA–813 TPXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Weldedpipe …
AorSA–813 TPXM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Weldedpipe …
AorSA–813 TPXM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Weldedpipe …
AorSA–813 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Weldedpipe …
ASMEBPVC.IX-2023
142

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–813 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Weldedpipe …
AorSA–813 TP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Weldedpipe …
AorSA–813 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Weldedpipe …
AorSA–813 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Weldedpipe …
AorSA–813 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Weldedpipe …
AorSA–813 TP309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Weldedpipe …
AorSA–813 TP309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Weldedpipe …
AorSA–813 TP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Weldedpipe …
AorSA–813 TP310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Weldedpipe …
AorSA–813 S31254 S31254 94(650)8 4 8.2 130 20Cr–18Ni–6Mo Weldedpipe …
AorSA–813 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Weldedpipe …
AorSA–813 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Weldedpipe …
AorSA–813 TP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Weldedpipe …
AorSA–813 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Weldedpipe …
AorSA–813 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Weldedpipe …
AorSA–813 TP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Weldedpipe …
AorSA–813 TP317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Weldedpipe …
AorSA–813 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Weldedpipe …
AorSA–813 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedpipe …
AorSA–813 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Weldedpipe …
AorSA–813 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedpipe …
AorSA–813 TP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedpipe …
AorSA–813 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedpipe …
AorSA–813 TP348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Weldedpipe …
AorSA–813 TPXM–15 S38100 75(515)8 1 8.1 130 18Cr–18Ni–2Si Weldedpipe …
AorSA–814 N08367 N08367 95(655)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NColdworkedweldedpipe>0.187(5)
AorSA–814 N08367 N08367 100(690)45 … 8.2 420 46Fe–24Ni–21Cr–6Mo–NColdworkedweldedpipe≤0.187(5)
AorSA–814 TPXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Coldworkedweldedpipe…
AorSA–814 TPXM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Coldworkedweldedpipe…
AorSA–814 TPXM–29 S24000 100(690)8 3 8.3 130 18Cr–3Ni–12Mn Coldworkedweldedpipe…
AorSA–814 TP304 S30400 75(515)8 1 8.1 130 18Cr–8Ni Coldworkedweldedpipe…
ASMEBPVC.IX-2023
143

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–814 TP304L S30403 70(485)8 1 8.1 130 18Cr–8Ni Coldworkedweldedpipe…
AorSA–814 TP304H S30409 75(515)8 1 8.1 130 18Cr–8Ni Coldworkedweldedpipe…
AorSA–814 TP304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Coldworkedweldedpipe…
AorSA–814 TP304LN S30453 75(515)8 1 8.1 130 18Cr–8Ni–N Coldworkedweldedpipe…
AorSA–814 S30815 S30815 87(600)8 2 8.2 130 21Cr–11Ni–N Coldworkedweldedpipe…
AorSA–814 TP309S S30908 75(515)8 2 8.2 130 23Cr–12Ni Coldworkedweldedpipe…
AorSA–814 TP309Cb S30940 75(515)8 2 8.2 130 23Cr–12Ni–Cb Coldworkedweldedpipe…
AorSA–814 TP310S S31008 75(515)8 2 8.2 130 25Cr–20Ni Coldworkedweldedpipe…
AorSA–814 TP310Cb S31040 75(515)8 2 8.2 130 25Cr–20Ni–Cb Coldworkedweldedpipe…
AorSA–814 S31254 S31254 94(650)8 4 8.2 130 20Cr–18Ni–6Mo Coldworkedweldedpipe…
AorSA–814 TP316 S31600 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Coldworkedweldedpipe…
AorSA–814 TP316L S31603 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Coldworkedweldedpipe…
AorSA–814 TP316H S31609 75(515)8 1 8.1 130 16Cr–12Ni–2Mo Coldworkedweldedpipe…
AorSA–814 TP316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Coldworkedweldedpipe…
AorSA–814 TP316LN S31653 75(515)8 1 8.1 130 16Cr–12Ni–2Mo–N Coldworkedweldedpipe…
AorSA–814 TP317 S31700 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Coldworkedweldedpipe…
AorSA–814 TP317L S31703 75(515)8 1 8.1 130 18Cr–13Ni–3Mo Coldworkedweldedpipe…
AorSA–814 … S32053 93(640)8 4 8.2 130 23Cr–25Ni–5.5Mo–N Coldworkedweldedpipe…
AorSA–814 TP321 S32100 75(515)8 1 8.1 140 18Cr–10Ni–Ti Coldworkedweldedpipe…
AorSA–814 TP321H S32109 75(515)8 1 8.1 140 18Cr–10Ni–Ti Coldworkedweldedpipe…
AorSA–814 TP347 S34700 75(515)8 1 8.1 130 18Cr–10Ni–Cb Coldworkedweldedpipe…
AorSA–814 TP347H S34709 75(515)8 1 8.1 130 18Cr–10Ni–Cb Coldworkedweldedpipe…
AorSA–814 TP348 S34800 75(515)8 1 8.1 130 18Cr–10Ni–Cb Coldworkedweldedpipe…
AorSA–814 TP348H S34809 75(515)8 1 8.1 130 18Cr–10Ni–Cb Coldworkedweldedpipe…
AorSA–814 TPXM–15 S38100 75(515)8 1 8.1 130 18Cr–18Ni–2Si Coldworkedweldedpipe…
AorSA–815 … S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Fittings …
AorSA–815 … S32101 94(650)10H 1 10.3 145 21Cr–5Mn–1.5Ni–Cu–N Fittings …
AorSA–815 … S32202 94(650)10H 1 10.3 145 22Cr–2Ni–Mo–N Fittings …
AorSA–815 … S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Fittings …
AorSA–815 … S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Fittings …
AorSA–815 … S32760 109(750)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Fittings …
ASMEBPVC.IX-2023
144

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–815 … S41500 110(760)6 4 7.2 150 13Cr–4.5Ni–Mo Fittings …
AorSA–832 23V … 85(585)5C 1 6.2 110 3Cr–1Mo–0.25V–Cb–Ca Plate …
AorSA–832 21V K31830 85(585)5C 1 6.2 120 3Cr–1Mo–V–Ti–B Plate …
AorSA–832 22V K31835 85(585)5C 1 6.2 110 2.25Cr–1Mo–V Plate …
AorSA–836 … … 55(380)1 1 1.1 120 C–Si–Ti Forgings …
AorSA–841 A,Cl.1 … 65(450)1 2 1.2 100 C–Mn–Si Plate >2.5(65)
AorSA–841 A,Cl.1 … 70(485)1 2 1.2 100 C–Mn–Si Plate ≤2.5(65)
AorSA–841 B,Cl.2 … 75(515)1 3 1.3 100 C–Mn–Si Plate >2.5(65)
AorSA–841 B,Cl.2 … 80(550)1 3 1.3 100 C–Mn–Si Plate ≤2.5(65)
AorSA–841 F,Cl.6 … 82(565)3 3 2.2 100 Mn–0.85Ni–0.30Cr–
0.50Mo
Plate …
AorSA–841 F,Cl.7 … 86(595)3 3 2.2 100 Mn–0.85Ni–0.30Cr–
0.50Mo
Plate …
A859 A,Cl.1 K20747 65(450)11C 1 3.3 100 1Ni–1Cu–0.75Cr–Mo–NbForgings …
A859 A,Cl.2 K20747 75(515)11C 1 3.3 100 1Ni–1Cu–0.75Cr–Mo–NbForgings …
A860 WPHY42 … 60(415)1 1 1.2 120 C–Mn Smls.&weldedfittings…
A860 WPHY46 … 63(435)1 1 1.2 120 C–Mn Smls.&weldedfittings…
A860 WPHY52 … 66(455)1 1 1.2 120 C–Mn Smls.&weldedfittings…
A860 WPHY60 … 75(515)1 2 1.3 120 C–Mn Smls.&weldedfittings…
A860 WPHY65 … 77(530)1 2 1.3 120 C–Mn Smls.&weldedfittings…
A860 WPHY70 … 80(550)1 3 1.3 120 C–Mn Smls.&weldedfittings…
A890 4A J92205 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Castings …
A890 2A J93345 95(655)10H 1 10.2 145 24Cr–10Ni–Mo–N Castings …
A890 3A J93371 95(655)10H 1 10.2 145 25Cr–5Ni–Mo–N Castings …
A890 1B J93372100(690)10H 1 10.2 145 25Cr–5Ni–Mo–Cu–N Castings …
A890 1C J93373100(690)10H 1 10.2 145 25Cr–6Ni–Mo–Cu–N Castings …
A890 7A J93379100(690)10H 1 10.2 145 27Cr–7Ni–Mo–W–N Castings …
A890 6A J93380100(690)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Castings …
ASMEBPVC.IX-2023
145

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
A890 5A J93404100(690)10H 1 10.2 145 25Cr–7Ni–Mo–N Castings …
A928 S31803 S31803 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Weldedpipe …
A928 S32003 S32003 95(655)10H 1 10.3 145 21Cr–3.5Ni–Mo–N Weldedpipe >0.187(5)
A928 S32003 S32003 100(690)10H 1 10.3 145 21Cr–3.5Ni–Mo–N Weldedpipe ≤0.187(5)
A928 2205 S32205 95(655)10H 1 10.1 145 22Cr–5Ni–3Mo–N Weldedpipe …
A928 2304 S32304 87(600)10H 1 10.1 145 23Cr–4Ni–Mo–Cu–N Weldedpipe …
A928 2507 S32750 116(800)10H 1 10.2 145 25Cr–7Ni–4Mo–N Weldedpipe …
A928 … S32760 108(745)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Weldedpipe …
AorSA–965 FXM–19 S20910 100(690)8 3 8.3 130 22Cr–13Ni–5Mn Forgings …
AorSA–965 FXM–11 S21904 90(620)8 3 8.3 130 21Cr–6Ni–9Mn Forgings …
AorSA–965 F304 S30400 70(485)8 1 8.1 130 18Cr–8Ni Forgings …
AorSA–965 F304L S30403 65(450)8 1 8.1 130 18Cr–8Ni Forgings …
AorSA–965 F304H S30409 70(485)8 1 8.1 130 18Cr–8Ni Forgings …
AorSA–965 F304N S30451 80(550)8 1 8.1 130 18Cr–8Ni–N Forgings …
AorSA–965 F304LN S30453 70(485)8 1 8.1 130 18Cr–8Ni–N Forgings …
AorSA–965 F46 S30600 78(540)8 1 8.1 130 18Cr–15Ni–4Si Forgings …
AorSA–965 F310 S31000 75(515)8 2 8.2 130 25Cr–20Ni Forgings …
AorSA–965 F316 S31600 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Forgings …
AorSA–965 F316L S31603 65(450)8 1 8.1 130 16Cr–12Ni–2Mo Forgings …
AorSA–965 F316H S31609 70(485)8 1 8.1 130 16Cr–12Ni–2Mo Forgings …
AorSA–965 F316N S31651 80(550)8 1 8.1 130 16Cr–12Ni–2Mo–N Forgings …
AorSA–965 F316LN S31653 70(485)8 1 8.1 130 16Cr–12Ni–2Mo–N Forgings …
AorSA–965 F321 S32100 70(485)8 1 8.1 140 18Cr–10Ni–Ti Forgings …
AorSA–965 F321H S32109 70(485)8 1 8.1 140 18Cr–10Ni–Ti Forgings …
AorSA–965 F347 S34700 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings …
AorSA–965 F347H S34709 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings …
AorSA–965 F348 S34800 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings …
AorSA–965 F348H S34809 70(485)8 1 8.1 130 18Cr–10Ni–Cb Forgings …
A992 … … 65(450)1 1 1.2 100 C–Mn–Si Shapes …
ASMEBPVC.IX-2023
146

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–995 4A J92205 90(620)10H 1 10.1 145 22Cr–5Ni–3Mo–N Castings …
AorSA–995 2A J93345 95(655)10H 1 10.2 145 24Cr–10Ni–4Mo–N Castings …
AorSA–995 3A J93371 95(655)10H 1 10.2 145 25Cr–5Ni–Mo–N Castings …
AorSA–995 1B J93372100(690)10H 1 10.2 145 25Cr–5Ni–3Mo–2Cu Castings …
AorSA–995 7A J93379100(690)10H 1 10.2 145 27Cr–7Ni–Mo–W–N Castings …
AorSA–995 6A J93380100(690)10H 1 10.2 145 25Cr–8Ni–3Mo–W–Cu–N Castings …
AorSA–995 5A J93404100(690)10H 1 10.2 145 25Cr–7Ni–4Mo–N Castings …
AorSA–1008 CSA … 40(275)1 1 1.1 100 C Sheet …
AorSA–1008 CSB … 40(275)1 1 1.1 100 C Sheet …
AorSA–1008 DSB … 40(275)1 1 1.1 100 C Sheet …
AorSA–1010 40 S41003 66(455)7 1 7.2 150 12Cr–1Ni Plate,sheet&strip …
AorSA–1010 50 S41003 70(485)7 1 7.2 150 12Cr–1Ni Plate,sheet&strip …
AorSA–1011 CSB … 40(275)1 1 1.1 100 C Sheet&strip …
AorSA–1011 DSB … 40(275)1 1 1.1 100 C Sheet&strip …
AorSA–1011 HSLAS45Cl.1 … 60(415)1 1 1.2 120 C Sheet&strip …
AorSA–1011 HSLAS45Cl.2 … 55(380)1 1 1.2 120 C Sheet&strip …
AorSA–1011 HSLAS50Cl.1 … 65(450)1 1 1.2 120 C Sheet&strip …
AorSA–1011 HSLAS50Cl.2 … 60(415)1 1 1.2 120 C Sheet&strip …
AorSA–1011 HSLAS55Cl.1 … 70(485)1 2 1.3 120 C Sheet&strip …
AorSA–1011 HSLAS55Cl.2 … 65(450)1 1 1.3 120 C Sheet&strip …
AorSA–1011 HSLAS60Cl.1 … 75(515)1 2 1.3 120 C Sheet&strip …
AorSA–1011 HSLAS60Cl.2 … 70(485)1 2 1.3 120 C Sheet&strip …
AorSA–1011 SS33 … 52(360)1 1 1.1 100 C Sheet&strip …
AorSA–1011 SS361 … 53(365)1 1 1.1 100 C Sheet&strip …
AorSA–1011 SS362 … 58(400)1 1 1.1 100 C Sheet&strip …
AorSA–1011 SS40 … 55(380)1 1 1.2 100 C Sheet&strip …
AorSA–1011 SS45 … 60(415)1 1 1.2 120 C Sheet&strip …
AorSA–1011 SS50 … 65(450)1 1 1.2 100 C Sheet&strip …
AorSA–1011 SS55 … 70(485)1 2 1.3 100 C Sheet&strip …
AorSA–1011 SS60 … 75(515)1 2 1.3 100 C Sheet&strip …
ASMEBPVC.IX-2023
147

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AorSA–1017 92 K92460 90(620)15E 1 6.4 110 9Cr–2W Plate …
A1066 50 … 65(450)3 1 1.2 100 Mn–Ni–Cr–Mo Plate …
A1066 60 … 75(515)3 2 2.1 100 Mn–Ni–Cr–Mo Plate …
A1066 65 … 80(550)3 3 2.1 100 Mn–Ni–Cr–Mo Plate …
A1066 70 … 85(585)3 3 2.2 100 Mn–Ni–Cr–Mo Plate …
A1066 80 … 90(620)3 3 2.2 100 Mn–Ni–Cr–Mo Plate …
A1091 C91 J84090 85(585)15E 1 6.4 110 9Cr–1Mo–V Castings …
API5L A … 49(340)1 1 1.1 100 C–Mn Smls.&weldedpipe …
API5L A25 … 45(310)1 1 1.1 100 C–Mn Smls.&weldedpipe …
API5L A25P … 45(310)1 1 1.1 100 C–Mn Smls.&weldedpipe …
API5L B … 60(415)1 1 11.1 120 C–Mn Smls.&weldedpipe …
API5L BM … 60(415)1 1 1.1 120 C–Mn Weldedpipe …
API5L BMO … 60(415)1 1 1.1 120 C–Mn Weldedpipe …
API5L BMS … 60(415)1 1 1.1 120 C–Mn Weldedpipe …
API5L BN … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L BNO … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L BNS … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L BQ … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L BQO … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L BQS … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L BR … 60(415)1 1 1.1 120 C–Mn Smls.&weldedpipe …
API5L X42 … 60(415)1 1 11.1 120 C–Mn Smls.&weldedpipe …
API5L X42M … 60(415)1 1 1.2 120 C–Mn Weldedpipe …
API5L X42MO … 60(415)1 1 1.2 120 C–Mn Weldedpipe …
API5L X42MS … 60(415)1 1 1.2 120 C–Mn Weldedpipe …
API5L X42N … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X42NO … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X42NS … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X42Q … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
ASMEBPVC.IX-2023
148

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
API5L X42QO … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X42QS … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X42R … 60(415)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X46 … 63(435)1 1 11.1 120 C–Mn Smls.&weldedpipe …
API5L X46M … 63(435)1 1 1.2 120 C–Mn Weldedpipe …
API5L X46MO … 63(435)1 1 1.2 120 C–Mn Weldedpipe …
API5L X46MS … 63(435)1 1 1.2 120 C–Mn Weldedpipe …
API5L X46N … 63(435)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X46NO … 63(435)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X46NS … 63(435)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X46Q … 63(435)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X46QO … 63(435)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X46QS … 63(435)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X52 … 67(460)1 1 11.1 120 C–Mn Smls.&weldedpipe …
API5L X52M … 67(460)1 1 1.2 120 C–Mn Weldedpipe …
API5L X52MO … 67(460)1 1 1.2 120 C–Mn Weldedpipe …
API5L X52MS … 67(460)1 1 1.2 120 C–Mn Weldedpipe …
API5L X52N … 67(460)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X52NO … 67(460)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X52NS … 67(460)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X52Q … 67(460)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X52QO … 67(460)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X52QS … 67(460)1 1 1.2 120 C–Mn Smls.&weldedpipe …
API5L X56 … 71(490)1 2 11.1 120 C–Mn Smls.&weldedpipe …
API5L X56M … 71(490)1 2 2.1 120 C–Mn Weldedpipe …
API5L X56MO … 71(490)1 2 2.1 120 C–Mn Weldedpipe …
API5L X56MS … 71(490)1 2 2.1 120 C–Mn Weldedpipe …
API5L X56N … 71(490)1 2 1.3 120 C–Mn Smls.&weldedpipe …
API5L X56Q … 71(490)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X56QO … 71(490)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X56QS … 71(490)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X60 … 75(515)1 2 11.1 120 C–Mn Smls.&weldedpipe …
ASMEBPVC.IX-2023
149

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
API5L X60M … 75(515)1 2 2.1 120 C–Mn Weldedpipe …
API5L X60MO … 75(515)1 2 2.1 120 C–Mn Weldedpipe …
API5L X60MS … 75(515)1 2 2.1 120 C–Mn Weldedpipe …
API5L X60N … 75(515)1 2 1.3 120 C–Mn Smls.&weldedpipe …
API5L X60Q … 75(515)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X60QO … 75(515)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X60QS … 75(515)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X65 … 78(540)1 2 11.1 120 C–Mn Smls.&weldedpipe …
API5L X65M … 78(540)1 2 2.1 120 C–Mn Weldedpipe …
API5L X65MO … 78(540)1 2 2.1 120 C–Mn Weldedpipe …
API5L X65MS … 78(540)1 2 2.1 120 C–Mn Weldedpipe …
API5L X65Q … 78(540)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X65QO … 78(540)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X65QS … 78(540)1 2 3.1 120 C–Mn Smls.&weldedpipe …
API5L X70 … 83(565)1 3 11.1 120 C–Mn Smls.&weldedpipe …
API5L X70M … 83(565)1 3 2.2 120 C–Mn Weldedpipe …
API5L X70MO … 83(565)1 3 2.2 120 C–Mn Weldedpipe …
API5L X70MS … 83(565)1 3 2.2 120 C–Mn Weldedpipe …
API5L X70Q … 83(565)1 3 3.1 120 C–Mn Smls.&weldedpipe …
API5L X70QO … 83(565)1 3 3.1 120 C–Mn Smls.&weldedpipe …
API5L X70QS … 83(565)1 3 3.1 120 C–Mn Smls.&weldedpipe …
API5L X80M … 91(625)1 4 2.2 120 C–Mn Weldedpipe …
API5L X80MO … 91(625)1 4 2.2 120 C–Mn Weldedpipe …
API5L X80Q … 91(625)1 4 3.1 120 C–Mn Smls.&weldedpipe …
API5L X80QO … 91(625)1 4 3.1 120 C–Mn Smls.&weldedpipe …
AS1448 K3 … 59.5(410)1 1 1.1 100 C–Si Forgings …
AS1448 K4 … 72.5(500)1 2 11.2 100 C–Si Forgings …
AS1448 K5 … 78.5(540)1 2 11.2 100 C–Mn–Si Forgings …
AS1448 K6 … 87(600)1 3 11.2 100 C–Mn–Si Forgings …
AS1448 K8 … 69.5(480)1 1 1.2 100 C–Mn–Si Forgings …
AS1448 K9 … 78.5(540)1 2 1.2 100 C–Mn–Si Forgings …
ASMEBPVC.IX-2023
150

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
AS1448 K10 … 84(580)1 3 11.1 100 C–Mn–Si Forgings …
AS1448 S1 … 58(400)1 1 1.1 100 C–Si Forgings …
AS1448 S3 … 59.5(410)1 1 1.1 100 C–Si Forgings …
AS1448 S4 … 72.5(500)1 2 11.2 100 C–Si Forgings …
AS1448 S5 … 78.5(540)1 2 11.2 100 C–Mn Forgings …
AS1448 S6 … 87(600)1 3 11.2 100 C–Mn Forgings …
ASorSA/AS1548 PT430 … 62.5(430)1 1 1.1 100 C Plate …
ASorSA/AS1548 PT460 … 66.5(460)1 1 1.1 100 C Plate …
ASorSA/AS1548 PT490 … 71(490)1 2 1.2 100 C Plate …
AS4728 200L0 … 46.5(320)1 1 1.1 120 C–Mn E.R.W.pipe …
AS4728 240L0 … 55(380)1 1 1.1 120 C–Mn E.R.W.pipe …
AS4728 290L0 … 60(415)1 1 1.2 120 C–Mn E.R.W.pipe …
CSAor
SA/CSA–G40.21
38W … 60(415)1 1 1.1 100 C–Mn–Si Plate,bar&shapes …
CSAor
SA/CSA–G40.21
44W … 65(450)1 1 1.2 100 C–Mn–Si Plate,bar&shapes …
CSAor
SA/CSA–G40.21
50W … 65(450)1 1 1.2 100 C–Mn–Si Plate,bar&shapes …
CSAZ245.1 241 … 60(415)1 1 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 290 … 60(415)1 1 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 359 … 66(455)1 1 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 386 … 71(490)1 2 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 414 … 75(515)1 2 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 448 … 77(530)1 2 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 483 … 82(565)1 3 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 550 … 90(620)1 4 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.1 620 … 100(690)1 4 11.1 120 C–Mn Smls.&weldedpipe …
CSAZ245.11 207 … 48(330)1 1 11.1 100 C–Mn Fittings …
ASMEBPVC.IX-2023
151

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
CSAZ245.11 241 … 60(415)1 1 11.1 100 C–Mn Fittings …
CSAZ245.11 290 … 60(415)1 1 11.1 100 C–Mn Fittings …
CSAZ245.11 317 … 63(435)1 1 11.1 100 C–Mn Fittings …
CSAZ245.11 359 … 66(455)1 1 11.1 100 C–Mn Fittings …
CSAZ245.11 386 … 71(490)1 2 11.1 100 C–Mn Fittings …
CSAZ245.11 414 … 75(515)1 2 11.1 100 C–Mn Fittings …
CSAZ245.11 448 … 77(530)1 2 11.1 100 C–Mn Fittings …
CSAZ245.11 483 … 82(565)1 3 11.1 100 C–Mn Fittings …
CSAZ245.11 550 … 90(620)1 4 11.1 100 C–Mn Fittings …
CSAZ245.11 620 … 100(690)1 4 11.1 100 C–Mn Fittings …
CSAZ245.12 248 … 60(415)1 1 11.1 100 C–Mn Flanges …
CSAZ245.12 290 … 60(415)1 1 11.1 100 C–Mn Flanges …
CSAZ245.12 317 … 63(435)1 1 11.1 100 C–Mn Flanges …
CSAZ245.12 359 … 66(455)1 1 11.1 100 C–Mn Flanges …
CSAZ245.12 386 … 71(490)1 2 11.1 100 C–Mn Flanges …
CSAZ245.12 414 … 75(515)1 2 11.1 100 C–Mn Flanges …
CSAZ245.12 448 … 77(530)1 2 11.1 100 C–Mn Flanges …
CSAZ245.12 483 … 82(565)1 3 11.1 100 C–Mn Flanges …
CSAZ245.12 550 … 90(620)1 4 11.1 100 C–Mn Flanges …
CSAZ245.12 620 … 100(690)1 4 11.1 100 C–Mn Flanges …
ENorSA/EN
10025–2
S235JR … 52(360)1 1 1.1 100 C Plate …
ENorSA/EN
10025–2
S275J2 … 55(380)1 1 1.1 100 C Plate&shapes >6(150)≤16(400)
ENorSA/EN
10025–2
S275J2 … 58(400)1 1 1.1 100 C Plate&shapes >4(100)≤6(150)
ENorSA/EN
10025–2
S275J2 … 59.5(410)1 1 1.1 100 C Plate&shapes ≥0.125(3)≤4(100)
ASMEBPVC.IX-2023
152

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
ENorSA/EN
10025–2
S275J2 … 62.5(430)1 1 1.1 100 C Plate&shapes <0.125(3)
ENorSA/EN
10025–2
S275JR … 55(380)1 1 1.1 100 C Plate&shapes >6(150)≤16(400)
ENorSA/EN
10025–2
S275JR … 58(400)1 1 1.1 100 C Plate&shapes >4(100)≤6(150)
ENorSA/EN
10025–2
S275JR … 59.5(410)1 1 1.1 100 C Plate&shapes ≥0.125(3)≤4(100)
ENorSA/EN
10025–2
S275JR … 62.5(430)1 1 1.1 100 C Plate&shapes <0.125(3)
ENorSA/EN
10025–2
S355J2 … 65.5(450)1 2 1.2 100 C–Mn–Si Plate&shapes >4(100)≤16(400)
ENorSA/EN
10025–2
S355J2 … 68(470)1 2 1.2 100 C–Mn–Si Plate&shapes ≥0.125(3)≤4(100)
ENorSA/EN
10025–2
S355J2 … 74(510)1 2 1.2 100 C–Mn–Si Plate&shapes <0.125(3)
ENorSA/EN
10025–2
S355JR … 65.5(450)1 2 1.2 100 C–Mn–Si Plate&shapes >4(100)≤16(400)
ENorSA/EN
10025–2
S355JR … 68(470)1 2 1.2 100 C–Mn–Si Plate&shapes ≥0.125(3)≤4(100)
ENorSA/EN
10025–2
S355JR … 74(510)1 2 1.2 100 C–Mn–Si Plate&shapes <0.125(3)
ENorSA/EN
10028–2
10CrMo9–10 … 65.5(450)5A 1 5.2 110 2.25Cr–1Mo Plate >6(150)≤10(250)
ENorSA/EN
10028–2
10CrMo9–10 … 66.5(460)5A 1 5.2 110 2.25Cr–1Mo Plate >4(100)≤6(150)
ASMEBPVC.IX-2023
153

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
ENorSA/EN
10028–2
10CrMo9–10 … 68(470)5A 1 5.2 110 2.25Cr–1Mo Plate >2.4(60)≤4(100)
ENorSA/EN
10028–2
10CrMo9–10 … 69.5(480)5A 1 5.2 110 2.25Cr–1Mo Plate ≤2.4(60)
ENorSA/EN
10028–2
13CrMo4–5 … 61(420)4 1 5.1 110 1Cr–0.5Mo Plate >6(150)≤10(250)
ENorSA/EN
10028–2
13CrMo4–5 … 62.5(430)4 1 5.1 110 1Cr–0.5Mo Plate >4(100)≤6(150)
ENorSA/EN
10028–2
13CrMo4–5 … 64(440)4 1 5.1 110 1Cr–0.5Mo Plate >2.4(60)≤4(100)
ENorSA/EN
10028–2
13CrMo4–5 … 65.5(450)4 1 5.1 110 1Cr–0.5Mo Plate ≤2.4(60)
ENorSA/EN
10028–2
13CrMoSi5–5+QT … 71(490)4 1 5.1 110 1.25Cr–0.5Mo–Si Plate >4(100)≤10(250)
ENorSA/EN
10028–2
13CrMoSi5–5+QT … 72.5(500)4 1 5.1 110 1.25Cr–0.5Mo–Si Plate >2.4(60)≤4(100)
ENorSA/EN
10028–2
13CrMoSi5–5+QT … 74(510)4 1 5.1 110 1.25Cr–0.5Mo–Si Plate ≤2.4(60)
ENorSA/EN
10028–2
P235GH … 52(360)1 1 1.1 100 C–Mn Plate ≤2.4(60)
ENorSA/EN
10028–2
P265GH … 59.5(410)1 1 1.1 100 C–Mn Plate ≤2.4(60)
ENorSA/EN
10028–2
P295GH … 62.5(430)1 1 1.2 100 C–Mn–Si Plate >6(150)≤10(250)
ENorSA/EN
10028–2
P295GH … 64(440)1 1 1.2 100 C–Mn–Si Plate >4(100)≤6(150)
ENorSA/EN
10028–2
P295GH … 66.5(460)1 1 1.2 100 C–Mn–Si Plate ≤4(100)
ENorSA/EN
10028–2
P355GH … 68(470)1 2 1.2 100 C–Mn–Si Plate >6(150)≤10(250)
ENorSA/EN
10028–2
P355GH … 69.5(480)1 2 1.2 100 C–Mn–Si Plate >4(100)≤6(150)
ENorSA/EN
10028–2
P355GH … 71(490)1 2 1.2 100 C–Mn–Si Plate >2.4(60)≤4(100)
ENorSA/EN
10028–2
P355GH … 74(510)1 2 1.2 100 C–Mn–Si Plate ≤2.4(60)
ASMEBPVC.IX-2023
154

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
ENorSA/EN
10028–3
P275NH … 51(350)1 1 1.1 100 C Plate >6(150)≤10(250)
ENorSA/EN
10028–3
P275NH … 52(360)1 1 1.1 100 C Plate >4(100)≤6(150)
ENorSA/EN
10028–3
P275NH … 53.5(370)1 1 1.1 100 C Plate >2(50)≤4(100)
ENorSA/EN
10028–3
P275NH … 56.5(390)1 1 1.1 100 C Plate ≤2(50)
ENorSA/EN
10028–3
P355NH … 65.5(450)1 2 1.2 120 C–Mn–Si Plate >6(150)≤10(250)
ENorSA/EN
10028–3
P355NH … 66.5(460)1 2 1.2 120 C–Mn–Si Plate >4(100)≤6(150)
ENorSA/EN
10028–3
P355NH … 68(470)1 2 1.2 120 C–Mn–Si Plate >2.4(60)≤4(100)
ENorSA/EN
10028–3
P355NH … 71(490)1 2 1.2 120 C–Mn–Si Plate ≤2.4(60)
ENorSA/EN
10028–3
P355NL2 … 65.5(450)1 2 1.2 120 C–Mn Plate >6(150)≤10(250)
ENorSA/EN
10028–3
P355NL2 … 66.5(460)1 2 1.2 120 C–Mn Plate >4(100)≤6(150)
ENorSA/EN
10028–3
P355NL2 … 68(470)1 2 1.2 120 C–Mn Plate >2.4(60)≤4(100)
ENorSA/EN
10028–3
P355NL2 … 71(490)1 2 1.2 120 C–Mn Plate ≤2.4(60)
ENorSA/EN
10028–4
X7Ni9 … 98.5(680)11A 1 9.3 100 9Ni Plate …
ENorSA/EN
10028–4
X8Ni9 … 93(640)11A 1 9.3 100 9Ni Plate …
EN
10028–6
P690QL2 … 104.5(720)11B 4 3.1 110 1.5Mn–Ni–Cr–Mo Plate >4(100)≤8(200)
EN
10028–6
P690QL2 … 112(770)11B 4 3.1 110 1.5Mn–Ni–Cr–Mo Plate,sheet&strip ≤4(100)
ASMEBPVC.IX-2023
155

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
ENorSA/EN
10028–7
X2CrNi18–9 … 72.5(500)8 1 8.1 130 18Cr–8Ni Plate …
ENorSA/EN
10028–7
X2CrNiMo17–12–2 … 75.5(520)8 1 8.1 130 16Cr–12Ni–2Mo Plate …
ENorSA/EN
10028–7
X2CrNiMoN17–
11–2
… 84(580)8 1 8.1 130 16Cr–12Ni–2Mo–N Plate …
ENorSA/EN
10028–7
X2CrNiMoN17–
13–3
… 84(580)8 1 8.1 130 16Cr–12Ni–2Mo–N Plate …
ENorSA/EN
10028–7
X2CrNiN18–10 … 80(550)8 1 8.1 130 18Cr–8Ni–N Plate …
ENorSA/EN
10028–7
X5CrNi18–10 … 75.5(520)8 1 8.1 130 18Cr–8Ni Plate …
ENorSA/EN
10028–7
X5CrNiMo17–12–2 … 75.5(520)8 1 8.1 130 16Cr–12Ni–2Mo Plate …
ENorSA/EN
10028–7
X5CrNiN19–9 … 80(550)8 1 8.1 130 18Cr–8Ni–N Plate …
ENorSA/EN
10028–7
X6CrNiTi18–10 … 72.5(500)8 1 8.1 130 18Cr–10Ni–Ti Plate …
ENorSA/EN
10088–2
X6CrNiMoTi17–
12–2
… 78.5(540)8 1 8.1 130 16Cr–12Ni–2Mo–Ti Plate,sheet&strip …
ENorSA/EN
10216–2
10CrMo9–10 … 69.5(480)5A 1 5.2 110 2.25Cr–1Mo Smls.tube …
ENorSA/EN
10216–2
13CrMo4–5 … 64(440)4 1 5.1 110 1Cr–0.5Mo Smls.tube …
ENorSA/EN
10216–2
16Mo3 … 65.5(450)3 1 1.1 100 C–0.5Mo Smls.tube …
ENorSA/EN
10216–2
P235GH … 52(360)1 1 1.1 100 C Smls.tube …
ENorSA/EN
10216–2
P265GH … 59.5(410)1 1 1.1 100 C Smls.tube …
ENorSA/EN
10216–2
X10CrMoVNb9–1 … 91.5(630)15E 1 6.4 110 9Cr–1Mo–V Smls.tube …
EN
10216–3
P690QL2 … 98.5(680)11B 4 3.1 110 1.5Mn–Ni–Cr–Mo Smls.tube >2.5(65)≤4(100)
ASMEBPVC.IX-2023
156

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
EN
10216–3
P690QL2 … 101(700)11B 4 3.1 110 1.5Mn–Ni–Cr–Mo Smls.tube >1.6(40)≤2.5(65)
EN
10216–3
P690QL2 … 112(770)11B 4 3.1 110 1.5Mn–Ni–Cr–Mo Smls.tube ≤1.6(40)
ENorSA/EN
10217–1
P235TR2 … 52(360)1 1 1.1 100 C E.R.W.tube …
ENorSA/EN
10222–2
11CrMo9–10 … 65.5(450)5A 1 5.2 110 2.25Cr–1Mo Forgings >8(200)≤20(500)
ENorSA/EN
10222–2
11CrMo9–10 … 75.5(520)5A 1 5.2 110 2.25Cr–1Mo Forgings ≤8(200)
ENorSA/EN
10222–2
13CrMo4–5 … 61(420)4 1 5.1 110 1Cr–0.5Mo Forgings >10(250)≤20(500)
ENorSA/EN
10222–2
13CrMo4–5 … 64(440)4 1 5.1 110 1Cr–0.5Mo Forgings ≤10(250)
ENorSA/EN
10222–2
P280GH … 66.5(460)1 1 1.2 100 C–Mn–Si Forgings …
ENorSA/EN
10222–2
P305GH … 71(490)1 2 1.2 100 C–Mn–Si Forgings …
ENorSA/EN
10222–2
X10CrMoVNb9–1 … 91.5(630)15E 1 6.4 110 9Cr–1Mo–V Forgings …
GBorSA/GB713 15CrMoR … 64(440)4 1 5.1 110 1Cr–0.5Mo Plate >4(100)≤6(150)
GBorSA/GB713 15CrMoR … 65.5(450)4 1 5.1 110 1Cr–0.5Mo Plate >0.25(6)≤4(100)
GBorSA/GB713 Q345R … 68(470)1 1 1.1 100 C–Mn Plate >6(150)≤10(250)
GBorSA/GB713 Q345R … 69.5(480)1 1 1.2 100 C–Mn Plate >4(100)≤6(150)
GBorSA/GB713 Q345R … 71(490)1 2 1.2 100 C–Mn Plate >1.4(36)≤4(100)
GBorSA/GB713 Q345R … 72.5(500)1 2 1.2 100 C–Mn Plate >0.65(16)≤1.4(36)
GBorSA/GB713 Q345R … 74(510)1 2 1.2 100 C–Mn Plate >0.125(3)≤0.65(16)
GBorSA/GB713 Q370R … 75.5(520)1 2 1.2 100 C Plate >1.4(36)≤2.4(60)
GBorSA/GB713 Q370R … 77(530)1 2 1.2 100 C Plate >0.65(16)≤1.4(36)
GBorSA/GB713 Q370R … 77(530)1 2 1.3 100 C Plate >0.375(10)≤0.65(16)
IRAM/IASU500–42 F–24 … 49(340)1 1 1.1 100 C Plate >4(100)≤6(150)
IRAM/IASU500–42 F–24 … 52(360)1 1 1.1 100 C Plate,sheet&strip ≥0.0625(1.6)≤4(100)
IRAM/IASU500–42 F–26 … 55(380)1 1 1.1 100 C Plate >4(100)≤6(150)
ASMEBPVC.IX-2023
157

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
IRAM/IASU500–42 F–26 … 58(400)1 1 1.1 100 C Plate,sheet&strip ≥0.0625(1.6)≤4(100)
ISorSA/IS2062 E250A … 59.5(410)1 1 1.1 100 C–Mn–Si Plate,bars&shapes …
ISorSA/IS2062 E250B … 59.5(410)1 1 1.1 100 C–Mn–Si Plate,bars&shapes …
ISorSA/IS2062 E250C … 59.5(410)1 1 1.1 100 C–Mn–Si Plate,bars&shapes …
JISorSA/JISG3118 SGV480 … 70.5(485)1 2 1.2 100 C–Mn–Si Plate …
JISorSA/JISG4303 SUS302 S3020074.5(515)8 1 8.1 130 18Cr–8Ni Bars&shapes …
JISorSA/JISG4303 SUS304 S3040074.5(515)8 1 8.1 130 18Cr–8Ni Bars&shapes …
JISorSA/JISG4303 SUS304L S3040370.5(485)8 1 8.1 130 18Cr–8Ni Bars&shapes …
JISorSA/JISG4303 SUS309S S3090874.5(515)8 2 8.2 130 23Cr–12Ni Bars&shapes …
JISorSA/JISG4303 SUS310S S3100874.5(515)8 2 8.2 130 25Cr–20Ni Bars&shapes …
JISorSA/JISG4303 SUS316 S3160074.5(515)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
JISorSA/JISG4303 SUS316L S3160370.5(485)8 1 8.1 130 16Cr–12Ni–2Mo Bars&shapes …
JISorSA/JISG4303 SUS321 S3210074.5(515)8 1 8.1 140 18Cr–10Ni–Ti Bars&shapes …
JISorSA/JISG4303 SUS347 S3470074.5(515)8 1 8.1 130 18Cr–10Ni–Cb Bars&shapes …
JISorSA/JISG4303 SUS405 S40500 60(415)7 1 7.1 160 12Cr–Al Bars&shapes …
MSSSP–75 WPHY–42 … 60(415)1 1 11.1 120 C–Mn Smls.&weldedfittings…
MSSSP–75 WPHY–46 … 63(435)1 1 11.1 120 C–Mn Smls.&weldedfittings…
MSSSP–75 WPHY–52 … 66(455)1 1 11.1 120 C–Mn Smls.&weldedfittings…
MSSSP–75 WPHY–56 … 71(490)1 2 11.1 120 C–Mn Smls.&weldedfittings…
MSSSP–75 WPHY–60 … 75(515)1 2 11.1 120 C–Mn Smls.&weldedfittings…
MSSSP–75 WPHY–65 … 77(530)1 2 11.1 120 C–Mn Smls.&weldedfittings…
MSSSP–75 WPHY–70 … 82(565)1 3 11.1 120 C–Mn Smls.&weldedfittings…
NForSA/NF
A36–215
P440NJ4 … 91.5(630)10A 1 4.1 100 Mn–0.5Ni–V Plate …
SFA–5.9 ER320 N08021 80(550)45 … 45 … 34Ni–20Cr–Cu–Mo Weldmetal …
SFA–5.9 ER320LR N08022 75(515)45 … 45 … 34Ni–20Cr–Cu–Mo Weldmetal …
SFA–5.9 ER383 N08028 75(515)45 … 45 … 35Ni–27Cr–Mo Weldmetal …
ASMEBPVC.IX-2023
158

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
SFA–5.9 ER330 N08331 75(515)46 … 45 … 35Ni–16Cr Weldmetal …
SFA–5.9 ER385 N08904 75(515)45 … 8.2 … 25Ni–21Cr–4Mo Weldmetal …
SFA–5.9 ER33–31 R20033 105(725)45 … 45 … 33Cr–3Ni–Fe–Mo Weldmetal …
SFA–5.9 ER16–8–2 S16880 80(550)8 1 8.1 … 15Cr–8Ni–Mn–Mo Weldmetal …
SFA–5.9 ER209 S20980 100(690)8 3 8.3 … 22Cr–10Ni–5Mn Weldmetal …
SFA–5.9 ER219 S21980 90(620)8 3 8.3 … 21Cr–9Ni–6Mn Weldmetal …
SFA–5.9 ER240 S24080 100(690)8 3 8.3 … 18Cr–12Mn–5Ni Weldmetal …
SFA–5.9 ER307 S30780 85(585)8 3 8.3 … 21Cr–9Ni–4Mn Weldmetal …
SFA–5.9 ER308 S30880 80(550)8 1 8.2 … 21Cr–10Ni Weldmetal …
SFA–5.9 ER308H S30880 80(550)8 1 8.2 … 21Cr–10Ni Weldmetal …
SFA–5.9 ER308Si S30881 80(550)8 1 8.2 … 21Cr–10Ni Weldmetal …
SFA–5.9 ER308Mo S30882 80(550)8 1 8.2 … 20Cr–10Ni–Mo Weldmetal …
SFA–5.9 ER308L S30883 75(515)8 1 8.2 … 21Cr–10Ni Weldmetal …
SFA–5.9 ER308LMo S30886 75(515)8 1 8.2 … 20Cr–10Ni–Mo Weldmetal …
SFA–5.9 ER308LSi S30888 75(515)8 1 8.2 … 21Cr–10Ni Weldmetal …
SFA–5.9 ER309 S30980 80(550)8 2 8.2 … 24Cr–13Ni Weldmetal …
SFA–5.9 ER309Si S30981 80(550)8 2 8.2 … 24Cr–13Ni Weldmetal …
SFA–5.9 ER309Mo S30982 80(550)8 2 8.2 … 24Cr–13Ni–Mo Weldmetal …
SFA–5.9 ER309L S30983 75(515)8 2 8.2 … 24Cr–13Ni Weldmetal …
SFA–5.9 ER309LMo S30986 75(515)8 2 8.2 … 24Cr–13Ni–Mo Weldmetal …
SFA–5.9 ER309LSi S30988 75(515)8 2 8.2 … 24Cr–13Ni Weldmetal …
SFA–5.9 ER310 S31080 80(550)8 2 8.2 … 26Cr–21Ni Weldmetal …
SFA–5.9 ER312 S31380 95(655)8 2 8.2 … 30Cr–9Ni Weldmetal …
SFA–5.9 ER316 S31680 75(515)8 1 8.2 … 19Cr–12Ni–Mo Weldmetal …
SFA–5.9 ER316H S31680 75(515)8 1 8.2 … 19Cr–12Ni–Mo Weldmetal …
SFA–5.9 ER316LMn S31682 80(550)8 3 8.2 … 20Cr–12Ni–Mn–Mo Weldmetal …
SFA–5.9 ER316L S31683 70(485)8 1 8.2 … 19Cr–12Ni–Mo Weldmetal …
SFA–5.9 ER316LSi S31688 70(485)8 1 8.2 … 19Cr–12Ni–Mo Weldmetal …
SFA–5.9 ER316Si S31688 75(515)8 1 8.2 … 19Cr–12Ni–Mo Weldmetal …
SFA–5.9 ER317 S31780 80(550)8 1 8.2 … 20Cr–14Ni–Mo Weldmetal …
SFA–5.9 ER317L S31783 75(515)8 1 8.2 … 20Cr–14Ni–Mo Weldmetal …
SFA–5.9 ER318 S31980 80(550)8 1 8.2 … 19Cr–12Ni–Mo Weldmetal …
ASMEBPVC.IX-2023
159

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
SFA–5.9 ER2594 S32750 110(760)10H 1 10.2 … 25Cr–7Ni–4Mo Weldmetal …
SFA–5.9 ER347 S34780 75(515)8 1 8.2 … 20Cr–10Ni–Mn–Nb Weldmetal …
SFA–5.9 ER347Si S34788 75(515)8 1 8.2 … 20Cr–10Ni–Mn–Nb Weldmetal …
SFA–5.9 ER2209 S39209 100(690)10H 1 10.1 … 22Cr–8Ni–Mo Weldmetal …
SFA–5.9 ER2553 S39553 110(760)10H 1 10.2 … 25Cr–5Ni–3Mo Weldmetal …
SFA–5.9 ER409 S40900 65(450)7 1 7.1 … 11Cr Weldmetal …
SFA–5.9 ER409Nb S40940 65(450)7 1 7.1 … 11Cr–Nb Weldmetal …
SFA–5.9 ER410 S41080 75(515)6 1 7.2 … 12Cr Weldmetal …
SFA–5.9 ER410NiMo S41086 110(760)6 4 7.2 … 12Cr–4Ni–Mo Weldmetal …
SFA–5.9 ER430 S43080 65(450)7 2 7.1 … 16Cr Weldmetal …
SFA–5.9 ER2307 S82371 100(690)10H 1 10.2 … 24Cr–8Ni Weldmetal …
SFA–5.18 ER70S–8 … 70(485)1 2 1.3 … C–Mn–Si Weldmetal …
SFA–5.18 ER70S–2 K10726 70(485)1 2 1.3 … C–Mn–Si Weldmetal …
SFA–5.18 ER70S–3 K11022 70(485)1 2 1.3 … C–Mn–Si Weldmetal …
SFA–5.18 ER70S–7 K11125 70(485)1 2 1.3 … C–Mn–Si Weldmetal …
SFA–5.18 ER70S–4 K11132 70(485)1 2 1.3 … C–Mn–Si Weldmetal …
SFA–5.18 ER70S–6 K11140 70(485)1 2 1.3 … C–Mn–Si Weldmetal …
SFA–5.28 ER70S–Ni4 … 70(485)9C 1 9.2 … CMn–4.5Ni Weldmetal …
SFA–5.28 ER80S–B2Mn … 80(550)4 1 5.1 … 1Cr–0.5Mo Weldmetal …
SFA–5.28 ER80S–B2Si … 80(550)4 1 5.1 … 1Cr–0.5Mo Weldmetal …
SFA–5.28 ER90S–B3Mn … 90(620)5A 1 5.2 … 2.25Cr–1Mo Weldmetal …
SFA–5.28 ER90S–B3MnSi … 90(620)5A 1 5.2 … 2.25Cr–1Mo Weldmetal …
SFA–5.28 ER90S–B3Si … 90(620)5A 1 5.2 … 2.25Cr–1Mo Weldmetal …
SFA–5.28 ER100S–M7 … 100(690)11B 3 … … 0.9Ni–0.3Cr–0.5Mo Weldmetal …
SFA–5.28 ER110S–M6 … 110(760)11B 3 … … 1.5Ni–0.3Cr–0.5Mo Weldmetal …
SFA–5.28 ER120S–M8 … 120(825)11B 3 … … 2.1Ni–0.3Cr–0.5Mo Weldmetal …
SFA–5.28 ER100S–1 K10882 100(690)11B 3 … … 1.8Ni–0.5Mo Weldmetal …
SFA–5.28 ER80S–D2 K10945 80(550)3 2 … … C–0.5Mo Weldmetal …
SFA–5.28 ER90S–D2 K10945 90(620)3 2 … … C–0.5Mo Weldmetal …
SFA–5.28 ER70S–A1 K11235 75(515)3 2 1.3 … C–0.5Mo Weldmetal …
SFA–5.28 ER80S–Ni1 K11260 80(550)1 3 9.1 … C–Mn–0.8Ni Weldmetal …
ASMEBPVC.IX-2023
160

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Designation,
Type,
orGrade UNSNo.
Minimum
Specified
Tensile,
ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
ProductForm
NominalThickness
Limits,
in.(mm)
P‐
No.
Group
No.
ISO15608
Group
Ferrous(Cont’d)
SFA–5.28 ER70S–B2L K20500 75(515)4 1 5.1 … 1Cr–0.5Mo Weldmetal …
SFA–5.28 ER80S–B2 K20900 80(550)4 1 5.1 … 1Cr–0.5Mo Weldmetal …
SFA–5.28 ER110S–1 K21015 110(760)11B 3 … … 2.2Ni–0.5Mo Weldmetal …
SFA–5.28 ER120S–1 K21030 120(825)11B 3 … … 2.7Ni–0.5Mo Weldmetal …
SFA–5.28 ER80S–Ni2 K21240 80(550)9A 1 9.1 … C–Mn–2.5Ni Weldmetal …
SFA–5.28 ER80S–B3L K30560 80(550)5A 1 5.2 … 2.25Cr–1Mo Weldmetal …
SFA–5.28 ER90S–B3 K30960 90(620)5A 1 5.2 … 2.25Cr–1Mo Weldmetal …
SFA–5.28 ER80S–Ni3 K31240 80(550)9B 1 9.2 … C–Mn–3.5Ni Weldmetal …
ASMEBPVC.IX-2023
161

TableQW/QB-422
BaseMetalP-Numbers
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous
AorSA–182 F58 S31266 109(750) 45 8.2 42024Cr–22Ni–6Mo–3Mn–Cu–W–N Forgings …
AorSA–240 … S31266 109(750) 45 8.2 42024Cr–22Ni–6Mo–3Mn–Cu–W–N Plate,sheet&strip …
AorSA–240 … S31277 112(770) 45 8.2 42027Ni–22Cr–7Mo–Mn–Cu Plate,sheet&strip …
AorSA–351 CN3MN J94651 80(550) 45 8.2 42046Fe–24Ni–21Cr–6Mo–Cu–N Castings …
AorSA–351 CN7M N08007 62(425) 45 8.2 42028Ni–19Cr–Cu–Mo Castings …
AorSA–351 CT15C N08151 63(435) 45 45 42032Ni–45Fe–20Cr–Cb Castings …
AorSA–351 HT30 N08603 65(450) 45 45 42035Ni–15Cr–0.5Mo Castings …
AorSA–358 … S31266 109(750) 45 8.2 42024Cr–22Ni–6Mo–3Mn–Cu–W–N Fusionweldedpipe …
AorSA–494 M35–2 N04020 65(450) 42 42 40067Ni–30Cu–Fe–Si Castings …
AorSA–494 CY40 N06040 70(485) 43 43 42072Ni–15Cr–8Fe–Si Castings …
AorSA–494 CU5MCuC N08826 75(515) 45 45 42042Ni–21.5Cr–3Mo–2.3Cu Castings …
AorSA–494 M30C N24130 65(450) 42 42 40067Ni–30Cu–2Fe–Cb Castings …
AorSA–494 M35–1 N24135 65(450) 42 42 40067Ni–30Cu–2Fe–Cb Castings …
AorSA–494 CX2MW N26022 80(550) 43 43 42059Ni–22Cr–14Mo–4Fe–3W Castings …
AorSA–494 CW2M N26455 72(495) 43 43 42066Ni–16Mo–16Cr–Fe–W Castings …
AorSA–494 CW6MC N26625 70(485) 43 43 42060Ni–21.5Cr–9Mo–4Cb–Fe Castings …
AorSA–494 N7M N30007 76(525) 44 44 41065Ni–31.5Mo–1.5Fe–Cr Castings …
AorSA–494 CW6M N30107 72(495) 44 44 42056Ni–19Mo–18Cr–2Fe Castings …
B16 … C36000 40(275) … NA 32065Cu–Zn–3Pb Bar >1(25)dia.
B16 … C36000 44(305) … NA 32065Cu–Zn–3Pb Bar ≤1(25)dia.
B16 … C36000 40(275) … NA 32065Cu–Zn–3Pb Rod >2(50)dia.
B16 … C36000 44(305) … NA 32065Cu–Zn–3Pb Rod >1(25)≤2(50)dia.
B16 … C36000 48(330) … NA 32065Cu–Zn–3Pb Rod ≤1(25)dia.
B16.18 … C83600 30(205) … NA 3205Sn–5Zn–5Pb Castfittings …
B16.18 … C83800 30(205) … NA 3204Sn–6.5Zn–6Pb Castfittings …
B16.18 … C84400 29(200) … NA 3202.5Sn–8.5Zn–7Pb Castfittings …
B16.22 … C10200 30(205) … NA 30099.95Cu–P Wroughtpipingfittings…
ASMEBPVC.IX-2023
162

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
B16.22 … C12000 30(205) … NA 30099.9Cu–P Wroughtpipingfittings…
B16.22 … C12200 30(205) … NA 30099.9Cu–P Wroughtpipingfittings…
B16.22 … C23000 40(275) … NA 30085Cu–15Zn Wroughtpipingfittings…
B16.50 … C10200 30(205) … NA 30099.95Cu–P Wroughtpipingfittings…
B16.50 … C12000 30(205) … NA 30099.9Cu–P Wroughtpipingfittings…
B16.50 … C12200 30(205) … NA 30099.9Cu–P Wroughtpipingfittings…
B16.50 … C23000 40(275) … NA 30085Cu–15Zn Wroughtpipingfittings…
BorSB–26 T6 A03560 30(205) 26 24.2 210Al–Si–Mg Castings …
BorSB–26 T71 A03560 25(170) 26 24.2 210Al–Si–Mg Castings …
BorSB–26 … A24430 17(115) 26 24.1 210Al–Si Castings …
BorSB–42 … C10200 30(205) 31 31 30099.95Cu–P Smls.pipe …
BorSB–42 … C12000 30(205) 31 31 30099.9Cu–P Smls.pipe …
BorSB–42 … C12200 30(205) 31 31 30099.9Cu–P Smls.pipe …
BorSB–43 … C23000 40(275) 32 32.1 30085Cu–15Zn Smls.pipe …
BorSB–61 … C92200 30(205) … NA 32088Cu–Sn–Zn–Pb Castings …
BorSB–62 … C83600 30(205) … NA 32085Cu–5Sn–5Zn–5Pb Castings …
B68 … C10200 30(205) 31 31 30099.95Cu–P Tube …
B68 … C12000 30(205) 31 31 30099.9Cu–P Tube …
B68 … C12200 30(205) 31 31 30099.9Cu–P Tube …
BorSB–75 … C10200 30(205) 31 31 30099.95Cu–P Smls.tube …
BorSB–75 … C12000 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–75 … C12200 30(205) 31 31 30099.9Cu–P Smls.tube …
B88 … C10200 30(205) 31 31 30099.95Cu–P Tube …
B88 … C12000 30(205) 31 31 30099.9Cu–P Tube …
B88 … C12200 30(205) 31 31 30099.9Cu–P Tube …
ASMEBPVC.IX-2023
163

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–96 … C65500 50(345) 33 37 33097Cu–3Si Plate,sheet,strip&bar…
BorSB–98 … C65100 40(275) 33 37 33098.5Cu–1.5Si Rod,bar&shapes …
BorSB–98 … C65500 52(360) 33 37 33097Cu–3Si Rod,bar&shapes …
BorSB–98 … C66100 52(360) 33 37 33094Cu–3Si Rod,bar&shapes …
BorSB–111 … C10200 30(205) 31 31 30099.95Cu–P Smls.tube …
BorSB–111 … C12000 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–111 … C12200 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–111 … C14200 30(205) 31 31 30099.4Cu–As–P Smls.tube …
BorSB–111 … C19200 38(260) 31 31 30099.7Cu–Fe–P Smls.tube …
BorSB–111 … C23000 40(275) 32 32.1 30085Cu–15Zn Smls.tube …
BorSB–111 … C28000 50(345) 32 32.1 30060Cu–40Zn Smls.tube …
BorSB–111 … C44300 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06As Smls.tube …
BorSB–111 … C44400 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06Sb Smls.tube …
BorSB–111 … C44500 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06P Smls.tube …
BorSB–111 … C60800 50(345) 35 35 36095Cu–5Al Smls.tube …
BorSB–111 … C68700 50(345) 32 32.2 35078Cu–20Zn–2Al Smls.tube …
BorSB–111 … C70400 38(260) 34 34 30095Cu–5Ni Smls.tube …
BorSB–111 … C70600 40(275) 34 34 30090Cu–10Ni Smls.tube …
BorSB–111 … C70620 40(275) 34 34 30090Cu–10Ni Smls.tube …
BorSB–111 … C71000 45(310) 34 34 30080Cu–20Ni Smls.tube …
BorSB–111 … C71500 52(360) 34 34 30070Cu–30Ni Smls.tube …
BorSB–111 … C71520 52(360) 34 34 30070Cu–30Ni Smls.tube …
BorSB–111 … C72200 45(310) 34 34 30080Cu–16Ni–0.75Fe–0.5Cr Smls.tube …
BorSB–127 … N04400 70(485) 42 42 40067Ni–30Cu Plate,sheet&strip …
BorSB–135 … C23000 40(275) 32 32.1 30085Cu–15Zn Smls.tube …
BorSB–148 … C95200 65(450) 35 35 36088Cu–9Al–3Fe Castings …
BorSB–148 … C95300 65(450) 35 35 36089Cu–10Al–1Fe Castings …
BorSB–148 … C95400 75(515) 35 35 36085Cu–11Al–4Fe Castings …
ASMEBPVC.IX-2023
164

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–148 … C95500 90(620) 35 35 36082Cu–11Al–4Fe–3Mn Castings …
BorSB–148 … C95600 60(415) 35 35 36090Cu–7Al–3Si Castings …
BorSB–148 … C95800 85(585) 35 35 36081Cu–9Al–5Ni–4Fe–1Mn Castings …
BorSB–148 … C95820 94(650) 35 35 36081Cu–9Al–5Ni–5Fe–1Mn Castings …
BorSB–150 … C61400 70(485) 35 35 36090Cu–7Al–3Fe Rod&bar …
BorSB–150 … C62300 75(515) 35 35 36088Cu–9Al–3Fe Rod(round) …
BorSB–150 … C63000 85(585) 35 35 36081Cu–10Al–5Ni–3Fe Rod&bar …
BorSB–150 … C64200 70(485) 35 35 36091Cu–7Al–2Si Rod&bar …
BorSB–151 … C70600 38(260) 34 34 30090Cu–10Ni Rod&bar …
BorSB–151 … C70620 38(260) 34 34 30090Cu–10Ni Rod&bar …
BorSB–152 … C10200 30(205) 31 31 30099.95Cu–P Plate,sheet,strip&bar…
BorSB–152 … C10400 30(205) 31 31 30099.95Cu+Ag Plate,sheet,strip&bar…
BorSB–152 … C10500 30(205) 31 31 30099.95Cu+Ag Plate,sheet,strip&bar…
BorSB–152 … C10700 30(205) 31 31 30099.95Cu+Ag Plate,sheet,strip&bar…
BorSB–152 … C11000 30(205) 31 31 30099.90Cu Plate,sheet,strip&bar…
BorSB–152 … C12200 30(205) 31 31 30099.9Cu–P Plate,sheet,strip&bar…
BorSB–152 … C12300 30(205) 31 31 30099.9Cu–P Plate,sheet,strip&bar…
BorSB–152 … C14200 30(205) 31 31 30099.4Cu–As–P Plate,sheet,strip&bar…
BorSB–160 … N02200 55(380) 41 41 40099.0Ni Rod&bar …
BorSB–160 … N02201 50(345) 41 41 40099.0Ni–LowC Rod&bar …
BorSB–161 … N02200 55(380) 41 41 40099.0Ni Smls.pipe&tube …
BorSB–161 … N02201 50(345) 41 41 40099.0Ni–LowC Smls.pipe&tube …
BorSB–162 … N02200 55(380) 41 41 40099.0Ni Plate,sheet&strip …
BorSB–162 … N02201 50(345) 41 41 40099.0Ni–LowC Plate,sheet&strip …
BorSB–163 … N02200 55(380) 41 41 40099.0Ni Smls.tube …
BorSB–163 … N02201 50(345) 41 41 40099.0Ni–LowC Smls.tube …
BorSB–163 … N04400 70(485) 42 42 40067Ni–30Cu Smls.tube …
ASMEBPVC.IX-2023
165

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–163 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Smls.tube …
BorSB–163 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Smls.tube …
BorSB–163 … N06601 80(550) 43 43 42060Ni–23Cr–12Fe–Al Smls.tube …
BorSB–163 … N06690 85(585) 43 43 42058Ni–29Cr–9Fe Smls.tube …
BorSB–163 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Smls.tube …
BorSB–163 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Smls.tube …
BorSB–163 … N08801 65(450) 45 45 43032Ni–45Fe–20.5Cr–Ti Smls.tube …
BorSB–163 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Smls.tube …
BorSB–163 … N08811 65(450) 45 45 43033Ni–42Fe–21Cr–Al–Ti Smls.tube …
BorSB–163 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Smls.tube …
BorSB–164 … N04400 70(485) 42 42 40067Ni–30Cu Rod,bar&wire …
BorSB–164 … N04405 70(485) 42 42 40067Ni–30Cu Rod,bar&wire …
BorSB–165 … N04400 70(485) 42 42 40067Ni–30Cu Smls.pipe&tube …
BorSB–166 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Rod,bar&wire …
BorSB–166 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Rod,bar&wire …
BorSB–166 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Rod,bar&wire …
BorSB–166 … N06601 80(550) 43 43 42060Ni–23Cr–12Fe–Al Rod,bar&wire …
BorSB–166 … N06617 95(655) 43 46 42052Ni–22Cr–13Co–9Mo Rod,bar&wire …
BorSB–166 … N06690 85(585) 43 43 42058Ni–29Cr–9Fe Rod,bar&wire …
BorSB–167 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Smls.pipe&tube …
BorSB–167 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Smls.pipe&tube …
BorSB–167 … N06600 75(515) 43 43 42072Ni–15Cr–8Fe Smls.pipe&tube …
BorSB–167 … N06601 80(550) 43 43 42060Ni–23Cr–12Fe–Al Smls.pipe&tube …
BorSB–167 … N06617 95(655) 43 46 42052Ni–22Cr–13Co–9Mo Smls.pipe&tube …
BorSB–167 … N06690 75(515) 43 43 42058Ni–29Cr–9Fe Smls.pipe&tube …
BorSB–168 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Plate,sheet&strip …
BorSB–168 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Plate,sheet&strip …
BorSB–168 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Plate,sheet&strip …
ASMEBPVC.IX-2023
166

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–168 … N06601 80(550) 43 43 42060Ni–23Cr–12Fe–Al Plate,sheet&strip …
BorSB–168 … N06617 95(655) 43 46 42052Ni–22Cr–13Co–9Mo Plate,sheet&strip …
BorSB–168 … N06690 85(585) 43 43 42058Ni–29Cr–9Fe Plate,sheet&strip …
BorSB–169 … C61400 65(450) 35 35 36090Cu–7Al–3Fe Plate&bar >2(50)≤5(125)
BorSB–169 … C61400 70(485) 35 35 36090Cu–7Al–3Fe Plate&bar >0.5(13)≤2(50)
BorSB–169 … C61400 72(495) 35 35 36090Cu–7Al–3Fe Plate,sheet,strip&bar≤0.5(13)
BorSB–171 … C36500 40(275) 32 32.2 31060Cu–39Zn–Pb Plate >3.5(90)≤5(125)
BorSB–171 … C36500 45(310) 32 32.2 31060Cu–39Zn–Pb Plate >2.0(50)≤3.5(90)
BorSB–171 … C36500 50(345) 32 32.2 31060Cu–39Zn–Pb Plate&sheet ≤2.0(50)
BorSB–171 … C44300 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06As Plate&sheet …
BorSB–171 … C44400 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06Sb Plate&sheet …
BorSB–171 … C44500 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06P Plate&sheet …
BorSB–171 … C46400 50(345) 32 32.2 30060Cu–39Zn–Sn Plate&sheet …
BorSB–171 … C46500 50(345) 32 32.2 30060Cu–39Zn–As Plate&sheet …
BorSB–171 … C61400 65(450) 35 35 36090Cu–7Al–3Fe Plate >2(50)≤5(125)
BorSB–171 … C61400 70(485) 35 35 36090Cu–7Al–3Fe Plate&sheet ≤2(50)
BorSB–171 … C63000 80(550) 35 35 36081Cu–10Al–5Ni–3Fe Plate >3.5(90)≤5(125)
BorSB–171 … C63000 85(585) 35 35 36081Cu–10Al–5Ni–3Fe Plate >2(50)≤3.5(90)
BorSB–171 … C63000 90(620) 35 35 36081Cu–10Al–5Ni–3Fe Plate&sheet ≤2(50)
BorSB–171 … C70600 40(275) 34 34 30090Cu–10Ni Plate&sheet …
BorSB–171 … C70620 40(275) 34 34 30090Cu–10Ni Plate&sheet …
BorSB–171 … C71500 45(310) 34 34 30070Cu–30Ni Plate >2.5(65)≤5(125)
BorSB–171 … C71500 50(345) 34 34 30070Cu–30Ni Plate&sheet ≤2.5(65)
BorSB–171 … C71520 45(310) 34 34 30070Cu–30Ni Plate >2.5(65)≤5(125)
BorSB–171 … C71520 50(345) 34 34 30070Cu–30Ni Plate&sheet ≤2.5(65)
BorSB–187 O60 C10200 28(195) 31 31 30099.95Cu–P Rod&bar …
BorSB–187 O60 C11000 28(195) 31 31 30099.9Cu Rod&bar …
BorSB–209 Alclad3003 … 13(90) 21 ... 200Al–Mn–Cu Plate&sheet >0.05(1.3)<0.5(13)
BorSB–209 Alclad3003 … 14(97) 21 ... 200Al–Mn–Cu Plate ≥0.5(13)≤3(75)
ASMEBPVC.IX-2023
167

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–209 Alclad3004 … 21(145) 22 ... 220Al–Mn–Mg Plate&sheet >0.05(1.3)<0.5(13)
BorSB–209 Alclad3004 … 22(150) 22 ... 220Al–Mn–Mg Plate ≥0.5(13)≤3(75)
BorSB–209 Alclad6061 … 24(165) 23 ... 200Al–Mg–Si–Cu Plate&sheet …
BorSB–209 1060 A91060 8(55) 21 21 20099.60Al Plate&sheet …
BorSB–209 1100 A91100 11(76) 21 21 20099.0Al–Cu Plate&sheet …
BorSB–209 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Plate&sheet …
BorSB–209 3004 A93004 22(150) 22 22.2 220Al–Mn–Mg Plate&sheet …
BorSB–209 5050 A95050 18(125) 21 22.2 220Al–1.5Mg Plate&sheet …
BorSB–209 5052 A95052 25(170) 22 22.3 220Al–2.5Mg Plate&sheet …
BorSB–209 5083 A95083 36(250) 25 22.4 220Al–4.4Mg–Mn Plate >7(180)≤8(200)
BorSB–209 5083 A95083 37(255) 25 22.4 220Al–4.4Mg–Mn Plate >5(125)≤7(180)
BorSB–209 5083 A95083 38(260) 25 22.4 220Al–4.4Mg–Mn Plate >3(75)≤5(125)
BorSB–209 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Plate >1.5(38)≤3(75)
BorSB–209 5083 A95083 40(275) 25 22.4 220Al–4.4Mg–Mn Plate&sheet >0.05(1.3)≤1.5(38)
BorSB–209 5086 A95086 35(240) 25 22.4 220Al–4.0Mg–Mn Plate&sheet …
BorSB–209 5154 A95154 30(205) 22 22.4 220Al–3.5Mg Plate&sheet …
BorSB–209 5254 A95254 30(205) 22 22.4 220Al–3.5Mg Plate&sheet …
BorSB–209 5454 A95454 31(215) 22 22.3 220Al–2.7Mg–Mn Plate&sheet …
BorSB–209 5456 A95456 38(260) 25 22.4 220Al–5.1Mg–Mn Plate >7(180)≤8(200)
BorSB–209 5456 A95456 39(270) 25 22.4 220Al–5.1Mg–Mn Plate >5(125)≤7(180)
BorSB–209 5456 A95456 40(275) 25 22.4 220Al–5.1Mg–Mn Plate >3(75)≤5(125)
BorSB–209 5456 A95456 41(285) 25 22.4 220Al–5.1Mg–Mn Plate >1.5(38)≤3(75)
BorSB–209 5456 A95456 42(290) 25 22.4 220Al–5.1Mg–Mn Plate&sheet >0.05(1.3)≤1.5(38)
BorSB–209 5652 A95652 25(170) 22 22.3 220Al–2.5Mg Plate&sheet …
BorSB–209 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Plate&sheet …
BorSB–210 Alclad3003 … 13(90) 21 ... 200Al–Mn–Cu Smls.tube …
BorSB–210 1060 A91060 8.5(59) 21 21 20099.60Al Smls.tube …
BorSB–210 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Smls.tube …
BorSB–210 5052 A95052 25(170) 22 22.3 220Al–2.5Mg Smls.tube …
BorSB–210 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Smls.tube …
BorSB–210 5086 A95086 35(240) 25 22.4 220Al–4.0Mg–Mn Smls.tube …
ASMEBPVC.IX-2023
168

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–210 5154 A95154 30(205) 22 22.4 220Al–3.5Mg Smls.tube …
BorSB–210 5456 A95456 41(285) 25 22.4 220Al–5.1Mg–Mn Smls.tube …
BorSB–210 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Smls.tube …
BorSB–210 6063 A96063 17(115) 23 23.1 210Al–Mg–Si Smls.tube …
BorSB–211 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Bar,rod&wire …
BorSB–221 1060 A91060 8.5(59) 21 21 20099.60Al Bar,rod&shapes …
BorSB–221 1100 A91100 11(76) 21 21 20099.0Al–Cu Bar,rod&shapes …
BorSB–221 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Bar,rod&shapes …
BorSB–221 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Bar,rod&shapes …
BorSB–221 5154 A95154 30(205) 22 22.4 220Al–3.5Mg Bar,rod&shapes …
BorSB–221 5454 A95454 31(215) 22 22.3 220Al–2.7Mg–Mn Bar,rod&shapes …
BorSB–221 5456 A95456 41(285) 25 22.4 220Al–5.1Mg–Mn Bar,rod&shapes …
BorSB–221 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Bar,rod&shapes …
BorSB–221 6063 A96063 17(115) 23 23.1 210Al–Mg–Si Bar,rod&shapes …
BorSB–234 Alclad3003 … 13(90) 21 ... 200Al–Mn–Cu Smls.tube …
BorSB–234 1060 A91060 8.5(59) 21 21 20099.60Al Smls.tube …
BorSB–234 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Smls.tube …
BorSB–234 5052 A95052 25(170) 22 22.3 220Al–2.5Mg Smls.tube …
BorSB–234 5454 A95454 31(215) 22 22.3 220Al–2.7Mg–Mn Smls.tube …
BorSB–234 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Smls.tube …
BorSB–241 Alclad3003 … 13(90) 21 ... 200Al–Mn–Cu Smls.pipe&tube …
BorSB–241 1060 A91060 8.5(59) 21 21 20099.60Al Smls.pipe&tube …
BorSB–241 1100 A91100 11(76) 21 21 20099.0Al–Cu Smls.pipe&tube …
BorSB–241 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Smls.pipe&tube …
BorSB–241 5052 A95052 25(170) 22 22.3 220Al–2.5Mg Smls.pipe&tube …
BorSB–241 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Smls.pipe&tube …
BorSB–241 5086 A95086 35(240) 25 22.4 220Al–4.0Mg–Mn Smls.pipe&tube …
BorSB–241 5454 A95454 31(215) 22 22.3 220Al–2.7Mg–Mn Smls.pipe&tube …
BorSB–241 5456 A95456 41(285) 25 22.4 220Al–5.1Mg–Mn Smls.pipe&tube …
BorSB–241 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Smls.pipe&tube …
ASMEBPVC.IX-2023
169

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–241 6063 A96063 17(115) 23 23.1 210Al–Mg–Si Smls.pipe&tube …
BorSB–247 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Forgings …
BorSB–247 5083 A95083 38(260) 25 22.4 220Al–4.4Mg–Mn Forgings …
BorSB–247 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Forgings …
BorSB–265 1 R50250 35(240) 51 51.1 500Ti Plate,sheet&strip …
BorSB–265 2 R50400 50(345) 51 51.2 500Ti Plate,sheet&strip …
BorSB–265 2H R50400 58(400) 51 51.2 500Ti Plate,sheet&strip …
BorSB–265 3 R50550 65(450) 52 51.3 500Ti Plate,sheet&strip …
BorSB–265 11 R52250 35(240) 51 52 500Ti–Pd Plate,sheet&strip …
BorSB–265 17 R52252 35(240) 51 51.1 500Ti–Pd Plate,sheet&strip …
BorSB–265 27 R52254 35(240) 51 51.1 500Ti–Ru Plate,sheet&strip …
BorSB–265 7 R52400 50(345) 51 52 500Ti–Pd Plate,sheet&strip …
BorSB–265 7H R52400 58(400) 51 52 500Ti–Pd Plate,sheet&strip …
BorSB–265 16 R52402 50(345) 51 51.2 500Ti–Pd Plate,sheet&strip …
BorSB–265 16H R52402 58(400) 51 51.2 500Ti–Pd Plate,sheet&strip …
BorSB–265 26 R52404 50(345) 51 51.2 500Ti–Ru Plate,sheet&strip …
BorSB–265 26H R52404 58(400) 51 51.2 500Ti–Ru Plate,sheet&strip …
BorSB–265 12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Plate,sheet&strip …
BorSB–265 38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Plate,sheet&strip …
BorSB–265 9 R56320 90(620) 53 53 500Ti–3Al–2.5V Plate,sheet&strip …
BorSB–265 28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Plate,sheet&strip …
BorSB–271 … C95200 65(450) 35 35 36088Cu–9Al–3Fe Castings …
BorSB–271 … C95400 75(515) 35 35 36085Cu–11Al–4Fe Castings …
B280 102 C10200 30(205) 31 31 30099.95Cu–P Smls.tube …
B280 120 C12000 30(205) 31 31 30099.9Cu–P Smls.tube …
B280 122 C12200 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–283 Cu C11000 33(230) 31 31 30099.9Cu Forgings …
BorSB–283 ForgingBrassC37700 46(315) … NA 32060Cu–38Zn–2Pb Forgings >1.5(38)
ASMEBPVC.IX-2023
170

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–283 ForgingBrassC37700 50(345) … NA 32060Cu–38Zn–2Pb Forgings ≤1.5(38)
BorSB–283 NavalBrassC46400 64(440) 32 32.2 30060Cu–39Zn–Sn Forgings …
BorSB–283 HighSiBronzeC65500 52(360) 33 31 33097Cu–3Si Forgings …
BorSB–283 MnBronze C67500 72(495) 32 32.2 30059Cu–39Zn–Fe–Sn Forgings …
BorSB–283 … C70620 40(275) 34 34 30090Cu–10Ni Forgings >6(150)
BorSB–283 … C70620 45(310) 34 34 30090Cu–10Ni Forgings ≤6(150)
BorSB–283 … C71520 45(310) 34 34 30070Cu–30Ni Forgings >6(150)
BorSB–283 … C71520 50(345) 34 34 30070Cu–30Ni Forgings ≤6(150)
B302 … C12000 30(205) 31 31 30099.9Cu–P Pipe …
B302 … C12200 30(205) 31 31 30099.9Cu–P Pipe …
BorSB–308 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Shapes …
BorSB–315 … C65500 50(345) 33 33 33097Cu–3Si Smls.pipe&tube …
BorSB–333 … N10001 100(690) 44 44 41062Ni–28Mo–5Fe Plate,sheet&strip ≥0.187(5)≤2.5(65)
BorSB–333 … N10001 115(795) 44 44 41062Ni–28Mo–5Fe Sheet&strip <0.187(5)
BorSB–333 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Plate,sheet&strip …
BorSB–333 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Plate,sheet&strip …
BorSB–333 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Plate,sheet&strip …
BorSB–335 … N10001 100(690) 44 44 41062Ni–28Mo–5Fe Rod >1.5(38)≤3.5(90)
BorSB–335 … N10001 115(795) 44 44 41062Ni–28Mo–5Fe Rod ≥0.3125(8)≤1.5(38)
BorSB–335 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Rod …
BorSB–335 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Rod …
BorSB–335 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Rod …
BorSB–338 1 R50250 35(240) 51 51.1 500Ti Smls.&weldedtube …
BorSB–338 2 R50400 50(345) 51 51.2 500Ti Smls.&weldedtube …
BorSB–338 2H R50400 58(400) 51 51.2 500Ti Smls.&weldedtube …
BorSB–338 3 R50550 65(450) 52 51.3 500Ti Smls.&weldedtube …
BorSB–338 7 R52400 50(345) 51 52 500Ti–Pd Smls.&weldedtube …
BorSB–338 7H R52400 58(400) 51 52 500Ti–Pd Smls.&weldedtube …
ASMEBPVC.IX-2023
171

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–338 16 R52402 50(345) 51 51.2 500Ti–Pd Smls.&weldedtube …
BorSB–338 16H R52402 58(400) 51 51.2 500Ti–Pd Smls.&weldedtube …
BorSB–338 26 R52404 50(345) 51 51.2 500Ti–Ru Smls.&weldedtube …
BorSB–338 26H R52404 58(400) 51 51.2 500Ti–Ru Smls.&weldedtube …
BorSB–338 12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Smls.&weldedtube …
BorSB–338 38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Smls.&weldedtube …
BorSB–338 9 R56320 90(620) 53 53 500Ti–3Al–2.5V Smls.&weldedtube …
BorSB–338 28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Smls.&weldedtube …
B345 1060 A91060 8.5(59) 21 21 20099.60Al Smls.pipe&tube …
B345 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Smls.pipe&tube …
B345 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Smls.pipe&tube …
B345 5086 A95086 35(240) 25 22.4 220Al–4.0Mg–Mn Smls.pipe&tube …
B345 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Smls.pipe&tube …
B345 6063 A96063 17(115) 23 23.1 210Al–Mg–Si Smls.pipe&tube …
BorSB–348 1 R50250 35(240) 51 51.1 500Ti Bars&billets …
BorSB–348 2 R50400 50(345) 51 51.2 500Ti Bars&billets …
BorSB–348 2H R50400 58(400) 51 51.2 500Ti Bars&billets …
BorSB–348 3 R50550 65(450) 52 51.3 500Ti Bars&billets …
BorSB–348 7 R52400 50(345) 51 52 500Ti–Pd Bars&billets …
BorSB–348 7H R52400 58(400) 51 52 500Ti–Pd Bars&billets …
BorSB–348 16 R52402 50(345) 51 51.2 500Ti–Pd Bars&billets …
BorSB–348 16H R52402 58(400) 51 51.2 500Ti–Pd Bars&billets …
BorSB–348 26 R52404 50(345) 51 51.2 500Ti–Ru Bars&billets …
BorSB–348 26H R52404 58(400) 51 51.2 500Ti–Ru Bars&billets …
BorSB–348 12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Bars&billets …
BorSB–348 38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Bars&billets …
BorSB–348 9 R56320 90(620) 53 53 500Ti–3Al–2.5V Bars&billets …
BorSB–348 28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Bars&billets …
BorSB–359 … C12200 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–359 … C44300 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06As Smls.tube …
ASMEBPVC.IX-2023
172

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–359 … C44400 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06Sb Smls.tube …
BorSB–359 … C44500 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06P Smls.tube …
BorSB–359 … C70600 40(275) 34 34 30090Cu–10Ni Smls.tube …
BorSB–359 … C70620 40(275) 34 34 30090Cu–10Ni Smls.tube …
BorSB–359 … C71000 45(310) 34 34 30080Cu–20Ni Smls.tube …
BorSB–359 … C71500 52(360) 34 34 30070Cu–30Ni Smls.tube …
BorSB–359 … C71520 52(360) 34 34 30070Cu–30Ni Smls.tube …
B361 WPAlclad3003A83003 13(90) 21 … 200Al–Mn–Cu Fittings …
B361 WP1060 A91060 8.5(59) 21 21 20099.60Al Fittings …
B361 WP1100 A91100 11(76) 21 21 20099.0Al–Cu Fittings …
B361 WP3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Fittings …
B361 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Fittings …
B361 5154 A95154 30(205) 22 22.3 220Al–3.5Mg Fittings …
B361 WP6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Fittings …
B361 WP6063 A96063 17(115) 23 23.1 210Al–Mg–Si Fittings …
BorSB–363 WPT1 R50250 35(240) 51 51.1 500Ti Smls.&weldedfittings…
BorSB–363 WPT2 R50400 50(345) 51 51.2 500Ti Smls.&weldedfittings…
BorSB–363 WPT3 R50550 65(450) 52 51.3 500Ti Smls.&weldedfittings…
BorSB–363 WPT7 R52400 50(345) 51 52 500Ti–Pd Smls.&weldedfittings…
BorSB–363 WPT7H R52400 58(400) 51 52 500Ti–Pd Smls.&weldedfittings…
BorSB–363 WPT16 R52402 50(345) 51 51.2 500Ti–Pd Smls.&weldedfittings…
BorSB–363 WPT16H R52402 58(400) 51 51.2 500Ti–Pd Smls.&weldedfittings…
BorSB–363 WPT26 R52404 50(345) 51 51.2 500Ti–Ru Smls.&weldedfittings…
BorSB–363 WPT26H R52404 58(400) 51 51.2 500Ti–Ru Smls.&weldedfittings…
BorSB–363 WPT12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Smls.&weldedfittings…
BorSB–363 WPT38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Smls.&weldedfittings…
BorSB–363 WPT9 R56320 90(620) 53 53 500Ti–3Al–2.5V Smls.&weldedfittings…
BorSB–363 WPT28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Smls.&weldedfittings…
BorSB–366 … N02200 55(380) 41 41 40099.0Ni Fittings …
BorSB–366 … N02201 50(345) 41 41 40099.0Ni–LowC Fittings …
ASMEBPVC.IX-2023
173

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–366 … N04400 70(485) 42 42 40067Ni–30Cu Fittings …
BorSB–366 … N06002 100(690) 43 43 42047Ni–22Cr–9Mo–18Fe Fittings …
BorSB–366 … N06007 90(620) 45 43 42047Ni–22Cr–19Fe–6Mo Fittings …
BorSB–366 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Fittings …
BorSB–366 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Fittings …
BorSB–366 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Fittings …
BorSB–366 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Fittings …
BorSB–366 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Fittings …
BorSB–366 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Fittings …
BorSB–366 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Fittings …
BorSB–366 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Fittings …
BorSB–366 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Fittings …
BorSB–366 … N06455 100(690) 43 43 42061Ni–15Mo–16Cr Fittings …
BorSB–366 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Fittings …
BorSB–366 … N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Fittings …
BorSB–366 … N06985 90(620) 45 45 42047Ni–22Cr–20Fe–7Mo Fittings …
BorSB–366 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Fittings …
BorSB–366 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Fittings …
BorSB–366 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Fittings …
BorSB–366 … N08330 70(485) 46 45 42035Ni–19Cr–1.25Si Fittings …
BorSB–366 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Fittings >0.187(5)
BorSB–366 … N08367 100(690) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Fittings ≤0.187(5)
BorSB–366 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Fittings …
BorSB–366 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Fittings …
BorSB–366 … N08925 87(600) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Fittings …
BorSB–366 … N08926 94(650) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Fittings …
BorSB–366 … N10001 100(690) 44 44 41062Ni–28Mo–5Fe Fittings …
BorSB–366 … N10003 100(690) 44 44 41070Ni–16Mo–7Cr–5Fe Fittings …
BorSB–366 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Fittings …
BorSB–366 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Fittings …
BorSB–366 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Fittings …
BorSB–366 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Fittings …
ASMEBPVC.IX-2023
174

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–366 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Fittings …
BorSB–366 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Fittings …
BorSB–366 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Fittings …
BorSB–366 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Fittings …
BorSB–366 … R30556 100(690) 45 45 42021Ni–30Fe–22Cr–18Co–3Mo–
3W
Fittings …
BorSB–367 C–2 R52550 50(345) 51 51.4 500Ti Castings …
BorSB–367 C–3 R52550 65(450) 52 51.4 500Ti Castings …
BorSB–369 … C96200 45(310) 34 34 50087.5Cu–10Ni–Fe–Mn Castings …
BorSB–381 F–1 R50250 35(240) 51 51.1 500Ti Forgings …
BorSB–381 F–2 R50400 50(345) 51 51.2 500Ti Forgings …
BorSB–381 F–2H R50400 58(400) 51 51.2 500Ti Forgings …
BorSB–381 F–3 R50550 65(450) 52 51.3 500Ti Forgings …
BorSB–381 F–7 R52400 50(345) 51 52 500Ti–Pd Forgings …
BorSB–381 F–7H R52400 58(400) 51 52 500Ti–Pd Forgings …
BorSB–381 F–16 R52402 50(345) 51 51.2 500Ti–Pd Forgings …
BorSB–381 F–16H R52402 58(400) 51 51.2 500Ti–Pd Forgings …
BorSB–381 F–26 R52404 50(345) 51 51.2 500Ti–Ru Forgings …
BorSB–381 F–26H R52404 58(400) 51 51.2 500Ti–Ru Forgings …
BorSB–381 F–12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Forgings …
BorSB–381 F–38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Forgings …
BorSB–381 F–9 R56320 90(620) 53 53 500Ti–3Al–2.5V Forgings …
BorSB–381 F–28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Forgings …
BorSB–395 … C10200 30(205) 31 31 30099.95Cu–P Smls.tube …
BorSB–395 … C12000 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–395 … C12200 30(205) 31 31 30099.9Cu–P Smls.tube …
BorSB–395 … C14200 30(205) 31 31 30099.4Cu–As–P Smls.tube …
BorSB–395 … C19200 38(260) 31 31 30099.7Cu–Fe–P Smls.tube …
ASMEBPVC.IX-2023
175

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–395 … C23000 40(275) 32 32.1 30085Cu–15Zn Smls.tube …
BorSB–395 … C44300 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06As Smls.tube …
BorSB–395 … C44400 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06Sb Smls.tube …
BorSB–395 … C44500 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06P Smls.tube …
BorSB–395 … C60800 50(345) 35 35 36095Cu–5Al Smls.tube …
BorSB–395 … C68700 50(345) 32 32.2 35078Cu–20Zn–2Al Smls.tube …
BorSB–395 … C70600 40(275) 34 34 30090Cu–10Ni Smls.tube …
BorSB-395 … C70620 40(275) 34 34 30090Cu–10Ni Smls.tube …
BorSB–395 … C71000 45(310) 34 34 30080Cu–20Ni Smls.tube …
BorSB–395 … C71500 52(360) 34 34 30070Cu–30Ni Smls.tube …
BorSB–395 … C71520 52(360) 34 34 30070Cu–30Ni Smls.tube …
BorSB–407 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Smls.pipe&tube …
BorSB–407 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Smls.pipe&tube …
BorSB–407 … N08801 65(450) 45 45 43032Ni–45Fe–20.5Cr–Ti Smls.pipe&tube …
BorSB–407 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Smls.pipe&tube …
BorSB–407 … N08811 65(450) 45 45 43033Ni–42Fe–21Cr–Al–Ti Smls.pipe&tube …
BorSB–408 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Rod&bar …
BorSB–408 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Rod&bar …
BorSB–408 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Rod&bar …
BorSB–408 … N08811 65(450) 45 45 43033Ni–42Fe–21Cr–Al–Ti Rod&bar …
BorSB–409 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Plate,sheet&strip …
BorSB–409 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Plate,sheet&strip …
BorSB–409 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Plate,sheet&strip …
BorSB–409 … N08811 65(450) 45 45 43033Ni–42Fe–21Cr–Al–Ti Plate,sheet&strip …
BorSB–423 … N08825 75(515) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Smls.pipe&tube …
BorSB–424 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Plate,sheet&strip …
BorSB–425 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Rod&bar …
ASMEBPVC.IX-2023
176

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–434 … N10003 100(690) 44 44 43070Ni–16Mo–7Cr–5Fe Plate,sheet&strip …
BorSB–434 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Plate,sheet&strip …
BorSB–435 … N06002 95(655) 43 43 42047Ni–22Cr–9Mo–18Fe Plate,sheet&strip …
BorSB–435 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Plate,sheet&strip …
BorSB–435 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Plate,sheet&strip …
BorSB–435 … R30556 100(690) 45 45 42021Ni–30Fe–22Cr–18Co–3Mo–
3W
Plate,sheet&strip …
BorSB–443 1 N06625 110(760) 43 43 43060Ni–22Cr–9Mo–3.5Cb Plate&hot-rolledsheet…
BorSB–443 1 N06625 120(825) 43 43 43060Ni–22Cr–9Mo–3.5Cb Cold-rolledsheet&strip…
BorSB–443 2 N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Plate,sheet&strip …
BorSB–444 1 N06625 120(825) 43 43 43060Ni–22Cr–9Mo–3.5Cb Smls.pipe&tube …
BorSB–444 2 N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Smls.pipe&tube …
BorSB–446 1 N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Rod&bar ≥4(100)≤10(250)dia.
BorSB–446 1 N06625 120(825) 43 43 43060Ni–22Cr–9Mo–3.5Cb Rod&bar <4(100)dia.
BorSB–446 2 N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Rod&bar …
BorSB–462 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Forgings …
BorSB–462 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Forgings …
BorSB–462 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Forgings …
BorSB–462 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Forgings …
BorSB–462 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Forgings …
BorSB–462 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Forgings …
BorSB–462 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5N Forgings …
BorSB–462 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Forgings …
BorSB–462 … N08031 94(650) 45 45 42031Ni–33Fe–22Cr–6.5Mo–Cu–N Forgings …
BorSB–462 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Forgings …
BorSB–462 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Forgings …
BorSB–462 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Forgings …
BorSB–462 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Forgings …
ASMEBPVC.IX-2023
177

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–462 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Forgings …
BorSB–462 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Forgings …
BorSB–462 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Forgings …
BorSB–463 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Plate,sheet&strip …
BorSB–463 … N08024 80(550) 45 45 42037Ni–33Fe–23Cr–4Mo Plate,sheet&strip …
BorSB–463 … N08026 80(550) 45 45 42035Ni–30Fe–24Cr–6Mo–3Cu Plate,sheet&strip …
BorSB–464 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Weldedpipe …
BorSB–464 … N08024 80(550) 45 45 42037Ni–33Fe–23Cr–4Mo Weldedpipe …
BorSB–464 … N08026 80(550) 45 45 42035Ni–30Fe–24Cr–6Mo–3Cu Weldedpipe …
BorSB–466 … C70600 38(260) 34 34 30090Cu–10Ni Smls.pipe&tube …
BorSB–466 … C70620 38(260) 34 34 30090Cu–10Ni Smls.pipe&tube …
BorSB–466 … C71000 45(310) 34 34 30080Cu–20Ni Smls.pipe&tube …
BorSB–466 … C71500 52(360) 34 34 30070Cu–30Ni Smls.pipe&tube …
BorSB–466 … C71520 52(360) 34 34 30070Cu–30Ni Smls.pipe&tube …
BorSB–467 … C70600 38(260) 34 34 30090Cu–10Ni Weldedpipe >4.5(115)O.D.
BorSB–467 … C70600 40(275) 34 34 30090Cu–10Ni Weldedpipe ≤4.5(115)O.D.
BorSB–467 … C70620 38(260) 34 34 30090Cu–10Ni Weldedpipe >4.5(115)O.D.
BorSB–467 … C70620 40(275) 34 34 30090Cu–10Ni Weldedpipe ≤4.5(115)O.D.
BorSB–467 … C71500 45(310) 34 34 30070Cu–30Ni Weldedpipe >4.5(115)O.D.
BorSB–467 … C71500 50(345) 34 34 30070Cu–30Ni Weldedpipe ≤4.5(115)O.D.
BorSB–467 … C71520 45(310) 34 34 30070Cu–30Ni Weldedpipe >4.5(115)O.D.
BorSB–467 … C71520 50(345) 34 34 30070Cu–30Ni Weldedpipe ≤4.5(115)O.D.
BorSB–468 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Weldedtube …
BorSB–468 … N08024 80(550) 45 45 42037Ni–33Fe–23Cr–4Mo Weldedtube …
BorSB–468 … N08026 80(550) 45 45 42035Ni–30Fe–24Cr–6Mo–3Cu Weldedtube …
BorSB–473 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Bar …
ASMEBPVC.IX-2023
178

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
B491 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Extrudedtube …
BorSB–493 R60702 R60702 55(380) 61 61 60099.2Zr Forgings …
BorSB–493 R60705 R60705 70(485) 62 62 60095.5Zr+2.5Cb Forgings …
BorSB–505 … C95200 68(470) 35 35 36088Cu–9Al–3Fe Castings …
BorSB–511 … N08330 70(485) 46 45 42035Ni–19Cr–1.25Si Bars&shapes …
BorSB–514 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Weldedpipe …
BorSB–514 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Weldedpipe …
BorSB–514 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Weldedpipe …
BorSB–515 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Weldedtube …
BorSB–515 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Weldedtube …
BorSB–515 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Weldedtube …
BorSB–515 … N08811 65(450) 45 45 43033Ni–42Fe–21Cr–Al–Ti Weldedtube …
BorSB–516 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Weldedtube …
BorSB–516 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Weldedtube …
BorSB–516 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Weldedtube …
BorSB–517 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Weldedpipe …
BorSB–517 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Weldedpipe …
BorSB–517 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Weldedpipe …
BorSB–523 R60702 R60702 55(380) 61 61 60099.2Zr Smls.&weldedtube …
BorSB–523 R60705 R60705 80(550) 62 62 60095.5Zr+2.5Cb Smls.&weldedtube …
BorSB–535 … N08330 70(485) 46 45 42035Ni–19Cr–1.25Si Smls.pipe&tube …
BorSB–536 … N08330 70(485) 46 45 42035Ni–19Cr–1.25Si Plate,sheet&strip …
BorSB–543 … C12200 30(205) 31 31 30099.9Cu–P Weldedtube …
BorSB–543 … C19400 45(310) 31 31 30097.5Cu–P Weldedtube …
BorSB–543 … C23000 40(275) 32 32.1 30085Cu–15Zn Weldedtube …
ASMEBPVC.IX-2023
179

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–543 … C44300 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06As Weldedtube …
BorSB–543 … C44400 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06Sb Weldedtube …
BorSB–543 … C44500 45(310) 32 32.2 30071Cu–28Zn–1Sn–0.06P Weldedtube …
BorSB–543 … C68700 50(345) 32 32.2 35078Cu–20Zn–2Al Weldedtube …
BorSB–543 … C70400 38(260) 34 34 30095Cu–5Ni Weldedtube …
BorSB–543 … C70600 40(275) 34 34 30090Cu–10Ni Weldedtube …
BorSB–543 … C70620 40(275) 34 34 30090Cu–10Ni Weldedtube …
BorSB–543 … C71500 52(360) 34 34 30070Cu–30Ni Weldedtube …
BorSB–543 … C71520 52(360) 34 34 30070Cu–30Ni Weldedtube …
B547 Alclad3003A83003 13(90) 21 ... 200Al–Mn–Cu Weldedtube …
B547 3003 A93003 14(97) 21 22.1 200Al–Mn–Cu Weldedtube …
B547 5083 A95083 40(275) 25 22.4 220Al–4.4Mg–Mn Weldedtube …
B547 5454 A95454 31(215) 22 22.3 220Al–2.7Mg–Mn Weldedtube …
B547 6061 A96061 24(165) 23 23.1 220Al–Mg–Si–Cu Weldedtube …
BorSB–550 R60702 R60702 55(380) 61 61 60099.2Zr Bar&wire …
BorSB–550 R60705 R60705 80(550) 62 62 60095.5Zr+2.5Cb Bar&wire …
BorSB–551 R60702 R60702 55(380) 61 61 60099.2Zr Plate,sheet&strip …
BorSB–551 R60705 R60705 80(550) 62 62 60095.5Zr+2.5Cb Plate,sheet&strip …
BorSB–564 … N04400 70(485) 42 42 40067Ni–30Cu Forgings …
BorSB–564 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Forgings …
BorSB–564 … N06025 84(580) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Forgings >4(100)≤12(300)
BorSB–564 … N06025 98(675) 43 43 42063Ni–25Cr–10Fe–2Al–Ti–Y–Zr Forgings ≤4(100)
BorSB–564 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Forgings …
BorSB–564 … N06045 90(620) 46 45 42046Ni–27Cr–23Fe–2.75Si Forgings …
BorSB–564 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Forgings …
BorSB–564 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Forgings …
BorSB–564 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Forgings …
BorSB–564 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Forgings …
BorSB–564 … N06600 80(550) 43 43 42072Ni–15Cr–8Fe Forgings …
ASMEBPVC.IX-2023
180

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–564 … N06617 95(655) 43 46 42052Ni–22Cr–13Co–9Mo Forgings …
BorSB–564 … N06625 110(760) 43 43 43060Ni–22Cr–9Mo–3.5Cb Forgings >4(100)≤10(250)
BorSB–564 … N06625 120(825) 43 43 43060Ni–22Cr–9Mo–3.5Cb Forgings ≤4(100)
BorSB–564 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5W Forgings …
BorSB–564 … N06690 85(585) 43 43 42058Ni–29Cr–9Fe Forgings …
BorSB–564 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Forgings …
BorSB–564 … N08120 90(620) 45 45 43037Ni–33Fe–25Cr Forgings …
BorSB–564 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Forgings …
BorSB–564 … N08800 75(515) 45 45 43033Ni–42Fe–21Cr Forgings …
BorSB–564 … N08810 65(450) 45 45 43033Ni–42Fe–21Cr Forgings …
BorSB–564 … N08811 65(450) 45 44 43033Ni–42Fe–21Cr–Al–Ti Forgings …
BorSB–564 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Forgings …
BorSB–564 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Forgings …
BorSB–564 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Forgings …
BorSB–564 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Forgings …
BorSB–564 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Forgings …
BorSB–564 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Forgings …
BorSB–564 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Forgings …
BorSB–564 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Forgings …
BorSB–564 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Forgings …
BorSB–572 … N06002 95(655) 43 43 42047Ni–22Cr–9Mo–18Fe Rod …
BorSB–572 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Rod …
BorSB–572 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Rod …
BorSB–572 … R30556 100(690) 45 45 42021Ni–30Fe–22Cr–18Co–3Mo–
3W
Rod …
BorSB–573 … N10003 100(690) 44 44 43070Ni–16Mo–7Cr–5Fe Rod …
BorSB–573 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Rod …
BorSB–574 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Rod …
BorSB–574 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Rod …
ASMEBPVC.IX-2023
181

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–574 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Rod …
BorSB–574 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Rod …
BorSB–574 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Rod …
BorSB–574 … N06455 100(690) 43 43 42061Ni–16Mo–16Cr Rod …
BorSB–574 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5W Rod …
BorSB–574 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Rod …
BorSB–574 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Rod …
BorSB–575 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Plate,sheet&strip …
BorSB–575 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Plate,sheet&strip …
BorSB–575 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Plate,sheet&strip …
BorSB–575 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Plate,sheet&strip …
BorSB–575 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Plate,sheet&strip …
BorSB–575 … N06455 100(690) 43 43 42061Ni–16Mo–16Cr Plate,sheet&strip …
BorSB–575 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5W Plate,sheet&strip …
BorSB–575 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Plate,sheet&strip …
BorSB–575 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Plate,sheet&strip …
BorSB–581 … N06007 85(585) 45 43 42047Ni–22Cr–19Fe–6Mo Rod >0.75(19)≤3.5(90)
dia.
BorSB–581 … N06007 90(620) 45 43 42047Ni–22Cr–19Fe–6Mo Rod ≥0.3125(8)≤0.75(19)
dia.
BorSB–581 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Rod …
BorSB–581 … N06975 85(585) 45 45 43049Ni–25Cr–18Fe–6Mo Rod …
BorSB–581 … N06985 85(585) 45 45 42047Ni–22Cr–20Fe–7Mo Rod >0.75(19)≤3.5(90)
dia.
BorSB–581 … N06985 90(620) 45 45 42047Ni–22Cr–20Fe–7Mo Rod ≥0.3125(8)≤0.75(19)
dia.
BorSB–581 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Rod …
BorSB–582 … N06007 85(585) 45 43 42047Ni–22Cr–19Fe–6Mo Plate >0.75(19)≤2.5(65)
BorSB–582 … N06007 90(620) 45 43 42047Ni–22Cr–19Fe–6Mo Plate,sheet&strip ≤0.75(19)
BorSB–582 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Plate,sheet&strip …
BorSB–582 … N06975 85(585) 45 45 43049Ni–25Cr–18Fe–6Mo Plate,sheet&strip …
ASMEBPVC.IX-2023
182

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–582 … N06985 85(585) 45 45 42047Ni–22Cr–20Fe–7Mo Plate >0.75(19)≤2.5(65)
BorSB–582 … N06985 90(620) 45 45 42047Ni–22Cr–20Fe–7Mo Plate,sheet&strip ≤0.75(19)
BorSB–599 … N08700 80(550) 45 8.2 42025Ni–47Fe–21Cr–5Mo Plate,sheet&strip …
BorSB–619 … N06002 100(690) 43 43 42047Ni–22Cr–9Mo–18Fe Weldedpipe …
BorSB–619 … N06007 90(620) 45 43 42047Ni–22Cr–19Fe–6Mo Weldedpipe …
BorSB–619 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Weldedpipe …
BorSB–619 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Weldedpipe …
BorSB–619 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Weldedpipe …
BorSB–619 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Weldedpipe …
BorSB–619 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Weldedpipe …
BorSB–619 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Weldedpipe …
BorSB–619 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Weldedpipe …
BorSB–619 … N06455 100(690) 43 43 42061Ni–16Mo–16Cr Weldedpipe …
BorSB–619 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5W Weldedpipe …
BorSB–619 … N06975 85(585) 45 45 43049Ni–25Cr–18Fe–6Mo Weldedpipe …
BorSB–619 … N06985 90(620) 45 45 42047Ni–22Cr–20Fe–7Mo Weldedpipe …
BorSB–619 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Weldedpipe …
BorSB–619 … N08320 75(515) 45 8.2 43026Ni–22Cr–5Mo–Ti Weldedpipe …
BorSB–619 … N10001 100(690) 44 44 41062Ni–28Mo–5Fe Weldedpipe …
BorSB–619 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Weldedpipe …
BorSB–619 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Weldedpipe …
BorSB–619 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Weldedpipe …
BorSB–619 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Weldedpipe …
BorSB–619 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Weldedpipe …
BorSB–619 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Weldedpipe …
BorSB–619 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Weldedpipe …
BorSB–619 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Weldedpipe …
BorSB–619 … R30556 100(690) 45 45 42021Ni–30Fe–22Cr–18Co–3Mo–
3W
Weldedpipe …
ASMEBPVC.IX-2023
183

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–620 … N08320 75(515) 45 8.2 43026Ni–22Cr–5Mo–Ti Plate,sheet&strip …
BorSB–621 … N08320 75(515) 45 8.2 42026Ni–22Cr–5Mo–Ti Rod …
BorSB–622 … N06002 100(690) 43 43 42047Ni–22Cr–9Mo–18Fe Smls.pipe&tube …
BorSB–622 … N06007 90(620) 45 43 42047Ni–22Cr–19Fe–6Mo Smls.pipe&tube …
BorSB–622 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Smls.pipe&tube …
BorSB–622 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Smls.pipe&tube …
BorSB–622 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Smls.pipe&tube …
BorSB–622 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Smls.pipe&tube …
BorSB–622 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Smls.pipe&tube …
BorSB–622 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Smls.pipe&tube …
BorSB–622 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Smls.pipe&tube …
BorSB–622 … N06455 100(690) 43 43 42061Ni–16Mo–16Cr Smls.pipe&tube …
BorSB–622 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5W Smls.pipe&tube …
BorSB–622 … N06975 85(585) 45 45 43049Ni–25Cr–18Fe–6Mo Smls.pipe&tube …
BorSB–622 … N06985 90(620) 45 45 42047Ni–22Cr–20Fe–7Mo Smls.pipe&tube …
BorSB–622 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Smls.pipe&tube …
BorSB–622 … N08320 75(515) 45 8.2 43026Ni–22Cr–5Mo–Ti Smls.pipe&tube …
BorSB–622 … N10001 100(690) 44 44 41062Ni–28Mo–5Fe Smls.pipe&tube …
BorSB–622 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Smls.pipe&tube …
BorSB–622 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Smls.pipe&tube …
BorSB–622 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Smls.pipe&tube …
BorSB–622 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Smls.pipe&tube …
BorSB–622 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Smls.pipe&tube …
BorSB–622 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Smls.pipe&tube …
BorSB–622 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Smls.pipe&tube …
BorSB–622 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Smls.pipe&tube …
BorSB–622 … R30556 100(690) 45 45 42021Ni–30Fe–22Cr–18Co–3Mo–
3W
Smls.pipe&tube …
BorSB–625 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Plate,sheet&strip …
ASMEBPVC.IX-2023
184

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–625 … N08904 71(490) 45 8.2 42044Fe–25Ni–21Cr–Mo Plate,sheet&strip …
BorSB–625 … N08925 87(600) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Plate,sheet&strip …
BorSB–625 … N08926 94(650) 45 8.2 42025Ni–20Cr–6Mo–Co–N Plate,sheet&strip …
BorSB–625 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Plate,sheet&strip …
BorSB–626 … N06002 100(690) 43 43 42047Ni–22Cr–9Mo–18Fe Weldedtube …
BorSB–626 … N06007 90(620) 45 43 42047Ni–22Cr–19Fe–6Mo Weldedtube …
BorSB–626 … N06022 100(690) 43 43 42055Ni–21Cr–13.5Mo Weldedtube …
BorSB–626 … N06030 85(585) 45 45 42040Ni–29Cr–15Fe–5Mo Weldedtube …
BorSB–626 … N06035 85(585) 43 43 42058Ni–33Cr–8Mo Weldedtube …
BorSB–626 … N06059 100(690) 43 43 42059Ni–23Cr–16Mo Weldedtube …
BorSB–626 … N06200 100(690) 43 43 42059Ni–23Cr–16Mo–1.6Cu Weldedtube …
BorSB–626 … N06210 100(690) 43 43 42060Ni–19Cr–19Mo–1.8Ta Weldedtube …
BorSB–626 … N06230 110(760) 43 43 42053Ni–22Cr–14W–Co–Fe–Mo Weldedtube …
BorSB–626 … N06455 100(690) 43 43 42061Ni–16Mo–16Cr Weldedtube …
BorSB–626 … N06617 95(655) 43 46 42052Ni–22Cr–13Co–9Mo Weldedtube …
BorSB–626 … N06686 100(690) 43 43 43058Ni–21Cr–16Mo–3.5W Weldedtube …
BorSB–626 … N06975 85(585) 45 45 43049Ni–25Cr–18Fe–6Mo Weldedtube …
BorSB–626 … N06985 90(620) 45 45 42047Ni–22Cr–20Fe–7Mo Weldedtube …
BorSB–626 … N08031 94(650) 45 45 42031Ni–31Fe–27Cr–7Mo Weldedtube …
BorSB–626 … N08320 75(515) 45 8.2 43026Ni–22Cr–5Mo–Ti Weldedtube …
BorSB–626 … N10001 100(690) 44 44 41062Ni–28Mo–5Fe Weldedtube …
BorSB–626 … N10242 105(725) 44 44 41062Ni–25Mo–8Cr–2Fe Weldedtube …
BorSB–626 … N10276 100(690) 43 43 42054Ni–16Mo–15Cr Weldedtube …
BorSB–626 … N10362 105(725) 43 43 42062Ni–22Mo–15Cr Weldedtube …
BorSB–626 … N10629 110(760) 44 44 41066Ni–28Mo–3Fe–1.3Cr–0.25Al Weldedtube …
BorSB–626 … N10665 110(760) 44 44 41065Ni–28Mo–2Fe Weldedtube …
BorSB–626 … N10675 110(760) 44 44 41065Ni–29.5Mo–2Fe–2Cr Weldedtube …
BorSB–626 … N12160 90(620) 46 46 42037Ni–30Co–28Cr–2.7Si Weldedtube …
BorSB–626 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Weldedtube …
ASMEBPVC.IX-2023
185

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–626 … R30556 100(690) 45 45 42021Ni–30Fe–22Cr–18Co–3Mo–
3W
Weldedtube …
BorSB–649 … N08904 71(490) 45 8.2 42044Fe–25Ni–21Cr–Mo Bar&wire …
BorSB–649 … N08925 87(600) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Bar&wire …
BorSB–649 … N08926 94(650) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Bar&wire …
BorSB–649 … R20033 109(750) 45 45 42033Cr–31Ni–32Fe–1.5Mo–0.6Cu–
N
Bar&wire …
BorSB–653 R60702 R60702 55(380) 61 61 60099.2Zr Smls.&weldedfittings…
BorSB–658 R60702 R60702 55(380) 61 61 60099.2Zr Smls.&weldedpipe …
BorSB–658 R60705 R60705 80(550) 62 62 60095.5Zr+2.5Cb Smls.&weldedpipe …
BorSB–668 … N08028 73(505) 45 45 42031Ni–31Fe–29Cr–Mo Smls.tube …
BorSB–672 … N08700 80(550) 45 8.2 42025Ni–47Fe–21Cr–5Mo Bar&wire …
BorSB–673 … N08904 71(490) 45 8.2 42044Fe–25Ni–21Cr–Mo Weldedpipe …
BorSB–673 … N08925 87(600) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Weldedpipe …
BorSB–673 … N08926 94(650) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Weldedpipe …
BorSB–674 … N08354 93(640) 45 45 42035Ni–23Cr–7.5Mo–N Weldedtube …
BorSB–674 … N08904 71(490) 45 8.2 42044Fe–25Ni–21Cr–Mo Weldedtube …
BorSB–674 … N08925 87(600) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Weldedtube …
BorSB–674 … N08926 94(650) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Weldedtube …
BorSB–675 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Weldedpipe >0.187(5)
BorSB–675 … N08367 100(690) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Weldedpipe ≤0.187(5)
BorSB–676 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Weldedtube >0.187(5)
BorSB–676 … N08367 100(690) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Weldedtube ≤0.187(5)
BorSB–677 … N08904 71(490) 45 8.2 42044Fe–25Ni–21Cr–Mo Smls.pipe&tube …
ASMEBPVC.IX-2023
186

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–677 … N08925 87(600) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Smls.pipe&tube …
BorSB–677 … N08926 94(650) 45 8.2 42025Ni–20Cr–6Mo–Cu–N Smls.pipe&tube …
BorSB–688 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Plate >0.187(5)
BorSB–688 … N08367 100(690) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Sheet&strip ≤0.187(5)
BorSB–690 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Smls.pipe&tube >0.187(5)
BorSB–690 … N08367 100(690) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Smls.pipe&tube ≤0.187(5)
BorSB–691 … N08367 95(655) 45 8.2 42046Fe–24Ni–21Cr–6Mo–N Rod,bar&wire …
BorSB–704 1 N06625 120(825) 43 43 43060Ni–22Cr–9Mo–3.5Cb Weldedtube …
BorSB–704 2 N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Weldedtube …
BorSB–704 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Weldedtube …
BorSB–705 1 N06625 120(825) 43 43 43060Ni–22Cr–9Mo–3.5Cb Weldedpipe …
BorSB–705 2 N06625 100(690) 43 43 43060Ni–22Cr–9Mo–3.5Cb Weldedpipe …
BorSB–705 … N08825 85(585) 45 45 43042Ni–21.5Cr–3Mo–2.3Cu Weldedpipe …
BorSB–709 … N08028 73(505) 45 45 42031Ni–31Fe–29Cr–Mo Plate,sheet&strip …
BorSB–710 … N08330 70(485) 46 45 42035Ni–19Cr–1.25Si Weldedpipe …
B725 … N02200 55(380) 41 41 40099.0Ni Weldedpipe …
B725 … N02201 50(345) 41 41 40099.0Ni–LowC Weldedpipe …
B725 … N04400 70(485) 42 42 40067Ni–30Cu Weldedpipe …
BorSB–729 … N08020 80(550) 45 45 42035Ni–35Fe–20Cr–Cb Smls.pipe&tube …
B730 … N02200 55(380) 41 41 40099.0Ni Weldedtube …
B730 … N02201 50(345) 41 41 40099.0Ni–LowC Weldedtube …
B730 … N04400 70(485) 42 42 40067Ni–30Cu Weldedtube …
BorSB-752 702C R60702 55(380) 61 61 60099.2Zr Castings …
BorSB-752 705C R60705 70(485) 62 62 60095.5Zr+2.5Cb Castings …
ASMEBPVC.IX-2023
187

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–815 … R31233 120(825) 49 ... 800Co–26Cr–9Ni–5Mo–3Fe–2W Rod …
BorSB–818 … R31233 120(825) 49 ... 800Co–26Cr–9Ni–5Mo–3Fe–2W Plate,sheet&strip …
B819 C12200 C12200 30(205) … NA 30099.9Cu–P Wroughtpipe …
BorSB–861 1 R50250 35(240) 51 51.1 500Ti Smls.pipe …
BorSB–861 2 R50400 50(345) 51 51.2 500Ti Smls.pipe …
BorSB–861 2H R50400 58(400) 51 51.2 500Ti Smls.pipe …
BorSB–861 3 R50550 65(450) 52 51.3 500Ti Smls.pipe …
BorSB–861 7 R52400 50(345) 51 52 500Ti–Pd Smls.pipe …
BorSB–861 7H R52400 58(400) 51 52 500Ti–Pd Smls.pipe …
BorSB–861 16 R52402 50(345) 51 51.2 500Ti–Pd Smls.pipe …
BorSB–861 16H R52402 58(400) 51 51.2 500Ti–Pd Smls.pipe …
BorSB–861 26 R52404 50(345) 51 51.2 500Ti–Ru Smls.pipe …
BorSB–861 26H R52404 58(400) 51 51.2 500Ti–Ru Smls.pipe …
BorSB–861 12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Smls.pipe …
BorSB–861 38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Smls.pipe …
BorSB–861 9 R56320 90(620) 53 53 500Ti–3Al–2.5V Smls.pipe …
BorSB–861 28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Smls.pipe …
BorSB–862 1 R50250 35(240) 51 51.1 500Ti Weldedpipe …
BorSB–862 2 R50400 50(345) 51 51.2 500Ti Weldedpipe …
BorSB–862 2H R50400 58(400) 51 51.2 500Ti Weldedpipe …
BorSB–862 3 R50550 65(450) 52 51.3 500Ti Weldedpipe …
BorSB–862 7 R52400 50(345) 51 52 500Ti–Pd Weldedpipe …
BorSB–862 7H R52400 58(400) 51 52 500Ti–Pd Weldedpipe …
BorSB–862 16 R52402 50(345) 51 51.2 500Ti–Pd Weldedpipe …
BorSB–862 16H R52402 58(400) 51 51.2 500Ti–Pd Weldedpipe …
BorSB–862 26 R52404 50(345) 51 51.2 500Ti–Ru Weldedpipe …
BorSB–862 26H R52404 58(400) 51 51.2 500Ti–Ru Weldedpipe …
BorSB–862 12 R53400 70(485) 52 52 500Ti–0.3Mo–0.8Ni Weldedpipe …
ASMEBPVC.IX-2023
188

TableQW/QB-422
BaseMetalP-Numbers(Cont’d)
Spec.No.
Alloy,Type,
orGrade UNSNo.
Minimum
Specified
Tensile,ksi(MPa)
Welding
Brazing
P-No.NominalComposition
Typical
Product
Form
NominalThickness
Limits,
in.(mm)P‐No.
ISO
15608
Group
Nonferrous(Cont’d)
BorSB–862 38 R54250 130(895) 54 53 500Ti–4Al–2.5V–1.5Fe Weldedpipe …
BorSB–862 9 R56320 90(620) 53 53 500Ti–3Al–2.5V Weldedpipe …
BorSB–862 28 R56323 90(620) 53 53 500Ti–3Al–2.5V–0.1Ru Weldedpipe …
BorSB–928 5083 A95083 39(270) 25 22.4 220Al–4.4Mg–Mn Plate >1.5(38)≤3(75)
BorSB–928 5086 A95086 35(240) 25 22.4 220Al–4.0Mg–Mn Plate&sheet >0.05(1.3)≤2(50)
BorSB–928 5456 A95456 41(285) 25 22.4 220Al–5.1Mg–Mn Plate >1.5(38)≤3(75)
BorSB–956 … C70600 40(275) 34 34 30090Cu–10Ni Finnedweldedtube …
BorSB–956 … C70620 40(275) 34 34 30090Cu–10Ni Finnedweldedtube …
BorSB–956 … C71500 52(360) 34 34 30070Cu–30Ni Finnedweldedtube …
BorSB–956 … C71520 52(360) 34 34 30070Cu–30Ni Finnedweldedtube …
ENorSB/EN1706ENAC43000 … 22(150) 26 24.2 210Al–10Si–Mg Castings …
SFA–5.9 ER320 N08021 80(550) 45 45 … 34Ni–20Cr–Cu–Mo Weldmetal …
SFA–5.9 ER320LR N08022 75(515) 45 45 … 34Ni–20Cr–Cu–Mo Weldmetal …
SFA–5.9 ER383 N08028 75(515) 45 45 … 35Ni–27Cr–Mo Weldmetal …
SFA–5.9 ER330 N08331 75(515) 46 45 … 35Ni–16Cr Weldmetal …
SFA–5.9 ER385 N08904 75(515) 45 8.2 … 25Ni–21Cr–4Mo Weldmetal …
SFA–5.9 ER33–31 R20033 105(725) 45 45 … 33Cr–3Ni–Fe–Mo Weldmetal …
GENERALNOTE:P-numberassignmentslistedathttps://pnumbers.orgbutnotincludedinthistablemayalsobeused.
ASMEBPVC.IX-2023
189

QW-423ALTERNATEBASEMATERIALSFOR
WELDERQUALIFICATION
QW-423.1Basemetalusedforwelderqualification
maybesubstitutedforthebasemetalspecifiedinthe
WPSinaccordancewiththefollowingtable.Anybase
metalshowninthesamerowmaybesubstitutedin
theperformancequalificationtestcouponforthebase
metal(s)specifiedintheWPSfollowedduringwelder
qualification.Whenabasemetalshownintheleft
columnofthetableisusedforwelderqualification,
thewelderisqualifiedtoweldallcombinationsof
basemetalsshownintherightcolumn,includingunas-
signedmetalsofsimilarchemicalcompositiontothese
metals.
BaseMetal(s)Usedfor
PerformanceQualification BaseMetalsQualified
P-No.1throughP-No.15F,
P-No.34,orP-No.41
throughP-No.49
P-No.1throughP-No.15F,
P-No.34,andP-No.41through
P-No.49
P-No.21throughP-No.26 P-No.21throughP-No.26
P-No.51throughP-No.53or
P-No.61orP-No.62
P-No.51throughP-No.53and
P-No.61andP-No.62
Anyunassignedmetaltothe
sameunassignedmetal
Theunassignedmetaltoitself
Anyunassignedmetaltoany
P-Numbermetal
Theunassignedmetaltoanymetal
assignedtothesameP-Numberas
thequalifiedmetal
Anyunassignedmetaltoany
otherunassignedmetal
Thefirstunassignedmetaltothe
secondunassignedmetal
QW-423.2Abasemetalusedforwelderqualification
conformingtonationalorinternationalstandardsor
specificationsmaybeconsideredashavingthesame
P-Numberasanassignedmetalprovideditmeetsthe
mechanicalandchemicalrequirementsoftheassigned
metal.Thebasemetalspecificationandcorresponding
P-Numbershallberecordedonthequalificationrecord.
QW-424BASEMETALSUSEDFORPROCEDURE
QUALIFICATION
QW-424.1BasemetalsareassignedP-Numbersin
TableQW/QB-422;metalsthatdonotappearinTable
QW/QB-422areconsideredtobeunassignedmetals
exceptasotherwisedefinedforbasemetalshavingthe
sameUNSnumbers.Unassignedmetalsshallbeidentified
intheWPSandonthePQRbyspecification,type,and
grade,orbychemicalanalysisandmechanicalproperties.
Theminimumtensilestrengthshallbedefinedbythe
organizationthatspecifiedtheunassignedmetalifthe
tensilestrengthofthatmetalisnotdefinedbythematerial
specification.
BaseMetal(s)Usedfor
ProcedureQualification
Coupon BaseMetalsQualified
OnemetalfromaP-Numberto
anymetalfromthesame
P-Number
Anymetalsassignedthat
P-Number
OnemetalfromaP-Numberto
anymetalfromanyother
P-Number
Anymetalassignedthefirst
P-Numbertoanymetal
assignedthesecond
P-Number
OnemetalfromP-No.15Etoany
metalfromP-No.15E
AnyP-No.15Eor5Bmetalto
anymetalassignedP-No.15E
or5B
OnemetalfromP-No.15Etoany
metalfromanyother
P-Number
AnyP-No.15Eor5Bmetalto
anymetalassignedthe
secondP-Number
OnemetalfromP-No.3toany
metalfromP-No.3
AnyP-No.3metaltoanymetal
assignedP-No.3or1
OnemetalfromP-No.4toany
metalfromP-No.4
AnyP-No.4metaltoanymetal
assignedP-No.4,3,or1
OnemetalfromP-No.5Atoany
metalfromP-No.5A
AnyP-No.5Ametaltoanymetal
assignedP-No.5A,4,3,or1
OnemetalfromP-No.5Atoa
metalfromP-No.4,orP-No.3,
orP-No.1
AnyP-No.5Ametaltoanymetal
assignedtoP-No.4,3,or1
OnemetalfromP-No.4toa
metalfromP-No.3orP-No.1
AnyP-No.4metaltoanymetal
assignedtoP-No.3or1
Anyunassignedmetaltothe
sameunassignedmetal
Theunassignedmetaltoitself
Anyunassignedmetaltoany
P-Numbermetal
Theunassignedmetaltoany
metalassignedtothesame
P-Numberasthequalified
metal
Anyunassignedmetaltoany
metalfromP-No.15E
Theunassignedmetaltoany
metalassignedP-No.15Eor
5B
Anyunassignedmetaltoany
otherunassignedmetal
Thefirstunassignedmetalto
thesecondunassignedmetal
QW-424.2Forweldsjoiningbasemetalstoweldmetal
builduporcorrosion-resistantweldmetaloverlay,the
builduporoverlayportionofthejointmaybesubstituted
inthetestcouponbyanyP-Numberbasematerialthat
nominallymatchesthechemicalanalysisofthebuildup
oroverlay.
QW-424.3
?23?Basemetals(e.g.,additivelymanufactured
productsorcomponents)producedbyweldingusingfiller
metalmeetingtherequirementsofaweldingconsumable
classificationlistedinTableQW/QB-422areassignedthe
P-numberandGroupnumbershowninthattable.
ASMEBPVC.IX-2023
190

QW-430F-NUMBERS
QW-431GENERAL
ThefollowingF-Numbergroupingofelectrodesand
weldingrodsinTableQW-432isbasedessentiallyon
theirusabilitycharacteristics,whichfundamentallydeter-
minetheabilityofwelderstomakesatisfactoryweldswith
agivenfillermetal.Thisgroupingismadetoreducethe
numberofweldingprocedureandperformancequalifica-
tions,wherethiscanlogicallybedone.Thegroupingdoes
notimplythatbasemetalsorfillermetalswithinagroup
maybeindiscriminatelysubstitutedforametalthatwas
usedinthequalificationtestwithoutconsiderationofthe
compatibilityofthebaseandfillermetalsfromthestand-
pointofmetallurgicalproperties,postweldheattreatment
designandservicerequirements,andmechanicalproper-
ties.
TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification
F-No. ASMESpecification AWSClassification UNSNo.
SteelandSteelAlloys
1 SFA-5.1 EXX20 ...
1 SFA-5.1 EXX22 ...
1 SFA-5.1 EXX24 ...
1 SFA-5.1 EXX27 ...
1 SFA-5.1 EXX28 ...
1 SFA-5.4 EXXX(X)-26 ...
1 SFA-5.5 EXX20-X ...
1 SFA-5.5 EXX27-X ...
2 SFA-5.1 EXX12 ...
2 SFA-5.1 EXX13 ...
2 SFA-5.1 EXX14 ...
2 SFA-5.1 EXX19 ...
2 SFA-5.5 E(X)XX13-X ...
3 SFA-5.1 EXX10 ...
3 SFA-5.1 EXX11 ...
3 SFA-5.5 E(X)XX10-X ...
3 SFA-5.5 E(X)XX11-X ...
4 SFA-5.1 EXX15 ...
4 SFA-5.1 EXX16 ...
4 SFA-5.1 EXX18 ...
4 SFA-5.1 EXX18M ...
4 SFA-5.1 EXX48 ...
4
SFA-5.4otherthanausteniticand
duplex
EXXX(X)-15 ...
4
SFA-5.4otherthanausteniticand
duplex
EXXX(X)-16 ...
4
SFA-5.4otherthanausteniticand
duplex
EXXX(X)-17 ...
4 SFA-5.5 E(X)XX15-X ...
4 SFA-5.5 E(X)XX16-X ...
4 SFA-5.5 E(X)XX18-X ...
4 SFA-5.5 E(X)XX18M ...
4 SFA-5.5 E(X)XX18M1 ...
ASMEBPVC.IX-2023
191

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
SteelandSteelAlloys(Cont’d)
4 SFA-5.5 E(X)XX45 ...
5 SFA-5.4austeniticandduplex EXXX(X)-15 ...
5 SFA-5.4austeniticandduplex EXXX(X)-16 ...
5 SFA-5.4austeniticandduplex EXXX(X)-17 ...
6 SFA-5.2 Allclassifications ...
6 SFA-5.9 Allclassifications ...
6 SFA-5.17 Allclassifications ...
6 SFA-5.18 Allclassifications ...
6 SFA-5.20 Allclassifications ...
6 SFA-5.22 Allclassifications ...
6 SFA-5.23 Allclassifications ...
6 SFA-5.25 Allclassifications ...
6 SFA-5.26 Allclassifications ...
6 SFA-5.28 Allclassifications ...
6 SFA-5.29 Allclassifications ...
6 SFA-5.30 INMs-X ...
6 SFA-5.30 IN5XX ...
6 SFA-5.30 IN3XX(X) ...
6 SFA-5.39 Allclassifications …
AluminumandAluminumAlloys
21 SFA-5.3 E1100 A91100
21 SFA-5.3 E3003 A93003
21 SFA-5.10 ER1070 A91070
21 SFA-5.10 ER1080A A91080
21 SFA-5.10 ER1100 A91100
21 SFA-5.10 ER1188 A91188
21 SFA-5.10 ER1200 A91200
21 SFA-5.10 ER1450 A91450
21 SFA-5.10 ER3103 A93103
21 SFA-5.10 R1070 A91070
21 SFA-5.10 R1080A A91080
21 SFA-5.10 R1100 A91100
21 SFA-5.10 R1188 A91188
21 SFA-5.10 R1200 A91200
21 SFA-5.10 R1450 A91450
21 SFA-5.10 R3103 A93103
22 SFA-5.10 ER5087 A95087
22 SFA-5.10 ER5183 A95183
22 SFA-5.10 ER5183A A95183
22 SFA-5.10 ER5187 A95187
22 SFA-5.10 ER5249 A95249
22 SFA-5.10 ER5356 A95356
22 SFA-5.10 ER5356A A95356
ASMEBPVC.IX-2023
192

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
AluminumandAluminumAlloys(Cont’d)
22 SFA-5.10 ER5554 A95554
22 SFA-5.10 ER5556 A95556
22 SFA-5.10 ER5556A A95556
22 SFA-5.10 ER5556B A95556
22 SFA-5.10 ER5556C A95556
22 SFA-5.10 ER5654 A95654
22 SFA-5.10 ER5654A A95654
22 SFA-5.10 ER5754 A95754
22 SFA-5.10 R5087 A95087
22 SFA-5.10 R5183 A95183
22 SFA-5.10 R5183A A95183
22 SFA-5.10 R5187 A95187
22 SFA-5.10 R5249 A95249
22 SFA-5.10 R5356 A95356
22 SFA-5.10 R5356A A95356
22 SFA-5.10 R5554 A95554
22 SFA-5.10 R5556 A95556
22 SFA-5.10 R5556A A95556
22 SFA-5.10 R5556B A95556
22 SFA-5.10 R5556C A95556
22 SFA-5.10 R5654 A95654
22 SFA-5.10 R5654A A95654
22 SFA-5.10 R5754 A95754
23 SFA-5.3 E4043 A94043
23 SFA-5.10 ER4010 A94010
23 SFA-5.10 ER4018 A94018
23 SFA-5.10 ER4043 A94043
23 SFA-5.10 ER4043A A94043
23 SFA-5.10 ER4046 A94046
23 SFA-5.10 ER4047 A94047
23 SFA-5.10 ER4047A A94047
23 SFA-5.10 ER4643 A94643
23 SFA-5.10 ER4943 A94943
23 SFA-5.10 R4010 A94010
23 SFA-5.10 R4011 A94011
23 SFA-5.10 R4018 A94018
23 SFA-5.10 R-A356.0 A13560
23 SFA-5.10 R357.0 A03570
23 SFA-5.10 R-A357.0 A13570
23 SFA-5.10 R4043 A94043
ASMEBPVC.IX-2023
193

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
AluminumandAluminumAlloys(Cont’d)
23 SFA-5.10 R4043A A94043
23 SFA-5.10 R4046 A94046
23 SFA-5.10 R4047A A94047
23 SFA-5.10 R4047 A94047
23 SFA-5.10 R4643 A94643
23 SFA-5.10 R4943 A94943
25 SFA-5.10 ER2319 A92319
25 SFA-5.10 R2319 A92319
25 SFA-5.10 R206.0 A02060
26 SFA-5.10 ER4009 A94009
26 SFA-5.10 ER4145 A94145
26 SFA-5.10 R4009 A94009
26 SFA-5.10 R4145 A94145
26 SFA-5.10 R-C355.0 A33550
CopperandCopperAlloys
31 SFA-5.6 ECu W60189
31 SFA-5.7 ERCu C18980
32 SFA-5.6 ECuSi W60656
32 SFA-5.7 ERCuSi-A C65600
33 SFA-5.6 ECuSn-A W60518
33 SFA-5.6 ECuSn-C W60521
33 SFA-5.7 ERCuSn-A C51800
33 SFA-5.7 ERCuSn-C C52100
34 SFA-5.6 ECuNi W60715
34 SFA-5.7 ERCuNi C71580
34 SFA-5.30 IN67 C71581
35 SFA-5.8 RBCuZn-A C47000
35 SFA-5.8 RBCuZn-B C68000
35 SFA-5.8 RBCuZn-C C68100
35 SFA-5.8 RBCuZn-D C77300
36 SFA-5.6 ECuAl-A2 W60614
36 SFA-5.6 ECuAl-B W60619
36 SFA-5.7 ERCuAl-A1 C61000
36 SFA-5.7 ERCuAl-A2 C61800
36 SFA-5.7 ERCuAl-A3 C62400
37 SFA-5.6 ECuMnNiAl C60633
37 SFA-5.6 ECuNiAl C60632
37 SFA-5.7 ERCuMnNiAl C63380
37 SFA-5.7 ERCuNiAl C63280
NickelandNickelAlloys
41 SFA-5.11 ENi-1 W82141
41 SFA-5.14 ERNi-1 N02061
ASMEBPVC.IX-2023
194

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
NickelandNickelAlloys(Cont’d)
41 SFA-5.30 IN61 N02061
42 SFA-5.11 ENiCu-7 W84190
42 SFA-5.14 ERNiCu-7 N04060
42 SFA-5.14 ERNiCu-8 N05504
42 SFA-5.30 IN60 N04060
43 SFA-5.11 ENiCr-4 W86172
43 SFA-5.11 ENiCrCoMo-1 W86117
43 SFA-5.11 ENiCrFe-1 W86132
43 SFA-5.11 ENiCrFe-2 W86133
43 SFA-5.11 ENiCrFe-3 W86182
43 SFA-5.11 ENiCrFe-4 W86134
43 SFA-5.11 ENiCrFe-7 W86152
43 SFA-5.11 ENiCrFe-9 W86094
43 SFA-5.11 ENiCrFe-10 W86095
43 SFA-5.11 ENiCrFe-12 W86025
43 SFA-5.11 ENiCrFe-15 W86056
43 SFA-5.11 ENiCrMo-2 W86002
43 SFA-5.11 ENiCrMo-3 W86112
43 SFA-5.11 ENiCrMo-4 W80276
43 SFA-5.11 ENiCrMo-5 W80002
43 SFA-5.11 ENiCrMo-6 W86620
43 SFA-5.11 ENiCrMo-7 W86455
43 SFA-5.11 ENiCrMo-10 W86022
43 SFA-5.11 ENiCrMo-12 W86032
43 SFA-5.11 ENiCrMo-13 W86059
43 SFA-5.11 ENiCrMo-14 W86026
43 SFA-5.11 ENiCrMo-17 W86200
43 SFA-5.11 ENiCrMo-18 W86650
43 SFA-5.11 ENiCrMo-19 W86058
43 SFA-5.11 ENiCrWMo-1 W86231
43 SFA-5.11 ENiMoCr-1 N10362
43 SFA-5.14 ERNiCr-3 N06082
43 SFA-5.14 ERNiCr-4 N06072
43 SFA-5.14 ERNiCr-6 N06076
43 SFA-5.14 ERNiCr-7 N06073
43 SFA-5.14 ERNiCrCo-1 N07740
43 SFA-5.14 ERNiCrCoMo-1 N06617
43 SFA-5.14 ERNiCrCoMo-2 N07208
43 SFA-5.14 ERNiCrFe-5 N06062
43 SFA-5.14 ERNiCrFe-6 N07092
43 SFA-5.14 ERNiCrFe-7 N06052
43 SFA-5.14 ERNiCrFe-7A N06054
ASMEBPVC.IX-2023
195

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
NickelandNickelAlloys(Cont’d)
43 SFA-5.14 ERNiCrFe-8 N07069
43 SFA-5.14 ERNiCrFe-11 N06601
43 SFA-5.14 ERNiCrFe-12 N06025
43 SFA-5.14 ERNiCrFe-13 N06055
43 SFA-5.14 ERNiCrFe-14 N06043
43 SFA-5.14 ERNiCrFe-15 N06056
43 SFA-5.14 ERNiCrFeAl-1 N06693
43 SFA-5.14 ERNiCrMo-2 N06002
43 SFA-5.14 ERNiCrMo-3 N06625
43 SFA-5.14 ERNiCrMo-4 N10276
43 SFA-5.14 ERNiCrMo-7 N06455
43 SFA-5.14 ERNiCrMo-10 N06022
43 SFA-5.14 ERNiCrMo-13 N06059
43 SFA-5.14 ERNiCrMo-14 N06686
43 SFA-5.14 ERNiCrMo-16 N06057
43 SFA-5.14 ERNiCrMo-17 N06200
43 SFA-5.14 ERNiCrMo-18 N06650
43 SFA-5.14 ERNiCrMo-19 N06058
43 SFA-5.14 ERNiCrMo-20 N06660
43 SFA-5.14 ERNiCrMo-21 N06205
43 SFA-5.14 ERNiCrMo-22 N06035
43 SFA-5.14 ERNiCrWMo-1 N06231
43 SFA-5.14 ERNiCrMoWNb-1 N06680
43 SFA-5.30 IN52 N06052
43 SFA-5.30 IN62 N06062
43 SFA-5.30 IN6A N07092
43 SFA-5.30 IN82 N06082
43 SFA-5.34 Allclassifications ...
44 SFA-5.11 ENiMo-1 W80001
44 SFA-5.11 ENiMo-3 W80004
44 SFA-5.11 ENiMo-7 W80665
44 SFA-5.11 ENiMo-8 W80008
44 SFA-5.11 ENiMo-9 W80009
44 SFA-5.11 ENiMo-10 W80675
44 SFA-5.11 ENiMo-11 W80629
44 SFA-5.14 ERNiMo-1 N10001
44 SFA-5.14 ERNiMo-2 N10003
44 SFA-5.14 ERNiMo-3 N10004
44 SFA-5.14 ERNiMo-7 N10665
44 SFA-5.14 ERNiMo-8 N10008
44 SFA-5.14 ERNiMo-9 N10009
44 SFA-5.14 ERNiMo-10 N10675
44 SFA-5.14 ERNiMo-11 N10629
ASMEBPVC.IX-2023
196

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
NickelandNickelAlloys(Cont’d)
44 SFA-5.14 ERNiMo-12 N10242
44 SFA-5.14 ERNiMoCr-1 N10362
45 SFA-5.11 ENiCrMo-1 W86007
45 SFA-5.11 ENiCrMo-9 W86985
45 SFA-5.11 ENiCrMo-11 W86030
45 SFA-5.14 ERNiCrMo-1 N06007
45 SFA-5.14 ERNiCrMo-8 N06975
45 SFA-5.14 ERNiCrMo-9 N06985
45 SFA-5.14 ERNiCrMo-11 N06030
45 SFA-5.14 ERNiFeCr-1 N08065
45 SFA-5.14 ERNiFeCr-3 N09946
46 SFA-5.11 ENiCrFeSi-1 W86045
46 SFA-5.14 ERNiCrFeSi-1 N06045
46 SFA-5.14 ERNiCoCrSi-1 N12160
TitaniumandTitaniumAlloys
51 SFA-5.16 ERTi-1 R50100
51 SFA-5.16 ERTi-11 R52251
51 SFA-5.16 ERTi-13 R53423
51 SFA-5.16 ERTi-17 R52253
51 SFA-5.16 ERTi-27 R52255
51 SFA-5.16 ERTi-2 R50120
51 SFA-5.16 ERTi-7 R52401
51 SFA-5.16 ERTi-14 R53424
51 SFA-5.16 ERTi-16 R52403
51 SFA-5.16 ERTi-26 R52405
51 SFA-5.16 ERTi-30 R53531
51 SFA-5.16 ERTi-33 R53443
51 SFA-5.16 ERTi-3 R50125
51 SFA-5.16 ERTi-15A R53416
51 SFA-5.16 ERTi-31 R53533
51 SFA-5.16 ERTi-34 R53444
52 SFA-5.16 ERTi-4 R50130
53 SFA-5.16 ERTi-9 R56320
53 SFA-5.16 ERTi-9ELI R56321
53 SFA-5.16 ERTi-18 R56326
53 SFA-5.16 ERTi-28 R56324
54 SFA-5.16 ERTi-12 R53400
55 SFA-5.16 ERTi-5 R56400
55 SFA-5.16 ERTi-23 R56408
55 SFA-5.16 ERTi-29 R56414
55 SFA-5.16 ERTi-24 R56415
ASMEBPVC.IX-2023
197

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
TitaniumandTitaniumAlloys(Cont’d)
55 SFA-5.16 ERTi-25 R56413
55 SFA-5.16 ERTi-38 R54251
56 SFA-5.16 ERTi-32 R55112
ZirconiumandZirconiumAlloys
61 SFA-5.24 ERZr2 R60702
61 SFA-5.24 ERZr3 R60704
61 SFA-5.24 ERZr4 R60705
Hard-FacingWeldMetalOverlay
71 SFA-5.13 ECoCr-A W73006
71 SFA-5.13 ECoCr-B W73012
71 SFA-5.13 ECoCr-C W73001
71 SFA-5.13 ECoCr-E W73021
71 SFA-5.13 ECuAl-A2 W60617
71 SFA-5.13 ECuAl-B W60619
71 SFA-5.13 ECuAl-C W60625
71 SFA-5.13 ECuAl-D W61625
71 SFA-5.13 ECuAl-E W62625
71 SFA-5.13 ECuMnNiAl W60633
71 SFA-5.13 ECuNi W60715
71 SFA-5.13 ECuNiAl W60632
71 SFA-5.13 ECuSi W60656
71 SFA-5.13 ECuSn-A W60518
71 SFA-5.13 ECuSn-C W60521
71 SFA-5.13 EFe1 W74001
71 SFA-5.13 EFe2 W74002
71 SFA-5.13 EFe3 W74003
71 SFA-5.13 EFe4 W74004
71 SFA-5.13 EFe5 W75110
71 SFA-5.13 EFe6 W77510
71 SFA-5.13 EFe7 W77610
71 SFA-5.13 EFeCr-A1A W74011
71 SFA-5.13 EFeCr-A2 W74012
71 SFA-5.13 EFeCr-A3 W74013
71 SFA-5.13 EFeCr-A4 W74014
71 SFA-5.13 EFeCr-A5 W74015
71 SFA-5.13 EFeCr-A6 W74016
71 SFA-5.13 EFeCr-A7 W74017
71 SFA-5.13 EFeCr-A8 W74018
71 SFA-5.13 EFeCr-E1 W74211
71 SFA-5.13 EFeCr-E2 W74212
71 SFA-5.13 EFeCr-E3 W74213
71 SFA-5.13 EFeCr-E4 W74214
ASMEBPVC.IX-2023
198

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
Hard-FacingWeldMetalOverlay(Cont’d)
71 SFA-5.13 EFeMn-A W79110
71 SFA-5.13 EFeMn-B W79310
71 SFA-5.13 EFeMn-C W79210
71 SFA-5.13 EFeMn-D W79410
71 SFA-5.13 EFeMn-E W79510
71 SFA-5.13 EFeMn-F W79610
71 SFA-5.13 EFeMnCr W79710
71 SFA-5.13 ENiCr-C W89606
71 SFA-5.13 ENiCrFeCo W83002
71 SFA-5.13 ENiCrMo-5A W80002
71 SFA-5.13 EWCX-12/30 ...
71 SFA-5.13 EWCX-20/30 ...
71 SFA-5.13 EWCX-30/40 ...
71 SFA-5.13 EWCX-40 ...
71 SFA-5.13 EWCX-40/120 ...
72 SFA-5.21 ERCCoCr-A W73036
72 SFA-5.21 ERCCoCr-B W73042
72 SFA-5.21 ERCCoCr-C W73031
72 SFA-5.21 ERCCoCr-E W73041
72 SFA-5.21 ERCCoCr-G W73032
72 SFA-5.21 ERCCuAl-A2 W60618
72 SFA-5.21 ERCCuAl-A3 W60624
72 SFA-5.21 ERCCuAl-C W60626
72 SFA-5.21 ERCCuAl-D W61626
72 SFA-5.21 ERCCuAl-E W62626
72 SFA-5.21 ERCCuSi-A W60657
72 SFA-5.21 ERCCuSn-A W60518
72 SFA-5.21 ERCCuSn-D W60524
72 SFA-5.21 ERCFe-1 W74030
72 SFA-5.21 ERCFe-1A W74031
72 SFA-5.21 ERCFe-2 W74032
72 SFA-5.21 ERCFe-3 W74033
72 SFA-5.21 ERCFe-5 W74035
72 SFA-5.21 ERCFe-6 W77530
72 SFA-5.21 ERCFe-8 W77538
72 SFA-5.21 ERCFeCr-A W74531
72 SFA-5.21 ERCFeCr-A1A W74530
72 SFA-5.21 ERCFeCr-A3A W74533
72 SFA-5.21 ERCFeCr-A4 W74534
72 SFA-5.21 ERCFeCr-A5 W74535
72 SFA-5.21 ERCFeCr-A9 W74539
ASMEBPVC.IX-2023
199

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
Hard-FacingWeldMetalOverlay(Cont’d)
72 SFA-5.21 ERCFeCr-A10 W74540
72 SFA-5.21 ERCFeMn-C W79230
72 SFA-5.21 ERCFeMn-F W79630
72 SFA-5.21 ERCFeMn-G W79231
72 SFA-5.21 ERCFeMn-H W79232
72 SFA-5.21 ERCFeMnCr W79730
72 SFA-5.21 ERCNiCr-A W89634
72 SFA-5.21 ERCNiCr-B W89635
72 SFA-5.21 ERCNiCr-C W89636
72 SFA-5.21 ERCNiCrFeCo W83032
72 SFA-5.21 ERCNiCrMo-5A W80036
72 SFA-5.21 ERCoCr-A R30006
72 SFA-5.21 ERCoCr-B R30012
72 SFA-5.21 ERCoCr-C R30001
72 SFA-5.21 ERCoCr-E R30021
72 SFA-5.21 ERCoCr-F R30002
72 SFA-5.21 ERCoCr-G R30014
72 SFA-5.21 ERCuAl-A2 C61800
72 SFA-5.21 ERCuAl-A3 C62400
72 SFA-5.21 ERCuAl-C C62580
72 SFA-5.21 ERCuAl-D C62581
72 SFA-5.21 ERCuAl-E C62582
72 SFA-5.21 ERCuSi-A C65600
72 SFA-5.21 ERCuSn-A C51800
72 SFA-5.21 ERCuSn-D C52400
72 SFA-5.21 ERFe-1 T74000
72 SFA-5.21 ERFe-1A T74001
72 SFA-5.21 ERFe-2 T74002
72 SFA-5.21 ERFe-3 T74003
72 SFA-5.21 ERFe-5 T74005
72 SFA-5.21 ERFe-6 T74006
72 SFA-5.21 ERFe-8 T74008
72 SFA-5.21 ERFeCr-A ...
72 SFA-5.21 ERFeCr-A1A ...
72 SFA-5.21 ERFeCr-A3A ...
72 SFA-5.21 ERFeCr-A4 ...
72 SFA-5.21 ERFeCr-A5 ...
72 SFA-5.21 ERFeCr-A9 ...
72 SFA-5.21 ERFeCr-A10 ...
72 SFA-5.21 ERFeMn-C ...
72 SFA-5.21 ERFeMn-F ...
72 SFA-5.21 ERFeMn-G ...
ASMEBPVC.IX-2023
200

TableQW-432
F-Numbers
GroupingofElectrodesandWeldingRodsforQualification(Cont’d)
F-No. ASMESpecification AWSClassification UNSNo.
Hard-FacingWeldMetalOverlay(Cont’d)
72 SFA-5.21 ERFeMn-H ...
72 SFA-5.21 ERFeMnCr ...
72 SFA-5.21 ERNiCr-A N99644
72 SFA-5.21 ERNiCr-B N99645
72 SFA-5.21 ERNiCr-C N99646
72 SFA-5.21 ERNiCr-D N99647
72 SFA-5.21 ERNiCr-E N99648
72 SFA-5.21 ERNiCrFeCo F46100
72 SFA-5.21 ERNiCrMo-5A N10006
72 SFA-5.21 ERWCX-20/30 ...
72 SFA-5.21 ERWCX-30/40 ...
72 SFA-5.21 ERWCX-40 ...
72 SFA-5.21 ERWCX-40/120 ...
72 SFA-5.21 RWCX-20/30 ...
72 SFA-5.21 RWCX-30/40 ...
72 SFA-5.21 RWCX-40 ...
72 SFA-5.21 RWCX-40/120 ...
ASMEBPVC.IX-2023
201

QW-433ALTERNATEF-NUMBERSFORWELDERPERFORMANCEQUALIFICATION
Thefollowingtablesidentifythefillermetalorelectrodethatthewelderusedduringqualificationtestingas“Qualified
With,”andtheelectrodesorfillermetalsthatthewelderisqualifiedtouseinproductionweldingas“QualifiedFor.”See
TableQW-432fortheF-Numberassignments.
QualifiedWith→ F-No.1
With
Backing
F-No.1
Without
Backing
F-No.2
With
Backing
F-No.2
Without
Backing
F-No.3
With
Backing
F-No.3
Without
Backing
F-No.4
With
Backing
F-No.4
Without
Backing
F-No.5
With
Backing
F-No.5
Without
Backing
QualifiedFor↓
F-No.1WithBacking X X X X X X X X X X
F-No.1WithoutBacking … X … … … … … … … …
F-No.2WithBacking … … X X X X X X … …
F-No.2WithoutBacking … … … X … … … … … …
F-No.3WithBacking … … … … X X X X … …
F-No.3WithoutBacking … … … … … X … … … …
F-No.4WithBacking … … … … … … X X … …
F-No.4WithoutBacking … … … … … … … X … …
F-No.5WithBacking … … … … … … … … X X
F-No.5WithoutBacking … … … … … … … … … X
QualifiedWith QualifiedFor
AnyF-No.6 AllF-No.6[Note(1)]
AnyF-No.21throughF-No.26 AllF-No.21throughF-No.26
AnyF-No.31,F-No.32,F-No.33,
F-No.35,F-No.36,orF-No.37
OnlythesameF-Numberaswasused
duringthequalificationtest
F-No.34oranyF-No.41through
F-No.46
F-No.34andallF-No.41throughF-No.46
AnyF-No.51throughF-No.55 AllF-No.51throughF-No.55
AnyF-No.61 AllF-No.61
AnyF-No.71throughF-No.72 OnlythesameF-Numberaswasused
duringthequalificationtest
NOTE:(1)DepositedweldmetalmadeusingabarerodnotcoveredbyanSFASpecificationbutwhichconformstoan
analysislistedinTableQW-442shallbeconsideredtobeclassifiedasF-No.6.
ASMEBPVC.IX-2023
202

QW-440WELDMETALCHEMICALCOMPOSITION
QW-441GENERAL
IdentificationofweldmetalchemicalcompositiondesignatedonthePQRandWPSshallbeasgiveninQW-404.5.
TableQW-442
A-Numbers
ClassificationofFerrousWeldMetalAnalysisforProcedureQualification
A-No. TypesofWeldDeposit
Analysis,%[Notes(1),(2)]
C Cr Mo Ni Mn Si
1 MildSteel 0.20 0.20 0.30 0.50 1.60 1.0
2 Carbon-Molybdenum 0.15 0.50 0.40–0.65 0.50 1.60 1.0
3
Chrome(0.4%to2%)-
Molybdenum
0.15 0.40–2.00 0.40–0.65 0.50 1.60 1.0
4
Chrome(2%to4%)-
Molybdenum
0.15 2.00–4.00 0.40–1.50 0.50 1.60 2.0
5
Chrome(4%to10.5%)-
Molybdenum
0.15 4.00–10.5 0.40–1.50 0.80 1.20 2.0
6 Chrome-Martensitic 0.15 11.0–15.0 0.70 0.80 2.00 1.0
7 Chrome-Ferritic 0.15 11.0–30.0 1.00 0.80 1.00 3.0
8 Chromium-Nickel 0.15 14.5–30.0 4.00 7.50–15.0 2.50 1.0
9 Chromium-Nickel 0.30 19.0–30.0 6.00 15.0–37.0 2.50 1.0
10 Nickelto4% 0.15 0.50 0.55 0.80–4.00 1.70 1.0
11 Manganese-Molybdenum 0.17 0.50 0.25–0.75 0.85 1.25–2.25 1.0
12 Nickel–Chrome—Molybdenum 0.15 1.50 0.25–0.80 1.25–2.80 0.75–2.25 1.0
NOTES:
(1)Singlevaluesshownabovearemaximum.
(2)OnlylistedelementsareusedtodetermineA-numbers.
ASMEBPVC.IX-2023
203

QW-450SPECIMENS
QW-451PROCEDUREQUALIFICATIONTHICKNESSLIMITSANDTESTSPECIMENS
TableQW-451.1
Groove-WeldTensionTestsandTransverse-BendTests
ThicknessTofTest
Coupon,Welded,
in.(mm)
RangeofThicknessTofBase
Metal,Qualified,
in.(mm)[Notes(1),(2)]
MaximumThicknesstof
DepositedWeldMetal,
Qualified,in.(mm)
[Notes(1),(2)]
TypeandNumberofTestsRequired(Tensionand
Guided-BendTests)[Note(2)]
Min. Max.
Tension,
QW-150
SideBend,
QW-160
FaceBend,
QW-160
RootBend,
QW-160
Lessthan
1

16
(1.5)T 2T 2t 2 ... 2 2
1

16
to
3

8
(1.5to10),
incl. 1

16
(1.5) 2T 2t 2 [Note(5)] 2 2
Over
3

8
(10),butless
than
3

4
(19)
3

16
(5) 2T 2t 2 [Note(5)] 2 2
3

4
(19)tolessthan
1
1

2
(38)
3

16
(5) 2T 2twhent<
3

4
(19) 2[Note(4)] 4 ... ...
3

4
(19)tolessthan
1
1

2
(38)
3

16
(5) 2T 2Twhent≥
3

4
(19) 2[Note(4)] 4 ... ...
1
1

2
(38)to6(150),
incl. 3

16
(5) 8(200)[Note(3)]2twhent<
3

4
(19) 2[Note(4)] 4 ... ...
1
1

2
(38)to6(150),
incl. 3

16
(5) 8(200)[Note(3)]
8(200)[Note(3)]when
t≥
3

4
(19)
2[Note(4)] 4 ... ...
Over6(150)
[Note(6)]
3

16
(5) 1.33T 2twhent<
3

4
(19) 2[Note(4)] 4 ... ...
Over6(150)
[Note(6)]
3

16
(5) 1.33T 1.33T whent≥
3

4
(19)2[Note(4)] 4 ... ...
NOTES:
(1)ThefollowingvariablefurtherrestrictsthelimitsshowninthistablewhentheyarereferencedinQW-250fortheprocessunderconsidera-
tion:QW-403.9. Also,QW-202.2, QW-202.3, andQW-202.4provideexemptionsthatsupersedethelimitsofthistable.Supplementary
essentialvariablerequirementsmayalsofurtherlimitthicknessrangesinthistable.
(2)Forcombinationofweldingprocedures,seeQW-200.4.
(3)FortheSMAW,SAW,GMAW,PAW,LLBW,andGTAWweldingprocessesonly;otherwiseperNote(1)or2T,or2t,whicheverisapplicable.
(4)SeeQW-151.1, QW-151.2, andQW-151.3fordetailsonmultiplespecimenswhencouponthicknessesareover1in.(25mm).
(5)Fourside-bendtestsmaybesubstitutedfortherequiredface-androot-bendtests,whenthicknessTis
3

8
in.(10mm)andover.
(6)Fortestcouponsover6in.(150mm)thick,thefullthicknessofthetestcouponshallbewelded.
ASMEBPVC.IX-2023
204

TableQW-451.2
Groove-WeldTensionTestsandLongitudinal-BendTests
ThicknessTofTestCoupon
Welded,in.(mm)
RangeofThicknessT
ofBaseMetalQualified,
in.(mm)[Notes(1),(2)]
ThicknesstofDeposited
WeldMetalQualified,
in.(mm)[Notes(1),(2)]
TypeandNumberofTestsRequired
(TensionandGuided-BendTests)
[Note(2)]
Min. Max. Max.
Tension,
QW-150
FaceBend,
QW-160
RootBend,
QW-160
Lessthan
1

16
(1.5) T 2T 2t 2 2 2
1

16
to
3

8
(1.5to10),incl.
1

16
(1.5) 2T 2t 2 2 2
Over
3

8
(10)
3

16
(5) 2T 2t 2 2 2
NOTES:
(1)ThefollowingvariablefurtherrestrictsthelimitsshowninthistablewhentheyarereferencedinQW-250fortheprocessunderconsidera-
tion:QW-403.9. Also,QW-202.2, QW-202.3, andQW-202.4provideexemptionsthatsupersedethelimitsofthistable.Supplementary
essentialvariablerequirementsmayalsofurtherlimitthicknessrangesinthistable.
(2)Forcombinationofweldingprocedures,seeQW-200.4.
TableQW-451.3
Fillet-WeldTests
Typeof
Joint
ThicknessofTestCoupons
asWelded,in. RangeQualified
TypeandNumberof
TestsRequired
[FigureQW-462.4(a)or
FigureQW-462.4(d)] Macro
FilletPerFigureQW-462.4(a) Allfilletsizesonallbasemetalthicknessesandalldiameters 5
FilletPerFigureQW-462.4(d) … 4
GENERALNOTE:AproductionassemblymockupmaybesubstitutedinaccordancewithQW-181.1.1.
TableQW-451.4
FilletWeldsQualifiedbyGroove-WeldTests
ThicknessTofTestCoupon
(PlateorPipe)asWelded RangeQualified TypeandNumberofTestsRequired
Allgroovetests Allfilletsizesonallbasemetal
thicknessesandalldiameters
Filletweldsarequalifiedwhenthegrooveweldisqualifiedinaccordance
witheitherTableQW-451.1orTableQW-451.2(seeQW-202.2)
ASMEBPVC.IX-2023
205

QW-452PERFORMANCEQUALIFICATIONTHICKNESSLIMITSANDTESTSPECIMENS
QW-452.1Groove-WeldTest.Thefollowingtablesidentifytherequiredtypeandnumberoftestsandthethicknessof
weldmetalqualified.
TableQW-452.1(a)
TestSpecimens
ThicknessofWeldMetal,
in.(mm)
TypeandNumberofExaminationsandTestSpecimensRequired
VisualExamination
perQW-302.4
SideBend
FigureQW-462.2
[Note(1)]
FaceBend
FigureQW-462.3(a)
orFigureQW-462.3(b)
[Notes(1),(2)]
RootBend
FigureQW-462.3(a)
orFigureQW-462.3(b)
[Notes(1),(2)]
Lessthan
3

8
(10) X … 1 1
3

8
(10)tolessthan
3

4
(19) X 2[Note(3)] … …
3

4
(19)andover X 2 … …
GENERALNOTE:The“ThicknessofWeldMetal”isthetotalweldmetalthicknessdepositedbyallweldersandallprocessesinthetestcoupon
exclusiveoftheweldreinforcement.
NOTES:
(1)Toqualifyusingpositions5Gor6G,atotaloffourbendspecimensarerequired.Toqualifyusingacombinationof2Gand5Ginasingletest
coupon,atotalofsixbendspecimensarerequired.seeQW-302.3. Thetypeofbendtestshallbebasedonweldmetalthickness.
(2)Couponstestedbyfaceandrootbendsshallbelimitedtowelddepositmadebyonewelderwithoneortwoprocessesortwowelderswithone
processeach.Welddepositbyeachwelderandeachprocessshallbepresentontheconvexsurfaceoftheappropriatebentspecimen.
(3)Onefaceandrootbendmaybesubstitutedforthetwosidebends.Foratestcouponweldedinthe5Gor6Gposition,twofaceandtworoot
bendsmaybesubstitutedforthefoursidebendsinaccordancewithFigureQW-463.2(d). Foratestcouponweldedusingacombinationof2G
and5Gpositions,threefaceandthreerootbendsmaybesubstitutedforthesixsidebendsinaccordancewithFigureQW-463.2(f)orFigure
QW-463.2(g).
TableQW-452.1(b)
ThicknessofWeldMetalQualified
Thickness,t,ofWeldMetalintheCoupon,in.(mm)
[Notes(1),(2)] ThicknessofWeldMetalQualified[Note(3)]
All 2t
1

2
(13)andoverwithaminimumofthreelayers Maximumtobewelded
NOTES:
(1)Whenmorethanonewelder,process,orsetofessentialvariablesisusedduringweldingofatestcoupon,thethickness,t,oftheweldmetalin
thecoupondepositedbyeachwelder,foreachprocess,andwitheachsetofessentialvariablesshallbedeterminedandusedindividuallyin
the“Thickness,t,ofWeldMetalintheCoupon”columntodeterminethe“ThicknessofWeldMetalQualified.”
(2)Twoormorepipetestcouponswithdifferentweldmetalthicknessmaybeusedtodeterminetheweldmetalthicknessqualifiedandthat
thicknessmaybeappliedtoproductionweldstothesmallestdiameterforwhichthewelderisqualifiedinaccordancewithTableQW-452.3.
(3)Thicknessoftestcouponof
3

4
in.(19mm)orovershallbeusedforqualifyingacombinationofthreeormorewelderseachofwhommayuse
thesameoradifferentweldingprocess.
TableQW-452.3
Groove-WeldDiameterLimits
OutsideDiameterofTestCoupon,in.(mm)
OutsideDiameterQualified,in.(mm)
Min. Max.
Lessthan1(25) Sizewelded Unlimited
1(25)to2
7

8
(73) 1(25) Unlimited
Over2
7

8
(73) 2
7

8
(73) Unlimited
GENERALNOTES:
(a)TypeandnumberoftestsrequiredshallbeinaccordancewithQW-452.1.
(b)2
7

8
in.(73mm)O.D.istheequivalentofNPS2
1

2
(DN65).
ASMEBPVC.IX-2023
206

TableQW-452.4
?23?SmallDiameterFillet-WeldTest
OutsideDiameterofTestCoupon,
in.(mm)
MinimumOutsideDiameter,
Qualified,in.(mm) QualifiedThickness
Lessthan1(25) Sizewelded All
1(25)to2
7

8
(73) 1(25) All
Over2
7

8
(73) 2
7

8
(73) All
GENERALNOTES:
(a)ThetypeandnumberoftestsrequiredandthequalifiedfilletsizesshallbeinaccordancewithTableQW-452.5.
(b)2
7

8
in.(73mm)O.D.isconsideredtheequivalentofNPS2
1

2
(DN65).
TableQW-452.5
Fillet-WeldTest
TypeofJoint
ThicknessofTestCoupon
asWelded,in.(mm) QualifiedRange,in.(mm)
TypeandNumberof
TestsRequired
[FigureQW-462.4(b)
orFigure
QW-462.4(c)]
Macro Fracture
Teefillet
[FigureQW-462.4(b)]
3

16
(5)orgreater Allbasematerialthicknesses,filletsizes,anddiameters2
7

8
(73)O.D.andover[Note(2)]
1 1
Lessthan
3

16
(5) Tto2Tbasematerialthickness,Tmaximumfilletsize,andall
diameters2
7

8
(73)O.D.andover[Note(2)]
1 1
GENERALNOTE:ProductionassemblymockupsmaybesubstitutedinaccordancewithQW-181.2.1.
NOTES:
(1)TestcouponpreparedasshowninFigureQW-462.4(b)forplateorFigureQW-462.4(c)forpipe.
(2)2
7

8
in.(73mm)O.D.isconsideredtheequivalentofNPS2
1

2
(DN65).Forsmallerdiameterqualifications,refertoTableQW-452.4orTable
QW-452.6.
TableQW-452.6
FilletQualificationbyGroove-WeldTests
TypeofJoint
ThicknessofTestCoupon
asWelded,in.(mm) QualifiedRange
TypeandNumber
ofTestsRequired
Anygroove Allthicknesses Allbasematerialthicknesses,filletsizes,
anddiameters
Filletweldsarequalifiedwhenawelderor
weldingoperatorqualifiesonagrooveweldtest
ASMEBPVC.IX-2023
207

TableQW-453
ProcedureandPerformanceQualificationThicknessLimitsandTestSpecimensforHard-Facing(Wear-Resistant)and
Corrosion-ResistantOverlays
Thicknessof
TestCoupon(T)
Corrosion-ResistantOverlay Hard-FacingOverlay(Wear-Resistant)
NominalBaseMetal
ThicknessQualified(T) TypeandNumberofTestsRequired
NominalBaseMetal
ThicknessQualified(T)
TypeandNumberof
TestsRequired
ProcedureQualificationTesting
Lessthan1in.
(25mm)T
TqualifiedtounlimitedLiquidpenetrant Tqualifiedupto1in.(25
mm)
Liquidpenetrant
3hardnessreadings
perspecimen
1in.(25mm)and
overT
1in.(25mm)tounlimited2transversesidebendand2longitudinalside
bend,or4transversesidebend
1in.(25mm)tounlimitedMacrotest
PerformanceQualificationTesting
Lessthan1in.
(25mm)T
Tqualifiedtounlimited2transversesidebendperposition TqualifiedtounlimitedLiquidpenetrant
1in.(25mm)and
overT
1in.(25mm)tounlimited 1in.(25mm)tounlimitedMacrotest
ASMEBPVC.IX-2023
208

QW-460GRAPHICS
QW-461POSITIONS
FigureQW-461.1
PositionsofWelds—GrooveWelds
GENERALNOTES:
(a)Thehorizontalreferenceplaneistakentoliealwaysbelowtheweldunderconsideration.
(b)Inclinationofaxisismeasuredfromthehorizontalreferenceplanetowardthevertical.
(c)Angleofrotationoffaceismeasuredfromalineperpendiculartotheaxisoftheweldandlyinginaverticalplanecontainingthisaxis.The
referenceposition(0deg)ofrotationofthefaceinvariablypointsinthedirectionoppositetothatinwhichtheaxisangleincreases.Theangle
ofrotationofthefaceofweldismeasuredinaclockwisedirectionfromthisreferenceposition(0deg)whenlookingatpointP.
ASMEBPVC.IX-2023
209

FigureQW-461.2
PositionsofWelds—FilletWelds
ASMEBPVC.IX-2023
210

FigureQW-461.3
GrooveWeldsinPlate—TestPositions
FigureQW-461.4
GrooveWeldsinPipe—TestPositions
FigureQW-461.5
FilletWeldsinPlate—TestPositions
ASMEBPVC.IX-2023
211

FigureQW-461.6
FilletWeldsinPipe—TestPositions
ASMEBPVC.IX-2023
212

FigureQW-461.7
StudWelds—TestPositions
FigureQW-461.8
StudWelds—WeldingPositions
ASMEBPVC.IX-2023
213

TableQW-461.9
PerformanceQualification—PositionandDiameterLimitations
(WithintheOtherLimitationsofQW-303)
QualificationTest
PositionandTypeWeldQualified[Note(1)]
Groove FilletorTack[Note(2)]
PlateandPipeOver
24in.(610mm)O.D.Pipe≤24in.(610mm)O.D.Weld Position PlateandPipe
Plate—Groove 1G F F[Note(3)] F
2G F,H F,H[Note(3)] F,H
3G F,V F[Note(3)] F,H,V
4G F,O F[Note(3)] F,H,O
3Gand4G F,V,O F[Note(3)] All
2G,3G,and4G All F,H[Note(3)] All
SpecialPositions(SP) SP,F SP,F SP,F
Plate—Fillet 1F ... ... F[Note(3)]
2F ... ... F,H[Note(3)]
3F ... ... F,H,V[Note(3)]
4F ... ... F,H,O[Note(3)]
3Fand4F ... ... All[Note(3)]
SpecialPositions(SP) ... ... SP,F[Note(3)]
Pipe—Groove
[Note(4)]
1G F F F
2G F,H F,H F,H
5G F,V,O F,V,O All
6G All All All
2Gand5G All All All
SpecialPositions(SP) SP,F SP,F SP,F
Pipe—Fillet
[Note(4)]
1F ... ... F
2F ... ... F,H
2FR ... ... F,H
4F ... ... F,H,O
5F ... ... All
SpecialPositions(SP) ... ... SP,F
NOTES:
(1)PositionsofweldingasshowninFiguresQW-461.1andQW-461.2.
F=Flat
H=Horizontal
V=Vertical
O=Overhead
SP=SpecialPositions(seeQW-303.3)
(2)Tackweldsarenotlimitedbypipeortubediameterswhentheiraggregatelengthdoesnotexceed25%oftheweldcircumference.
(3)Pipe2
7

8
in.(73mm)O.D.andover.
(4)SeediameterrestrictionsinTablesQW-452.3, QW-452.4, andQW-452.6.
ASMEBPVC.IX-2023
214

QW-462TESTSPECIMENS
ThepurposeoftheQW-462figuresistogivetheorga-
nizationguidanceindimensioningtestspecimensfortests
requiredforprocedureandperformancequalifications.
Unlessaminimum,maximum,ortoleranceisgivenin
thefigures(orasQW-150, QW-160, orQW-180requires),
thedimensionsaretobeconsideredapproximate.All
weldingprocessesandfillermaterialtobequalified
mustbeincludedinthetestspecimen.
ThefollowingnomenclatureisinreferencetoFigures
QW-462.1(a)throughQW-462.1(e):
T=couponthicknessexcludingreinforcement
W=specimenwidth,
3

4
in.(19mm)
x=couponthicknessincludingreinforcement
y=specimenthickness
Asanalternative,anytensionspecimendimensional
geometrymeetingtherequirementsofanother
weldingqualificationstandardisacceptableaslongas
acrosssectioncanbemeasuredsothatanultimate
tensilestrengthcanbedetermined.Allweldingprocesses,
fillermaterials,andheat-affectedzonestobequalified
shallbeincludedinthetestspecimen.Weldreinforcement
shallberemovedpriortotesting.
Singleormultiplebendtestspecimensandjigsmeeting
thedimensionalrequirementsofISO5173arealsoaccept-
able,providedthebend-radius-to-specimen-thickness
ratiosshowninFigureQW-466.1aremet.
FigureQW-461.10
RotatingToolDesignCharacteristics(FSW)ReferencedinQW-410
ASMEBPVC.IX-2023
215

FigureQW-462.1(a)
?23? Tension—ReducedSection—PlateCold straightening
    of the test coupon
    is permitted prior
    to removal of weld
    reinforcement
Parallel length equals
    widest width of weld
    plus 
1
/
2 in. (13 mm)
    added length
This section prepared
  preferably by machining
These edges may
    be thermally cut
y
x
W
1/
4 in. (6 mm)
1/
4 in. (6 mm)
1
/
4 in.
    (6 mm)
1/
4 in.
    (6 mm)
1
 
i
n
.
 
(
2
5
 
m
m
)
 
 
 
 
R
 
m
i
n
.
Edge of widest
     face of weld
Length sufficient
    to extend into grip
    equal to two−thirds
    grip length
Distortion
Weld reinforcement shall be 
   made approximately flush
   with base metal. Grind
   or machine the minimum
   amount of material necessary
   to obtain approximately
   parallel surfaces over the
   reduced section W.
10 in. (250 mm) or as required
GENERALNOTE:Specimenshavingareducedsectionnominalwidth,W,thatisgreaterthanthenominal
3

4
-in.(19-mm)widthmaybeused.
ASMEBPVC.IX-2023
216

FigureQW-462.1(b)
?23? Tension—ReducedSection—PipeThis section prepared
   preferably by machining
y
W
x
1
/
4 in. (6 mm)
1
/
4 in.
   (6 mm)
1/

in.
    (6 mm)
1/

in.
    (6 mm)
1
 in
. (2
5
 m
m
)
    R
 m
in
.
Edge of widest
     face of weld
On ferrous material
    these edges may
 be thermally cut
10 in. (250 mm) or
    as required
Weld reinforcement shall be 
   made approximately flush
   with base metal. Grind
   or machine the minimum
   amount of material necessary
   to obtain approximately
   parallel surfaces over the
   reduced section W.
GENERALNOTE:Specimenshavingareducedsectionnominalwidth,W,thatisgreaterthanthenominal
3

4
-in.(19-mm)widthmaybeused.
FigureQW-462.1(c)
Tension—ReducedSectionAlternateforPipeT  [Note (1)]
y
x
3
 
in. (75 mm) min.
1
1/
16 
in. (27 mm)
1
/
2 in. (13 mm)
Rad. 1 in. (25 mm) min.
Edge of widest face of weld
Reduced section
    [Note (2)]
NOTES:
(1)TheweldreinforcementshallbegroundormachinedsothattheweldthicknessdoesnotexceedthebasemetalthicknessT.Machine
minimumamounttoobtainapproximatelyparallelsurfaces.
(2)Thereducedsectionshallnotbelessthanthewidthoftheweldplus2y.
ASMEBPVC.IX-2023
217

FigureQW-462.1(d)
Tension—ReducedSection—TurnedSpecimensD
A B
C
B
R
Weld
StandardDimensions,in.(mm)
(a)0.505Specimen (b)0.353Specimen (c)0.252Specimen (d)0.188Specimen
A–Lengthofreduced
section
[Note(1)[ [Note(1)] [Note(1)] [Note(1)]
D–Diameter 0.500±0.010(12.7±0.25)0.350±0.007(8.89±0.18)0.250±0.005(6.35±0.13)0.188±0.003(4.78±0.08)
R–Radiusoffillet
3

8
(10)min.
1

4
(6)min.
3

16
(5)min.
1

8
(3)min.
B–Lengthofendsection1
3

8
(35)approx. 1
1

8
(29)approx.
7

8
(22)approx.
1

2
(13)approx.
C–Diameterofendsection
3

4
(19)
1

2
(13)
3

8
(10)
1

4
(6)
GENERALNOTES:
(a)Usemaximumdiameterspecimen(a),(b),(c),or(d)thatcanbecutfromthesection.
(b)Weldshouldbeincenterofreducedsection.
(c)Whereonlyasinglecouponisrequired,thecenterofthespecimenshouldbemidwaybetweenthesurfaces.
(d)Theendsmaybeofanyshapetofittheholdersofthetestingmachineinsuchawaythattheloadisappliedaxially.
(e)Whenthediameter,D,ofthereducedsectionismeasuredandtheactualvalueisusedtocalculatethetensilestress,specimensofnominal
diametersotherthanthoseshownabovemaybeused.
NOTE:(1)ReducedsectionAshouldnotbelessthanwidthofweldplus2D.
ASMEBPVC.IX-2023
218

FigureQW-462.1(e)
Tension—FullSection—SmallDiameterPipe
NOTE:(1)Theoutsidesurfaceoftheweldshallbemadeapproximatelyflushwiththebasemetaltoobtainauniformcrosssection.Theaverageof
fourequallyspacedwallthicknessmeasurementsshallbeusedtocalculatethetensilestrength.
ASMEBPVC.IX-2023
219

FigureQW-462.2
SideBendx
Ty
w
1
/
8 in. (3 mm) min.
R

=
1
/
8 in.
    (3 mm) max.
6 in. (150 mm) or as required
(1a) For procedure qualification of materials other than P−No. 1 in Table QW/QB−422
        if the surfaces of the side−bend test specimens are gas cut, removal by 
        machining or grinding of not less than 
1
/
8 in. (3 mm) from the surface 
        shall be required.
(1b) Such removal is not required for P−No. 1 materials, but any resulting 
        roughness shall be dressed by machining or grinding.
(2) For performance qualification of all materials in Table QW/QB−422, if the surfaces of
      specimens are gas cut, any resulting roughness shall be dressed by machining or grinding. 
1/

(3)
3
/
8 (10)
1/

(3)
3/

(10)
w, in. (mm)
y, in. (mm)
Notes (1)
and (2)
T, in. (mm)
T
[Note (1)]
P−No. 23,
F−No. 23,
F−No. 26, or
P−No. 35
All other
    metals
GENERALNOTE:Weldreinforcementandbackingstriporbackingring,ifany,mayberemovedflushwiththesurfaceofthespecimen.Thermal
cutting,machining,orgrindingmaybeemployed.Coldstraighteningispermittedpriortoremovalofthereinforcement.
NOTES:
(1)WhenwelddeposittislessthancouponthicknessT,side-bendspecimenthicknessmaybet.
(2)WhencouponthicknessTequalsorexceeds1
1

2
in.(38mm),useoneofthefollowing:
(a)Cutspecimenintomultipletestspecimensofthicknessyofapproximatelyequaldimensions
3

4
in.to1
1

2
in.(19mmto38mm).
y=testedspecimenthicknesswhenmultiplespecimensaretakenfromonecoupon.
(b)Thespecimenmaybebentatfullwidth.SeerequirementsonjigwidthinFigureQW-466.1.
ASMEBPVC.IX-2023
220

FigureQW-462.3(a)
FaceandRootBends—Transversey
y
6 in. (150 mm) or 
    as required
1
1
/
2 in. (38 mm)
R = 
1
/
8
 in. (3 mm)
max.
T
T
T
y
(Pipe)(Plate)
Face−Bend Specimen — Plate and Pipe
y
y
6 in. (150 mm) or 
    as required
1
1/
2
 in. (38 mm)
R = 
1/
8
 in. (3 mm)
max.
T
T
T
y
(Pipe)(Plate)
Root−Bend Specimen — Plate and Pipe
Y,in.(mm)
T,in.(mm)
P-No.23,F-No.23,
F-No.26,orP-No.35
AllOther
Metals
<
1

8
(3) T T
1

8
to
3

8
(3to10)
1

8
(3) T
3

8
(10)
1

8
(3)
3

8
(10)
GENERALNOTES:
(a)Weldreinforcementandbackingstriporbackingring,ifany,may
beremovedflushwiththesurfaceofthespecimen.Ifarecessed
ringisused,thissurfaceofthespecimenmaybemachinedtoa
depthnotexceedingthedepthoftherecesstoremovethering,
exceptthatinsuchcasesthethicknessofthefinishedspecimen
shallbethatspecifiedabove.Donotflame-cutnonferrousmate-
rial.
(b)IfthepipebeingtestedhasadiameterofNPS4(DN100)orless,
thewidthofthebendspecimenmaybe
3

4
in.(19mm)forpipe
diametersNPS2(DN50)toandincludingNPS4(DN100).The
bendspecimenwidthmaybe
3

8
in.(10mm)forpipediameters
lessthanNPS2(DN50)downtoandincludingNPS
3

8
(DN10)and
asanalternative,ifthepipebeingtestedisequaltoorlessthan
NPS1(DN25)pipesize,thewidthofthebendspecimensmaybe
thatobtainedbycuttingthepipeintoquartersections,lessan
allowanceforsawcutsormachinecutting.Thesespecimenscut
intoquartersectionsarenotrequiredtohaveonesurface
machinedflatasshowninthisfigure.Bendspecimenstaken
fromtubingofcomparablesizesmaybehandledinasimilar
manner.
FigureQW-462.3(b)
FaceandRootBends—Longitudinaly
6 in. (150 mm) or 
    as required
1
1/
2
 in. (38 mm)
R = 
1
/
8 in. (3 mm) max.
T
Face
Bend
Root
Bend
y
T
Y,in.(mm)
T,in.(mm)
P-No.23,F-No.23,
orP-No.35
AllOther
Metals
<
1

8
(3) T T
1

8
to
3

8
(3to10)
1

8
(3) T
>
3

8
(10)
1

8
(3)
3

8
(10)
GENERALNOTE:Weldreinforcementsandbackingstriporbacking
ring,ifany,shallberemovedessentiallyflushwiththeundisturbed
surfaceofthebasematerial.Ifarecessedstripisused,thissurfaceof
thespecimenmaybemachinedtoadepthnotexceedingthedepthof
therecesstoremovethestrip,exceptthatinsuchcasesthethickness
ofthefinishedspecimenshallbethatspecifiedabove.
ASMEBPVC.IX-2023
221

FigureQW-462.4(a)
?23? FilletWeldsinPlate—Procedure1
2
  i n
.   ( 3
0
0
  m
m
)   m
i n
.
6 in. (150 mm) min.
Discard 1 in. (25 mm)
Discard 1 in. (25 mm)
Size of fillet = thickness
    of T
2
 not greater than
    
3
/
4 in. (19 mm)
1
/
8
 in. (3 mm) and less
    Over 
1
/
8 in. (3 mm) Equal to or less than T
1
,
 
but 
    not less than 
1
/
8 in. (3 mm)
6 in. (150 mm)
    min.
T
1
T
2
T
2
T
1
T
1
Macro−Test Specimen
GENERALNOTE:Apipeortubemaybesubstitutedforthehorizontalplate.
FigureQW-462.4(b)
FilletWeldsinPlate—PerformanceDirection of bending 
Stop and restart 
    weld near the 
    center 
4 in. (100 mm) 
    min. 
Max. fillet size = T
3 in. (75 mm) 
    min. 

Macro−Test Specimen 
6 in. (150 m
m
)
    m
in.4 in. (100 m
m
)
         approx.
GENERALNOTE:RefertoTableQW-452.5forTthicknessandqualificationranges.
ASMEBPVC.IX-2023
222

FigureQW-462.4(c)
FilletWeldsinPipe—PerformanceBase metal thickness $ T
3 in. (75 mm)
    min.
2 in. (50 mm)
    min.
Direction of bend
Quarter section: Macro specimen
Quarter section:
    Fracture specimen
Start and stop of weld
    near center of bend
Wall thickness $ T
T = wall thickness
Max. fillet size = T
GENERALNOTE:Eitherpipe-to-plateorpipe-to-pipemaybeusedasshown.
ASMEBPVC.IX-2023
223

FigureQW-462.4(d)
FilletWeldsinPipe—ProcedureBase metal thickness $ T
3 in. (75 mm)
    min.
2 in. (50 mm)
    min.
Quarter section:
    Macro specimen
    (four required)
Start and stop of weld
    near center of specimen
Wall thickness $ T
T = wall thickness
Max. fillet size = T
GENERALNOTE:Eitherpipe-to-plateorpipe-to-pipemaybeusedasshown.
FigureQW-462.5(a)
ChemicalAnalysisandHardnessSpecimenCorrosion-ResistantandHard-FacingWeldMetalOverlayNote (1)
Note (2) Note (3)
Original test coupon thickness
Approximate weld interface
Prepared surface
As−welded surface
Fusion face
Chemistry samples
NOTES:
(1)Whenachemicalanalysisorhardnesstestisconductedontheas-weldedsurface,thedistancefromtheapproximateweldinterfacetothefinal
as-weldedsurfaceshallbecometheminimumqualifiedoverlaythickness.Thechemicalanalysismaybeperformeddirectlyontheas-welded
surfaceoronchipsofmaterialtakenfromtheas-weldedsurface.
(2)Whenachemicalanalysisorhardnesstestisconductedaftermaterialhasbeenremovedfromtheas-weldedsurface,thedistancefromthe
approximateweldinterfacetothepreparedsurfaceshallbecometheminimumqualifiedoverlaythickness.Thechemicalanalysismaybe
madedirectlyonthepreparedsurfaceorfromchipsremovedfromthepreparedsurface.
(3)Whenachemicalanalysistestisconductedonmaterialremovedbyahorizontaldrilledsample,thedistancefromtheapproximateweld
interfacetotheuppermostsideofthedrilledcavityshallbecometheminimumqualifiedoverlaythickness.Thechemicalanalysisshallbe
performedonchipsofmaterialremovedfromthedrilledcavity.
ASMEBPVC.IX-2023
224

FigureQW-462.5(b)
?23? ChemicalAnalysisSpecimen,Hard-FacingOverlayHardness,andMacroTestLocation(s)forCorrosion-Resistantand
Hard-FacingWeldMetalOverlay
GENERALNOTE:Overlaymaybeontheinsideoroutsideofpipe.
NOTES:
(1)Locationofrequiredtestspecimenremoval(seeTableQW-453). RefertoFigureQW-462.5(a)forchemicalanalysisandhardnesstestsurface
locationsandminimumqualifiedthickness.
(2)Testingofpipemaybeperformedona5Gora6Gpipecouponusingaverticallyweldedsegmentorsegments,asnecessary,forthechemical
analysis,hardness,andmacro-etchtestsasrequired.
(3)LocationoftestspecimensshallbeinaccordancewiththeangularpositionlimitationsofQW-120.
(4)Whenoverlayweldingisperformedusingmachineorautomaticweldingandtheverticaltraveldirectionofadjacentweldbeadsisreversed
onalternatepasses,onlyonechemicalanalysisorhardnessspecimenisrequiredtorepresenttheverticalportion.Qualificationisthen
restrictedinproductiontorequirealternatepassreversalofrotationdirectionmethod.
ASMEBPVC.IX-2023
225

FigureQW-462.5(c)
PipeBendSpecimen—Corrosion-ResistantWeldMetalOverlay
GENERALNOTE:Overlaymaybeontheinsideoroutsideofpipe.
NOTES:
(1)Locationforrequiredtestspecimenremoval—Procedure(seeTableQW-453).
(2)Locationforrequiredtestspecimenremoval—Performance(seeTableQW-453).
ASMEBPVC.IX-2023
226

FigureQW-462.5(d)
PlateBendSpecimens—Corrosion-ResistantWeldMetalOverlayDiscard
Discard
Discard
Discard
Longitudinal
    side bends
    [Note (1)]
Transverse
    side bends
    [Notes (1), (2)]
A
s
 
r
e
q
u
i
r
e
d
 
6
 
i
n
.
 
(
1
5
0
 
m
m
)
 
m
i
n
.
6
 
i
n
.
 
(
1
5
0
 
m
m
)
 
m
i
n
.
6 in. (150 mm) min.
6 in. (150 mm) min.
Transverse
    side bends
    [Note (1)]
NOTES:
(1)Locationforrequiredtestspecimenremoval—Procedure(seeTableQW-453). Fourside-bendtestspecimensarerequiredforeachposition.
(2)Locationforrequiredtestspecimenremoval—Performance(seeTableQW-453). Twoside-bendtestspecimensarerequiredforeach
position.
ASMEBPVC.IX-2023
227

FigureQW-462.5(e)
PlateMacro,Hardness,andChemicalAnalysisSpecimens—Corrosion-ResistantandHard-FacingWeldMetalOverlay
GENERALNOTES:
(a)Locationofrequiredtestspecimenremoval(seeTableQW-453). Onerequiredforeachposition.RefertoFigureQW-462.5(a)forchemical
analysisandhardnesstestsurfacelocationsandminimumqualifiedthickness.
(b)Removalrequiredforachangefromverticaluptoverticaldownandviceversa.
FigureQW-462.7.1
ResistanceSeamWeldTestCouponResistance
    seam weld
Weld or braze
6 in. (150 mm)
6
 
i
n
.
 
(
1
5
0
 
m
m
)
ASMEBPVC.IX-2023
228

FigureQW-462.7.2
SeamWeldSectionSpecimenRemovalDiscard Discard
Transverse specimens Longitudinal specimens
D−1T−1T−2T−3T−4L−1L−2
10 in. (250 mm) min.
L−3L−4D−2
GENERALNOTE:Markthecouponintotenequallengthspecimens,labeloneendofthecouponD-1theotherendD-2.Cutthe10in.(250mm)
coupon(transversetotheweldlength)intopieces5in.(125mm)longeach.
(1)TransverseWeldCrossSectionInstructions
(a)Cutfivespecimenseachapproximately1in.(25mm)inlengthfromthecouponlabeledD-1anddiscardthepiecemarkedD-1.
(b)MarktheremainingfourspecimensT-1throughT-4,preparethespecimensasdetailedin(2)(b)(-1)belowforexamination,
adjacentfacesatthecutshallnotbeused.
(2)LongitudinalWeldCrossSectionInstructions
(a)Cutfivespecimenseachapproximately1in.(25mm)inlengthfromthecouponlabeledD-2anddiscardthepiecemarkedD-2.
(b)MarktheremainingfourspecimensL-1throughL-4,cutthespecimensatapproximately
1

3
oftheweldwidthfromtheweld
centerlinethroughthelengthofeachspecimeninthelongitudinalwelddirection.Discardthefourspecimenscontainingapproximatelythe
1

3
weldwidth,theremainingfourspecimenscontainingapproximatelythe
2

3
weldwidthshallbepreparedasdetailedin(-1)belowfor
examination.
(-1)Thespecimensshallbesmoothedandetchedwithasuitableetchant(seeQW-470) togiveacleardefinitiontotheweldmetaland
heat-affectedzone.
FigureQW-462.7.3
ResistanceWeldNuggetSectionTestSpecimensLongitudinal weld cross section
 specimen, smoothed and etched
 in preparation for 103 magnification
 inspection
Cut line
1 in. (25 mm)
Transverse weld cross section
 specimen, smoothed and etched
 in preparation for 103 magnification
 inspection
1.50 in.–2.00 in.
(38 mm–
 50 mm)
ASMEBPVC.IX-2023
229

FigureQW-462.8.1
SpotWeldsinSheets
ASMEBPVC.IX-2023
230

FigureQW-462.8.2
SeamWeldPeelTestSpecimenandMethodSlot 
1/
4 3 2 in. (6 3 50 mm) in a
 round bar 1
1
/
4 in. (30 mm) to 1
1
/
2 in.
 (38 mm) diameter
Step 1 — Separate coupon plies in nonwelded end.
Step 2 — Grip in vise or other suitable device, bend specimen.
Step 3 — Peel pieces apart with pincers or other suitable tool.
Prior to Peel Test
Step 1
Step 2
Test Peel Tool
Coupon Side View
Coupon End View
Coupon Top View
Not welded
10 in. (250 mm) min.
Step 3
Peel Test
ASMEBPVC.IX-2023
231

FigureQW-462.9
SpotWeldsinSheet5 in. (125 mm) min.
(a) Single Spot
Shear Specimen
(b) Multiple Spot
Shear Specimen
[Note (2)]
W W
W
W
L [Note (1)]
L
NominalThicknessofThinner
Sheet,in.(mm)
W,in.
(mm)Min.
Over0.008to0.030(0.20to0.8)0.68(17)
Over0.030to0.100(0.8to2.5)1.00(25)
Over0.100to0.130(2.5to3) 1.25(30)
Over0.130(3) 1.50(38)
NOTES:
(1)Lshallbenotlessthan4W.
(2)Sketch(b)shallbemadeof5specimensormore.
ASMEBPVC.IX-2023
232

FigureQW-462.12
NomenclatureforTemperBeadWeldingS [Note (1)]) 
S [Note (1)] 
S [Note (1)]
S [Note (1)]
LEGEND 
See Note (2) 
Weld Beads Against Base Metal
First Layer Tempering Beads 
Second Layer Tempering Beads 
Fill Weld Beads 
Surface Temper Weld Reinforcing Beads 
Partially Completed Partial−Penetration Weld 
Completed Partial−Penetration Weld 
Approx. 0.040 in. (1 mm) 
Also showing location of hardness traverses when hardness testing is used. 
Also showing permissible locations and orientations of hardness traverses. 
Also showing location of 
hardness traverses when 
hardness testing is used. 
Typical Groove Weld 
Typical Fillet Weld 
Overlay Weld 
Approx. 0.040 in. (1 mm) 
Approx. 0.040 in. (1 mm) 
Approx. 
 0.040 in. (1 mm) 
Approx.  
   0.040 in. 
   (1 mm) 
GENERALNOTES:
(a)Weldbeadsshownabovemaybedepositedinanysequencethatwillresultinplacementofthebeadsasshown.
(b)Surfacetemperreinforcingbeadsmaycovertheentireweldsurface,ormayonlybeplacedatthetoeoftheweld;theymayormaynotbemechanicallyremoved.
NOTES:
(1)Thedistance,S,ismeasuredfromthetoeoftheweldtotheedgeofthetemperbeads.Measurementsshallbemadeparalleltothebasemetalsurface.
(2)Beadsnearthefinishedsurfacemaybebothtemperingbeadsandsurfacetemperreinforcingbeads.
ASMEBPVC.IX-2023
233

FigureQW-462.13
MeasurementofTemperBeadOverlapOverlap length
a
b
Direction of 
   bead sequence
GENERALNOTE:Measurementofbeadoverlap–%overlaplength=
(a−b)/a×100%.Inthisfigure,theshadedbeadoverlapsprevious
beadby30%to40%.Thedistanceaismeasuredbeforethenextbead
isdeposited.
FigureQW-463.1(a)
Plates—LessThan
3

4
in.(19mm)ThicknessProcedure
Qualification
FigureQW-463.1(b)
Plates—
3

4
in.(19mm)andOverThicknessand
AlternateFrom
3

8
in.(10mm)butLessThan
3

4
in.(19
mm)ThicknessProcedureQualification
FigureQW-463.1(c)
Plates—LongitudinalProcedureQualification
ASMEBPVC.IX-2023
234

FigureQW-463.1(d)
ProcedureQualification
FigureQW-463.1(e)
ProcedureQualification
ASMEBPVC.IX-2023
235

FigureQW-463.1(f)
ToughnessTestSpecimenLocation
FigureQW-463.2(a)
?23? Plates—LessThan
3

4
in.(19mm)Thickness
PerformanceQualificationDiscard this piece
Root−bend specimen
Face−bend specimen
Discard this piece
FigureQW-463.2(b)
?23?Plates—
3

4
in.(19mm)andOverThicknessand
AlternateFrom
3

8
in.(10mm)butLessThan
3

4
in.(19
mm)ThicknessPerformanceQualificationDiscard this piece
Side−bend specimen
Side−bend specimen
Discard this piece
ASMEBPVC.IX-2023
236

FigureQW-463.2(c)
?23? Plates—LongitudinalPerformanceQualificationDiscard this piece
Discard this piece
Longitudinal
  face−bend
  specimen
Longitudinal
  root−bend
  specimen
FigureQW-463.2(d)
PerformanceQualification
FigureQW-463.2(e)
PerformanceQualification
ASMEBPVC.IX-2023
237

FigureQW-463.2(f)
Pipe—NPS10(DN250)AssemblyPerformanceQualification
ASMEBPVC.IX-2023
238

FigureQW-463.2(g)
NPS6(DN150)orNPS8(DN200)AssemblyPerformanceQualification
ASMEBPVC.IX-2023
239

FigureQW-463.2(h)
PerformanceQualification
ASMEBPVC.IX-2023
240

FigureQW-464.1
ProcedureQualificationTestCouponandTestSpecimensDiscard
Discard
Tension shear specimen
Transverse metal specimen
Longitudinal metal specimen
Transverse metal specimen
Longitudinal metal specimen
Transverse metal specimen
Longitudinal metal specimen
Transverse metal specimen
Longitudinal metal specimen
Tension shear specimen
Tension shear specimen
Tension shear specimen
Tension shear specimen
 1 in. (25 mm) min.
 1 in. (25 mm) min.
3/4 in. (19 mm) min.
Tension shear specimen
W
W
L
T
ThicknessofThinner,
Sheet,T,in.(mm)
SpecimenWidth,
W,in.(mm)
RecommendedLength,
L,in.(mm)
Upto0.029(0.74)
5

8
(16) 3(75)
0.031to0.050(0.79to1.2)
3

4
(19) 3(75)
0.051to0.100(1.3to2.54) 1(25) 4(100)
0.101to0.130(2.57to3.30) 1
1

4
(32) 5(125)
0.131to0.190(3.33to4.83) 1
1

2
(38) 5(125)
0.191(4.85)andover 2(50) 6(150)
ASMEBPVC.IX-2023
241

FigureQW-464.2
PerformanceQualificationTestCouponsandTestSpecimensDiscard
Peel test specimen
Peel test specimen
Discard
 1 in. (25 mm) min. Discard
Discard
1
1/
2
 in. (38 mm) min.
1
/
2 in. (13 mm)
 (b) Metallurgical Examination
Coupon and Transverse Specimens
 (a) Peel Test Coupon and Specimens
 1 in. (25 mm)
    min.
3/
4
 in. (19 mm) min.
W
L
T
Cut into 6 strips     of equal width
6 in. (152 mm) min.
ASMEBPVC.IX-2023
242

FigureQW-466.1
?23?TestJigDimensionsAs required
As required
Tapped hole to suit
    testing machine
Hardened rollers 1
1/

in. (38 mm)
    may be substituted for jig shoulders
Shoulders hardened
    and greased
3
/
4
 in. (19 mm)
3
/
4 in. (19 mm)
3/
4
 in. R
(19 mm)
B   R
D   R
C
A
3
/
4 in. (19 mm)
7
1
/
2 in. (190 mm)
9
 
in. (225 mm)
3
/
4
 in. (19 mm)
1
/
2
 in. (13 mm)
1
1
/
8
 in. (29 mm)
1/
8
 in. (3 mm)
6
3
/
4
 
i
n
.

 
 
 
 
(
1
7
0
 
m
m
)
3
 i
n
.
 
m
i
n
.

 
 
 
 
(
7
5
 
m
m
)
2
 i
n
.
 
m
i
n
.

 
 
 
 
(
5
0
 
m
m
)
3
/
4 in. (19 mm)
1
1/
8
 in. (29 mm)
3
7/
8 in. (97 mm)
2
 
in. (50 mm)
1
/
4 in. (6 mm)
Yoke
Plunger
U.S.CustomaryUnits
Material
Thicknessof
Specimen,t,in.
A,in.
Max.
B,in.
Max. C,in. D,in.
P-No.23toP-No.21throughP-No.25;P-No.21through
P-No.25withF-No.23or26;P-No.35;anyP-No.metal
withF-No.33,36,or37
1

8
2
1

16
1
1

32
2
3

8
max. 1
3

16
max.
Lessthan
1

8
16
1

2
t 8
1

4
t A+2t+
1

8
C/2+
1

16
P-No.11A,P-No.11B;P-No.25toP-No.21orP-No.22
orP-No.25
3

8
2
1

2
1
1

4
3
3

8
max. 1
11

16
max.
Lessthan
3

8
6
2

3
t 3
1

3
t A+2t+
1

8
C/2+
1

16
P-No.51;P-No.49
3

8
3 1
1

2
3
7

8
max. 1
15

16
max.
Lessthan
3

8
8t 4t A+2t+
1

8
C/2+
1

16
P-No.52;P-No.53;P-No.61;P-No.62
3

8
3
3

4
1
7

8
4
5

8
max. 2
5

16
max.
Lessthan
3

8
10t 5t A+2t+
1

8
C/2+
1

16
Allotherswithgreaterthanorequalto20%elongation
3

8
1
1

2
3

4
2
3

8
max. 1
3

16
max.
Lessthan
3

8
4t 2t A+2t+
1

8
C/2+
1

16
Allotherswith3%tolessthan20%elongation [Note(1)] 32
3

8
t 16
3

16
t A+2t+
1

8
C/2+
1

16
ASMEBPVC.IX-2023
243

FigureQW-466.1
TestJigDimensions(Cont’d)
SIUnits
Material
Thicknessof
Specimen,t,mm
A,mm
Max.
B,mm
Max. C,mm D,mm
P-No.23toP-No.21throughP-No.25;P-No.21through
P-No.25withF-No.23or26;P-No.35;anyP-No.metal
withF-No.33,36,or37
3 50 25 57max. 29max.
Lessthan3 16
1

2
t 8
1

4
t A+2t+3.0C/2+1.5
P-No.11A,P-No.11B;P-No.25toP-No.21orP-No.22or
P-No.25
10 67 33 90max. 45max.
Lessthan10 6
2

3
t 3
1

3
t A+2t+3.0C/2+1.5
P-No.51;P-No.49 10 80 40 103max. 52max.
Lessthan10 8t 4t A+2t+3.0C/2+1.5
P-No.52;P-No.53;P-No.61;P-No.62 10 100 50 123max. 62max.
Lessthan10 10t 5t A+2t+3.0C/2+1.5
Allotherswithgreaterthanorequalto20%elongation10 40 20 63max. 32max.
Lessthan10 4t 2t A+2t+3.0C/2+1.5
Allotherswith3%tolessthan20%elongation [Note(1)] 32
3

8
t 16
3

16
t A+2t+3.0C/2+1.5
GENERALNOTES:
(a)ForP-Numbers,seeTableQW/QB-422; forF-Numbers,seeTableQW-432.
(b)Forguided-bendjigconfiguration,seeFiguresQW-466.2, QW-466.3, andQW-466.4.
(c)Theweldandheat-affectedzone,inthecaseofatransverseweldbendspecimen,shallbecompletelywithinthebentportionofthespecimen
aftertesting.
(d)WhenthebendingpropertiesoftheweldmentmakeitunlikelythattherequirementsofGeneralNote(c)canbemet,thewraparoundjig
showninFigureQW-466.3shouldbeconsidered.
NOTE:(1)Thedimensionsofthetestjigshallbesuchastogivethebendtestspecimenacalculatedpercentouterfiberelongationequaltoatleast
thatofthebasematerialwiththelowerminimumelongationasspecifiedinthebasematerialspecification.=
+
t
A t
percent outer fiber elongation
100
Thefollowingequationisprovidedforconvenienceincalculatingthebendspecimenthickness:=
×
Ä
Ç
Å
Å
Å
Å
Å
Å
Å
ÅÅ
i
k
j
j
j
y
{
z
z
z
É
Ö
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
ÑÑ
t
A
thickness of specimen,
percent elongation
100percent elongation
ASMEBPVC.IX-2023
244

FigureQW-466.2
Guided-BendRollerJigNotes (1), (2)
Note (3)
Notes (4), (5)
C
A

min.

min. 

3/
4
 in. (19 mm)
B = 
1
/
2
 A 
GENERALNOTES:
(a)SeeFigureQW-466.1forjigdimensionsandgeneralnotes.
(b)WhenthebendingpropertiesoftheweldmentmakeitunlikelythattherequirementsofGeneralNote(c)ofFigureQW-466.1canbemet,the
wraparoundjigshowninFigureQW-466.3shouldbeconsidered.
NOTES:
(1)Eitherhardenedandgreasedshouldersorhardenedrollersfreetorotateshallbeused.
(2)Theshouldersorrollersshallhaveaminimumbearingsurfaceof2in.(50mm)forplacementofthespecimen.Therollersshallbehighenough
abovethebottomofthejigsothatthespecimenswillcleartherollerswhentheramisinthelowposition.
(3)Theramshallbefittedwithanappropriatebaseandprovisionmadeforattachmenttothetestingmachine,andshallbeofasufficientlyrigid
designtopreventdeflectionandmisalignmentwhilemakingthebendtest.Thebodyoftherammaybelessthanthedimensionsshownin
columnAofFigureQW-466.1.
(4)Ifdesired,eithertherollersortherollersupportsmaybemadeadjustableinthehorizontaldirectionsothatspecimensoftthicknessmaybe
testedonthesamejig.
(5)Therollersupportsshallbefittedwithanappropriatebasedesignedtosafeguardagainstdeflectionandmisalignmentandequippedwith
meansformaintainingtherollerscenteredmidpointandalignedwithrespecttotheram.
FigureQW-466.3
?23?Guided-BendWrapAroundJigA
T
T + 
1
/
16
 in. (1.5 mm) max. 
 
B = 
1/
2
 A 
Roller
GENERALNOTES:
(a)SeeFigureQW-466.1forjigdimensionsandothergeneralnotes.
(b)Dimensionsnotshownaretheoptionofthedesigner.Theessentialconsiderationistohaveadequaterigiditysothatthejigpartswillnot
spring.
(c)Thespecimenshallbefirmlyclampedononeendsothatthereisnoslidingofthespecimenduringthebendingoperation.
ASMEBPVC.IX-2023
245

FigureQW-466.4
Stud-WeldBendJig
Bend adapter
Max. diameter of stud + 
1/
64
 in. (0.40 mm)
Weld
15 deg min.
A
1
1
/
4
 in. (32 mm)
12
 
in. (300 mm)
ForStud
Diameter,
in.(mm)
UseAdapterGap,
A,in.(mm)
1

8
(3)
1

8
(3)
3

16
(5)
1

8
(3)
1

4
(6)
3

16
(5)
3

8
(10)
7

32
(5.5)
1

2
(13)
5

16
(8)
5

8
(16)
11

32
(9)
3

4
(19)
15

32
(12)
7

8
(22)
15

32
(12)
1(25)
19

32
(15)
ASMEBPVC.IX-2023
246

FigureQW-466.5
TorqueTestingArrangementforStudWelds
GENERALNOTES:
(a)Dimensionsareappropriatetothesizeofthestud.
(b)Threadsofthestudshallbecleanandfreeoflubricantotherthan
residualcuttingoil.
FigureQW-466.6
SuggestedTypeTensileTestFigureforStudWelds
FigureQW-469.1
ButtJoint
ASMEBPVC.IX-2023
247

QW-470ETCHING—PROCESSESAND
REAGENTS
QW-471GENERAL
Thesurfacestobeetchedshouldbepreparedbyfiling,
machining,grinding,orpolishingtodelineatethemacro-
featuresofthespecimen'sweldandHAZafteretching.
Withdifferentalloysandtempers,theetchingperiod
willvaryfromafewsecondstoseveralminutes,and
shouldbecontinueduntilthedesiredcontrastisobtained.
Asaprotectionfromthefumesliberatedduringthe
etchingprocess,thisworkshouldbedoneundera
hood.Afteretching,thespecimensshouldbethoroughly
rinsedandthendriedwithablastofwarmair.Coatingthe
surfacewithathinclearlacquerwillpreservetheappear-
ance.(ReferenceASTME340,StandardTestMethodfor
MacroetchingMetalsandAlloys,orotherindustry-
acceptedstandards.)
QW-472FORFERROUSMETALS
Etchingsolutionssuitableforcarbonandlowalloy
steels,togetherwithdirectionsfortheiruse,aresuggested
inQW-472.1throughQW-472.4.
QW-472.1HydrochloricAcid.Hydrochloric(muriatic)
acidandwater,equalparts,byvolume.Thesolution
shouldbekeptatorneartheboilingtemperature
duringtheetchingprocess.Thespecimensaretobe
immersedinthesolutionforasufficientperiodoftime
torevealalllackofsoundnessthatmightexistattheir
cross-sectionalsurfaces.
QW-472.2AmmoniumPersulfate.Onepartofammo-
niumpersulfatetoninepartsofwater,byweight.Thesolu-
tionshouldbeusedatroomtemperature,andshouldbe
appliedbyvigorouslyrubbingthesurfacetobeetched
withapieceofcottonsaturatedwiththesolution.The
etchingprocessshouldbecontinueduntilthereisa
cleardefinitionofthestructureintheweld.
QW-472.3IodineandPotassiumIodide.Onepartof
powderediodine(solidform),twopartsofpowdered
potassiumiodide,andtenpartsofwater,allbyweight.
Thesolutionshouldbeusedatroomtemperature,and
brushedonthesurfacetobeetcheduntilthereisa
cleardefinitionoroutlineoftheweld
QW-472.4NitricAcid.Onepartofnitricacidandthree
partsofwater,byvolume.
Alwayspourtheacidintothewater.Nitricacidcausesbad
stainsandsevereburns.
Thesolutionmaybeusedatroomtemperatureand
appliedtothesurfacetobeetchedwithaglassstirring
rod.Thespecimensmayalsobeplacedinaboilingsolution
oftheacid,buttheworkshouldbedoneinawell-venti-
latedroom.Theetchingprocessshouldbecontinuedfora
sufficientperiodoftimetorevealalllackofsoundnessthat
mightexistatthecross-sectionalsurfacesoftheweld.
QW-473FORNONFERROUSMETALS
Thefollowingetchingreagentsanddirectionsfortheir
usearesuggestedforrevealingthemacrostructure.
QW-473.1AluminumandAluminum-BaseAlloys.
Solution Volume
Hydrochloricacid(concentrated) 15ml
Hydrofluoricacid(48%) 10ml
Water 85ml
Thissolutionistobeusedatroomtemperature,and
etchingisaccomplishedbyeitherswabbingorimmersing
thespecimen.
QW-473.2ForCopperandCopper-BaseAlloys:Cold
ConcentratedNitricAcid.Etchingisaccomplishedby
eitherfloodingorimmersingthespecimenforseveral
secondsunderahood.Afterrinsingwithafloodof
water,theprocessisrepeatedwitha50-50solutionof
concentratednitricacidandwater.
Inthecaseofthesiliconbronzealloys,itmaybenec-
essarytoswabthesurfacetoremoveawhite(SiO
2
)
deposit.
QW-473.3ForNickelandNickel-BaseAlloys.
Material Formula
Nickel NitricAcidorLepito’sEtch
LowCarbonNickel NitricAcidorLepito’sEtch
Nickel–Copper(400) NitricAcidorLepito’sEtch
Nickel–Chromium–Iron
(600and800)
AquaRegiaorLepito’sEtch
FigureQW-469.2
AlternativeButtJoint37
1/
2
 deg max.
T/2 max.
T/3 max. but not greater
    than 
1/

in. (3 mm)
T
ASMEBPVC.IX-2023
248

QW-473.4ForTitanium.
Solution Kroll’sEtch Keller’sEtch
Hydrofluoricacid(48%) 1to3ml
1

2
ml
Nitricacid(concentrated)2to6ml 2
1

2
ml
HydrochloricAcid
(concentrated)
1
1

2
ml
Water Tomake100mlTomake100ml
QW-473.5ForZirconium.
Solution Volume
Hydrofluoricacid 3ml
Nitricacid(concentrated) 22ml
Water 22ml
Applybyswabandrinseincoldwater.
Thesearegeneralpurposeetchantswhichareappliedat
roomtemperaturebyswabbingorimmersionofthe
specimen.
TableQW-473.3-1
MakeupofEquationsforAquaRegiaandLepito’ sEtch
Solution
AquaRegia
[Notes(1),(2)]
Lepito’sEtch
[Notes(2),(3)]
NitricAcid,Concentrated
—HNO
3
1part 3ml
HydrochloricAcid,
Concentrated—HCL
2parts 10ml
AmmoniumSulfate—
(NH
4
)
2
(SO
4
)
1.5g
FerricChloride—FeCl
3
2.5g
Water 7.5ml
NOTES:
(1)Warmthepartsforfasteraction.
(2)Etchingisaccomplishedbyeitherswabbingorimmersingthe
specimen.
(3)Mixsolutionasfollows:
(a)Dissolve(NH
4
)
2
(SO
4
)inH
2
O.
(b)DissolvepowderedFeCl
3
inwarmHCl.
(c)Mix(a)and(b)andaddHNO
3
.
ASMEBPVC.IX-2023
249

ARTICLEV
STANDARDWELDINGPROCEDURESPECIFICATIONS(SWPSS)
QW-500GENERAL
TheSWPSslistedinMandatoryAppendixEmaybeused
whentherequirementsoftheASMEBoilerandPressure
VesselCode,SectionIXarespecified.
OrganizationsadoptingnewSWPSsshalladoptthe
SWPSeditionlistedinthecurrenteditionofSectionIX
[seeQG-100(d)].
EarliereditionsofSWPSs,listedinthe1998Editionof
SectionIXorlater,thathavebeenadoptedandproperly
demonstratedasrequiredhereinremainvalid.
ListedSWPSsthathavebeenreaffirmedasindicatedby
“(Rxx)”or“(Rxxx)”oramendedasindicatedby“AMDy”
remainvalid.
SWPSsarenotpermittedforconstructionwheretough-
nesstestingoftheWPSisrequiredbytheConstruction
Code.
QW-510ADOPTIONOFSWPSS
Priortouse,theorganizationthatwillberesponsiblefor
andprovideoperationalcontroloverproductionwelding
shallcomplywiththefollowingforeachSWPSthatit
intendstouse,exceptasnotedinQW-520.
(a)EnterthenameoftheorganizationontheSWPS.
(b)Anemployeeofthatorganizationshallsignanddate
theSWPS.
(c)TheapplicableCodeSection(s)(SectionVIII,B31.1,
etc.)and/oranyotherfabricationdocument(contract,
specification,etc.)thatmustbefollowedduring
weldingshallbelistedontheSWPS.
(d)Theorganizationshallweldandtestonegroove
weldtestcouponfollowingthatSWPS.Thefollowing
informationshallberecorded:
(1)thespecification,type,andgradeofthebase
metalwelded
(2)groovedesign
(3)initialcleaningmethod
(4)presenceorabsenceofbacking
(5)TheASMEorAWSspecificationandAWSclassi-
ficationofelectrodeorfillermetalusedandmanufac-
turer’stradename
(6)sizeandclassificationoftungstenelectrodefor
GTAW
(7)sizeofconsumableelectrodeorfillermetal
(8)shieldinggasandflowrateforGTAWandGMAW
(9)preheattemperature
(10)positionofthegrooveweldand,ifapplicable,
theprogression
(11)ifmorethanoneprocessorelectrodetypeis
used,theapproximateweldmetaldepositthicknessfor
eachprocessorelectrodetype
(12)maximuminterpasstemperature
(13)postweldheattreatmentused,including
holdingtimeandtemperaturerange
(14)visualinspectionandmechanicaltestingresults
(15)theresultsofvolumetricexaminationwhen
permittedasanalternativetomechanicaltestingby
QW-304
(e)Thecouponshallbevisuallyexaminedinaccor-
dancewithQW-302.4andmechanicallytestedinaccor-
dancewithQW-302.1orvolumetricallyexaminedin
accordancewithQW-302.2. Ifvisualexamination,volu-
metricexamination,oranytestspecimenfailstomeet
therequiredacceptancecriteria,thetestcouponshall
beconsideredasfailedandanewtestcouponshallbe
weldedbeforetheorganizationmayusetheSWPS.
QW-511USEOFDEMONSTRATEDSWPSS
CodeSectionsorfabricationdocumentsthatare
requiredtobereferencedbyQW-510(c)maybeadded
ordeletedfromademonstratedSWPSwithoutfurther
demonstrations.
QW-520USEOFSWPSSWITHOUTDISCRETE
DEMONSTRATION
OnceanSWPShasbeendemonstrated,additional
SWPSsthataresimilartotheSWPSthatwasdemonstrated
maybeusedwithoutfurtherdemonstration.Suchaddi-
tionalSWPSsshallbecomparedtotheSWPSthatwasused
forthedemonstration,andthefollowinglimitationsshall
notbeexceeded:
(a)achangeintheweldingprocess.
(b)achangeintheP-Number.
(c)achangefromtheas-weldedconditiontotheheat-
treatedcondition.ThislimitationalsoappliesforSWPSs
thatallowuseinbothconditions(e.g.,SWPSB2.1-021
allowsproductionweldingwithorwithoutheattreat-
ment;ifthedemonstrationwasperformedwithout
heattreatment,productionweldingwithheattreatment
isnotpermitted).Onceheattreatmenthasbeendemon-
stratedforanySWPS,thislimitationnolongerapplies.
ASMEBPVC.IX-2023
250

(d)achangefromagas-shieldedflux-coredwireor
solidwiretoaself-shieldedflux-coredwireorviceversa.
(e)achangefromglobular,sprayorpulsedspray
transferweldingtoshort-circuitingtransferweldingor
viceversa.
(f)achangeintheF-Numberoftheweldingelectrode.
(g)theadditionofpreheataboveambienttemperature.
(h)achangefromanSWPSthatisidentifiedasforsheet
metaltoonethatisnotandviceversa.
QW-530FORMS
AsuggestedFormQW-485fordocumentingthewelding
variablesandtestresultsofthedemonstrationisprovided
inNonmandatoryAppendixB.
QW-540PRODUCTIONUSEOFSWPSS
AswithanyWPS,weldingthatisdonefollowingan
SWPSshallbedoneinstrictaccordancewiththe
SWPS.Inaddition,thefollowingrequirementsapplyto
theuseofSWPSs:
(a)Theorganizationmaynotdeviatefromthewelding
conditionsspecifiedontheSWPS.
(b)SWPSsmaynotbesupplementedwithPQRsor
revisedinanymannerexceptforreferencetotheappli-
cableCodeSectionorotherfabricationdocumentsas
providedbyQW-511.
(c)OnlytheweldingprocessesshownonanSWPSshall
beusedingivenproductionjoint.Whenamulti-process
SWPSisselected,theprocessesshownontheSWPSshall
beusedintheorderandmannerspecifiedontheSWPS.
(d)SWPSsshallnotbeusedinthesameproduction
jointtogetherwithWPSsqualifiedbytheorganization.
(e)TheorganizationmaysupplementanSWPSby
attachingadditionalinstructionstoprovidethewelder
withfurtherdirectionformakingproductionweldsto
Codeorotherrequirements.WhenSWPSsaresupple-
mentedwithinstructionsthataddressanycondition
shownontheSWPS,suchinstructionsshallbewithin
thelimitsoftheSWPS.Forexample,whenanSWPS
permitsuseofseveralelectrodesizes,supplemental
instructionsmaydirecttheweldertouseonlyoneelec-
trodesizeoutofthosepermittedbytheSWPS;however,
thesupplementalinstructionsmaynotpermitthewelder
touseasizeotherthanoneormoreofthosepermittedby
theSWPS.
(f)SWPSsmaynotbeuseduntilthedemonstrationof
QW-510hasbeensatisfactorilywelded,tested,andcerti-
fied.
(g)TheidentificationnumberoftheSupporting
DemonstrationshallbenotedoneachSWPSthatit
supportspriortousingtheSWPS.
(h)ThecertifiedSupportingDemonstrationRecord
shallbeavailableforreview.
ASMEBPVC.IX-2023
251

ARTICLEVI
MATERIALMANUFACTURINGUSINGWIRE-ADDITIVEWELDING
?23?
QW-600GENERAL
QW-601SCOPE
Wire-additiveweldingistheprocessofbuildingpartsor
assembliesmainlyorentirelyfromweldmetal,usingfiller
metalintheformofawire.Therulesforweldingproce-
durequalificationdifferfromjoining,repair,surfacing,or
buildupwelding.Becauseweldmetalmakesupalarge
portionoftheweldment,therulesforqualificationof
wire-additiveweldingproceduresaremoreextensive
andrequirebracketedqualificationsthatwillbound
thecoolingratestobeusedinproduction.Theyalso
requirequalificationofthethinnestandthickestsections,
althoughqualificationofasectiongreaterthan2in.
(50mm)qualifiesunlimitedthickness.Theserequire-
mentsarefurtherdetailedinQW-610.
QW-602GENERALREQUIREMENTS
Wire-additiveweldingfollowsallrulesanddefinitions
inPartQG.
QW-603WELDINGPROCEDUREQUALIFICATION
TESTSANDACCEPTANCECRITERIA
Requirementsfortestspecimensremovedfromwire-
additiveweldingprocedurequalificationweldmentsare
giveninQW-620. Sometestsaremandatory,withaccep-
tancecriteriareferringtoPartQW,ArticleI,andother
testsarealsomandatory,withacceptancecriteria
basedonthecorrespondingmaterialspecification.Test
methodsandacceptancecriteriaarecontainedtherein.
Thecorrespondingmaterialspecificationismostoften
amaterialspecificationforanotherform(e.g.,casting,
forging,plate)ofmetal.Thecorrespondingmaterialspec-
ificationmaybebasedonareferencingdocument(e.g.,an
ASMEBPVCSection,acode,orastandard).Inwire-addi-
tivewelding,itwouldbecommonforthecorresponding
materialspecificationtobeanSA-oranSB-specification
fromSectionII,PartA,orSectionII,PartB,includingthe
designation,type,orgradeofthespecificmaterial.Proce-
durequalificationsmaysupportwire-additivewelding
proceduresformultiplecorrespondingmaterials,as
longasthetestingandtestresultscomplywitheach
ofthecorrespondingmaterialspecifications.More
detailsofthetestingandacceptancecriteriaarein
QW-620. Wire-additiveweldingproceduresandtheir
qualificationshallfollowtherulesinPartQW,Articles
I,II,andIV,withtheadditionoftherulesofthis
Article.Whentherearedifferences,therulesofthis
Articleshallprevail.
QW-604WELDINGPERFORMANCE
QUALIFICATIONS
Wire-additiveweldingoperatorsshallbequalifiedin
accordancewithPartQW,ArticleIIIforthewelding
processestheyperform.
QW-605INTEGRATEDBACKING
Weldmentscanbemadebyaddingweldmetalto
backingandremovingthebackingafterthepartis
built,orweldmetalcanbedepositeddirectlyon
backing(e.g.,aforgingoraplate)thatwillremainin
placeonthefinishedpart.Iftheweldmentcontainsan
integratedbacking,additionaltestspecimensarerequired
toqualifytheP-numberofthebacking.
QW-610QUALIFICATIONVARIABLESFOR
WIRE-ADDITIVEWELDING
PROCEDURES
QW-611VARIABLESFORWELDINGPROCEDURE
SPECIFICATIONS
ThevariablesforWeldingProcedureSpecificationsare
listedbyweldingprocess,beginningwithTableQW-651.
Asnewweldingprocessesareapprovedforwire-additive
welding,newtableswillbeaddedinthisArticle.
QW-612WIRE-ADDITIVEWELDING
QUALIFICATIONLIMITS
Awire-additiveWeldingProcedureSpecificationshall
bequalifiedbymultipleweldingprocedurequalifications.
Qualificationisrequiredatthelowestcoolingrate,which
isthecombinationofthehighestheatinputandthe
highestinterpasstemperature.Qualificationisalso
requiredatthehighestcoolingrate,whichisthecombina-
tionofthelowestheatinputandthelowestinterpass
temperature.Thesequalificationsarerequiredatboth
extremesoflayerwidth(wallthickness).Thelimitsof
layerwidthqualificationareshowninTableQW-613.
ASMEBPVC.IX-2023
252

QW-620SPECIMENTESTINGAND
ACCEPTANCECRITERIAFORWIRE-
ADDITIVEWELDING
Weldmentsproducedattheextremesofthebracketed
qualification(highandlowcoolingratesforthinandthick
sections)shallbetestedasrequiredinQW-621through
QW-626. Additionalormodifiedmechanicalpropertyor
chemicalcompositiontestingmayberequiredbythe
referencingdocumentorthecorrespondingmaterial
specification.Wherethereareconflicts,therequirements
ofthereferencingdocumentshallprevailoverthoseofthe
correspondingmaterialspecification,andthoseofthe
correspondingmaterialspecificationshallprevailover
thoseofthisparagraph.
QW-621SPECIMENREMOVALANDPREPARATION
Testspecimensfortensionandguidedbendtesting
shallberemovedfromqualificationweldmentsasdetailed
inFigureQW-661(a)orFigureQW-661(b), asapplicable.
Specimensfortoughnesstesting,whenrequired,shallbe
removedinaccordancewithFigureQW-661(a)orFigure
QW-661(b)unlessotherwisespecifiedbythecorre-
spondingmaterialspecification.Specimensforchemical
compositionorhardness,whenrequired,shallbe
removedfromalocationatleast1in.fromany
backingmaterial.Testspecimensshallbeprepared
andtestedinaccordancewithQW-100, unlessotherwise
specifiedinthecorrespondingmaterialspecification.
Whenqualifyingproceduresforusewithintegrated
backing,theremovalandtestingofspecimensfrom
theheat-affectedzoneofthebackingmetalshallbein
accordancewithQW-100.
QW-622GUIDED-BENDTESTS
QW-622.1General.Guided-bendtestingshallbeas
describedinQW-160. Single-bead-per-layerweldsshall
betestedusingfaceandrootbends.Multiple-bead-per-
layerweldsshallbetestedusingasidebend.Guided-
bendtestingisarequirementofthisSectionandshall
beperformedevenwhennotrequiredbythecorre-
spondingmaterialspecification.
QW-622.2Acceptance.Theacceptancecriteriaof
QW-160shallbeusedunlessotherwisespecifiedinthe
correspondingmaterialspecification.
QW-623TENSIONTESTS
QW-623.1General.Tensiontestsshallbeperformed
whenrequiredinthecorrespondingmaterialspecifica-
tion.Thetestspecimensandproceduresshallbethose
giveninQW-150. Ifthecorrespondingmaterialspecifica-
tionrequiresaspecificgeometry,testmethod,ortest
temperature,thoseshallbeutilized.Therequired
measurementsshallbeasspecifiedinthecorresponding
materialspecificationandmayincludeultimatetensile
strength,yieldstrength,elongation,reductionofarea,
orothermeasurements.
QW-623.2Acceptance.Minimum,maximum,or
rangesofvaluesforacceptanceareasspecifiedbythe
correspondingmaterialspecification.Alltensilerequire-
mentsthatarespecifiedinthecorrespondingmaterial
specificationshallmeetthespecifiedacceptancecriteria
containedtherein.
QW-624TOUGHNESSTESTS
QW-624.1General.Toughnesstestsshallbe
performedwhenrequiredbythecorrespondingmaterial
specification.Testproceduresandapparatusshall
conformtotherequirementsofthecorrespondingmate-
rialspecification.Whennotspecified,thetestprocedures
andapparatusshallconformtotherequirementsof
SA-370.
QW-624.2Acceptance.Theacceptancecriteriashall
beinaccordancewiththecorrespondingmaterialspec-
ification.Testingmaybedoneatalowertemperaturethan
thatspecifiedinthecorrespondingmaterialspecification,
buttheacceptancevaluesdonotchange.
QW-625CHEMICALCOMPOSITIONTESTS
QW-625.1General.Chemicalcompositiontestingshall
beperformedwhenrequiredinthecorrespondingmate-
rialspecification.Becauseofweldabilityanddeoxidation
requirements,itispossiblethatareferencingdocument
(e.g.,anASMEBPVCSection,acode,orastandard)will
modifytheacceptancecriteriatorequirelowercarbon
andhighermanganeseandsiliconcontents.
QW-625.2Acceptance.Minima,maxima,orrangesof
valuesforacceptanceareasspecifiedbythecorre-
spondingmaterialspecification,includingmodifications
fromareferencingdocumentasdescribedinQW-625.1.
QW-626HARDNESSTESTS
QW-626.1General.Hardnesstestingshallbe
performedwhenrequiredinthecorrespondingmaterial
specification.
TableQW-613
Wire-AdditiveWeldingQualificationLayerWidthLimits
ProcedureQualification
Weld LayerWidthQualified,in.(mm)
Number
ofBeads
per
Layer
LayerWidth
ofTest
Coupon,
W,in.(mm) Min. Max.
1 … Unlimited
3

4
(19)
2–8 … W 2W(50W)
>8 ≥2(50)
3

4
(19) Unlimited
ASMEBPVC.IX-2023
253

QW-626.2Acceptance.Minima,maxima,orrangesof
valuesforacceptanceareasspecifiedbythecorre-
spondingmaterialspecification. QW-650WELDINGVARIABLES
TheweldingvariableslistedinTableQW-651aresubdi-
videdintoessentialvariablesandnonessentialvariables.
Supplementaryessentialvariablesandspecialprocesses
arenotusedinthisArticle.The“BriefofVariables”listedin
thetableareforreferenceonly.Seethecompletevariable
intheweldingdataofPartQW,ArticleIV.
TableQW-651
Wire-AdditiveWeldingVariablesProcedureSpecifications(WPS)—GasMetal-ArcWelding(GMAW)
Paragraph BriefofVariables
Essential
NonessentialWithIntegratedBackingWithoutIntegratedBacking
QW-403
BaseMetals
.5ϕGroupnumber X
.9tPass>
1

2
in.(13mm) X
.36Wlimits X X
QW-404
FillerMetals
.4ϕF-Number X X
.5ϕA-Number X X
.6ϕDiameter X
.12ϕClassification X X
.23ϕFillermetalproductform X X
.24±orϕSupplemental X X
.27ϕAlloyelements X X
QW-406
Preheat
.2ϕPreheatmaint. X
.12ϕInterpass X X
QW-407
PWHT
.1ϕPWHT X X
.2ϕPWHT(T&Trange) X X
QW-408
Gas
.1±Trailorϕcomp. X
.2ϕSingle,mixture,or% X X
.3ϕFlowrate X
.5±orϕBackingflow X
.10−Trailorϕcomp. X X
QW-409
Electrical
Characteristics
.2ϕTransfermode X X
.4ϕCurrentorpolarity X X
.8ϕI&Erange X
.31ϕHeatinput X X
QW-410
Technique
.3ϕOrifice,cup,ornozzlesize X
.5ϕMethodcleaning X
.7ϕOscillation X
.8ϕTube-workdistance X
.10ϕSingletomultipleelectrodes X X
.15ϕElectrodespacing X X
.26±Peening X
Legend:
+Addition >Increaseorgreaterthan ↑Uphill ←Forehand ϕChange
−Deletion <Decreaseorlessthan ↓Downhill →Backhand
ASMEBPVC.IX-2023
254

QW-660GRAPHICS
FigureQW-661(a)
LayerWidth,W,>½in.(13mm)ProcedureQualificationFull−width side−bendspecimen
Full−width tension specimen
Full−width side−bendspecimen
Top View
Side View
Full−width side−bendspecimen
Full−width side−bendspecimen
Full−width tension specimen
Centerline Charpy V−notch
   specimens (set of three),
   when required
Edge Charpy V−notch 
  specimens (set of three),
  when required
2 in.(50mm)
  minimum
FigureQW-661(b)
LayerWidth,W,≤½in.(13mm)ProcedureQualification2 in. (50 mm)
   minimum
Side View
Face bend
Face bend
Tensile Tensile
Root bend
Root bend
ASMEBPVC.IX-2023
255

PARTQB
BRAZING
ARTICLEXI
BRAZINGGENERALREQUIREMENTS
QB-100SCOPE
TherulesinthisPartapplytothepreparationofbrazing
procedurespecifications,andthequalificationofbrazing
procedures,brazers,andbrazingoperatorsforalltypesof
manualandmachinebrazingprocessespermittedinthis
Section.Theserulesmayalsobeapplied,insofarasthey
areapplicable,toothermanualormachinebrazing
processes,permittedinotherSections.
QB-101
Inperformancequalification,thebasiccriterionestab-
lishedforbrazerqualificationistodeterminethebrazer’s
abilitytomakeasoundbrazedjoint.Thepurposeofthe
performancequalificationtestforthebrazingoperatoris
todeterminetheoperator’smechanicalabilitytooperate
thebrazingequipmenttomakeasoundbrazejoint.
QB-103RESPONSIBILITY
QB-103.1Brazing.Eachorganizationshallconductthe
testsrequiredinthisSectiontoqualifythebrazingproce-
duresusedintheconstructionofthebrazedassemblies
builtunderthisCodeandtheperformanceofbrazersand
brazingoperatorswhoapplytheseprocedures.
QB-103.2Records.Eachorganizationshallmaintaina
recordoftheresultsobtainedinbrazingprocedureand
brazerorbrazingoperatorperformancequalifications.
RefertorecommendedFormsinNonmandatory
AppendixB.
QB-110BRAZEORIENTATION
NOTE:Inthefollowingparagraphsthewordpositionissynon-
ymouswithflowposition.
Theorientationsofbrazeswithrespecttoplanesof
referenceareclassifiedinaccordancewithFigure
QB-461.1intofourpositions(A,B,C,andDincolumn
1),basedonthebasicflowofbrazingfillermetal
throughjoints.Thesepositionsareflatflow,vertical
downflow,verticalupflow,andhorizontalflow.
Themaximumpermittedangulardeviationfromthe
specifiedflowplaneis±45deg.
QB-120TESTPOSITIONSFORLAP,BUTT,
SCARF,ORRABBETJOINTS
Brazedjointsmaybemadeintestcouponsorientedin
anyofthepositionsinFigureQB-461.2andasdescribedin
thefollowingparagraphs,exceptthatangulardeviation
fromthespecifiedhorizontalandverticalflowplanes
inaccordancewithcolumn1ofFigureQB-461.2is
permittedduringbrazing.
QB-121FLAT-FLOWPOSITION
Thetestcouponjointsinpositionsuitableforapplying
brazingfillermetalinrod,strip,orothersuitableform
undertheflat-flowconditionsareshowninillustrations
(1)through(5)ofLineAinFigureQB-461.2. The
maximumpermittedangulardeviationfromthespecified
flowplaneis±15deg.
QB-122VERTICAL-DOWNFLOW POSITION
Thetestcouponjointsinapositionsuitableforapplying
brazingfillermetalinrod,strip,orothersuitableform
underthevertical-downflowconditionsareshownin
illustrations(1)through(4)ofLineBinFigure
QB-461.2. Thebrazingfillermetalflowsbycapillary
actionwiththeaidofgravitydownwardintothejoint.
Themaximumpermittedangulardeviationfromthe
specifiedflowplaneis±15deg.
QB-123VERTICAL-UPFLOWPOSITION
Thetestcouponjointsinpositionsuitableforapplying
brazingfillermetalinrod,strip,orothersuitableform
underthevertical-upflowconditionsareshowninillus-
trations(1)through(4)ofLineCinFigureQB-461.2. The
brazingfillermetalflowsbycapillaryactionthroughthe
joint.Themaximumpermittedangulardeviationfromthe
specifiedflowplaneis±15deg.
ASMEBPVC.IX-2023
256

QB-124HORIZONTAL-FLOWPOSITION
Thetestcouponjointsinapositionsuitableforapplying
brazingfillermetalinrod,strip,orothersuitableform
underthehorizontal-flowconditionsareshowninillus-
trations(1)and(2)ofLineDofFigureQB-461.2. The
brazingfillermetalflowshorizontallybycapillary
actionthroughthejoint.Themaximumpermitted
angulardeviationfromthespecifiedflowplaneis±15deg.
QB-140TYPESANDPURPOSESOFTESTSAND
EXAMINATIONS
QB-141TESTS
Testsusedinbrazingprocedureandperformancequali-
ficationsarespecifiedinQB-141.1throughQB-141.6.
QB-141.1TensionTests.Tensiontests,asdescribedin
QB-150, areusedtodeterminetheultimatestrengthof
brazedbutt,scarf,lap,andrabbetjoints.
QB-141.2Guided-BendTests.Guided-bendtests,as
describedinQB-160, areusedtodeterminethedegree
ofsoundnessandductilityofbuttandscarfjoints.
QB-141.3PeelTests.Peeltests,asdescribedin
QB-170, areusedtodeterminethequalityofthebond
andtheamountofdefectsinlapjoints.
QB-141.4SectioningTests.Sectioningtests,i.e.,the
sectioningoftestcoupons,asdescribedinQB-180, are
usedtodeterminethesoundnessofworkmanship
couponsortestspecimens.Sectioningtestsarealsoa
substituteforthepeeltestwhenthepeeltestisimpractical
toperform.
QB-141.5WorkmanshipCoupons.Workmanship
coupons,asdescribedinQB-182, areusedtodetermine
thesoundnessofjointsotherthanthestandardbutt,scarf,
lap,andrabbetjoints.
QB-141.6VisualExamination.Visualexaminationof
brazedjointsisusedforestimatingthesoundnessby
externalappearance,suchascontinuityofthebrazing
fillermetal,size,contour,andwettingoffilletalong
thejointand,whereappropriate,todetermineiffiller
metalflowedthroughthejointfromthesideofapplication
totheoppositeside.
QB-150TENSIONTESTS
QB-151SPECIMENS
Tensiontestspecimensshallconformtooneofthetypes
illustratedinFiguresQB-462.1(a)throughQB-462.1(f),
andshallmeettherequirementsofQB-153.
QB-151.1ReducedSection—Plate.Reduced-section
specimensconformingtotherequirementsgivenin
FiguresQB-462.1(a)andQB-462.1(c)maybeusedfor
tensiontestsonallthicknessesofplate.Thespecimens
maybetestedinasupportfixtureinsubstantialaccor-
dancewithFigureQB-462.1(f).
(a)Forthicknessesuptoandincluding1in.(25mm),a
fullthicknessspecimenshallbeusedforeachrequired
tensiontest.
(b)Forplatethicknessesgreaterthan1in.(25mm),full
thicknessspecimensormultiplespecimensmaybeused,
provided(c)and(d)arecompliedwith.
(c)Whenmultiplespecimensareusedinlieuoffull
thicknessspecimens,eachsetshallrepresentasingle
tensiontestofthefullplatethickness.Collectively,all
ofthespecimensrequiredtorepresentthefullthickness
ofthebrazedjointatonelocationshallcompriseaset.
(d)Whenmultiplespecimensarenecessary,theentire
thicknessshallbemechanicallycutintoaminimum
numberofapproximatelyequalstripsofasizethat
canbetestedintheavailableequipment.Eachspecimen
ofthesetshallbetestedandmeettherequirementsof
QB-153.
QB-151.2ReducedSection—Pipe.Reduced-section
specimensconformingtotherequirementsgivenin
FigureQB-462.1(b)maybeusedfortensiontestson
allthicknessesofpipeortubehavinganoutsidediameter
greaterthan3in.(75mm).Thespecimensmaybetestedin
asupportfixtureinsubstantialaccordancewithFigure
QB-462.1(f).
(a)Forthicknessesuptoandincluding1in.(25mm),a
fullthicknessspecimenshallbeusedforeachrequired
tensiontest.
(b)Forpipethicknessesgreaterthan1in.(25mm),full
thicknessspecimensormultiplespecimensmaybeused,
provided(c)and(d)arecompliedwith.
(c)Whenmultiplespecimensareusedinlieuoffull
thicknessspecimens,eachsetshallrepresentasingle
tensiontestofthefullpipethickness.Collectively,all
ofthespecimensrequiredtorepresentthefullthickness
ofthebrazedjointatonelocationshallcompriseaset.
(d)Whenmultiplespecimensarenecessary,theentire
thicknessshallbemechanicallycutintoaminimum
numberofapproximatelyequalstripsofasizethat
canbetestedintheavailableequipment.Eachspecimen
ofthesetshallbetestedandmeettherequirementsof
QB-153.
QB-151.3Full-SectionSpecimensforPipe.Tension
specimensconformingtothedimensionsgivenin
FigureQB-462.1(e)maybeusedfortestingpipewith
anoutsidediameterof3in.(75mm)orless.The
cross-sectionalareaofthepipebeforetestingshallbe
usedtoestablishthetensilestrengthofthetestspecimen.
Asanalternativetofull-sectionspecimenforpipe,tension
specimensinaccordancewithFigureQB-463.1(e),
GeneralNote(b)maybeused.
ASMEBPVC.IX-2023
257

QB-152TENSIONTESTPROCEDURE
Thetensiontestspecimenshallberupturedunder
tensileload.Thetensilestrengthshallbecomputedby
dividingtheultimatetotalloadbytheleastcross-sectional
areaofthespecimenasmeasuredbeforetheloadis
applied.
QB-153ACCEPTANCECRITERIA—TENSION
TESTS
QB-153.1TensileStrength.Minimumvaluesforproce-
durequalificationareprovidedunderthecolumnheading
“MinimumSpecifiedTensile”ofTableQW/QB-422. In
ordertopassthetensiontest,thespecimenshallhave
atensilestrengththatisnotlessthan
(a)thespecifiedminimumtensilestrengthofthebase
metalintheannealedcondition;or
(b)thespecifiedminimumtensilestrengthofthe
weakerofthetwointheannealedcondition,ifbase
metalsofdifferentspecifiedminimumtensilestrengths
areused;or
(c)ifthespecimenbreaksinthebasemetaloutsideof
thebraze,thetestshallbeacceptedasmeetingthere-
quirements,providedthestrengthisnotmorethan
5%belowtheminimumspecifiedtensilestrengthof
thebasemetalintheannealedcondition.
(d)thespecifiedminimumtensilestrengthisforfull
thicknessspecimensincludingcladbrazingsheetsfor
AluminumAlcladmaterials(P-No.104andP-No.105)
lessthan
1

2
in.(13mm).ForAluminumAlcladmaterials
1

2
in.(13mm)andgreater,thespecifiedminimumtensile
strengthisforbothfullthicknessspecimensthatinclude
cladbrazingsheets.
QB-153.2UnassignedMetals.Unassignedmetalsshall
beidentifiedintheBPSandonthePQRbyspecification,
type,andgrade,orbychemicalanalysisandmechanical
properties.Theminimumtensilestrengthshallbedefined
bytheorganizationthatspecifiedtheunassignedmetalif
thetensilestrengthofthatmetalisnotdefinedbythe
materialspecification(seeQW-421.5).
QB-160GUIDED-BENDTESTS
QB-161SPECIMENS
Guided-bendtestspecimensshallbepreparedby
cuttingthetestplateorpipetoformspecimensofapproxi-
matelyrectangularcrosssection.Thecutsurfacesshallbe
designatedthesidesofthespecimen.Theothertwo
surfacesshallbedesignatedthefirstandsecondsurfaces.
Thespecimenthicknessandbendradiusareshownin
FiguresQB-466.1, QB-466.2, andQB-466.3. Guided-
bendspecimensareoffivetypes,dependingon
whethertheaxisofthejointistransverseorparallel
tothelongitudinalaxisofthespecimen,andwhich
surface(firstorsecond)isontheconvex(outer)side
ofthebentspecimen.Thefivetypesaredefinedas
follows(seeQB-161.1throughQB-161.6).
QB-161.1TransverseFirstSurfaceBend.Thejointis
transversetothelongitudinalaxisofthespecimen,which
isbentsothatthefirstsurfacebecomestheconvexsurface
ofthebentspecimen.Ingeneral,thefirstsurfaceisdefined
asthatsurfacefromwhichthebrazingfillermetalis
appliedandisfedbycapillaryattractionintothejoint.
Transversefirstsurfacebendspecimensshallconform
tothedimensionsshowninFigureQB-462.2(a). For
subsizefirstsurfacebends,seeQB-161.3.
QB-161.2
?23?TransverseSecondSurfaceBend.Thejoint
istransversetothelongitudinalaxisofthespecimen,
whichisbentsothatthesecondsurfacebecomesthe
convexsurfaceofthebentspecimen.Ingeneral,the
secondsurfaceisdefinedasthesurfaceoppositeto
thatfromwhichthebrazingfillermetalisplacedor
fed,butdefinitelyisthesurfaceoppositetothatdesig-
natedasthefirstsurface,irrespectiveofhowthe
brazingfillermetalisfed.Transversesecondsurface
bendspecimensshallconformtothedimensions
showninFigureQB-462.2(a). Forsubsizesecond
surfacebends,seeQB-161.3.
QB-161.3SubsizeTransverseBend.Inthosecases
wherethewallthicknessofthetubeorpipeisless
than
3

8
in.(10mm)andthediameter-to-thickness
ratiodoesnotpermitthepreparationoffull-sizerectan-
gularguided-bendspecimens,the1
1

2
in.(38mm)wide
standardguided-bendspecimenshowninFigure
QB-462.2(a)maybereplacedbythreesubsizespecimens
havingawidthof
3

8
in.(10mm)or4t,whicheverisless.
QB-161.4Longitudinal-BendTests.Longitudinal-
bendtestsmaybeusedinlieuofthetransverse-bend
testsfortestingbrazemetalorbasemetalcombinations,
whichdiffermarkedlyinbendingpropertiesbetween
(a)thetwobasemetals;or
(b)thebrazemetalandthebasemetal.
QB-161.5LongitudinalFirstSurfaceBend.Thejointis
paralleltothelongitudinalaxisofthespecimen,whichis
bentsothatthefirstsurfacebecomestheconvexsurfaceof
thebentspecimen.Thedefinitionoffirstsurfaceisasgiven
inQB-161.1. Longitudinalfirstsurfacebendspecimens
shallconformtothedimensionsgiveninFigure
QB-462.2(b).
QB-161.6LongitudinalSecondSurfaceBend.The
jointisparalleltothelongitudinalaxisofthespecimen,
whichisbentsothatthesecondsurfacebecomesthe
convexsurfaceofthespecimen.Thedefinitionofthe
secondsurfaceisgiveninQB-161.2. Longitudinal
secondsurfacebendspecimensshallconformtothe
dimensionsgiveninFigureQB-462.2(b).
ASMEBPVC.IX-2023
258

QB-162GUIDED-BENDTESTPROCEDURE
QB-162.1Jigs.Guided-bendspecimensshallbebentin
testjigsthatareinsubstantialaccordancewithQB-466.
WhenusingthejigsinaccordancewithFigureQB-466.1or
FigureQB-466.2, thesideofthespecimenturnedtoward
thegapofthejigshallbethefirstsurfaceforfirstsurface
bendspecimens(definedinQB-161.1), andthesecond
surfaceforsecondsurfacebendspecimens(definedin
QB-161.2). Thespecimenshallbeforcedintothedie
byapplyingloadontheplungeruntilthecurvatureof
thespecimenissuchthata
1

8
in.(3mm)diameter
wirecannotbeinsertedbetweenthespecimenandthe
dieofFigureQB-466.1, orthespecimenisbottom
ejected,iftherollertypeofjig(seeFigureQB-466.2) is
used.
Whenusingthewraparoundjig(seeFigureQB-466.3)
thesideofthespecimenturnedtowardtherollershallbe
thefirstsurfaceforfirstsurfacebendspecimens,andthe
secondsurfaceforsecondsurfacebendspecimens.
QB-163ACCEPTANCECRITERIA—BENDTESTS
Thejointofatransverse-bendspecimenshallbecom-
pletelywithinthebentportionofthespecimenafter
testing.
Theguided-bendspecimensshallhavenoopendiscon-
tinuitiesexceeding
1

8
in.(3mm),measuredinanydirec-
tionontheconvexsurfaceofthespecimenafterbending.
Cracksoccurringonthecornersofthespecimenduring
testingshallnotbeconsidered,unlessthereisdefinite
evidencethattheyresultfromfluxinclusions,voids,or
otherinternaldiscontinuities.
QB-170PEELTESTS
QB-171SPECIMENS
Thedimensionsandpreparationofthepeeltest
specimenshallconformtotherequirementsof
FigureQB-462.3.
QB-172ACCEPTANCECRITERIA—PEELTEST
Inordertopassthepeeltest,thespecimensshallshow
evidenceofbrazingfillermetalalongeachedgeofthejoint.
Specimensshallbeseparatedorpeeledeitherbyclamping
SectionAandstrikingSectionBwithasuitabletoolsuch
thatthebendingoccursatthefulcrumpoint(see
FigureQB-462.3), orbyclampingSectionAand
SectionBinamachinesuitableforseparatingthesections
undertension.Theseparatedfayingsurfacesofjointsshall
meetthefollowingcriteria:
(a)Thetotalareaofdiscontinuities(unbrazedareas,
fluxinclusions,etc.)shallnotexceed25%ofthetotal
areaofanyindividualfayingsurface.
(b)Thesumofthelengthsofthediscontinuities
measuredonanyonelineinthedirectionofthelap
shallnotexceed25%ofthelap.
(c)Nodiscontinuityshallextendcontinuouslyfrom
oneedgeofthejointtotheotheredge,irrespectiveof
itsdirection.
QB-180SECTIONINGTESTSAND
WORKMANSHIPCOUPONS
QB-181SECTIONINGTESTSPECIMENS
Thedimensionsandconfigurationofthesectioningtest
specimensshallconformtotherequirementsof
FigureQB-462.4. Eachsideofthespecimenshallbe
polishedandvisuallyexaminedwithatleastafour-
powermagnifyingglass.Thesumofthelengthofunbrazed
areasoneitherside,consideredindividually,shallnot
exceed20%ofthelengthofthejointoverlap.
QB-182WORKMANSHIPCOUPONS
Thedimensionsandconfigurationoftheworkmanship
couponshallconformtothenearestapproximationofthe
actualapplication.Sometypicalworkmanshipcoupons
areshowninFigureQB-462.5. Eachsideofthespecimen
shallbepolishedandvisuallyexaminedwithatleasta
four-powermagnifyingglass.Thesumofthelengthof
unbrazedareasoneitherside,consideredindividually,
shallnotexceed20%ofthelengthofthejointoverlap.
ASMEBPVC.IX-2023
259

ARTICLEXII
BRAZINGPROCEDUREQUALIFICATIONS
QB-200GENERAL
QB-200.1?23? ABrazingProcedureSpecificationisdefined
asfollows:
(a)BrazingProcedureSpecification(BPS). ABPSisa
writtenqualifiedbrazingprocedurepreparedto
providedirectionformakingproductionbrazesto
Coderequirements.TheBPSorotherdocumentsmay
beusedtoprovidedirectiontothebrazerorbrazing
operatortoassurecompliancewiththeCoderequire-
ments.
(b)ContentsoftheBPS.ThecompletedBPSshall
describealloftheessentialandnonessentialvariables
foreachbrazingprocessusedintheBPS.Thesevariables
arelistedinQB-250andaredefinedinArticleXIV,Brazing
Data.
TheBPSshallreferencethesupportingProcedure
QualificationRecord(s)(PQR)describedinQB-200.2.
TheBPSmayincludeanyotherinformationthatmight
behelpfulinmakingabrazedjoint.
(c)ChangestotheBPS.Changesmaybemadeinthe
nonessentialvariablesofaBPStosuitproductionrequire-
mentswithoutrequalificationprovidedsuchchangesare
documentedwithrespecttotheessentialandnonessen-
tialvariablesforeachprocess.Thismaybebyamendment
totheBPSorbyuseofanewBPS.
Changesinessentialvariablesrequirerequalificationof
theBPS[neworadditionalPQRstosupportthechangein
essentialvariable(s)].
(d)FormatoftheBPS.Theinformationrequiredtobein
theBPSmaybeinanyformat,writtenortabular,tofitthe
needsofeachorganization,aslongaseveryessentialand
nonessentialvariableoutlinedinQB-250isincludedor
referenced.
FormQB-482(seeNonmandatoryAppendixB)has
beenprovidedasaguidefortheBPS.Itisonlyaguide
anddoesnotlistallrequireddataforallbrazingprocesses.
QB-200.2
?23? AProcedureQualificationRecordisdefined
asfollows:
(a)ProcedureQualificationRecord(PQR). ThePQRisa
recordofvariablesrecordedduringthebrazingofthetest
coupons.Italsocontainsthetestresultsofthetested
specimens.Recordedvariablesnormallyfallwithina
smallrangeoftheactualvariablesthatwillbeusedin
productionbrazing.
(b)ContentsofthePQR.ThecompletedPQRshalldocu-
mentallessentialvariablesofQB-250foreachbrazing
processusedduringthebrazingofthetestcoupon.Nones-
sentialorothervariablesusedduringthebrazingofthe
testcouponmayberecordedattheorganization’soption.
Allvariables,ifrecorded,shallbetheactualvariables
(includingranges)usedduringthebrazingofthetest
coupon.Ifvariablesarenotmonitoredduringbrazing,
theyshallnotberecorded.Itisnotintendedthatthe
fullrangeortheextremeofagivenrangeofvariables
tobeusedinproductionbeusedduringqualification
unlessrequiredduetoaspecificessentialvariable.
ThePQRshallbecertifiedaccuratebytheorganization.
Theorganizationmaynotsubcontractthecertification
function.Thiscertificationisintendedtobetheorganiza-
tion’sverificationthattheinformationinthePQRisatrue
recordofthevariablesthatwereusedduringthebrazing
ofthetestcouponandthattheresultingtensile,bend,peel,
orsection(asrequired)testresultsareincompliancewith
SectionIX.
(c)ChangestothePQR.ChangestothePQRarenot
permitted,exceptasdescribedbelow.Itisarecordof
whathappenedduringaparticularbrazingtest.Editorial
correctionsoraddendatothePQRarepermitted.An
exampleofaneditorialcorrectionisanincorrectP-
NumberorF-Numberthatwasassignedtoaparticular
basematerialorfillermetal.Anexampleofanaddendum
wouldbeachangeresultingfromaCodechange.For
example,SectionIXmayassignanewF-Numbertoa
fillermaterialoradoptanewfillermaterialunderan
establishedF-Number.Thismaypermit,dependingon
theparticularconstructionCoderequirements,anorga-
nizationtouseotherfillermetalsthatfallwithinthatparti-
cularF-Numberwhere,priortotheCoderevision,the
organizationwaslimitedtotheparticularfillermetalclas-
sificationthatwasusedduringqualification.Additional
informationcanbeincorporatedintoaPQRatalater
dateprovidedtheinformationissubstantiatedas
havingbeenpartoftheoriginalqualificationcondition
bylabrecordorsimilardata.
AllchangestoaPQRrequirerecertification(including
date)bytheorganization.
(d)FormatofthePQR. FormQB-483(see
NonmandatoryAppendixB)hasbeenprovidedasa
guideforthePQR.Theinformationrequiredtobein
thePQRmaybeinanyformat,tofittheneedsofeach
ASMEBPVC.IX-2023
260

organization,aslongaseveryessentialvariable,required
byQB-250, isincluded.Alsothetypeoftests,numberof
tests,andtestresultsshallbelistedinthePQR.Additional
sketchesorinformationmaybeattachedorreferencedto
recordtherequiredvariables.
(e)AvailabilityofthePQR.ThePQRshallbeavailablefor
reviewbutneednotbemadeavailabletothebrazeror
brazingoperator.
(f)MultipleBPSsWithOnePQRorMultiplePQRsWith
OneBPS.SeveralBPSsmaybepreparedfromthedataona
singlePQR(e.g.,avertical-upflowpipePQRmaysupport
BPSsforthevertical-upflowanddownflowpositionson
pipewithinallotheressentialvariables).AsingleBPSmay
coverseveralessentialvariablechangesaslongasa
supportingPQRexistsforeachessentialvariable.
QB-200.3Toreducethenumberofbrazingprocedure
qualificationsrequired,P-Numbersareassignedtobase
metalsdependentoncharacteristicssuchascomposition,
brazability,andmechanicalproperties,wherethiscan
logicallybedone,andforferrousandnonferrousmetals.
Theassignmentsdonotimplythatbasemetalsmaybe
indiscriminatelysubstitutedforabasemetalwhichwas
usedinthequalificationtestwithoutconsiderationofthe
compatibilityfromthestandpointofmetallurgicalproper-
ties,postbrazeheattreatment,design,mechanicalproper-
ties,andservicerequirements.
QB-200.4DissimilarBaseMetalThicknesses.ABPS
qualifiedontestcouponsofequalthicknessshallbeap-
plicableforproductionbrazementsbetweendissimilar
basemetalthicknessesprovidedthethicknessofboth
basemetalsarewithinthequalifiedthicknessrange
permittedbyQB-451. ABPSqualifiedontestcoupons
ofdifferentthicknessesshallbeapplicableforproduction
brazementsbetweendissimilarbasemetalthicknesses
providedthethicknessofeachbasemetaliswithinthe
qualifiedrangeofthickness(basedoneachtest
couponthickness)permittedbyQB-451.
QB-201ORGANIZATIONALRESPONSIBILITY
Theorganizationshallcertifythattheyhavequalified
eachBrazingProcedureSpecification,performedthe
procedurequalificationtest,anddocumenteditwith
thenecessaryProcedureQualificationRecord(PQR).
QB-202TYPEOFTESTSREQUIRED
QB-202.1Tests.Thetypeandnumberoftestspeci-
menswhichshallbetestedtoqualifyabrazingprocedure
aregiveninQB-451, andshallberemovedinamanner
similartothatshowninQB-463. Ifanytestspecimen
requiredbyQB-451failstomeettheapplicableaccep-
tancecriteria,thetestcouponshallbeconsideredasfailed.
Whenitcanbedeterminedthatthecauseoffailureisnot
relatedtobrazingparameters,anothertestcouponmaybe
brazedusingidenticalbrazingparameters.Alternatively,
ifadequatematerialoftheoriginaltestcouponexists,
additionaltestspecimensmayberemovedascloseas
practicabletotheoriginalspecimenlocationtoreplace
thefailedtestspecimens.
Whenithasbeendeterminedthatthetestfailurewas
causedbyanessentialvariable,anewtestcouponmaybe
brazedwithappropriatechangestothevariable(s)that
weredeterminedtocausethetestfailure.Ifthenewtest
passes,theessentialvariablesshallbedocumentedonthe
PQR.
Whenitisdeterminedthatthetestfailurewascausedby
oneormorebrazingrelatedfactorsotherthanessential
variables,anewtestcouponmaybebrazedwiththe
appropriatechangestobrazingrelatedfactorsthat
weredeterminedtocausethetestfailure.Ifthenew
testpasses,thebrazingrelatedfactorsthatweredeter-
minedtocausetheprevioustestfailureshallbeaddressed
bytheorganizationtoassurethattherequiredproperties
areachievedintheproductionbrazement.
QB-202.2BaseMetals.Theprocedurequalification
shallencompassthethicknessrangestobeusedin
productionforthebasemetalstobejoinedorrepaired.
TherangeofthicknessqualifiedisgiveninQB-451.
QB-203LIMITSOFQUALIFIEDFLOWPOSITIONS
FORPROCEDURES
(SeeFiguresQB-461.1andQB-461.2andTable
QB-461.3.)
QB-203.1Forplate,qualificationintheflat-flow,
vertical-upflow,orhorizontal-flowpositionshall
qualifyforthevertical-downflowposition.Forpipe,quali-
ficationinthehorizontal-floworvertical-upflowposition
shallqualifyforthevertical-downflowposition.
Qualificationinpipeshallqualifyforplate,butnotvice
versa.Horizontal-flowinpipeshallalsoqualifyforflat-
flowinplate.
QB-203.2SpecialFlowPositions.Anorganization
whodoesproductionbrazinginaspecialorientation
maymakethetestsforprocedurequalificationinthisspe-
cificorientation.Suchqualificationsarevalidonlyforthe
flowpositionsactuallytested,exceptthatanangular
deviationof±15degispermittedintheinclinationof
thebrazeplane,asdefinedinFiguresQB-461.1and
QB-461.2.
QB-203.3Thebrazingprocessmustbecompatible,
andthebrazingfillermetals,suchasdefinedinthespeci-
ficationsofSectionII,PartC,mustbesuitablefortheiruse
inspecificflowpositions.Abrazerorbrazingoperator
makingandpassingtheBPSqualificationtestis
therebyqualifiedfortheflowpositiontested(see
QB-301.2).
ASMEBPVC.IX-2023
261

QB-210PREPARATIONOFTESTCOUPON
QB-211?23? BASEMETALANDFILLERMETAL
Thebasemetalsandfillermetalsshallbeoneormoreof
thoselistedintheBPS.Thedimensionsofthetest
assemblyshallbesufficienttoprovidetherequired
testspecimens.
Thebasemetalsmayconsistofeitherplate,pipe,or
otherproductforms.Qualificationusingpipealsoqualifies
forplatebrazing,butnotviceversa.
QB-212?23? TYPEANDDIMENSIONOFJOINTS
Whenworkmanshipcouponsareusedtoqualifya
brazingprocedure,thetestcouponshallbebrazed
usingthejointdesigntobeusedinconstruction.
QB-250BRAZINGVARIABLES
QB-251GENERAL
QB-251.1TypesofVariablesforBrazingProcedure
Specification(BPS).Brazingvariables(listedforeach
brazingprocessinTablesQB-252throughQB-257) are
subdividedintoessentialandnonessentialvariables
(seeQB-401).
QB-251.2EssentialVariables.Essentialvariablesare
thoseinwhichachange,asdescribedinthespecificvari-
ables,isconsideredtoaffectthemechanicalpropertiesof
thebrazement,andshallrequirerequalificationofthe
BPS.
QB-251.3NonessentialVariables.Nonessentialvari-
ablesarethoseinwhichachange,asdescribedinthespe-
cificvariables,maybemadeintheBPSwithout
requalification.
TableQB-252
?23? TorchBrazing(TB)
Paragraph EssentialVariables NonessentialVariables
QB-402BaseMetal QB-402.1 ...
QB-402.3 ...
QB-403BrazingFillerMetal QB-403.1 ...
QB-403.2 ...
QB-403.3 ...
QB-406BrazingFlux,Gas,orAtmosphere QB-406.1 QB-406.3
QB-407FlowPosition QB-407.1 ...
QB-408JointDesign QB-408.2 ...
QB-408.4 ...
QB-409PostbrazeHeatTreatment QB-409.1 ...
QB-410Technique ... QB-410.1
... QB-410.2
... QB-410.3
... QB-410.4
... QB-410.5
ASMEBPVC.IX-2023
262

TableQB-253
?23?FurnaceBrazing(FB)
Paragraph EssentialVariables NonessentialVariables
QB-402BaseMetal QB-402.1 ...
QB-402.3 ...
QB-403BrazingFillerMetal QB-403.1 ...
QB-403.2 ...
QB-403.3 ...
QB-404BrazingTemperature QB-404.1 ...
QB-406BrazingFlux,Gas,orAtmosphere QB-406.1 ...
QB-406.2 ...
QB-407FlowPosition QB-407.1 ...
QB-408JointDesign QB-408.2 ...
QB-408.4 ...
QB-409PostbrazeHeatTreatment QB-409.1 ...
QB-410Technique ... QB-410.1
... QB-410.2
QB-411BrazingTime ... QB-411.1
TableQB-254
?23?InductionBrazing(IB)
Paragraph EssentialVariables NonessentialVariables
QB-402BaseMetal QB-402.1 ...
QB-402.3 ...
QB-403BrazingFillerMetal QB-403.1 ...
QB-403.2 ...
QB-403.3 ...
QB-404BrazingTemperature QB-404.1 ...
QB-406BrazingFlux,Gas,orAtmosphere QB-406.1 ...
QB-407FlowPosition QB-407.1 ...
QB-408JointDesign QB-408.2 ...
QB-408.4 ...
QB-409PostbrazeHeatTreatment QB-409.1 ...
QB-410Technique ... QB-410.1
... QB-410.2
QB-411BrazingTime ... QB-411.1
ASMEBPVC.IX-2023
263

TableQB-255
?23? ResistanceBrazing(RB)
Paragraph EssentialVariables NonessentialVariables
QB-402BaseMetal QB-402.1 ...
QB-402.3 ...
QB-403BrazingFillerMetal QB-403.1 ...
QB-403.2 ...
QB-403.3 ...
QB-404BrazingTemperature QB-404.1 ...
QB-406BrazingFlux,Gas,orAtmosphere QB-406.1 ...
QB-407FlowPosition QB-407.1 ...
QB-408JointDesign QB-408.2 ...
QB-408.4 ...
QB-409PostbrazeHeatTreatment QB-409.1 ...
QB-410Technique ... QB-410.1
... QB-410.2
QB-411BrazingTime ... QB-411.1
TableQB-256
?23? DipBrazing—SaltorFluxBath(DB)
Paragraph EssentialVariables NonessentialVariables
QB-402BaseMetal QB-402.1 ...
QB-402.3 ...
QB-403BrazingFillerMetal QB-403.1 ...
QB-403.2 ...
QB-403.3 ...
QB-404BrazingTemperature QB-404.1 ...
QB-406BrazingFlux,Gas,orAtmosphere QB-406.1 ...
QB-407FlowPosition QB-407.1 ...
QB-408JointDesign QB-408.2 ...
QB-408.4 ...
QB-409PostbrazeHeatTreatment QB-409.1 ...
QB-410Technique ... QB-410.1
... QB-410.2
QB-411BrazingTime ... QB-411.1
ASMEBPVC.IX-2023
264

TableQB-257
?23?DipBrazing—MoltenMetalBath(DB)
Paragraph EssentialVariables NonessentialVariables
QB-402BaseMetal QB-402.1 ...
QB-402.3 ...
QB-403BrazingFillerMetal QB-403.1 ...
QB-403.2 ...
QB-403.3 ...
QB-404BrazingTemperature QB-404.1 ...
QB-406BrazingFlux,Gas,orAtmosphere QB-406.1 ...
QB-407FlowPosition QB-407.1 ...
QB-408JointDesign QB-408.2 ...
QB-408.4 ...
QB-409PostbrazeHeatTreatment QB-409.1 ...
QB-410Technique ... QB-410.1
... QB-410.2
QB-411BrazingTime ... QB-411.1
ASMEBPVC.IX-2023
265

ARTICLEXIII
BRAZINGPERFORMANCEQUALIFICATIONS
QB-300GENERAL
QB-300.1?23? ThisArticleliststhebrazingprocessessepa-
rately,withtheessentialvariableswhichapplytobrazer
andbrazingoperatorperformancequalifications.
Brazersandbrazingoperatorsshallbequalifiedfor
eachbrazingprocesstheywilluse.Therangeofvariables
abrazerorbrazingoperatorisqualifiedfordependsonthe
testcouponbrazedandtheessentialvariablesinQB-350.
BrazersorbrazingoperatorsmayfollowanyBPSspeci-
fyingthatprocessforwhichtheyarequalifiedwithinthe
limitsoftheessentialvariables.
QB-301TESTS
QB-301.1IntentofTests.Theperformancequalifica-
tiontestsareintendedtodeterminetheabilityofbrazers
andbrazingoperatorstomakesoundbrazejoints.
QB-301.2QualificationTests.Eachorganizationshall
qualifyeachbrazerorbrazingoperatorforeachbrazing
processtobeusedinproductionbrazing.Theperfor-
mancequalificationtestcouponshallbebrazedinaccor-
dancewithaqualifiedBrazingProcedureSpecification
(BPS).
Thebrazerorbrazingoperatorwhobrazestheproce-
durequalificationtestcouponsisalsoqualifiedwithinthe
limitsoftheperformancequalificationslistedinQB-304
orQB-305forthepositionstestedintheprocedurequali-
ficationinaccordancewithQB-407.
QB-301.3IdentificationofBrazersandBrazing
Operators.Eachqualifiedbrazerandbrazingoperator
shallbeassignedanidentifyingnumber,letter,or
symbolbytheorganization,whichshallbeusedtoidentify
theworkofthatbrazerorbrazingoperator.
QB-301.4RecordofTests.TherecordofBrazeror
BrazingOperatorPerformanceQualification(BPQ)
testsshallincludetheessentialvariables(seeQB-350),
thetypeoftestsandthetestresults,andtherangesqual-
ifiedinaccordancewithQB-452foreachbrazerand
brazingoperator.Asuggestedformfortheserecordsis
giveninFormQB-484(seeNonmandatoryAppendixB).
QB-302TYPEOFTESTREQUIRED
QB-302.1TestSpecimens.Thetypeandnumberoftest
specimensrequiredshallbeinaccordancewithQB-452,
andshallberemovedinamannersimilartothatshownin
QB-463.
Alltestspecimensshallmeettherequirements
prescribedinQB-170orQB-180, asapplicable.Tests
forbrazingoperatorsshallmeettherequirementsof
QB-305.
QB-302.2TestCouponsinPipe.Fortestcouponsmade
inpipe,specimensshallberemovedasshownin
FigureQB-463.2(c)atapproximately180degapart.
QB-302.3CombinationofBaseMetalThicknesses.
Whenjointsarebrazedbetweentwobasemetalsof
differentthicknesses,aperformancequalificationshall
bemadefortheapplicablecombinationofthicknesses,
eventhoughqualificationtestshavebeenmadefor
eachoftheindividualbasemetalsbrazedtoitself.The
rangeofthicknessofeachofthebasemetalsshallbedeter-
minedindividuallyperQB-452.
QB-303LIMITSOFQUALIFIEDPOSITIONS
(SeeFiguresQB-461.1andQB-461.2andTable
QB-461.3.)
QB-303.1Forplate,qualificationintheflat-flow,
vertical-upflow,orhorizontal-flowpositionsshall
qualifyforthevertical-downflowposition.
QB-303.2Forpipe,qualificationineitherthehori-
zontal-floworvertical-upflowpositionshallqualifyfor
thevertical-downflowposition.
QB-303.3Qualificationinpipeshallqualifyforplate,
butnotviceversa.Horizontal-flowinpipeshallqualifyfor
flat-flowinplate.
QB-303.4SpecialPositions.Anorganizationwhodoes
productionbrazinginaspecialorientationmaymakethe
testsforperformancequalificationinthisspecificorien-
tation.Suchqualificationsarevalidonlyfortheflowposi-
tionsactuallytested,exceptthatanangulardeviationof
±15degispermittedintheinclinationofthebrazeplane,
asdefinedinFiguresQB-461.1andQB-461.2.
ASMEBPVC.IX-2023
266

QB-304?23? BRAZERS
EachbrazerwhobrazesundertherulesofthisCode
shallhavepassedthetestsprescribedinQB-302for
performancequalifications.
QB-305BRAZINGOPERATORS
Thebrazingoperatorwhopreparesbrazingprocedure
qualificationtestcouponsmeetingtherequirementsof
QB-451asdescribedinQB-202.1istherebyqualified
withinthelimitsofQB-350. Alternatively,eachbrazing
operatorshallbequalifiedforeachcombinationofessen-
tialvariablesunderwhichbrazingisperformed,as
follows:
(a)Atypicaljointorworkmanshipcouponshallbe
brazedandsectionedasdescribedinQB-182andQB-452.
(b)Thesectionspecimensshallbevisuallyexamined
andshallmeettherequirementsofQB-182.
QB-310QUALIFICATIONTESTCOUPONS
QB-310.1TestCoupons.Thetestcouponsmaybe
plate,pipe,orotherproductforms.Thedimensionsof
thetestcouponandlengthofbrazeshallbesufficient
toprovidetherequiredtestspecimens.
QB-310.2BrazeJoint.Thedimensionsofthebraze
jointatthetestcouponusedinmakingqualification
testsshallbethesameasthoseintheBrazingProcedure
Specification(BPS).
QB-310.3BaseMetals.Whenabrazerorbrazing
operatoristobequalified,thetestcouponshallbe
basemetaloftheP-NumberorP-Numberstobejoined
inproductionbrazing.
QB-320RETESTSANDRENEWALOF
QUALIFICATION
QB-321RETESTS
Abrazerorbrazingoperatorwhofailstomeetthere-
quirementsforoneormoreofthetestspecimens
prescribedinQB-452mayberetestedunderthefollowing
conditions.
QB-321.1ImmediateRetest.Whenanimmediate
retestismade,thebrazerorbrazingoperatorshall
maketwoconsecutivetestcouponsforeachposition
whichhehasfailed,allofwhichshallpassthetestrequire-
ments.
QB-321.2FurtherTraining.Whenthebrazeror
brazingoperatorhashadfurthertrainingorpractice,a
completeretestshallbemadeforeachpositionon
whichhefailedtomeettherequirements.
QB-322 ?23?EXPIRATION,REVOCATION,AND
RENEWALOFQUALIFICATION
Renewalofaperformancequalificationisrequired
(a)whenabrazerorbrazingoperatorhasnotusedthe
specificbrazingprocessforaperiodof6monthsormore,
or
(b)whenthereisaspecificreasontoquestionthe
person’sabilitytocompletebrazedjointsthatmeet
thespecification
QB-322.1RenewalofQualification.Abrazeror
brazingoperatorwhosequalificationsforaprocess
haveexpiredunderQB-322(a)mayberequalifiedfor
thatprocessbyeitherofthefollowing:
(a)repeatinganypreviousqualificationtestusingthat
process
(b)takinganewtestusingthatprocess
Eithertestwillreinstateallpreviousqualificationsforthat
process.
QB-350BRAZINGVARIABLESFORBRAZERS
ANDBRAZINGOPERATORS
QB-351GENERAL
Abrazerorbrazingoperatorshallberequalifiedwhen-
everachangeismadeinoneormoreoftheessentialvari-
ablesforeachbrazingprocess,asfollows:
(a)TorchBrazing(TB)
(b)FurnaceBrazing(FB)
(c)InductionBrazing(IB)
(d)ResistanceBrazing(RB)
(e)DipBrazing(DB)
QB-351.1EssentialVariables—Manual,Semiauto-
matic,andMachineBrazing.
(a)QB-402BaseMetal
(1)QB-402.2
(2)QB-402.3
(b)QB-403BrazingFillerMetal
(1)QB-403.1
(2)QB-403.2
(3)QB-403.4
(c)QB-407FlowPosition
(1)QB-407.1
(d)QB-408JointDesign
(1)QB-408.1
(2)QB-408.3
(e)QB-410Technique
(1)QB-410.5
QB-351.2
?23?EssentialVariables—AutomaticBrazing.
(a)Achangefromautomatictomachinebrazing.
(b)Achangeinbrazingprocess.
ASMEBPVC.IX-2023
267

ARTICLEXIV
BRAZINGDATA
QB-400VARIABLES
QB-401GENERAL
QB-401.1Eachbrazingvariabledescribedinthis
Articleisapplicableasanessentialornonessentialvari-
ableforprocedurequalificationwhenreferencedin
QB-250foreachspecificprocess.Essentialvariables
forperformancequalificationarereferencedinQB-350
foreachspecificbrazingprocess.Achangefromone
brazingprocesstoanotherbrazingprocessisanessential
variableandrequiresrequalification.
QB-402BASEMETAL
QB-402.1Achangefromabasemetallistedunderone
P-NumberinTableQW/QB-422toanyofthefollowing:
(a)ametallistedunderanotherP-Number
(b)anyotherbasemetalnotlistedinTable
QW/QB-422
Thebrazingofdissimilarmetalsneednotberequalified
ifeachbasemetalinvolvedisqualifiedindividuallyforthe
samebrazingfillermetal,flux,atmosphere,andprocess.
Similarly,thebrazingofdissimilarmetalsqualifiesforthe
individualbasemetalbrazedtoitselfandforthesame
brazingfillermetal,flux,atmosphere,andprocess,
providedtherequirementsofQB-153.1(a)aremet.
QB-402.2Achangefromabasemetallistedunderone
P-NumberinTableQW/QB-422toanyofthefollowing:
(a)ametallistedunderanotherP-Number
(b)anyothermetalnotlistedinTableQW/QB-422
Thebrazingofdissimilarmetalsneednotberequalified
ifeachbasemetalinvolvedisqualifiedindividuallyforthe
samebrazingfillermetal,flux,atmosphere,andprocess.
Similarly,thebrazingofdissimilarmetalsqualifiesforthe
individualbasemetalbrazedtoitselfandforthesame
brazingfillermetal,flux,atmosphere,andprocess.
QB-402.3Achangeinbasemetalthicknessbeyondthe
rangequalifiedinQB-451forprocedurequalification,or
QB-452forperformancequalification.
QB-403BRAZINGFILLERMETAL
QB-403.1AchangefromoneF-Numberin
TableQB-432toanyotherF-Number,ortoanyother
fillermetalnotlistedinTableQB-432.
QB-403.2Achangeinfillermetalfromoneproduct
formtoanother(forexample,frompreformedringto
paste).
QB-403.3Achangefrommechanicallyfedormanually
fedfillermetaltopreplacedfillermetalandviceversa.
QB-403.4Achangefrompreplacedfillermetalto
mechanicallyfedormanuallyfedfillermetal.
QB-404BRAZINGTEMPERATURE
QB-404.1Achangeinbrazingtemperaturetoavalue
outsidetherangespecifiedintheBPS.
QB-406BRAZINGFLUX,FUELGAS,OR
ATMOSPHERE
QB-406.1Theadditionordeletionofbrazingfluxora
changeinAWSclassificationoftheflux.Nominalchemical
compositionorthetradenameofthefluxmaybeusedas
analternativetotheAWSclassification.
QB-406.2Achangeinthefurnaceatmospherefrom
onebasictypetoanothertype.Forexample
(a)reducingtoinert
(b)carburizingtodecarburizing
(c)hydrogentodisassociatedammonia
QB-406.3Achangeinthetypeoffuelgas(es).
QB-407FLOWPOSITIONS
QB-407.1Theadditionofbrazingpositionsotherthan
thosealreadyqualified(seeTableQB-461.3) shallrequire
requalificationif
(a)thebrazingfillermetalispreplacedorfacefedfrom
outsidethejointinsuchamannerthatmajorflowis
requiredtocompletethebrazedjoint,or
(b)thebrazingfillermetalispreplacedinajointinsuch
amannerthatmajorflowdoesoccur
QB-407.2Ifthebrazingfillermetalispreplacedina
jointinsuchamannerthatmajorflowdoesnotoccur,then
thejointmaybebrazedinanypositionwithoutrequal-
ification.
ASMEBPVC.IX-2023
268

QB-408JOINTDESIGN
QB-408.1Achangeinthejointtype,i.e.,fromabutttoa
laporsocket,fromthatqualified.Forlaporsocketjoints,
anincreaseinlaplengthofmorethan25%fromthe
overlapusedonthebrazerperformancequalification
testcoupon(adecreaseinoverlapispermitted
withoutrequalification).
QB-408.2Achangeinthejointclearancestoavalue
outsidetherangespecifiedintheBPSandasrecordedin
thePQR.
QB-408.3Achangeinthejointclearancestoavalue
outsidetherangespecifiedintheBPS.
QB-408.4Achangeinthejointtype,e.g.,fromabuttto
alaporsocket,fromthatqualified.Forlapandsocket
joints,adecreaseinoverlaplengthfromtheoverlap
usedontheprocedurequalificationtestcoupon(an
increaseinoverlapispermittedwithoutrequalification).
QB-409POSTBRAZEHEATTREATMENT
QB-409.1Aseparateprocedurequalificationis
requiredforeachofthefollowing:
(a)theadditionordeletionofapostbrazeheattreat-
ment(PBHT)
(b)achangeinthepostbrazeheattreatmenttempera-
turemorethan±25°F(±14°C)orachangeinpostbraze
heattreatmenttimeofthegreaterof15minor10%ofthe
postbrazeheattreatmenttimerecordedonthePQR
QB-410TECHNIQUE
QB-410.1Achangeinthemethodofpreparingthebase
metal,suchasmechanicalcleaning,coating,plating,or
surfacetreatmentbychemicalmeans.
QB-410.2Achangeinthemethodofpostbraze
cleaning(forexample,fromchemicalcleaningtocleaning
bywirebrushingorwipingwithawetrag).
QB-410.3Achangeinthenatureoftheflame(for
example,achangefromneutralorslightlyreducing).
QB-410.4Achangeinthebrazingtipsizes.
QB-410.5Achangefrommanualtomachineorsemi-
automatictorchbrazing,andviceversa.
QB-411BRAZINGTIME
QB-411.1Achangeinthebrazingtimeattemperature.
QB-420P-NUMBERS
(SeePartQW,Welding—QW-420.)
QB-430F-NUMBERS
QB-431GENERAL
ThefollowingF-Numbergroupingofbrazingfiller
metalsinTableQB-432isbasedessentiallyontheir
usabilitycharacteristics,whichfundamentallydetermine
theabilityofbrazersandbrazingoperatorstomakesatis-
factorybrazementswithagivenfillermetal.Thisgrouping
ismadetoreducethenumberofbrazingprocedureand
performancequalifications,wherethiscanlogicallybe
done.Thegroupingdoesnotimplythatfillermetals
withinagroupmaybeindiscriminatelysubstitutedfor
afillermetalwhichwasusedinthequalificationtest
withoutconsiderationofthecompatibilityfromthestand-
pointofmetallurgicalproperties,design,mechanical
properties,postbrazeheattreatment,andservicerequire-
ments.
ASMEBPVC.IX-2023
269

TableQB-432
?23? F-Numbers
GroupingofBrazingFillerMetalsforProcedureandPerformanceQualificationSFA-5.8
F-No. AWSClassificationNo.
101 BAg-1
BAg-1a
BAg-8
BAg-8a
BAg-22
BAg-23
BVAg-0
BVAg-8
BVAg-8b
BVAg-30
102 BAg-2
BAg-2a
BAg-3
BAg-4
BAg-5
BAg-6
BAg-7
BAg-9
BAg-10
BAg-13
BAg-13a
BAg-18
BAg-19
BAg-20
BAg-21
BAg-24
BAg-26
BAg-27
BAg-28
BAg-33
BAg-34
BAg-35
BAg-36
BAg-37
BVAg-6b
BVAg-8
BVAg-8a
BVAg-18
BVAg-29
BVAg-31
ASMEBPVC.IX-2023
270

TableQB-432
F-Numbers
GroupingofBrazingFillerMetalsforProcedureandPerformanceQualificationSFA-5.8(Cont’d)
F-No. AWSClassificationNo.
102(cont’d) BVAg-32
103 BCuP-2
BCuP-3
BCuP-4
BCuP-5
BCuP-6
BCuP-7
BCuP-8
BCuP-9
104 BAlSi-2
BAlSi-3
BAlSi-4
BAlSi-5
BAlSi-7
BAlSi-9
BAlSi-11
105 BCu-1
BCu-1a
BCu-2
BCu-3
BVCu-1a
BVCu-1b
106 RBCuZn-A
RBCuZn-B
RBCuZn-C
RBCuZn-D
107 BNi-1
BNi-1a
BNi-2
BNi-3
BNi-4
BNi-5
BNi-5a
BNi-5b
BNi-6
BNi-7
BNi-8
ASMEBPVC.IX-2023
271

TableQB-432
F-Numbers
GroupingofBrazingFillerMetalsforProcedureandPerformanceQualificationSFA-5.8(Cont’d)
F-No. AWSClassificationNo.
107(cont’d) BNi-9
BNi-10
BNi-11
BNi-12
BNi-13
108 BAu-1
BAu-2
BAu-3
BAu-4
BAu-5
BAu-6
BVAu-2
BVAu-3
BVAu-4
BVAu-7
BVAu-8
BVAu-9
BVAu-10
109 BMg-1
110 BCo-1
111 BVPd-1
ASMEBPVC.IX-2023
272

QB-450SPECIMENS
QB-451PROCEDUREQUALIFICATIONSPECIMENS
TableQB-451.1
TensionTestsandTransverse-BendTests—ButtandScarfJoints
ThicknessTofTestCouponas
Brazed,in.(mm)
RangeofThicknessof
MaterialsQualifiedby
TestPlateorPipe,
in.(mm)
TypeandNumberofTestSpecimensRequired
Tension
[Note(1)]
FirstSurfaceBend
[Note(2)]
SecondSurfaceBend
[Note(2)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 2 2 2
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 2 2 2
Over
3

8
(10)
3

16
(5) 2T 2[Note(3)] 2 2
NOTES:
(1)Forspecimendimensions,seeFigureQB-462.1(a)forplatespecimens,orFigureQB-462.1(b)forpipespecimens.Forpipespecimensnot
greaterthanNPS3(DN75),fullsectiontestingmaybesubstituted;seeFigureQB-462.1(e).
(2)Forspecimendimensions,seeFigureQB-462.2(a). Forspecimenremoval,seeFigureQB-463.1(a)forplatecoupons,orFigureQB-463.1(e)for
pipecoupons.
(3)SeeQB-151fordetailsonmultiplespecimenswhencouponthicknessesareover1in.(25mm).
TableQB-451.2
TensionTestsandLongitudinalBendTests—ButtandScarfJoints
ThicknessTofTestCouponas
Brazed,in.(mm)
RangeofThicknessof
MaterialsQualifiedby
TestPlateorPipe,
in.(mm)
TypeandNumberofTestSpecimensRequired
Tension
[Note(1)]
FirstSurfaceBend
[Note(2)]
SecondSurfaceBend
[Note(2)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 2 2 2
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 2 2 2
Over
3

8
(10)
3

16
(5) 2T 2[Note(3)] 2 2
NOTES:
(1)Forspecimendimensions,seeFigureQB-462.1(a)forplatespecimens,orFigureQB-462.1(b)forpipespecimens.Forpipespecimensnot
greaterthanNPS3(DN75),fullsectiontestingmaybesubstituted;seeFigureQB-462.1(e).
(2)Forspecimendimensions,seeFiguresQB-462.2(b)andQB-463.1(b)forspecimenremoval.
(3)SeeQB-151fordetailsonmultiplespecimenswhencouponthicknessesareover1in.(25mm).
ASMEBPVC.IX-2023
273

TableQB-451.3
TensionTestsandPeelTests—LAPJoints
ThicknessTofTestCoupon
asBrazed,in.(mm)
RangeofThicknessofMaterialsQualifiedby
TestPlateorPipe,in.(mm)
TypeandNumberofTestSpecimensRequired
[Note(1)]
Tension
[Note(2)]
PeelandSection
[Notes(3),(4)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 2 2
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 2 2
Over
3

8
(10)
3

16
(5) 2T 2 2
NOTES:
(1)Whenmaterialsofarepresentativegeometryandthicknessarenotavailabletopreparebuttorlapjointtestcoupons,workmanshipcoupons
maybepreparedandexaminedperQB-182andTableQB-451.5toestablishtherangeofthicknessofbasemetalqualified.Whenthisisdone,
thepropertiesofthejointshallbevalidatedusingbuttorlapjointtestcouponsofanythickness.
(2)Forspecimendimensions,seeFigureQB-462.1(c). ForpipespecimensnotgreaterthanNPS3(DN75),fullsectiontestingmaybesubstituted;
seeFigureQB-462.1(e).
(3)Forpeelspecimens,seeFigureQB-462.3forspecimendimensions,andFigureQB-463.1(d)forspecimenremoval.
(4)Sectioningtestsmaybesubstitutedforpeeltests.Forsectionspecimens,seeFigureQB-462.4forspecimendimensions,andFigure
QB-463.1(c)forspecimenremoval.
TableQB-451.4
?23? TensionTestsandSectionTests—RabbetJoints
ThicknessTofTestCouponas
Brazed,in.(mm)
RangeofThicknessofMaterialsQualifiedby
TestPlateorPipe,in.(mm)
TypeandNumberofTestSpecimens
Required
Tension
[Note(1)]
Section
[Note(2)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 2 2
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 2 2
Over
3

8
(10)
3

16
(5) 2T 2 2
NOTES:
(1)Forspecimendimensions,seeFigureQB-462.1(c). ForpipespecimensnotgreaterthanNPS3(DN75),fullsectiontestingmaybesubstituted;
seeFigureQB-462.1(e).
(2)Forspecimendimensions,seeFigureQB-462.4; forspecimenremoval,seeFigureQB-463.1(c).
TableQB-451.5
?23? SectionTests—WorkmanshipCouponJoints
ThicknessTofTestCoupon
asBrazed,in.(mm)
RangeofThicknessofMaterialsQualifiedby
TestPlateorPipe,in.(mm)
TypeandNumberofTest
SpecimensRequired
Section[Note(1)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 2
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 2
Over
3

8
(10)
3

16
(5) 2T 2
NOTE:(1)Thistestinitselfdoesnotconstituteprocedurequalificationbutmustbevalidatedbyconductanceoftestsofbuttorlapjointsas
appropriate.Forjointsconnectingtensionmembers,suchasthestayorpartitiontypeinFigureQB-462.5, thevalidationdatamaybebasedupon
buttjoints;forjointsconnectingmembersinshear,suchassaddleorspudjoints,thevalidationdatamaybebasedonlapjoints.
ASMEBPVC.IX-2023
274

QB-452PERFORMANCEQUALIFICATIONSPECIMENS
TableQB-452.1
?23?PeelorSectionTests—Butt,Scarf,Lap,RabbetJoints
ThicknessTofTestCoupon
asBrazed,in.(mm)
RangeofThicknessofMaterialsQualifiedby
TestPlateorPipe,in.(mm)
TypeandNumberofTest
SpecimensRequired
PeelorSection[Notes(1)–(3)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 2
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 2
Over
3

8
(10)
3

16
(5) 2T 2
NOTES:
(1)Sectioningtestsmaybesubstitutedforthepeeltestwhenthepeeltestisimpractiealtoperform(e.g.,whenthestrengthofthebrazingfiller
metalisequaltoorgreaterthanthestrengthofthebasemetals).
(2)Forspecimendimensions,seeFigureQB-462.3forpeeltestspecimensorFigureQB-462.4forsectionspecimens.
(3)Forspecimenremoval,seeFigureQB-463.2(a)forsectionspecimensorFigureQB-463.2(b)forpeelspecimensfromplatecoupons,orFigure
QB-463.2(c)forpipecoupons.
TableQB-452.2
?23?SectionTests—WorkmanshipSpecimenJoints
ThicknessTofTestCoupon
asBrazed,in.(mm)
RangeofThicknessofMaterialsQualifiedby
TestPlateorPipe,in.(mm)
TypeandNumberofTest
SpecimensRequired
Section[Note(1)]Min. Max.
Lessthan
1

8
(3) 0.5T 2T 1
1

8
to
3

8
(3to10),incl.
1

16
(1.5) 2T 1
Over
3

8
(10)
3

16
(5) 2T 1
NOTE:(1)Forsectionspecimenremoval,seeFigureQB-462.5.
ASMEBPVC.IX-2023
275

QB-460GRAPHICS
QB-461POSITIONS
FigureQB-461.1
FlowPositionsL
L
L
L
C
C
C
C
B
A
C
D
(1)
(1)
(1)
(1)
(4)
(4)
(3)
(3)
(3)
(2)
(2)
(2)
(2) (4) (5)
Horizontal Flow
Vertical Upflow
Vertical Downflow
Flat Flow
45 deg
45 deg
Flow
Flow
Flow
Flat flow
45 deg
45 deg
45 deg
C
C
C
C
C
C
C
C
C
Legend:C=jointclearance;L=lengthoflaporthickness
ASMEBPVC.IX-2023
276

FigureQB-461.2
TestFlowPositionsL
L
L
L
C
C
C
C
B
A
C
D
(1)
(1)
(1)
(1)
(4)
(4)
(3)
(3)
(3)
(2)
(2)
(2)
(2) (4) (5)
Horizontal Flow
Vertical Upflow
Vertical Downflow
Flat Flow
15 deg
15 deg
Flow
Flow
Flow
Flat flow
15 deg
15 deg
15 deg
C
C
C
C
C
C
C
C
C
Legend:
C=jointclearance
L=lengthoflaporthickness
ASMEBPVC.IX-2023
277

TableQB-461.3
ProcedureandPerformanceQualificationPositionLimitations
(AsGiveninQB-203andQB-303)
CouponType
TestFlowPosition
[Note(1)]
QualifiedFlowPosition[Note(2)]
Plate Pipe
Plate Flat Flat,verticaldown None
Verticaldown Verticaldown None
Verticalup Verticalup,verticaldown None
Horizontal Horizontal,verticaldown None
Pipe Verticaldown Verticaldown Verticaldown
Verticalup Verticalup,verticaldown Verticalup,verticaldown
Horizontal Flat,horizontal,verticaldown Horizontal,verticaldown
NOTES:
(1)BrazingqualificationtestflowpositionsaredescribedinQB-121throughQB-124andshowninFigureQB-461.2.
(2)QualifiedbrazingpositionsareshowninFigureQB-461.1.
ASMEBPVC.IX-2023
278

QB-462TESTSPECIMENS
FigureQB-462.1(a)
?23? Tension—ReducedSectionforButtandScarfJoints—Plate10 in. (250 mm) 
  approx. [Note (1)]
2 in. 
  (50 mm) R
Edge of joint
This section prepared
   preferably by machining
1
/
4 in. (6 mm) 1
/
4 in. (6 mm)
1
/
4
 in. (6 mm)
3
/
4 in. (19 mm)
This section prepared
   preferably by machining
3/
4
 in. (19 mm)
1/
4
 in. (6 mm)
1
/
4 in. (6 mm)
2
1/
4
 in.
  (57 mm)
   min.
10 in. (250 mm) approx. [Note (1)]
A, min.
  [Note (2)]
2 in. (50 mm) R 
A, min.
  [Note (2)]
Alternate Pin−Loaded Specimen
2 in. (50 mm)
   approx. [Note (1)]
0.5 in. 
  (13 mm)
  diameter
1 in.
   (25 mm)
NOTES:
(1)Lengthmayvarytofittestingmachine.
(2)A=greaterof
1

4
in.(6mm)or2T
ASMEBPVC.IX-2023
279

FigureQB-462.1(b)
?23? Tension—ReducedSectionforButt,Lap,andScarfJoints—Pipe10 in. (250 mm)
  approx. [Note (1)]
2 in. 
  (50 mm) R
Edge of joint Machine the minimum amount
  needed to obtain plane parallel
  faces over the 
3/
4
 in. (19 mm)
  wide reduced section
This section prepared
   preferably by machining
1
/
4 in. (6 mm) 1
/
4
 in. (6 mm)
1
/
4
 in. (6 mm)
3
/
4 in. (19 mm)
X
[Note (3)]
T
As specified
    by design
For Lap Joints
T
This section prepared
   preferably by machining
3
/
4 in. (19 mm)
1
/
4 in. (6 mm)
1/
4
 in. (6 mm)
2
1
/
4 in.
  (57 mm)
   min.
10 in. (250 mm) approx. [Note (1)]
A, min.
  [Note (2)]
2 in. (50 mm) R 
A, min.
  [Note (2)]
Alternate Pin−Loaded Specimen
2 in. (50 mm)
   approx. [Note (1)]
0.5 in. 
  (13 mm)
  diameter
1 in.
   (25 mm)
NOTES:
(1)Lengthmayvarytofittestingmachine.
(2)A=greaterof
1

4
in.(6mm)or2T
(3)X=testspecimenoverlap
ASMEBPVC.IX-2023
280

FigureQB-462.1(c)
?23? Tension—ReducedSectionforLapandRabbetJoints—PlateThis section prepared
   preferably by machining
X
[Note (3)]
T
T min.
X X
XX
X
T
T
T
T min.
3/
4
 in. (19 mm)
1
/
4
 in. (6 mm)
1
/
4 in. (6 mm)
2
1/
4
 in.
  (57 mm)
   min.
10 in. (250 mm) approx. [Note (1)]
A, min.
  [Note (2)]
2 in. (50 mm) R 
As specified
    by design
As specified
    by design
As specified
    by design
For Rabbet Joints
Alternate Designs
For Lap Joints
T
T
A, min.
  [Note (2)]
This section prepared
   preferably by machining
3/
4
 in. (19 mm)
1
/
4 in. (6 mm)
1/
4
 in. (6 mm)
2
1
/
4
 in.
  (57 mm)
   min.
10 in. (250 mm) approx. [Note (1)]
A, min.
  [Note (2)]
2 in. (50 mm) R 
A, min.
  [Note (2)]
Alternate Pin−Loaded Specimen
2 in. (50 mm)
   approx. [Note (1)]
0.5 in. 
  (13 mm)
  diameter
1 in.
   (25 mm)
NOTES:
(1)Lengthmayvarytofittestingmachine.
(2)A=greaterof
1

4
in.(6mm)or2T
(3)X=testspecimenoverlap
ASMEBPVC.IX-2023
281

FigureQB-462.1(e)
Tension—FullSectionforLap,Scarf,andButtJoints—SmallDiameterPipe
ASMEBPVC.IX-2023
282

FigureQB-462.1(f)
SupportFixtureforReduced-SectionTensionSpecimensJaws of testing machine
Front View Side View
Restrainer bars
Spacers
Reduced−section
  tension specimen
Reduced−section
  tension specimen
Spacers
Restrainer bars
Reduced−section
    tension specimen
Bolts, body−bound
4 locknuts
4 nuts
Bolts, body−bound
GENERALNOTE:Therestrainingfixtureisintendedtoprovideasnugfitbetweenthefixtureandthecontourofthetensionspecimen.Thefixture
shallbetightened,butonlytothepointwhereaminimumof0.001in.(0.03mm)clearanceexistsbetweenthesidesofthefixtureandthetension
specimen.
ASMEBPVC.IX-2023
283

FigureQB-462.2(a)
TransverseFirstandSecondSurfaceBends—PlateandPipe6 in. (150 mm) min.
y
y, in. (mm)
T, in. (mm)
All ferrous and nonferrous materials
3/
8
 (10)>
3/
8
 (>10)
1/
16

3/

(1.5–10) T
y
T
T
Plate
y
T
y
T
Pipe
1
1/
2
 in. (38 mm)
GENERALNOTE:Forthefirstsurfacebendspecimens,machinefromthesecondsurfaceasnecessaryuntiltherequiredthicknessisobtained.For
secondsurfacebendspecimens,machinefromthefirstsurfaceasnecessaryuntiltherequiredthicknessisobtained.
FigureQB-462.2(b)
LongitudinalFirstandSecondSurfaceBends—Platey, in. (mm)
T, in. (mm)
All ferrous and nonferrous materials
3/
8
 (10)>
3/
8
 (>10)
1/
16

3/

(1.5–10) T
6 in. (150 mm) min.
T
R
y
y
T
1
1
/
2 in.
    (38 mm)
T
R = 
1/
8
 in.
    (3 mm) max.
y
y
T
GENERALNOTE:Forthefirstsurfacebendspecimens,machinefromthesecondsurfaceasnecessaryuntiltherequiredthicknessisobtained.For
secondsurfacebendspecimens,machinefromthefirstsurfaceasnecessaryuntiltherequiredthicknessisobtained.
ASMEBPVC.IX-2023
284

FigureQB-462.3
LapJointPeelSpecimen10 in. (250 mm) approx.
    [Note (1)]
Section A
Approximately, or sufficient
    for peeling purposes
Fulcrum point
T
X
Z
Y
1
1/
2
 in. (38 mm)
Section B
X = 4T min. or as
    required by design
GENERALNOTES:
(a)FlangeYmaybeomittedfromSectionBwhen“peeling”istobeaccomplishedinasuitabletensionmachine.
(b)SpecimenshallbebrazedfromsidemarkedZ.
NOTE:(1)Lengthmayvarytofittestingmachine.
FigureQB-462.4
LapJointSectionSpecimen(SeeQB-181)Section A
Discard
Section
Discard
this piece
specimen
this piece
T
X
1/
3
 W
1
/
3
 W
1
/
3 W
W = 1
1
/
2 in.
    (38 mm)
1
1/
2
 in. (38 mm)
Alternate for Rabbet Joint
Section B
X = 4T min. or as required by design
GENERALNOTE:Laporsocketjointspecimensinthepipeandtubeshallbesectionedbycuttingthepipeortubespecimeninhalflengthwise,and
thecutedgesofatleastone-halfpreparedandvisuallyexamined.
ASMEBPVC.IX-2023
285

FigureQB-462.5
WorkmanshipCoupons
NOTES:
(1)Workmanshipcouponsshallbe10in.(250mm)inlengthorrepresentone-halfthetypicaljoint,whicheverisless.
(2)Circularcouponsshallbesectionedinhalf,andone-halfshallbeusedasthetestspecimen.
ASMEBPVC.IX-2023
286

QB-463ORDEROFREMOVAL
FigureQB-463.1(a)
PlatesProcedureQualification
FigureQB-463.1(b)
PlatesProcedureQualification
ASMEBPVC.IX-2023
287

FigureQB-463.1(c)
PlatesProcedureQualificationDiscard this piece
specimen
Reduced section
    tensile
Alternate Lap Joint
[Note (2)]
Rabbet Joint
Alternate Lap Joint
[Note (2)]
Alternate Lap Joint
[Note (2)]
[Note (1)]
specimen
Reduced section
    tensile
Sectioning specimen
Sectioning specimen
Discard this piece
NOTES:
(1)Requiredforrabbetjoints.
(2)ThesectioningspecimeninthisviewmaybeusedasanalternatetosectioningthepeeltestspecimensofFigureQB-463.1(d)whenthepeel
testcannotbeused.Thissectiontestspecimenshouldbeapproximately
1

2
in.(13mm)wide.
ASMEBPVC.IX-2023
288

FigureQB-463.1(d)
PlatesProcedureQualification
NOTE:(1)Requiredwhenpeeltestcanbeused.
ASMEBPVC.IX-2023
289

FigureQB-463.1(e)
Pipe—ProcedureQualificationFirst surface bend 
(if required)
First surface bend
(if required)
Reduced section tensile
Reduced section tensile
Horizontal plane 
Bottom
Top
Specimen location No. 1
Specimen location No. 2
Plane of cut
for half−
section
specimens
GENERALNOTES:
(a)Figureshownisforcouponsover3in.(75mm)O.D.LocationsNo.1and2arefor:
(1)secondsurfacespecimensforbuttandscarfjoints
(2)peelorsectionspecimensforlapjoints
(3)sectionspecimensforrabbetjoints
(b)Forcoupons3in.(75mm)O.D.andsmaller,twocouponsshallbebrazedandonespecimenshallberemovedfromeachcoupon.Ifbrazedin
thehorizontalflowposition,thespecimenshallbetakenatspecimenlocationNo.1.Alternatively,eachcouponshallbecutlongitudinallyand
thespecimenshallconsistofbothsidesofonehalf-sectionofeachcoupon.
(c)Whencouponisbrazedinthehorizontalflowposition,specimenslocationsshallbeasshownrelativetothehorizontalplaneofthecoupon,
andforhalf-sectionspecimens,planeofcutshallbeorientedasshownrelativetothehorizontalplaneofthecoupon.
(d)Whenbothendsofacouplingarebrazed,eachendisconsideredaseparatetestcoupon.
ASMEBPVC.IX-2023
290

FigureQB-463.2(a)
PlatesPerformanceQualificationAlternate Lap Joint
[Note (2)]
Alternate Lap Joint
[Note (2)]
Alternate Lap Joint
[Note (2)]
Rabbet Joint
[Note (1)]
Alternate Scarf Joint
[Note (2)]
Alternate Butt Joint
[Note (2)]
Discard this piece
Sectioning specimen
Discard this piece
Sectioning specimen
Discard this piece
NOTES:
(1)Requiredforrabbetjoints.
(2)ThesectioningspecimeninthisviewmaybeusedasanalternatetosectioningthepeeltestspecimensofFigureQB-463.2(b)whenthepeel
testcannotbeused.Thissectiontestspecimenshouldbeapproximately
1

2
in.(13mm)wide.
ASMEBPVC.IX-2023
291

FigureQB-463.2(b)
PlatesPerformanceQualification
NOTE:(1)Requiredwhenpeeltestcanbeused.
ASMEBPVC.IX-2023
292

FigureQB-463.2(c)
PipePerformanceQualificationTop
Bottom
Specimen 
  location No. 1
Specimen location No. 2
Plane of
  cut for
  half−section
  specimens
Horizontal plane
GENERALNOTES:
(a)Forcouponsover3in.(75mm)O.D.,onespecimenshallberemovedfromeachlocationshown.
(b)Forcoupons3in.(75mm)O.D.andsmaller,twocouponsshallbebrazedandonespecimenshallberemovedfromeachcoupon.Ifbrazedin
thehorizontalflowposition,thespecimenshallbetakenatspecimenlocationNo.1.Alternatively,eachcouponshallbecutlongitudinallyand
thespecimenshallbebothsidesofonehalf-sectionofeachcoupon.
(c)Whenthecouponisbrazedinthehorizontalflowposition,specimenlocationsshallbeasshownrelativetothehorizontalplaneofthecoupon.
Forhalf-sectionspecimens,planeofcutshallbeorientedasshownrelativetothehorizontalplaneofthecoupon.
(d)Whenbothendsofacouplingarebrazed,eachendisconsideredaseparatetestcoupon.
ASMEBPVC.IX-2023
293

QB-466TESTJIGS
FigureQB-466.1
Guided-BendJigAs required
As required
Tapped hole to suit
    testing machine
Hardened rollers 1
1/

in. (38 mm) diameter
    may be substituted for jig shoulders
Shoulders hardened
    and greased
3
/
4
 in. (19 mm)
3
/
4 in. (19 mm)
3/
4
 in. R
B   R
D   RC
A
3
/
4 in. (19 mm)
7
1
/
2 in. (190 mm)
9
 
in. (225 mm)
3
/
4
 in. (19 mm)
1
/
2
 in. (13 mm)
1
1
/
8
 in. (28 mm)
1/
8
 in. (3 mm)
6
3
/
4
 
i
n
.

 
 
 
 
(
1
7
0
 
m
m
)
3
 i
n
.
 
m
i
n
.

 
 
 
 
(
7
5
 
m
m
)
2
 i
n
.
 
m
i
n
.

 
 
 
 
(
5
0
 
m
m
)
3
/
4 in. (19 mm)
1
1/
8
 in. (29 mm)
3
7/
8 in. (97 mm)
2
 
in. (50 mm)
1
/
4 in. (6 mm)
Yoke
Plunger
(19 mm)
Thicknessof
Specimen,
in.(mm)
A,
in.(mm)
B,
in.(mm)
C,
in.(mm)
D,
in.(mm)
3

8
(10) 1
1

2
(38)
3

4
(19)2
3

8
(60)1
3

16
(30)
t 4t 2t 6t+3.23t+1.6
ASMEBPVC.IX-2023
294

FigureQB-466.2
Guided-BendRollerJigNotes (1), (2)
Note (3)
Notes (4), (5)
C
A

min.

min. 

3/
4
 in. (19 mm)
B = 
1
/
2
 A 
Thicknessof
Specimen,
in.(mm)
A,
in.(mm)
B,
in.(mm)
C,
in.(mm)
3

8
(10) 1
1

2
(38)
3

4
(19)2
3

8
(60)
t 4t 2t 6t+
1

8
(3)
GENERALNOTE:Thebrazejointinthecaseofatransversebend
specimenshallbecompletelywithinthebendportionofthespecimen
aftertesting.
NOTES:
(1)Eitherhardenedandgreasedshouldersorhardenedrollersfree
torotateshallbeused.
(2)Theshouldersofrollersshallhaveaminimumbearingsurfaceof
2in.(50mm)forplacementofthespecimen.Therollersshallbe
highenoughabovethebottomofthejigsothatthespecimenswill
cleartherollerswhentheramisinthelowposition.
(3)Theramshallbefittedwithanappropriatebaseandprovision
madeforattachmenttothetestingmachine,andshallbeofa
sufficientlyrigiddesigntopreventdeflectionandmisalignment
whilemakingthebendtest.Thebodyoftherammaybelessthan
thedimensionsshownincolumnA.
(4)Ifdesired,eithertherollersortherollersupportsmaybemade
adjustableinthehorizontaldirectionsothatspecimensoftthick-
nessmaybetestedonthesamejig.
(5)Therollersupportsshallbefittedwithanappropriatebase
designedtosafeguardagainstdeflectionormisalignmentand
equippedwithmeansformaintainingtherollerscentered
midpointandalignedwithrespecttotheram.
FigureQB-466.3
Guided-BendWrapAroundJigA
T
T + 
1
/
16
 in. (1.5 mm) max. 
 
B = 
1/
2
 A 
Roller
Thicknessof
Specimen,
in.(mm)
A,
in.(mm)
B,
in.(mm)
3

8
(10) 1
1

2
(38)
3

4
(19)
t 4t 2t
GENERALNOTE:
(a)Dimensionsnotshownaretheoptionofthedesigner.Theessen-
tialconsiderationistohaveadequaterigiditysothatthejigparts
willnotspring.
(b)Thespecimenshallbefirmlyclampedononeendsothatthereis
noslidingofthespecimenduringthebendingoperation.
(c)Testspecimensshallberemovedfromthejigwhentheouterroll
hasbeenremoved180degfromthestartingpoint.
ASMEBPVC.IX-2023
295

PARTQF
PLASTICFUSING
ARTICLEXXI
PLASTICFUSINGGENERALREQUIREMENTS
QF-100SCOPE
TherulesinthisPartapplytothepreparationandquali-
ficationofthefusingprocedurespecification(FPS),and
theperformancequalificationoffusingoperators.
QF-101FUSINGPROCEDURESPECIFICATION
Afusingprocedurespecificationusedbyanorganiza-
tionthatwillhaveresponsibleoperationalcontrolof
productionfusingshallbeanFPSthathasbeenqualified
bythatorganizationinaccordancewithArticleXXII,orit
shallbeastandardfusingprocedurespecification(SFPSor
MEFPS)asdefinedinQF-201.2.
Thefusingprocedurespecification(FPS,SFPS,or
MEFPS)specifiesthe“variables”(includingranges,if
any)underwhichfusingmustbeperformed.The
fusingprocedurespecification(FPS,SFPS,orMEFPS)
shalladdresstheapplicablefusingprocessvariables,
bothessentialandnonessential,asprovidedin
ArticleXXIIforproductionfusing.
QF-102FUSINGPERFORMANCEQUALIFICATION
(FPQ)
Fusingoperatorperformancequalificationisintended
toverifytheabilityofthefusingoperatortoproducea
soundfusedjointwhenfollowinganFPS,SFPS,or
MEFPS.Thefusingoperatorperformancequalification
record(FPQ)documentstheperformancetestofthe
fusingoperator,andtheresultsoftherequiredmechanical
tests.
QF-103RESPONSIBILITY
QF-103.1Fusing.Eachorganizationshallconductthe
testsrequiredinthisSectiontoqualifytheFPSandthe
performanceofthefusingoperatorswhoapplythese
procedures.Alternatively,anorganizationmayusean
SFPSorMEFPSundertheprovisionsofQF-201.2. The
organizationshallperformanddocumentthetests
requiredbythisArticletoqualifytheperformanceof
fusingoperatorsforfusingoperations.
QF-103.2Records.Eachorganizationshallmaintaina
recordoftheresultsofthemechanicaltestingperformed
tosatisfytherequirementsforFPSandfusingoperator
performancequalifications.
QF-110FUSEDJOINTORIENTATION
Orientationcategoriesforfusedjointsareillustratedin
FigureQF-461.1.
QF-120TESTPOSITIONS
Fusedjointsmaybemadeintestcouponsorientedin
anyofthepositionsshowninFigureQF-461.2.
QF-130DATAACQUISITIONAND
EVALUATION
QF-131DATAACQUISITIONRECORD
REQUIREMENTS
ThefusingvariableslistedinQF-131.1, QF-131.2, and
QF-131.3shallberecordedforeachfusedtestjoint.
QF-131.1Butt-andSidewall-FusingProcedures.
(a)heatersurfacetemperatureimmediatelybefore
insertingtheheaterplate
(b)gaugepressureduringtheinitialheatcycle
(c)gaugepressureandelapsedtimeduringtheheat-
soakcycle
(d)heaterremoval(dwell)time
(e)gaugepressureandelapsedtimeduringthefusing
andcoolcycle
(f)dragpressurewhenapplicable
(g)jointconfiguration
(h)pipediameterandwallthickness
(i)typeofpolyethylene(PE)material(specification
andclassification)andmanufacturer
(j)FPSorSFPSused,operatoridentification,time,date,
andfusingmachineidentification
ASMEBPVC.IX-2023
296

QF-131.2ElectrofusionProcedures.
(a)date
(b)ambienttemperature
(c)materialtemperature
(d)pipediameterandwallthickness
(e)theFPSorMEFPSused
(f)nominalfusiontime
(g)adjustedfusiontime
(h)terminationcode
(i)fittingdescription
(j)fittingmanufacturer
(k)elapsedtimeforfusionandcooling
(l)manualorbarcodeentry
(m)lotnumberforfitting
(n)operatoridentification
(o)operatorverificationofscrapingandcleaning
(p)fit-upgap
(q)fusionnumber
(r)fusionenergy
(s)fusionprocessorserialnumber
(t)voltage
(u)preheatvoltageandtime,ifapplicable
QF-131.3ManualButt-FusingProcedure.
(a)heatersurfacetemperatureimmediatelybefore
insertingtheheaterplate
(b)verificationthatheatingpressurewasreducedto
zeroafterinitialindicationofmelt
(c)elapsedtimeduringtheheatsoakcycle
(d)heaterremoval(dwell)time
(e)elapsedtimeduringthefusing/coolcycle
(f)jointconfiguration
(g)pipediameterandwallthickness
(h)typeofpolyethylene(PE)material(specification
andclassification)andmanufacturer
(i)FPSused,operatoridentification,time,date,and
fusingmachineidentification
QF-132DATAACQUISITIONRECORDREVIEW
Thedataacquisitionrecordforeachfusedtestjoint
shallbecomparedtotheFPSaftercompletion.QF-485
providesasuggestedformattodocumentthedataacqui-
sitionrecordreview.Thereviewershallverifythatthe
conditionslistedinQF-132.1, QF-132.2, andQF-132.3
aremet.
QF-132.1Butt-andSidewall-FusingQualification.
(a)AlldatarequiredbyQF-131wererecorded.
(b)InterfacialfusingpressurewaswithintheFPSor
SFPSrange.
(c)Heatersurfacetemperaturerecordedwaswithin
theFPSorSFPSrange.
(d)Fusingpressureappliedduringthefusingandcool
cyclewascorrectlycalculatedtoincludethedragpres-
sure,iswithintheFPSorSFPSrangefortheapplicable
size(e.g.,pipediameter),andagreeswiththerecorded
hydraulicfusingpressure.
(e)Fusingpressurewasreducedtoavaluelessthanor
equaltothedragpressureatthebeginningoftheheatsoak
cycle.
(f)Fusingmachinewasopenedattheendoftheheat
soakcycle,theheaterwasremoved,andthepipejointends
broughttogetheratthefusingpressurewithinthetime
framespecifiedbytheFPSorSFPS.
(g)Coolingtimeatfusingpressuremettheminimum
timespecifiedbytheFPSorSFPS.
IftherecordeddataisoutsidethelimitsoftheFPSor
SFPS,thejointisunacceptable.
QF-132.2ElectrofusionQualification.
(a)AlldatarequiredbyQF-131werecorrectly
recorded.
(b)VoltagewaswithintheFPSorMEFPSrange.
(c)NominalfusiontimewaswithintheFPSorMEFPS
range.
(d)Absenceofanyelectricalfaultduringfusingopera-
tion.
QF-132.3ManualButt-FusingQualification.
(a)AlldatarequiredbyQF-131wererecorded.
(b)Heatersurfacetemperaturerecordedwaswithin
theFPSrange.
(c)Fusingmachinewasopenedattheendoftheheat
soakcycle,theheaterwasremoved,andthepipejointends
werebroughttogetheratthefusingpressurewithinthe
timeframespecifiedbytheFPS.
(d)Coolingtimeatbutt-fusingpressuremetthe
minimumtimespecifiedbytheFPS.
IftherecordeddataareoutsidethelimitsoftheFPS,the
jointisunacceptable.
QF-140EXAMINATIONSANDTESTS
Resultsofallrequiredexaminationsandtestsshallbe
recordedontheFusingProcedureQualificationRecord
(PQR)orFusingOperatorPerformanceQualification
(FPQ).
QF-141VISUALEXAMINATION
(a)ButtFusion.Allfusedjointsshallreceiveavisual
examinationofallaccessiblesurfacesofthefusedjoint.
(b)SidewallFusionandElectrofusion.Testjointsshall
bevisuallyexamineduponcompletionofthetestcoupon,
andwhensectionedforevaluation.
QF-141.1VisualAcceptanceCriteria.
(a)ButtandSidewallFusion. SeeFigureQF-462(a)for
evaluationexamples.
(1)Thereshallbenoevidenceofcracksorincom-
pletefusing.
ASMEBPVC.IX-2023
297

(2)Jointsshallexhibitproperfusedbeadconfigura-
tion.
(3)Variationsinupsetbeadheightsonopposite
sidesofthecleavageandaroundthecircumferenceof
fusedpipejointsareacceptable.
(4)Theapexofthecleavagebetweentheupsetbeads
ofbutt-fusedjointsshallremainabovethebasematerial
surface.
(5)Forsidewall-fusedjoints,thereshallbethree
beads:ameltbeadaroundthesaddlebase,amain
(header)pipemeltbead,andabeadonthemain
(header)fromtheedgeoftheheatingtool.Thesaddle
andmain(header)meltbeadsshouldberoundedand
ofasizerecommendedbythefittingmanufacturer.
Theheaterbeadshouldbevisibleallaroundthefitting
basebutmaybeseparatefromthemain(header)pipe
meltbead,dependingontheshapeoftheheater[see
FigureQF-462(b)].
(6)Fusedjointsshallnotdisplayvisibleangular
misalignment,andforbutt-fusedjoints,outsidediameter
mismatchshallbelessthan10%ofthenominalwallthick-
ness.
(7)ThedatarecordfortheFPSorfusingoperator
performancequalificationtestshallbereviewedand
comparedtotheFPSorSFPStoverifyobservanceof
thespecifiedvariablesappliedwhencompletingthe
fusedtestjoint.
(b)ElectrofusionAssemblies
(1)Thereshallbenovisibleevidenceonexternaland
accessibleinternalsurfacesofcracks,excessinternal(I.D.)
meltcausedbyoverheating,fittingmalfunction,orincom-
pletefusion.Maximumfit-upgap,ormaximummisalign-
mentandout-of-roundness,shallbewithinFPSorMEFPS
limits.
(2)ThedatarecordfortheFPSorfusingoperator
performancequalificationtestshallbereviewedand
comparedtotheFPSorMEFPStoverifyobservanceof
thespecifiedvariablesappliedwhencompletingthe
fusedtestjoint.
(c)SectionedElectrofusionJoints. Voidsduetotrapped
airorshrinkageduringthecoolingprocessareacceptable
onlyifroundorellipticalinshapewithnosharpcorners,
andprovidedtheymeetthefollowingrequirements[see
FigureQF-468, illustrations(a)and(b)].
(1)Individualvoidsshallnotexceed10%ofthe
fusionzonelength.
(2)Multiplevoidsshallnotexceedacombinedtotal
of20%ofthefusionzonelength.
(3)Whenvoidsaredetected,additionalsectionsor
examinationsshallbemadetoverifythatthevoiddoesnot
followadiametricpathconnectingwiththepressure-
containingareaofthejoint.[SeeFigureQF-466, illustra-
tion(c).]
QF-142PRESSURETESTS
QF-142.1ElevatedTemperatureSustainedPressure
Tests—ButtorSidewallFusing.Thesetestsassess
theresistancetoslowcrackgrowthofthefusedjoint.
QF-142.1.1TestCoupons.
(a)Fusionjointtestcouponsshallbemadewith
minimumofNPS8(DN200)DR11pipeorthe
maximumsizetobefused,whicheverisless.
NOTE:DimensionRatio(DR)=OutsideDiameter÷Minimum
Thickness.
(b)Thecompletedtestcouponsshallcontainpipeon
eithersideofthebuttorsidewalljointwithaminimum
lengthof1.5timesthejoint(header)outsidediameteror
12in.(300mm),whicheverisgreater,fromthefusedjoint
tofree-endclosuresontheendsoftheassembly.
(c)Thetestingshallbeperformedinaccordancewith
ASTMD3035orASTMF714forpipe,orASTMF905for
saddlefittings,asapplicable.
(d)Manualbutt-fusingjointtestcouponsshallbemade
withamaximumofNPS6(DN150)DR11pipeorthe
maximumsizetobefused,whicheverisless.
QF-142.1.2TestConditions.
(a)TestTemperature.Alltestsshallbeconductedat
176°F±4°F(80°C±2°C).
(b)TestPressure.Theassembliesaretobesubjectedto
pipefiberstressesasfollows:
(1)PE2708material:580psi(4.0MPa)for1,000hr
or670psi(4.6MPa)for170hr
(2)PE3608material:580psi(4.0MPa)for1,000hr
or670psi(4.6MPa)for170hr
(3)PE4710material:660psi(4.5MPa)for1,000hr
or750psi(5.2MPa)for200hr
QF-142.1.3TestProcedure. Elevatedtemperature
sustainedpressuretestsshallbeperformedinaccordance
withASTMD3035orASTMF714forpipe,orASTMF905
forsaddlefittings.
QF-142.1.4AcceptanceCriteria. Anyfailureswithin
thespecifiedtimeperiodsshallbeofthepipe,independent
ofthejoint.Withoneductilepipefailure,theaveragetime
beforefailureforallthreespecimensshallnotbelessthan
thespecifiedtime.Ifmorethanoneductilepipefailure
occursatthehigherpressure,thepressureofthetest
maybereducedandrepeateduntil1,000-hrresults
areobtained.Anybrittlefailuresshallnecessitatenew
testsusingdifferentpipe.
QF-142.2ElevatedTemperatureSustainedPressure
Test—Electrofusion.Thesetestsassesstheresistance
toslowcrackgrowthatpointsofstressconcentrationdue
toelectrofusionfittingdesign.
ASMEBPVC.IX-2023
298

QF-142.2.1TestCoupons. Fourtestcouponsshallbe
preparedandconditionedinaccordancewithASTM
F1055.PipematerialPEdesignationshallnotbeless
thantheelectrofusionfitting.
QF-142.2.2TestConditions. Theassembliesaretobe
subjectedtopipefiberstressesasfollows:
(a)Temperature. Alltestsshallbeconductedat176°F±
4°F(80°C±2°C).
(b)TestPressure. Theassembliesaretobesubjectedto
pipefiberstressesasfollows:
(1)PE2708pipematerial:580psi(4.0MPa)for
1,000hror670psi(4.6MPa)for170hr
(2)PE3608pipematerial:580psi(4.0MPa)for
1,000hror670psi(4.6MPa)for170hr
(3)PE4710pipematerial:660psi(4.5MPa)for
1,000hror750psi(5.2MPa)for200hr
QF-142.2.3TestProcedure. Elevatedtemperature
sustainedpressuretestingshallbeperformedinaccor-
dancewithASTMF1055.
QF-142.2.4AcceptanceCriteria. Anyfailureswithin
thespecifiedtimeperiodsshallbeofthepipe,independent
ofthefittingorjoint,andshallbeofa“brittle”typepipe
failure,not“ductile.”Ifductilepipefailureoccursatthe
higherpressure,thepressureofthetestmaybereduced
andrepeateduntileither1,000-hrresultsareobtainedor
pipebrittlefailuresareachieved.
QF-142.3MinimumHydraulicBurstPressure.This
testassessestheshort-termburstcapacityofthefused
jointinordertoidentifyanyfundamentalweaknesses
intheintegrityoftheassembly.Thistestshallbe
performedinaccordancewithASTMD1599.
QF-142.3.1TestCoupons.
(a)Electrofusion.Fourbursttestcouponsshallbe
preparedandconditionedinaccordancewithASTM
F1055.PipematerialPEclassificationshallnotbeless
thantheelectrofusionfitting.
(b)ButtFusing.Fourbursttestcouponsshallbe
preparedandconditionedinaccordancewiththehydro-
staticbursttestrequirementsofASTMD3035.
QF-142.3.2TestConditions.
(a)TestTemperature.Thetestshallbeperformedat
73°F±4°F(23°C±2°C).
(b)TestPressure.Theminimumhydraulicburstpres-
sureofthetestcouponshallnotbelessthanthatrequired
toproducethefollowingfiberstressinthepipe:
(1)PE2708pipematerials:2,520psi(17.4MPa)
(2)PE3608pipematerials:2,520psi(17.4MPa)
(3)PE4710pipematerials:2,900psi(20MPa)
QF-142.3.3TestProcedure. Thecouponsshallbe
testedinaccordancewithASTMD1599.
QF-142.3.4AcceptanceCriteria. Theassemblyshall
notfailintheelectrofusionfittingorfusedjoint.
QF-143BENDTESTS
Thesetestsaredesignedtoimpartbendingstressestoa
fusedplasticspecimentoevaluatethesoundnessofthe
fusedjoint.
QF-143.1Reverse-BendTest(RBT).Thistestisforbutt
orsidewallfusionjointsofPEpipewithawallthickness
approximately1in.(25mm)orless,butmaybeusedfor
thickerpipe.
QF-143.1.1TestSpecimens. Reverse-bendtestspeci-
mensshallbecuttoaminimumwidthof1.5timesthe
testcouponthicknessfortestingandremovedas
showninFigureQF-463, illustration(a)or(c).
QF-143.1.2TestConditions—TestTemperature. The
reversebendtestshallbeconductedatatemperature
between60°Fto80°F(16°Cto27°C).
QF-143.1.3TestProcedure.
(a)Onetestspecimenshallbebenttoplacetheoutside
surfaceofthejointintension.Forbuttfusion,anadditional
testspecimenshallbebenttoplacetheinsidesurfaceof
thejointintension.
(b)Thebendingprocessshallensuretheendsofthe
specimensarebroughtintocontactwithoneanother.
(c)Testingshallbeperformedinaccordancewith
ASTMF2620,AppendixX4.
QF-143.2GuidedButtFusionSide-BendTest(GSBT).
ThistestislimitedtobuttfusionjointsofPEpipewitha
wallthicknessgreaterthan1in.(25mm).
QF-143.2.1TestSpecimens.
(a)Testspecimensshallberemovedfromthefused
testcouponwiththeupsetbeadremainingonthe
outsideandinsidesurfaces.Astriphavingthefullthick-
nessofthetestcouponandmeasuringapproximately1
in.(25mm)wideand18in.(450mm)longshallbe
removedalongthelongitudinalaxisofthetestcoupon,
withthejointlocatedintheapproximatecenterofthe
strip.SeeFigureQF-463, illustration(b).
(b)Planeormachinethewidthto0.25in.±0.02in.
(6.4mm±0.5mm)withasmoothfinishonboth
sides.SeeFigureQF-463, illustration(c).
QF-143.2.2TestConditions.
(a)TestTemperature.ConducttheGSBTat60°Fto80°F
(16°Cto27°C).
(b)TestSpeed.Theelapsedtimeofthetestshallbe
between30secand60sec.
ASMEBPVC.IX-2023
299

QF-143.2.3GuidedSide-BendTestProcedure.
QF-143.2.3.1Jigs.
Testspecimensshallbebentin
atestjigconsistingofafixedmemberwithtwosupport
mandrelstosupportthespecimenwhileforceisapplied.
Thehydraulicram,usedtosupplythebendingforce,is
alsoattachedtothejigandhasaramattachedtothe
endofthecylinder.SeeFigureQF-463, illustration(d).
QF-143.2.3.2BendProcedure. Positiontheside-
bendtestspecimenwiththebuttfusionjointinthe
centerofthejigbetweenthesupportmandrels.Position
theraminthecenterofthefusionbeadonthetest
specimen.Movetheramslowlyuntilitmakescontact
withthetestspecimenandispositionedinlinewith
thefusionbead.Begintoapplythebendingforceand
deflecttheside-bendtestspecimen.Thetestiscomplete
whenthetestspecimenisbenttoamaximumincluded
angleof90degasshowninFigureQF-463, illustration(d)
oruntilfailureoccurs.
Theconvexsurfaceofthespecimenshallbevisually
examinedaftertesting,withthespecimeneitherinor
removedfromthetextfixture.Duetospecimenspring-
back,examinationimmediatelyafterremovalfromthe
fixtureisrecommended.
QF-143.2.3.3AcceptanceCriteria. Thetestspecimen
shallnotbreakorexhibitcrackingorfracturesonthe
convex(outer)surfaceatthefusioninterfaceduring
thistest.
QF-143.3ElectrofusionBendTest.Thistestisusedto
assesstheintegrityofelectrofusioncouplingsandfittings.
ItisusedforcouplingsandfittingsNPS12(DN300)and
greater.
QF-143.3.1TestSpecimens.
(a)SocketFittings(FullWrap). Testcouponsshallbe
preparedandconditioned,withfourspecimenscutfrom
eachhalfofthefittingandmachinedto
1

16
in.(1.5mm)
widthinaccordancewithASTMF1055.SeeFigureQF-467,
illustration(a).
(b)Saddles(NotFullWrap). Thestackandbottomhalf
ofthepipeshouldberemoved.Thesaddleshallbecutin
halfinthetransversedirectionandtheneachhalfcutagain
inthelongitudinaldirectionasshowninFigureQF-467,
illustration(c).Specimenslicesshallberemovedatallfour
cutedgesandmachinedto
1

16
in.(1.5mm)widththrough
thefusionbaseofthesaddlefitting.Twodiagonalquarters
shallbeusedforthetransversespecimens,andthetwo
remainingdiagonalquartersshallbeusedforthelongi-
tudinalspecimens.SeeFigureQF-467, illustration(c).
QF-143.3.2TestConditions—TestTemperature.The
testshallbeperformedat73°F±4°F(23°C±2°C),unless
otherwisespecified.
QF-143.3.3TestProcedure.
(a)Thecross-sectionofthemachinedspecimensshall
beinspectedforvisualdiscontinuities.
(b)Each
1

16
in.(1.5mm)widespecimenshallbeplaced
inaclampsuchthatthebondlinebetweenthefittingand
thepipeislocatedattheplaneofbending.Theentire
lengthofthebondistobeflexed90degalongthe
planeofbending—fourtimesinbothdirections.See
FigureQF-467, illustration(b).
QF-143.3.4AcceptanceCriteria.
(a)Thecross-sectionofthemachinedspecimensshall
meetthecriteriaofQF-141.1.
(b)Separationofthespecimenalongthefusionline
constitutesfailureofthespecimen.Minorseparationat
theouterlimitsofthefusionheatsourceandvoids
betweenthewiresareacceptableaslongasthevoids
donotexceedthelimitsofQF-141.1. Ductilefailurein
thepipe,fitting,orthewireinsulationmaterialisaccept-
ableaslongasthebondinterfaceremainsintact.
QF-144TENSILETESTS
QF-144.1High-SpeedTensileImpactTest(HSTIT).
Thistestmethodisdesignedtoimparttensileimpact
energytoabutt-fusedpolyethylene(PE)pipespecimen
toevaluateitsductility.
QF-144.1.1TestSpecimens.
(a)Testspecimensshallberemovedfromthebutt-
fusedtestcouponwiththeupsetbeadremainingon
theoutsidediameterandinsidediametersurfaces.Speci-
mensfortestcouponthicknesseslessthanorequalto2
in.(50mm)shallincludethefullwallthicknessofthe
fusedjoint.Specimensfortestcouponthicknesses2in.
(50mm)andgreatermaybecutintoapproximately
equalstripsbetween1in.(25mm)and2.5in.(64
mm)widefortestingwitheachsegmenttestedindividu-
allysuchthatthefullcrosssectionistested.
(b)Testspecimensshallbepreparedbymachiningto
achievethedimensionsgiveninFigureQF-464, withthe
upsetbeadsremainingintact.
(c)Asmoothsurfacefreeofvisibleflaws,scratches,or
imperfectionsshallremainonallfacesofthereducedarea
withnonotches,gouges,orundercutsexceedingthe
dimensionaltolerancesgiveninASTMF2634.Marks
leftbycoarsemachiningoperationsshallberemoved,
andthesurfacesshallbesmoothedwithabrasive
paper(600gritorfiner)withthesandingstrokes
appliedparalleltothelongitudinalaxisofthetest
specimen.
(d)Markthetestspecimensintheareaoutsidethehole
withtheapplicablespecimenidentificationusingaperma-
nentindeliblemarkerofacontrastingcolor,oranetching
tool.
ASMEBPVC.IX-2023
300

(e)Conditionthetestspecimensat73°F±4°F
(23°C±2°C)fornotlessthan1hrjustpriortoconducting
thetest.
QF-144.1.2TestConditions.
(a)TestTemperature.Conductthehighspeedimpact
testatatemperatureof73°F±4°F(23°C±2°C)unless
otherwisespecified.
(b)TestSpeed.Thespeedoftestingshallbeinaccor-
dancewithTableQF-144.2withatestingspeedtolerance
of+0.5in./secto−1in./sec(+13mm/sto−25mm/s).
QF-144.1.3TestProcedure.
(a)Setupthemachineandsetthespeedoftestingto
theratespecifiedinQF-144.1.2(b).
(b)Pineachspecimenintheclevistoolingofthetesting
machine,aligningthelongaxisofthespecimenandthe
toolingwiththepullingdirectionofthetestmachine.
(c)Testingshallbeperformedinaccordancewith
ASTMF2634.
(d)Evaluatethetestspecimenfracturetodetermine
themodeoffailure,andnotetheresultsinthetest
recordandonthePQR.
QF-144.1.4TestRecord. TheHSTITshallbedocu-
mentedbypreparingatestrecordthatincludesthe
followinginformation:
(a)testingspeedapplied
(b)testingtemperatureobserved
(c)specimendimensionverification
(d)testmachinecalibrationdata
(e)testspecimenidentification
(f)testdate
(g)testoperatoridentification
(h)testingfailuremodeandacceptanceorrejection
(i)testequipmentidentification
QF-144.1.5AcceptanceCriteria. Failuremodeshallbe
ductile,withnoevidenceofbrittlefailureatthefusion
interface.SeeFigureQF-465, illustrations(a)through
(d),forevaluationexamples.
QF-144.2ElectrofusionAxialLoadResistanceTest.
Thistestassessestheabilityofasocket-typeelectrofusion
jointtotransmitaxialloads.
QF-144.2.1TestSpecimens.
(a)Exceptaspermittedin(b),tensiletestcouponsand
specimensshallbepreparedandconditionedinaccor-
dancewithASTMF1055.Tensiletestsshallbemade
onacompleteelectrofusiontestassembly,noton
specimenstrapscutfromthecoupon.
(b)Whenequipmenttoconductfullscaletensiletests
ontestcouponslargerthanNPS8(DN200)isnotavail-
able,testingforresistancetoaxialloadsshallbe
conductedthroughonepeeltestplusoneshort-term
hydrostaticpressuretestforeachmaterialtemperature.
(1)PeelTest.Fourspecimensshallbecutatapproxi-
mately90-degintervalsfromeachtestcouponand
preparedasshowninFigureQF-469, illustration(a).
(2)Short-TermHydrostaticTest.Toensureaxial
forcesareexertedonlyonthefusionjoint,test
couponsshallbeconstructedusingflangedorcapped
pipesegmentssuchthatessentiallynoexposed(unrein-
forced)pipeprotrudesoutsideofthesocket.See
FigureQF-470.
QF-144.2.2TestConditions.
(a)TestTemperature. Thetestsshallbeperformedat
73°F±4°F(23°C±2°C).
(b)PeelTestSpeed. Peeltestloadshallbeappliedata
rateof0.2in./min(5mm/min).
QF-144.2.3TestProcedure.
(a)TensileTest.Testingshallbeperformedinaccor-
dancewithASTMF1055,usingthetestapparatus
describedinASTMD638.
(b)PeelTest.Specimensshallbesubjectedtoatensile
loadasshowninFigureQF-469, illustration(b)until
failureasshowninFigureQF-469, illustration(c).
(c)Short-TermHydrostaticTest.
(1)TestcouponsconstructedtoQF-144.2.1(b)(2)
shallbefilledwithwater.
(2)Thetestcouponshallbepressurizedusingthe
apparatusdescribedinASTMD1599tothepressure
showninTableQF-144.2.3ataratesufficientto
achievethefulltestpressurewithin60sec.
(3)Thetestcouponshallremainunderthefulltest
pressureforaperiodofnotlessthan5min.
TableQF-144.2
TestingSpeedRequirements
WallThickness TestingSpeed
≤1.25in.(32mm) 6in./sec(150mm/s)
>1.25in.(32mm) 4in./sec(100mm/s)
TableQF-144.2.3
PipeMaterial TestPressure
PE2708 630psig(4.3MPa)
PE3608 725psig(5.0MPa)
PE4710 725psig(5.0MPa)
ASMEBPVC.IX-2023
301

QF-144.2.4AcceptanceCriteria.
(a)TensileTest.TestcouponslessthanorequaltoNPS
8(DN200)shallnotfailinthepipeorfittingwhen
subjectedtoatensilestressthatcausesthepipeto
yieldtoanelongationof25%orgreater,orcausesthe
pipetobreakoutsidethejointarea.Yieldingshallbe
measuredonlyinthepipe,independentofthefitting
orjoint.
(b)PeelTest.SpecimensforsizeslargerthanNPS8(DN
200)shallnotseparateinthefusioninterfaceinabrittle
manner.Ductilefailurebetweenwires,tearingthrough
thecouplingwallorpipewall,andupto15%separation
attheouterlimitsoftheheatsourcearepermitted[see
FigureQF-469, illustration(c)forexamples].
(c)Short-TermHydrostaticTest.Testcouponsforsizes
largerthanNPS8(DN200)shallnotruptureorbreak
throughthefittingorfusioninterface.
QF-145CRUSHANDIMPACTRESISTANCETESTS
Crushtestsandimpactresistancetestsassesstheinteg-
rityofelectrofusionandsidewallfusionjoints.
QF-145.1CrushTest.Crushtestsareusedtoevaluate
socket-type(full-wrap)orsaddle-type(notfullwrap)
electrofusionjoints.Thesearerequiredforpipesizes
lessthanNPS12(DN300),andmaybeusedasanalter-
nativetotheelectrofusionbendtestforpipesizesNPS12
(DN300)andgreater.
QF-145.1.1TestSpecimens.
(a)SocketType. Socket-typejointcrushtestcoupons
shallbepreparedandconditioned,andspecimens
removedbycuttinginhalflongitudinallyatthefusion
zonesinaccordancewithASTMF1055.See
FigureQF-466, illustration(a).
(b)SaddleType. Saddle-typecrushtestcouponsshall
beprepared,conditionedandtestedinaccordancewith
ASTMF1055.SeeFigureQF-466, illustration(b).
QF-145.1.2TestConditions—TestTemperature. The
testshallbeperformedat73°F±4°F(23°C±2°C),unless
otherwisespecified.
QF-145.1.3TestProcedure.
(a)SocketType. Crushtestingshallbeperformedon
eachendhalfbyclampingatadistanceof1
1

4
in.
(32mm)fromtheoutermostwiresandclosingthe
jawsuntiltheinnerwallsofthepipemeetinaccordance
withASTMF1055.SeeFigureQF-466, illustration(b).
(b)SaddleType. Crushtestingshallbeperformedby
placingthejawsofaviceorhydraulicpresswithin
1

2
in.(13mm)oftheedgesofthesaddleandtightening
untiltheinnerwallsofthepipemeet,inaccordancewith
ASTMF1055.SeeFigureQF-466, illustration(c).
QF-145.1.4AcceptanceCriteria. Separationofthe
fittingfromthepipeatthefusioninterfaceconstitutes
afailureofthetest,exceptthatminorseparationat
theouterlimitsofthefusionheatsourceupto15%of
thefusionlengthisacceptable.Ductilefailureinthe
pipe,fitting,orthewireinsulationmaterial,isacceptable
aslongasthebondinterfaceremainsintact.
QF-145.2ImpactResistanceTest.Impacttestsare
usedtoevaluatesaddle-typebranchconnectionjoints.
QF-145.2.1TestSpecimens. Impacttestspecimens
shallbepreparedandconditionedinaccordancewith
ASTMF1055forelectrofusionorASTMF905forsidewall
fusion.
QF-145.2.2TestConditions—TestTemperature. The
testshallbeperformedat73°F±4°F(23°C±2°C).
QF-145.2.3TestSpecimens. Thejointbranchconnec-
tionshallbeimpactedinadirectionparalleltotheaxisof
thepipewithaforcesufficienttobreakthebodyorother
portionofthespecimen.Thetestdeviceandmethodof
testingshallbeinaccordancewithASTMF905.
QF-145.2.4AcceptanceCriteria. Breakageshall
initiateoutsideofthejointareawithoutfailureofthe
joint.Forelectrofusionsaddles,separationinthe
fusioninterfacegreaterthan15%ofthefusionlength
attheouterlimitsofthefusionheatsourceconstitutes
failureofthetest.
ASMEBPVC.IX-2023
302

ARTICLEXXII
FUSINGPROCEDUREQUALIFICATIONS
QF-200?23? GENERAL
AFusionProcedureSpecification(FPS),Standard
FusingProcedureSpecification(SFPS),orManufacturer
QualifiedElectrofusionProcedureSpecification
(MEFPS)providesdirectiontothefusingoperatorfor
makingproductionfusedjoints.
QF-201PROCEDUREQUALIFICATION
QF-201.1?23? FusingProcedureSpecification(FPS).
(a)FusingProcedureSpecification(FPS).AFPSisa
writtenfusingprocedurethatisqualifiedbyanorganiza-
tioninaccordancewiththerulesofthisSection.
(b)ContentsoftheFPS.ThecompletedFPSshall
addressalloftheessentialandnonessentialvariables
foreachfusingprocessusedintheFPS.Theessential
andnonessentialvariablesforfusingareoutlinedin
TableQF-254forbuttfusing,TableQF-255forelectrofu-
sion,andTableQF-256formanualbuttfusing,andTable
QF-257forsidewallfusing.TheFPSmayincludeanyother
informationthatmightbehelpfulinmakingafusedjoint.
(c)Changes.Changesinthedocumentedessentialvari-
ablesrequirerequalificationoftheFPS.
QF-201.2
?23? StandardFusingProcedureSpecifications.
(a)StandardFusingProcedureSpecification(SFPS)
(1)Prerequisites.AnSFPSisafusingprocedurespec-
ificationthatcontainsacceptablepolyethylene(PE)fusing
variablesbasedonstandardindustrypracticeandtesting
asdefinedinASTMF2620.AnSFPSmaybeusedfor
productionfusingbyorganizationswithoutfurtherquali-
fication.
(2)ContentsoftheSFPS.TheSFPSshalladdressallof
theessentialandnonessentialvariableslistedin
TableQF-254, TableQF-256, orTableQF-257. Inaddition,
theSFPSshallincludealloftheconditionslistedin
QF-221.1orQF-221.2, asapplicable.Theorganization
mayincludeanyadditionalinformationintheSFPS
thatmaybehelpfulinmakingafusedjoint.
(3)Changes.Changesintheessentialvariablesor
conditionsofanSFPSbeyondthelimitsspecifiedin
QF-221.1, QF-221.2, TableQF-254, TableQF-256, or
TableQF-257shallrequirethequalificationofanFPS.
(b)ManufacturerQualifiedElectrofusionProcedure
Specification(MEFPS)
(1)Prerequisites.AnMEFPSisanelectrofusion
procedurethathasbeenqualifiedbyanelectrofusion
fittingmanufacturer,basedonstandardindustrypractice
inaccordancewiththePlasticsPipeInstitute(PPI)
MAB-02andASTMF1290,fortheelectrofusionfitting
manufacturer’sspecificelectrofusionjointdesign,and
qualifiedbytheelectrofusionfittingmanufacturerin
accordancewithASTMF1055todefinetherangesfor
theessentialvariablesidentifiedinTableQF-255. An
MEFPSmaybeusedforproductionbyorganizations
fusingthesameelectrofusionfittingmanufacturer’squal-
ifiedfittingswithoutfurtherqualification.
(2)ContentsoftheMEFPS.TheMEFPSshalladdress
allessentialandnonessentialvariableslistedin
TableQF-255. Inaddition,theMEFPSshallincludeall
oftheconditionslistedinQF-222.1. Themanufacturer
orcontractormayincludeanyadditionalinformation
intheMEFPSthatmaybehelpfulinmakingafusedjoint.
(3)Changes.Changesintheessentialvariablesor
conditionsofanMEFPSbeyondthelimitsspecifiedin
QF-222.1orTableQF-255shallrequirethequalification
ofanFPS.
QF-201.3FormatoftheFPS,SFPS,orMEFPS.The
informationrequiredtobeincludedintheFPS,SFPS,
orMEFPSmaybeinanyformat,writtenortabular,to
fittheneedsofeachorganization,providedallessential
andnonessentialvariablesoutlinedinQF-250, andthe
parametersspecifiedinQF-220asapplicable,are
addressed.FormsQF-482(a), QF-482(b), andQF-483(c)
havebeenprovidedassuggestedformatsforpreparing
theFPS,SFPS,orMEFPS.
QF-201.5
?23?AProcedureQualificationRecordisdefined
asfollows:
(a)ProcedureQualificationRecord(PQR).Arecordof
therangeofessentialvariablesdocumentedduringthe
fusingofthetestcoupon(s)andtheresultsoftherequired
visualandmechanicaltestsperformed.
(b)ContentsofthePQR.ThecompletedPQRshalldocu-
menttherangesforallessentialvariableslistedinQF-250
duringthefusingofthetestcoupon(s).Nonessentialvari-
ablesobservedduringthefusingofthetestcouponmaybe
recordedattheorganization’soption.
ASMEBPVC.IX-2023
303

ThePQRshallbecertifiedbytheorganizationtobea
trueandaccuraterecordofthevariablesrecordedduring
thefusingofthetestcoupon(s)andtherequiredexam-
inationsandtestsspecifiedinQF-140.
(c)ChangestothePQR.ChangestothePQRarenot
permittedexceptfordocumentededitorialcorrections
orthoseutilizingaddenda.Anorganizationmaybe
permittedtofusematerialsotherthanthoseusedin
theFPSqualification,whenthealternativematerials
areassignedtoamaterialgroupinginQF-420whose
fusingpropertiesareconsideredessentiallyidentical.
Additionalinformationmaybeincorporatedintoa
PQRatalaterdate,providedtheinformationissubstan-
tiatedashavingbeenassociatedwiththeoriginalquali-
ficationconditionsbylabrecordsorsimilardocumented
evidence.AllchangestoaPQRrequirerecertification
(includingdate)bytheorganization.
(d)FormatofthePQR.Theinformationrequiredtobe
inthePQRmaybeinanyformat,writtenortabular,tofit
theneedsofeachorganization,providedallessentialvari-
ablesoutlinedinQF-250areincluded.Thetypesand
numberoftests,andtheirresultsshallbereportedon
thePQR.FormsQF-483(a), QF-483(b), andQF-483(c)
havebeenprovidedassuggestedformatsforpreparing
thePQR.Whenrequired,additionalsketchesorinforma-
tionmaybeattachedorreferencedtorecordtherequired
variables.
(e)AvailabilityofthePQR.PQRssupportinganFPStobe
usedinproductionfusingoperationsshallbeavailablefor
review.
(f)MultipleFPSsWithOnePQRorMultiplePQRsWith
OneFPS.SeveralFPSsmaybepreparedfromthequalifica-
tiontestdatarecordedonasinglePQR.AsingleFPSmay
encompasstherangeofqualifiedessentialvariables
representedbymultiplePQRssupportingthequalified
combinationandrangeofessentialvariables.
QF-202TYPEOFTESTSREQUIRED
QF-202.1MechanicalTests.
QF-202.1.1 High-SpeedTensileImpactTest(HSTIT).
Specimensshallbepreparedforbuttfusionjointsinaccor-
dancewithFigureQF-464andtestedinaccordancewith
QF-144.1.1. Theminimumnumberofspecimensrequired
tobetestedshallbeasfollows:
(a)forpipespecimenslessthan4NPS(DN100):not
lessthantwospecimensremovedfromfusedpipetest
couponsatintervalsofapproximately180degapart
(b)forpipespecimens4NPS(DN100)andgreater:not
lessthanfourspecimensremovedfromfusedpipetest
couponsatintervalsapproximately90degapart
(c)otherproductforms:notlessthantwospecimens
removedfromfusedtestcoupons
QF-202.1.2 Elevatedtemperaturesustainedpressure
testsforbuttfusing,sidewallfusing,andelectrofusion
shallbeconductedinaccordancewithQF-142.1or
QF-142.2, asapplicable.
QF-202.1.3 Minimumhydraulicburstpressuretests
forelectrofusionorbutt-fusingjointsshallbeperformed
inaccordancewithQF-142.3.
QF-202.1.4 Bendtestsshallbeperformedinaccor-
dancewithQF-143.3forelectrofusionjoints.
QF-202.1.5 Electrofusionaxialloadresistancetests
(tensileorpeelplusshort-termhydrostatic)shallbe
performedinaccordancewithQF-144.2.
QF-202.1.6 Electrofusioncrushtestsshallbe
performedinaccordancewithQF-145.1.
QF-202.1.7 Electrofusionandsidewallfusionimpact
resistancetestsshallbeperformedinaccordancewith
QF-145.2.
QF-202.1.8 IfanytestspecimenrequiredbyQF-202.1
failstomeettheapplicableacceptancecriteria,thetest
couponshallbeconsideredunacceptable.
(a)Whenitcanbedeterminedthatthecauseoffailure
isnotrelatedtoincorrectlyselectedorappliedfusingvari-
ables,additionaltestspecimensmayberemovedasclose
aspracticabletotheoriginalspecimenlocationtoreplace
thefailedtestspecimens.Ifsufficientmaterialisnotavail-
able,anothertestcouponmaybefusedutilizingthe
originalfusingparameters.
(b)Whenithasbeendeterminedthatthetestfailure
wascausedbyoneormoreincorrectlyselectedorapplied
essentialvariable(s),anewtestcouponmaybefusedwith
appropriatechangestothevariable(s)thatweredeter-
minedtobethecausefortestfailure.
(c)Whenitisdeterminedthatthetestfailurewas
causedbyoneormorefusingconditionsotherthanessen-
tialvariables,anewsetoftestcouponsmaybefusedwith
theappropriatechangestothefusingconditionsthatwere
determinedtobethecausefortestfailure.Ifthenewtest
passes,thefusingconditionsthatweredeterminedtobe
thecausefortheprevioustestfailureshallbeaddressed
bytheorganizationtoensurethattherequiredproperties
areachievedinallfusedproductionjoints.
QF-202.2TestingProceduretoQualifytheFPS.
QF-202.2.1PolyethyleneButtandSidewallFusing.
(a)ButtFusing
(1)Forpipehavingawallthicknesslessthanor
equalto2in.(50mm),onesetoftestcouponsshall
bepreparedusinganythicknessofpipelessthanor
equalto2in.(50mm)butnotlessthanone-halfthethick-
nessofthepipetobefusedinproduction.
ASMEBPVC.IX-2023
304

(2)Forpipehavingwallthicknessgreaterthan2in.
(50mm),onesetoftestcouponsshallbepreparedusing
pipeofatleast2in.(50mm)thicknessbutnotlessthan
one-halfthemaximumthicknesstobefusedinproduction.
(3)Butt-fusingjointcouponsshallbepreparedin
accordancewiththeFPSusingthefollowingcombinations
ofheatertemperaturerangesandinterfacialpressure
ranges:
(-a)highheatersurfacetemperatureandhigh
interfacialpressure,fivejoints
(-b)highheatersurfacetemperatureandlow
interfacialpressure,fivejoints
(-c)lowheatersurfacetemperatureandhigh
interfacialpressure,fivejoints
(-d)lowheatersurfacetemperatureandlowinter-
facialpressure,fivejoints
(4)Eachfusedjointshallbesubjecttovisualexam-
inationperQF-141.
(5)Twofusedjointsofeachcombinationshallbe
evaluatedusingtheelevatedtemperaturesustainedpres-
suretestsforpipespecifiedinQF-142.1.
(6)Threefusedjointsofeachcombinationdescribed
in(3)shallbeevaluatedusingthehighspeedtensile
impacttest(HSTIT)specifiedinQF-144.1.
(b)SidewallFusing
(1)Sidewall-fusingcouponsshallbepreparedfor
eachdesignofsaddle-fittingbaseinaccordancewith
theFPSusingthespecifiedheatertemperaturesandpres-
sures.SuccessfultestingshallqualifytheFPSforactual
heatertemperatureapplied±10°F(±5.5°C)andfor
actualgagepressuresapplied±10%.
(2)Twofusedjointsforeachdesignofsaddle-fitting
baseshallbeevaluatedusingtheelevatedtemperature
sustainedpressuretestsspecifiedinQF-142.1.
(3)Twofusedjointsforeachdesignofsaddle-fitting
baseshallbeevaluatedbythesidewallfusionimpactresis-
tancetestspecifiedinQF-145.2.
QF-202.2.2PolyethyleneElectrofusion.
(a)Fittingsshallbeselectedatrandominthequantities
showninTableQF-202.2.2, alongwithpipesegments
neededformakingthefusedcoupons,andallmaterial
shallbepreparedandconditionedforaminimumof
16hrimmediatelypriortofusing,asfollows:
(1)halfatthelowestmaterialtemperaturetobe
fusedinproduction,andhalfatthehighestmaterial
temperaturetobefusedinproduction
(2)twolow-temperaturecouponsfusedinthelow-
temperatureenvironmentandtwohigh-temperature
couponsfusedinthehigh-temperatureenvironment
arerequiredforeachofthefollowingtests,which
shallbeperformedatthetemperaturesspecifiedin
QF-100foreachtest:
(-a)QF-202.1.2
(-b)QF-202.1.3
(-c)eitherQF-202.1.4orQF-202.1.6
(-d)forsocketconnectionsQF-202.1.5
(-e)forsaddleconnections,QF-202.1.7when
requiredbycontractdocuments
(b)Failureofoneofthefourspecimenstestedineach
testiscauseforfailure.Alternatively,fouradditional
specimensmaybeproducedatthefailedspecimen’s
joiningtemperatureandretested.Failureofanyof
thesefouradditionalspecimensconstitutesfailureof
thetest.
ASMEBPVC.IX-2023
305

TableQF-202.2.2
ElectrofusionProcedureQualificationTestCouponsRequired
TestProcedure Reference
Socket
≤NPS8
(≤DN200)
Socket
>NPS8
<NPS12
(>DN200
<DN300)
Socket
≥NPS12
(≥DN300)
Saddle
<NPS12
(<DN300)
[Note(1)]
Saddle
≥NPS12
(≥DN300)
[Note(1)]
ConditioningandFusingTemperature[Note(2)]
LowHighLowHighLowHighLowHighLowHigh
Elevatedtemperaturesustainedpressure
test
QF-202.1.2/QF-142.1 2 2 2 2 2 2 2 2 2 2
Minimumhydraulicquickburstpressure
test
QF-202.1.3/QF-142.2 2 2 2 2 2 2 2 2 2 2
Jointintegritycrushtest[Note(3)] QF-202.1.6/QF-145.1 2 2 2 2 … … 2 2 … …
Electrofusionbend[Note(3)] QF-202.1.4/QF-143.3 … … … … 2 2 … … 2 2
Electrofusionaxialloadresistance–tensileQF-202.1.5/QF-144.2 2 2 … … … … … … … …
Peeltest QF-202.1.5/QF-144.2.1(b)(1) … … 1 1 1 1 … … … …
Short-termhydrostatic QF-202.1.5/QF-144.2.1(b)(2) … … 1 1 1 1 … … … …
Impactresistance[Note(4)] QF-202.1.7/QF-145.2 … … … … … … 2 2 … …
NOTES:
(1)Sizelistedisthatofthebranchconnection.
(2)Fittingmanufacturershouldbeconsultedpriortofusingoutsideoftheirrecommendedtemperaturerange.
(3)Itispermissibletousespecimenstestedfortheshort-termhydrostatictestorminimumhydraulicquick-burstpressuretestprovidedneither
thejointareanorthepipesegmentneededforcrushingwasapartofthefailuremodeinthequick-burstpressuretest.
(4)Animpactresistancetestisonlyrequiredwhenspecifiedincontractdocuments.
QF-202.2.3PolyethyleneManualButtFusing.
(a)Manualbutt-fusingjointsarelimitedtoNPS6(DN
150)andsmaller.
(b)Jointcouponsshallbepreparedinaccordancewith
theFPSusingthefollowingcombinationsofheater
temperatureranges:
(1)highestheatersurfacetemperature,fivejoints
(2)lowestheatersurfacetemperature,fivejoints
(c)WhentheFPSrequiresverificationofpressureby
torque,thenthehighpressure(verifiedbytorque)andthe
lowpressure(verifiedbytorque)shallbetestedateach
temperatureextreme.
(d)Eachfusedjointshallbesubjecttovisualexamina-
tionperQF-141.
(e)Thefusedjointsshallbetestedusingthehydraulic
burstpressuretestforpipespecifiedinQF-142.3.
(f)Failureofanytestjointiscausefortestfailure.
QF-203LIMITSOFQUALIFIEDPOSITIONSFOR
PROCEDURES
Unlessotherwisespecifiedbythefusingvariables(see
QF-250), aprocedurequalifiedinanypositionshownin
FigureQF-461.2qualifiesforallpositions.Afusing
operatormakingandpassingtheFPSqualificationtest
isqualifiedonlyforthepositiontestedwhenposition
isanessentialvariableforoperatorqualification.(See
QF-301.2).
QF-220STANDARDFUSINGPROCEDURE
SPECIFICATIONS
QF-221STANDARDBUTT-FUSINGPROCEDURE
SPECIFICATION(SFPS)
QF-221.1PipeButtFusingofPolyethylene.Whenthe
fusingprocedureislimitedtothefollowingconditions,
procedurequalificationtestingisnotrequired.Iftheorga-
nizationdeviatesfromtheconditionslistedbelow,proce-
durequalificationtestinginaccordancewithQF-202.2is
required.
(a)ThepipematerialislimitedtoPE2708,PE3608,
andPE4710(seeQF-403.1).
(b)Theaxisofthepipeislimitedtothehorizontalposi-
tion±45deg(seeQF-404.1).
(c)Thepipeendsshallbefacedtoestablishclean,
parallelmatingsurfacesthatareperpendiculartothe
pipecenterlineoneachpipeend,exceptformitered
joints.Whentheendsarebroughttogetheratthedrag
pressure,thereshallbenovisiblegap.
(d)Formiteredbuttfusionjoints,thepipefacesshallbe
atthespecificangletoproducethemiteredjoint.Whenthe
endsarebroughttogetheratthedragpressure,thereshall
benovisiblegap.
(e)Theexternalsurfacesofthepipearealignedto
within10%ofthepipewallthickness(seeQF-402.2).
(f)Appliedpressureduringfusingshallmeetoneofthe
followingrequirements:
ASMEBPVC.IX-2023
306

(1)Forhydraulicbuttfusing,thedragpressureshall
bemeasuredandrecorded.Thetheoreticalfusingpres-
sureshallbecalculatedsothataninterfacialpressureof
60psito90psi(0.41MPato0.62MPa)isappliedtothe
pipeends.Thebutt-fusinggaugepressuresetonthefusing
machineshallbethetheoreticalfusingpressureplusdrag
pressure(seeQF-405.2).
(2)Formanualbuttfusingrequiringtorqueverifica-
tion,thedragtorqueshallbemeasuredandrecorded.The
theoreticalappliedfusingtorqueshallbecalculatedso
thataninterfacialpressureof60psito90psi(0.41
MPato0.62MPa)isappliedtothepipeends.The
torqueappliedduringthefusingprocessshallbethetheo-
reticalappliedfusingtorqueplusthemeasureddrag
torque.
(3)Formanualbuttfusingnotrequiringtorqueveri-
fication,minimumbeadsize(seeFigureQF-221.1) shallbe
usedratherthantorqueorpressuremeasurementsto
verifythatproperpressureisappliedduringfusing.
(g)Theheatersurfacetemperatureshallbe400°Fto
450°F(200°Cto230°C)(seeQF-405.1).
(h)Theinitialheatingshallbeginbyinsertingthe
heaterintothegapbetweenthepipeendsandapplying
thefusingpressureuntilanindicationofmeltisobserved
aroundthecircumferenceofthepipe.Whenobserved,the
pressureshallbereducedtodragpressureandthefixture
shallbelockedinpositionsothatnooutsideforceis
appliedtothejointduringtheheatsoakcycle.
(i)Theendsshallbeheldinplaceuntiltheminimum
beadsizeisformedbetweentheheaterfacesandthepipe
ends,asshowninFigureQF-221.1. For14NPS(DN350)
andlargerpipesizes,theminimumheatsoaktimeof4.5
FigureQF-221.1
RequiredMinimumMeltBeadSize“A” minimum melt bead size is
  required prior to heater removal 
Pipe or fitting Pipe or fitting
H
e
a
t
e
r
Pipe(O.D.),in.(mm)
“A”MinimumMeltBeadSize,
in.(mm)
<2.37(60)
1

32
(1)
≥2.37(60)to≤3.5(89)
1

16
(1.5)
>3.5(89)to≤8.63(219)
3

16
(5)
>8.63(219)to≤12.75(324)
1

4
(6)
>12.75(324)to≤24(610)
3

8
(10)
>24(610)to≤36(900)
7

16
(11)
>36(900)to≤65(1625)
9

16
(14)
ASMEBPVC.IX-2023
307

minperinch(25mm)ofpipewallthicknessshallbe
obtained)(seeQF-405.3).
(j)Aftertheproperbeadsizeisformed,themachine
shallbeopenedandtheheaterremoved.Thepipeend
surfacesshallbesmooth,flat,andfreeofcontamination.
Thepipeendsshallbebroughttogetherandthefusing
pressurereapplied.
(k)Themaximumtimefromseparatingthepipeends
fromtheheateruntilthepipeendsarepushedtogether
shallnotexceedthetimegiveninTableQF-221.2(see
QF-405.4).
(l)Thefusingpressureshallbemaintaineduntilthe
jointhascooled,afterwhichthepipemayberemoved
fromthejoiningmachine.Theminimumcooltimeat
thefusingpressureshallbe11min/in.(26s/mm)of
pipewallthicknessofthethickermember(seeQF-405.5).
QF-221.2?23? SidewallFusingofPolyethylene. Whenthe
fusingprocedureislimitedtothefollowingconditions,
procedurequalificationtestingisnotrequired.Iftheorga-
nizationdeviatesfromtheconditionslistedbelow,proce-
durequalificationtestinginaccordancewith
QF-202.2.1(b)isrequired.
(a)ThepipematerialislimitedtoPE2708,PE3608,
andPE4710.
(b)Thesidewall-fusingtoolshallbecenteredonand
securedtotheheader,andadequatelysupported.
(c)Thematingsurfacesoftheheaderandsaddlefitting
shallbeabradedwitha50-to60-gritutilityclothor
scrapedapproximately0.007in.(0.178mm)deepwith
anonsmearingscrapingdevicetoremoveoxidation
andcontamination.Afterabradingorscraping,the
surfacesshallbecleanedofalldustandresiduewitha
dry,lint-free,nonsyntheticcloth.
(d)Theheatershallbebroughtto500°F(260°C)±10°F
(5.5°C)andcenteredontheheaderbeneaththesaddle
fitting.Theheat-fusingforceandfusingforcearecalcu-
latedbymultiplyingtheprojectedareaofthefittingsaddle
minusholearea(withoutconsideringcurvature)bythe
specifiedinterfacialpressure.
(1)Forbranchconnections≤NPS2
1
/
2
(DN65),the
fittingshallbeimmediatelypressedagainsttheheater
withaheat-fusingforceequaltoaninterfacialpressure
of60psi(0.414MPa)±10%,unlessotherwisespecifiedby
themanufacturerofthefitting.Whenanindicationofmelt
appearsontheheaderattheapexofthesaddle,thepres-
sureshallbereducedtoaheatsoakpressureequaltodrag
pressure,unlessotherwisespecifiedbythemanufacturer
ofthesaddlefitting.
(2)Forbranchconnections≥NPS3(DN80),aflexible
heatshieldshallbeplacedbetweenthefittingandheater,
andthefittingshallbepressedagainsttheheaterwitha
heat-fusingforceequaltoaninterfacialpressureof60psi
(0.414MPa)±10%unlessotherwisespecifiedbythe
manufacturerofthefitting.Whenameltbeadis
visibleontheheaderallaroundtheheatingtool,the
initialheat-fusingforceshallbereleasedinaquickcontin-
uousmotion,thefittingraisedslightly,theflexibleheat
shieldremoved,andthefittingusedtoreapplythe
heat-fusingforceagainsttheheater.Whenameltbead
isvisibleallaroundthefittingbase,theheatingforce
shallbequicklyreducedtoaheatsoakpressureequal
todragpressureunlessotherwisespecifiedbythemanu-
facturerofthesaddlefitting.
(e)Theheatsoakpressureshallbemaintaineduntila
meltbeadofapproximately
1

16
in.(1.5mm)isvisible
aroundthecircumferenceofthefitting,unlessa
heatingtimeisspecifiedbythesaddlefittingmanufac-
turer.
(f)Aftertheproperbeadsizeisformed(orheatingtime
isachieved),theheatershallberemoved,thefusion
surfacesoftheheaderandsaddlefittingshallbe
uniformandfreeofcontamination,andthefittingshall
bepressedagainsttheheaderwithin5secandata
fusingforceequaltoaninterfacialpressureof30psi
(0.2MPa)±10%.
(g)Thefusingforceshallbemaintainedforaminimum
of5minforsaddlefittingswithbranchconnections1
1

4
in.
(32mm)andsmallerandforaminimumof10minfor
branchconnections1
1

2
in.(36mm)andlarger,after
whichthepressuremaybereducedandthefusingtool
removed.
(h)Theassemblyshouldcoolaminimumofanaddi-
tional30minbeforetheplugiscutoutoftheheaderor
externalforcesareappliednearthejoint.
ASMEBPVC.IX-2023
308

TableQF-221.2
MaximumHeaterPlateRemovalTimeforPipe-to-PipeButtFusing
PipeWallThickness,in.(mm) MaximumHeaterPlateRemovalTime,sec
FieldApplications
0.17to0.36(4to9) 8
>0.36to0.55(>9to14) 10
>0.55to1.18(>14to30) 15
>1.18to2.5(>30to64) 20
>2.5to4.5(>64to114) 25
>4.5(>114) 30
FabricationShop
1.18to2.5(30to64) 40
>2.5to4.5(>64to114) 50
>4.5(>114) 60
QF-222MANUFACTURERQUALIFIEDFUSING
PROCEDURESPECIFICATION(MEFPS)
QF-222.1?©W? ElectrofusionofPolyethylene.Whenthe
fusingprocedureislimitedtothefollowingconditions,
additionalprocedurequalificationtestingisnotrequired.
Iftheorganizationdeviatesfromtheconditionslisted
below,procedurequalificationtestinginaccordance
withQF-202.2isrequired:
(a)ThepipeandfittingmaterialislimitedtoPE2708,
PE3608,andPE4710inthecombinationsshownin
TableQF-222.1, unlessotherwisequalifiedbythe
fittingmanufacturer(seeQF-403.1).
(b)Thepipeendsshallbecleanedwithwaterto
removedirt,mud,andotherdebrispriortoscraping.
(c)Forsocket-typeconnections,thepipeendsshallbe
cutperpendicular±5°tothepipecenterlineoneachpipe
endandfullyinsertedintothecenterofthefitting.
(d)Immediatelybeforeelectrofusion,theexternal
surfacesofthepipeshallbescrapedwithanon-smearing
scrapingdevicetocleanlyremoveapproximately0.01in.
(0.25mm)ofmaterialfromtheoutersurfaceofthepipe,
suchthatacompletelayerofmaterialisremovedfromthe
surfacestobefused(seeQF-407.3).
(e)Intheeventoftouchingorrecontaminationofthe
pipeafterscraping,90%(minimum)isopropylalcohol
shallbeusedwithacleanlint-freeclothforcleaning
(seeQF-407.3).
(f)Forsocket-typeconnections,thepipeshallbe
markedwithanon-petroleum-basemarkerforthe
properinsertiondepthbeforeinstallingtheelectrofusion
fitting,andthefittingshallbeinstalledonthepipeendto
themarkeddepthtakingcaretoavoidrecontaminationof
thecleanfusionsurfaces.
(g)Electrofusioncouplingsandsaddlesshallbe
clampedandsecuredtothepipetopreventmovement
duringtheelectrofusionandcoolingcycles.Rerounding
clampsarerequiredduringelectrofusionandcoolingof
fittingsonNPS14(DN350)andlargerpipingasfollows:
(1)atthepipeendsforsocket-typefittings
(2)ontheheaderatbothsidesofsaddlefittings
(h)Thefittingshallbeconnectedtotheelectrofusion
controlboxwiththeprescribedleads.
(i)Thevaluesforfusingenergyvoltage,nominalfusing
time,andcoolingperiodqualifiedbytheelectrofusion
fittingmanufacturerbasedonpermittedmaterial
temperaturerange,shallbeenteredintotheprocessor
beforeenergizingthecoils(seeQF-405.5, QF-405.6,
QF-405.7, andQF-405.8).
(j)Thepowersupply/generatorandanyextension
cordsshallmeettheelectrofusionfittingmanufacturer’s
specifiedrequirements(seeQF-406.3).
(k)Uponcompletionofenergizingthecoils,theleads
maybedisconnected.Nomovementofthefusedassembly
shallbepermitteduntiltheendofthefittingmanufac-
turer’sprescribedcoolingperiod.(SeeQF-405.5.)
TableQF-222.1
ElectrofusionMaterialCombinations
Pipe Fitting
PE2708 PE2708
PE3608 PE4710
PE4710 PE4710
ASMEBPVC.IX-2023
309

QF-250FUSINGVARIABLES
QF-251TYPESOFVARIABLESFORFUSING
PROCEDURESPECIFICATIONS
Thesevariables(listedforeachfusingprocessin
TablesQF-254andQF-255) arecategorizedasessential
ornonessentialvariables.The“BriefofVariables”listedin
thetablesareforreferenceonly.Seethecompletevariable
descriptioninArticleXXIV, QF-400.
QF-252ESSENTIALVARIABLES
Essentialvariablesarethosethatwillaffectthemechan-
icalpropertiesofthefusedjoint,ifchanged,andrequire
requalificationoftheFPS,SFPS,orMEFPSwhenany
changeexceedsthespecifiedlimitsofthevaluesrecorded
intheFPSforthatvariable.
QF-253NONESSENTIALVARIABLES
Nonessentialvariablesarethosethatwillnotaffectthe
mechanicalpropertiesofthefusedjoint,ifchanged,anddo
notrequirerequalificationoftheFPS,SFPS,orMEFPS
whenchanged.
TableQF-254
?23? FusingVariablesProcedureSpecification
PolyethylenePipeButtFusing
Paragraph BriefofVariables Essential Nonessential
QF-402
Joints
.1ϕJointtype X
.2ϕPipesurfacealignment X
QF-403
Material
.1ϕPE X
.3ϕWallthickness X
.4ϕCross-sectionalarea X
QF-404
Position
.1ϕPosition X
QF-405
ThermalConditions
.1ϕHeatersurfacetemperature X
.2ϕInterfacialpressure X
.3 Decreaseinmeltbeadwidth X
.4 Increaseinheaterremovaltime X
.5 Decreaseincool-downtime X
.9ϕInitialheatinginterfacialpressure X
QF-406
Equipment
.1ϕFusingmachinemanufacturer X
QF-407
Technique
.1ϕShoptofield,orviceversa X
ASMEBPVC.IX-2023
310

TableQF-255
FusingVariablesProcedureSpecification
PolyethyleneElectrofusion
Paragraph BriefofVariables Essential Nonessential
QF-402
Joints
.3ϕJointdesign X
.4ϕFit-upgap X
QF-403
Material
.1ϕPEPipe X
.4ϕPipewallthickness X
.5ϕFittingmanufacturer X
.6ϕPipediameter X
QF-405
Thermal
.5ϕCool-downtime X
.6ϕFusionvoltage X
.7ϕNominalfusiontime X
.8ϕMaterialtemperaturerange X
QF-406
Equipment
.2ϕPowersupply X
.3ϕPowercord X
.4ϕProcessor X
.5ϕSaddleclamp X
QF-407
Technique
.2ϕCleaningagent X
.3ϕScrapingdevice X
TableQF-256
ManualButt-FusingVariablesProcedureSpecification
PolyethylenePipeManualButtFusing
Paragraph BriefofVariables Essential Nonessential
QF-402
Joints
.1ϕJointtype X
.2ϕPipesurfacealignment X
QF-403
Material
.1ϕPE X
.3ϕWallthickness X
.4ϕCross-sectionalarea X
QF-404
Position
.1ϕPosition X
QF-405
ThermalConditions
.1ϕHeatersurfacetemperature X
.3…Decreaseinmeltbeadwidth X
.4…Increaseinheaterremovaltime X
.5…Decreaseincool-downtime X
QF-406
Equipment
.1ϕFusingmachinemanufacturer X
.6±Torquemeasurement X
QF-407
Technique
.1ϕShoptofieldorviceversa X
ASMEBPVC.IX-2023
311

TableQF-257
?23? FusingVariablesProcedureSpecification
PolyethyleneSidewallFusing
Paragraph BriefofVariables EssentialNonessential
QF-402
Joints
.6ϕFittingmanufacturer X
QF-403
Material
.1ϕPEpipe X
.2ϕBranchpipediameter X
QF-405
ThermalConditions
.1ϕHeatertemperature X
.2ϕInterfacialpressure X
.3ϕMeltbeadsizeortime X
.4ϕHeaterplateremovaltime X
.5ϕCool-downtime X
.9ϕInitialheatinginterfacialpressure X
QF-406
Equipment
.1ϕFusingmachinemanufacturer X
QF-407
Technique
.2ϕCleaningagentormethod X
.4ϕAbrasionmethod X
ASMEBPVC.IX-2023
312

ARTICLEXXIII
PLASTICFUSINGPERFORMANCEQUALIFICATIONS
QF-300?23? GENERAL
ThisArticleliststheessentialvariablesthatapplyto
fusingoperatorperformancequalifications.
Fusingoperatorsshallbequalifiedforeachfusing
processtheywilluse.Therangeofvariablesafusing
operatorisqualifiedfordependsonthetestcoupon
fusedandtheessentialvariablesinQF-360. Fusingopera-
torsmaythenfollowanyFPS,SFPS,orMEFPSspecifying
thatprocessforwhichtheyarequalifiedwithinthelimits
oftheessentialvariables.
QF-301TESTS
QF-301.1IntentofTests.Thefusingoperatorperfor-
mancequalificationtestsareintendedtodeterminethe
abilityoffusingoperatorstomakesoundfusedjoints
whenfollowingaqualifiedFPS,SFPS,orMEFPS.
QF-301.2
?23? QualificationTests.Eachorganizationshall
qualifyeachfusingoperatorforthefusingprocess(es)to
beusedinproduction.Theperformancequalificationtests
shallbecompletedusingaqualifiedFPS,SFPS,orMEFPS.
Visualandmechanicalexaminationrequirementsare
describedinQF-302. Retestsandrenewalofqualification
aregiveninQF-320.
ThefusingoperatorresponsibleforfusinganyFPS
qualificationtestcouponssuccessfullyqualifyingthe
FPSisalsoqualifiedasafusingoperatorwithinthe
limitsoftheessentialperformancequalificationvariables
giveninTableQF-362.
QF-301.3IdentificationofFusingOperators.Each
qualifiedfusingoperatorshallbeassignedanidentifying
number,letter,orsymbolbytheorganization,whichshall
beusedtoidentifyproductionfusedjointscompletedby
thefusingoperator.
QF-301.4RecordofTests.Therecordoffusing
operatorperformancequalification(FPQ)testsshall
includethequalifiedrangesofessentialperformancevari-
ables,thetypeoftestsperformed,andtestresultsforeach
fusingoperator.Suggestedformsfortheserecordsare
giveninFormsQF-484(a), QF-484(b), andQF-484(c).
QF-302TYPEOFTESTREQUIRED
QF-302.1VisualExamination.Fortestcoupons,all
surfacesshallbeexaminedvisuallyperQF-141before
cuttingspecimens.Testcouponsshallbevisuallyexam-
inedperQF-141overtheentirecircumference.
QF-302.2MechanicalTests.
(a)Onebuttfusioncouponshallbeprepared,from
whichtwotestspecimensshallberemovedfromthe
fusedtestjointatintervalsofapproximately180deg.
Eachspecimenshallbetestedbyoneofthefollowing
methods:
(1)Reverse-BendTest.Testspecimensshallbe
removedasshowninFigureQF-463, illustration(a),
andtestedinaccordancewithQF-143.1.
(2)GuidedSide-BendTest.Testspecimensshallbe
removedasshowninFigureQF-463, illustration(b),
andpreparedandtestedinaccordancewithQF-143.2.
(3)High-SpeedTensileImpactTest(HSTIT).Test
specimensshallberemoved,prepared,andtestedin
accordancewithQF-144.
(b)Oneelectrofusioncouponshallbeprepared,from
whicheitherofthefollowingtestsmaybeperformedat
ambienttemperaturebetween60°Fto80°F(16°Cto
27°C):
(1)ElectrofusionBendTest.Fourelectrofusionbend
testspecimensshallberemovedinaccordancewith
QF-143.3.1andtestedinaccordancewithQF-143.3.3
andQF-143.3.4.
(2)CrushTest.Testspecimensshallbepreparedin
accordancewithQF-145.1.1andtestedinaccordancewith
QF-145.1.3andQF-145.1.4.
(c)Onesidewallfusioncouponshallbeprepared,from
whichthefollowingtestshallbeperformedatambient
temperaturebetween60°Fto80°F(16°Cto27°C):
(1)Reverse-BendTest.Onetestspecimenincluding
fusionsamplesfromtwoedgesofthefusedsaddleshallbe
removedinaccordancewithFigureQF-463, illustration
(e),andtestedinaccordancewithQF-143.1.
ASMEBPVC.IX-2023
313

QF-303LIMITSOFQUALIFIEDPOSITIONSAND
DIAMETERS(SEEQF-461)
QF-303.1PipePositions.
(a)Fusingoperatorswhopasstherequiredtestsfor
buttfusinginthetestpositionsshowninFigures
QF-461.1andQF-461.2shallbequalifiedforfusing
withinthefollowinglimits:
(1)The5Gtestpositionqualifiesforthehorizontal
position±45deg.
(2)Testpositionsotherthan5Gqualifyfortheorien-
tationtested±20deg.
(b)Electrofusionoperatorswhopasstherequiredtests
forfusinginanytestpositionqualifyforallpositions.
QF-303.2PipeDiameters.Pipesizeswithintheranges
listedinTableQF-452.3shallbeusedfortestcouponsto
qualifywithintherangeslistedinTableQF-452.3.
QF-305FUSINGOPERATORS
Eachfusingoperatorshallhavepassedthevisualand
mechanicalexaminationsandtestsprescribedinQF-301
andQF-302.
QF-305.1Testing.Qualificationtestingshallbe
performedontestcouponsinaccordancewithQF-311
andthefollowingrequirements:
(a)ThedatarequiredbyQF-130shallberecordedfor
eachfusingmachineoperator.
(b)Thesupervisorconductingthetestshallobserve
themakingofthefusedjointandverifythattheFPS,
SFPS,orMEFPSwasfollowed.
QF-305.2Examination.Testcouponsfusedinaccor-
dancewithQF-305.1shallbeevaluatedasfollows:
(a)Thecompletedjointshallbevisuallyexaminedin
accordancewithQF-302.1.
(b)Afterthejointiscomplete,thedatarequiredby
QF-130shallbereviewedforcompliancewiththerequire-
mentsoftheFPS,SFPS,orMEFPSusedforthequalification
test.
(c)Testspecimensshallberemovedandtestedandin
accordancewithQF-302.2.
QF-310QUALIFICATIONTESTCOUPONS
QF-311TESTCOUPONS
(a)Thetestcouponsshallconsistoffusingonepipe
jointassemblyinatleastoneofthepositionsshownin
FigureQF-461.2.
(b)Testcouponsmaybeproducedatanyambient
temperaturewithintherangepermittedbytheFPS,
SFPS,orMEFPS.
QF-320RETESTSANDRENEWALOF
QUALIFICATION
QF-321RETESTS
Afusingoperatorwhofailsoneormoreofthetests
prescribedinQF-302, asapplicable,mayberetested
underthefollowingconditions.
QF-321.1ImmediateRetestUsingVisualExamina-
tion.Whenthequalificationcouponhasfailedthe
visualexaminationofQF-302.1, retestsshallbeaccepted
byvisualexaminationbeforeconductingthemechanical
testing.
Whenanimmediateretestismade,thefusingoperator
shallmaketwoconsecutivetestcoupons.Ifbothaddi-
tionalcouponspassthevisualexaminationrequirements,
theexaminershallselectoneoftheacceptabletest
couponsforspecimenremovaltofacilitateconducting
therequiredmechanicaltesting.
QF-321.2ImmediateRetestUsingMechanical
Testing.Whenthequalificationcouponhasfailedthe
mechanicaltestingofQF-302.2, andanimmediate
retestisconducted,thefusingoperatorshallmaketwo
consecutivetestcoupons.Ifbothadditionalcoupons
passthemechanicaltestrequirements,thefusing
machineoperatorisqualified.
QF-321.3FurtherTraining.Whenthefusingoperator
hasundergoneadditionaltrainingorcompletedaddi-
tionalfusingpracticejoints,anewtestshallbemade
foreachfusiontestjointthatfailedtomeettherequire-
ments.
QF-322EXPIRATIONANDRENEWALOF
QUALIFICATION
QF-322.1ExpirationofQualification.Theperfor-
mancequalificationofafusingoperatorshallbeaffected
whenoneofthefollowingconditionsoccurs:
(a)Whenafusingoperatorhasnotcompletedafused
jointusingaqualifiedFPS,SFPS,orMEFPSforatime
periodof6monthsormore,theirqualificationshall
expire.
(b)Whenthereisaspecificreasontoquestionthe
abilityofthefusingoperatortomakefusedjoints
meetingtherequirementsofthisSection,thequalifica-
tionsofthefusingoperatorshallberevoked.
QF-322.2RenewalofQualification.
(a)Performancequalificationsthathaveexpiredunder
theprovisionsofQF-322.1(a)mayberenewedbyhaving
thefusingoperatorfuseasingletestcouponand
subjectingthetestcoupontothetestingrequiredby
QF-302. Asuccessfultestshallrenewallofthefusing
operator’spreviousqualificationsforthatfusingprocess.
ASMEBPVC.IX-2023
314

(b)Fusingoperatorswhosequalificationshavebeen
revokedundertheprovisionsofQF-322.1(b)maybe
requalifiedbyfusingatestcouponrepresentativeof
theplannedproductionwork.Thefusedtestcoupon
shallbetestedasrequiredbyQF-302. Asuccessfultest
shallrestorethefusingoperator’squalificationwithin
thequalifiedrangeofessentialperformancevariables
listedinTableQF-362.
QF-360ESSENTIALVARIABLESFOR
PERFORMANCEQUALIFICATIONOF
FUSINGOPERATORS
QF-361GENERAL
Afusingoperatorshallberequalifiedwhenevera
changeismadeinoneormoreoftheessentialvariables
listedinTableQF-362.
TableQF-362
EssentialVariablesApplicabletoFusingOperators
Paragraph BriefofVariables
(a)ButtFusing
QF-403
Material
.1ϕPipematerial
.2ϕPipediameter
QF-404
Position
.1+Position
QF-406
Equipment
.1ϕEquipmentmanufacturer
(b)Electrofusion
QF-402
JointType
.1ϕSockettosaddle&viceversa
QF-403
Material
.1ϕPipematerial
.2ϕPipediameter
(c)SidewallFusion
QF-403
Material
.1ϕPipematerial
.2ϕBranchpipediameter
QF-406
Equipment
.1ϕFusingmachinemanufacturer
.7ϕTypeofsidewall-fusingmachine
ASMEBPVC.IX-2023
315

ARTICLEXXIV
PLASTICFUSINGDATA
QF-400VARIABLES
QF-401GENERAL
EachfusingvariabledescribedinthisArticleisappli-
cableforprocedurequalificationwhenreferencedin
QF-250foreachspecificfusingprocess.Essentialvari-
ablesforperformancequalificationarereferencedin
QF-360foreachspecificfusingprocess.Achangefrom
onefusingprocesstoanotherfusingprocessrequiresre-
qualification(e.g.,achangefrombuttfusingtoelectrofu-
sion).
QF-401.1FusingData.Thefusingdataincludesthe
fusingvariablesgroupedasjoints,pipematerial,position,
thermalconditions,equipment,andtechnique.
QF-402JOINTS
QF-402.1Achangeinthetypeofjointfromthatqual-
ified,exceptthatasquarebuttjointqualifiesamitered
joint.
QF-402.2AchangeinthepipeO.D.surfacemisalign-
mentofmorethan10%ofthewallthicknessofthethinner
membertobefused.
QF-402.3
?23? Anychangeinthedesignofanelectrofusion
jointthatcausesachangeinanyotheressentialvariableof
TableQF-255. Theconfigurationofafittingmaychange
withoutimpactingthosevariables,e.g.,froma90-deg
elbowtoa45-degelbow;orfromanNPS2×NPS8
(DN50×DN200)saddleconnectiontoanNPS3×
NPS8(DN80×DN200)saddleconnection.
QF-402.4Anincreaseinthemaximumradialfit-upgap
qualified.Thisvariablemaybeexpressedintermsof
maximummisalignmentandout-of-roundness.
QF-402.5Achangefromsocket-type(fullwrap)joint
tosaddle-type(partialwrap)joint,andviceversa.
QF-402.6Achangeinmanufacturerofthesidewall
fitting.
QF-403MATERIAL
QF-403.1Achangetoanypipematerialotherthan
thoselistedinTableQF-422.
QF-403.2Achangeinthepipediameterbeyondthe
rangequalifiedinTableQF-452.3.
QF-403.3Achangeinthepipewallthicknessbeyond
therangequalified.SeeQF-202.2.1.
QF-403.4Achangeinthethicknessorcross-sectional
areatobefusedbeyondtherangespecified.
QF-403.5Achangeinfittingmanufacturer.
QF-403.6Achangeinnominalpipe(header)diameter.
QF-404POSITION
QF-404.1Theadditionofotherfusingpositions
beyondthatqualified.SeeQF-303.1.
QF-405THERMALCONDITIONS
QF-405.1Achangeintheheatersurfacetemperature
toavaluebeyondtherangequalifiedinaccordancewith
QF-202.2.1.
QF-405.2Achangeintheinterfacialpressuretoa
valuebeyondtherangequalifiedinaccordancewith
QF-202.2.1.
QF-405.3Adecreaseinmeltbeadsizeortimefrom
thatqualified.
QF-405.4Anincreaseinheaterplateremovaltime
fromthatqualified.
QF-405.5Adecreaseinthecooltimeatpressurefrom
thatqualified.
QF-405.6Achangeinfusionvoltage.
QF-405.7Achangeinthenominalfusiontime.
QF-405.8Achangeinmaterialfusingtemperature
beyondtherangequalified.
QF-405.9
?23?Achangeininitialheatinginterfacialpres-
surebeyondtherangequalifiedinaccordancewith
QF-202.2.1.
QF-406EQUIPMENT
QF-406.1Achangeinthefusingmachinemanufac-
turer.
QF-406.2AreductioninpowersourceKVA.
QF-406.3Achangeinpowercordmaterial,length,or
diameterthatreducescurrentatthecoiltobelowthe
minimumqualified.
ASMEBPVC.IX-2023
316

QF-406.4Achangeinthemanufacturerormodel
numberoftheprocessor.
QF-406.5Achangeinthetypeofsaddleclamp.
QF-406.6Anadditionordeletionofatorquewrench
tomeasureappliedpressure.
QF-406.7Achangeintypeofsidewall-fusingmachine
frommanualtohydraulicorviceversa.
QF-407TECHNIQUE
QF-407.1Achangeinfabricationlocationfromthe
fabricationshoptofieldapplicationsorviceversa.
QF-407.2Achangeinthetypeorreductioninconcen-
trationofjointcleaningagentorsolution.
QF-407.3Achangefromacleanpeelingscrapingtool
toanyothertypeoftool.
QF-407.4Achangefromacleanpeelingscrapingtool
or50-to60-gritutilityclothtoanyothertypeofabrasion
method.
QF-420MATERIALGROUPINGS
High-densitypolyethylenepipelistedinTableQF-422
maybefusedinaccordancewithSectionIX.
TableQF-422
MaterialGrouping
Specification Classification ProductForm
D3035andF714 PE2708 Pipe
PE3608
PE4710
D3261 PE2708 Fittings
PE3608
PE4710
ASMEBPVC.IX-2023
317

QF-450PIPE-FUSINGLIMITS
TableQF-452.3
Pipe-FusingDiameterLimits
SizeofTestCoupon—IPS[in.(mm)]
SizeQualified—IPS[in.(mm)]
Minimum Maximum
(a)ButtFusing
Lessthan6[6.625(168)] None Sizetested
6tolessthan8[6.625(168)tolessthan8.625(219)]None Lessthan8[lessthan8.625(219)]
8to20[8.625(219)to20(508)] 8[8.625(219)] 20[20(508)]
Greaterthan20[greaterthan20(508)] Greaterthan20[greaterthan20(508)]Unlimited
(b)Electrofusion
Lessthan14[14(356)] None Lessthan14[14(356)]
14to24[14(356)to24(610)] 14[14(356)] 24[24(610)]
Largerthan24[24(610)] 24[24(610)] Unlimited
(c)ManualButtFusing
Lessthanorequalto6[6.625(168)] None Sizetested
(d)SidewallFusing
Branchsizesto2
1

2
[2.875(65)] None 2
1

2
[2.875(65)]
Branchsizesgreaterthan2
1

2
[2.875(65)] 3[3.5(80)] 8[8.625(219)]
ASMEBPVC.IX-2023
318

QF-460GRAPHICS
QF-461POSITIONS
FigureQF-461.1
FusingPositions70 deg
B +20 deg
B –20 deg
45 deg
0 deg
A
Horizontal plane
90 deg
Axis lim
its for C
A
x
is
 lim
its
 fo
r  B
A
x
is
 lim
it
s
 f
o
r
 A
V
e
r
t
i
c
a
l
 
p
l
a
n
e
B
C
TabulationofPositionsinJoints
PositionDiagramReferenceInclinationofAxis,deg
Horizontal A 0±45
Intermediate B B±20
Vertical C 90±20
GENERALNOTE:Inclinationoftheaxisismeasuredfromthehorizontalreferenceplanetowardthevertical.
ASMEBPVC.IX-2023
319

FigureQF-461.2
FusingTestPositions
ASMEBPVC.IX-2023
320

FigureQF-462(a)
CrossSectionofUpsetBeadsforButt-FusedPEPipe(a) Visually Acceptable — Uniform Bead Around Pipe
(b) Visually Acceptable — Nonuniform Bead Around Pipe,
but Localized Diameter Mismatch Less Than 10% 
of the Nominal Wall Thickness
(c) Visually Unacceptable — V−Groove Too Deep at Pipe Tangent
for Both Uniform and Nonuniform Beads
ASMEBPVC.IX-2023
321

FigureQF-462(b)
CrossSectionofUpsetBeadsforSidewall-FusedFitting(ProfileatCrotchofFitting)(a) Visually Acceptable — Similar Beads Around Fitting
(b) Visually Unacceptable — Misalignment, Overheating, or Overpressurization
(Crevice at Fitting, Abrupt Profile, Deep Ridges)
Saddle bead
Main bead
Heater bead
Saddle bead
Main bead
Heater bead
 
(c) Visually Unacceptable — Misalignment, Under−heating, or Under−pressurization
(Low Profile, Udefined Beads) 
Saddle bead
Main bead
Heater bead
ASMEBPVC.IX-2023
322

FigureQF-463
BendTestSpecimenRemoval,Configuration,andTesting15t
[6.0 in. (150 mm) min.]
15t
[6.0 in. (150 mm) min.]
1½t [1.0 in. (25 mm) min.]
Test strap
Butt fusion
t
(a) Reverse−Bend Test Specimen Removal [for t
max # 1 in. (25 mm)]
9.0 in. (225 mm)
1 in. (25 mm)
Test strap
Butt fusion
t
9.0 in. (225 mm)
(b) Guided Side−Bend Test Specimen Removal [for t
max
 > 1 in. (25 mm)]
ASMEBPVC.IX-2023
323

FigureQF-463
BendTestSpecimenRemoval,Configuration,andTesting(Cont’d)Width = 0.25 in. ± 0.02 in.
  (6.4 mm ± 0.5 mm)
Wall thickness
6.0 in. to 8.5 in. 
  (150 mm to 215 mm)
Length of test specimen
  12.0 in. to 17.0 in. (300 mm to 430 mm)
(c) Guided Side−Bend Test Specimen
Ø 0.75 in.
  rotatable
  support
Loading nose with radius
  R = 0.50 in. ± 0.02 in.
  (12.7 mm ± 0.5 mm)
Bend
angle 90 deg
Centerline of butt fusion
(d) Guided Side−Bend Test Machine Dimensions
Width = 0.25 in. ± 0.02 in.
  (6.4 mm ± 0.5 mm)
2.31 in. ± 0.01 in.
  (58.7 mm ± 0.2 mm)
Side bend
  test specimen
ASMEBPVC.IX-2023
324

FigureQF-463
BendTestSpecimenRemoval,Configuration,andTesting(Cont’d)t
Test strap
Saddle fitting
15t + 0.5x
[6 in. (150 mm)
min.]
15t + 0.5x
[6 in. (150 mm)
min.]
[1 in. (25 mm)
min.]
(e) Reverse−Bend Specimen Removal — Sidewall Fusion 
x
FigureQF-464
HSTITSpecimenConfigurationandDimensions60 deg TYP.
A
A
1    in. (35 mm) 1¾ in.
  (44 mm) 
CLof Fusion
0.40 in. (10 mm)
t
4½ in. (113 mm)
6½ in. (163 mm)
0.20 in. (5 mm)
0.40 in. (10 mm)
2¼ in. 
     (56 mm)
1 in. (25 mm)
2 in. (50 mm)
CLSYM
 Ø 1.03 in. (26.2 mm) 
   through (2) PLCS
1 in. (25 mm) 1 in. (25 mm)
GENERALNOTES:
(a)Allmachinedsurfaces125RMSorfiner.
(b)Allfractionaldimensionsshownare±
1

16
in.(±1.5875mm).
(c)Alldecimaldimensionsare±0.010in.(±0.3mm).
(d)Allinternalradii
1

2
in.(13mm),externalradii
3

8
in.(10mm).
(e)Fusionbeadtoremaininplaceaftermachining.
ASMEBPVC.IX-2023
325

FigureQF-465
HSTITSpecimenFailureExamples
ASMEBPVC.IX-2023
326

FigureQF-466
ElectrofusionCrushTest
ASMEBPVC.IX-2023
327

FigureQF-467
ElectrofusionBendTest
ASMEBPVC.IX-2023
328

FigureQF-468
FusionZoneVoidCriteria
ASMEBPVC.IX-2023
329

FigureQF-469
ElectrofusionPeelTestCoupler
Pipe
T
L
f
W = 0.75 + 0.125/−0.0 (19 + 3/−0 mm)
Ductile failure through
  pipe wall permitted
Minor separation at outer 15%
  of heat source permitted
Ductile failure between
  wires permitted
(a) Peel Test Sample Configuration
(b) Peel Test Loading
(c) Acceptable Peel Test Results
Tensile
  force
ASMEBPVC.IX-2023
330

FigureQF-470
Short-TermHydrostaticTestSpecimenFlanged Test Coupon Capped Test Coupon
ASMEBPVC.IX-2023
331

QF-480FORMSPosition (QF−404)
Pipe Position
Other
Materials (QF−403)
Specification  to Specification
Pipe Surface Alignment
Other
Pipe Size (Diameter) Pipe Wall Thickness
FORM QF−482(a)  SUGGESTED FORMAT FOR BUTT−FUSING PROCEDURE SPECIFICATIONS (FPS OR SFPS) 
(See QF−201.3, Section IX, ASME Boiler and Pressure Vessel Code)
Company Name By
Date
By testing SFPS If qualified by testing,  supporting PQR No.(s)
Revision No. Date
Joints (QF−402)
Pipe End Preparation 
Miter Joint Angle
Sketches, production drawings, weld symbols, or written description 
should show the general arrangement of the parts to be fused.  Where 
applicable, the details of the joint groove may be specified.
Sketches may be attached to illustrate joint design.
Details
Thermal Conditions (QF−405)
Heater Surface Temperature Range
Fusing Interfacial Pressure Range
Butt−Fusing Pressure Range
Cool−Down Time at Butt−Fusing Pressure Range 
Data Acquisition Machine Manufacturer
Drag Pressure Range
Fusing Procedure Specification No.
FPS Qualification
Fusing Process Type
Equipment (QF−406)
Fusing Machine Manufacturer
Data Acquisition Used Yes No
Technique (QF−407)
Hydraulic Extension Hose Length
 Location Fabrication Shop
Joint Type 
Classification  Classification 
Field
Melt Bead Size Range Heater Plate Removal Time Range
Cross−Sectional Area
(07/19)
ASMEBPVC.IX-2023
332

FORM QF−482(b) SUGGESTED FORMAT FOR ELECTROFUSION FUSING PROCEDURE SPECIFICATION (FPS OR MEFPS)
(See QF−201.3, Section IX, ASME Boiler and Pressure Vessel Code)
Company Name           By
Fusing Procedure Specification No.         Date
Revision No.           Date
FPS qualification
Joints (QF−402) Details
Joint Design
Pipe End Cut max. out−of−square
Maximum Fit−up Gap
  Max. Axial Misalignment
  Max. out−of−roundness
Materials (QF−403)
Fitting Specification  Classification    to Pipe Specification          Classification  
Fitting Manufacturer     Pipe Size (diameter)    Pipe Wall Thickness  
Thermal Conditions (QF−405)
Minimum material & fusing temperature     °F (°C)     Maximum material and fusing temperature            °F (°C) 
Nominal fusion time at minimum temp     Nominal fusion time at maximum temp
Minimum cool down time at min. temp     Minimum cool down time at max. temp
Fusion Voltage 
Other  
Equipment (QF−406)
Minimum Power Supply   (KVA)     Processor Manufacturer      Model 
Power Cord: Material   Max. length    ft (m)  Min. Gage     Min. Amps 
Saddle Clamp Type N/A    
Other 
Technique (QF−407)
Pre−scrape cleaning fluid      Post−scrape cleaning agent−
Scraping Device       Pipe marker type
Other
Sketches, production drawings, joint symbols, or written description 
should show the general arrangement of the parts to be fused.
Where applicable, the details of the joint groove may be specified.
(07/19)
By testing MEFPS If qualified by testing, supporting PQRNo.(s)  ASMEBPVC.IX-2023
333

?23?FORM QF−482(c) SUGGESTED FORMAT FOR SIDEWALL−FUSING PROCEDURE SPECIFICATION (FPS or SFPS)
(See QF−201.3, Section IX, ASME Boiler and Pressure Vessel Code)
Company Name           By
Fusing Procedure Specification No.         Date
Revision No.           Date
FPS qualification
Joints (QF−402) Details
Joint Design
Header size range
Fitting Manufacturer
  Branch connection (diameter) range
Materials (QF−403)
Fitting Specification  Classification    to Header Specification         Classification  
Thermal Conditions (QF−405)
Heater temperature      °F (°C)     Initial heating interfacial pressure            
Heat soak gauge pressure         Melt bead size or time at heat soak
Heater plate removal time       Fusing interfacial pressure
Cool−down time at fusing pressure      Cool−down time post−fusion  
Other  
Equipment (QF−406)
Fusing Machine Manufacturer          Model 
Other 
Technique (QF−407)
Abrasion device       Post−abrasion cleaning method 
Other
Sketches, production drawings, joint symbols, or written description 
should show the general arrangement of the parts to be fused.
Where applicable, the details of the joint groove may be specified.
(07/23)
By testing SFPS If qualified by testing, supporting PQRNo.(s) 
ASMEBPVC.IX-2023
334

Position (QF−404)
Position of Pipe
Other
Equipment (QF−406)
Fusing Machine Manufacturer
Data Acquisition System Manufacturer
YesData Acquisition Used
Hydraulic Extension Hose Length
Thermal Conditions (QF−405)
Heater Surface Temperature 
Fusing Interfacial Pressure
Butt−Fusing Pressure
Melt Bead Size 
Heater Plate Removal Time
Cool−Down Time at Butt−Fusing Pressure
Drag Pressure 
FORM QF−483(a)  SUGGESTED FORMAT FOR BUTT−FUSING PROCEDURE QUALIFICATION RECORDS (PQR) 
[See QF−201.5(d), Section IX, ASME Boiler and Pressure Vessel Code]
Company Name
Date
FPS No.
Joints (QF−402)
Pipe End Preparation of Test Coupon
Material (QF−403)
Specification
Pipe Surface Alignment
Other
Procedure Qualification Record No.
Fusing Process(es)
Pipe Size (Diameter)
Pipe Wall Thickness
Other
Other
Technique (QF−407)
Location Fabrication Shop
Classification
Classification
to Specification
Field
No
Cross−Sectional Area
(07/19) ASMEBPVC.IX-2023
335

Elevated Temperature Sustained Pressure Tests (QF−142)
FORM  QF−483(a) (Back) PQR No. 
Joint 
No.
Spec. 
No.
Type of 
Failure
Interfacial 
Pressure
Location 
of Failure
Heater 
Temperature
Joint 
No.
Spec. 
No.
Type of 
Failure
Interfacial 
Pressure
Location 
of Failure
Heater 
Temperature
High−Speed Tensile Impact Tests (QF−144)
Joint 
No.
Heater 
Temperature
Interfacial 
Pressure
Result Joint 
No.
Heater 
Temperature
Interfacial 
Pressure
Result
Fusing Operator's Name Identification No. Stamp No.
.oNtseTyrotarobaLyBdetcudnoCstseT
We certify that the statements in this record are correct and that the test joints were prepared, fused, and tested 
in accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Date
Organization
Certified By
(Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests
 required by the Code.)
Attach additional sheet(s) for high−speed tensile test impact test data for pipe larger than NPS 4 (DN 100). 
Visual Examination (QF−141)
(07/15) ASMEBPVC.IX-2023
336

FORM QF−483(b) SUGGESTED FORMAT FOR ELECTROFUSION FUSING PROCEDURE
QUALIFICATION RECORDS (PQR)
[See QF−201.5(d), Section IX, ASME Boiler and Pressure Vessel Code]
Company Name
Procedure Qualification Record No.             Date
FPS No.
Fusing Process:    Electrofusion Socket−type   Electrofusion Saddle−type
Joints (QF−402) Coupon Detail
Joint Design
Manufacturer
Model No.
Fit−up gap − See below
Material (QF−403)
Fitting Specification  Classification
Pipe Specification    Classification
Pipe Size (diameter)
Pipe Wall Thickness
Fitting Manufacturer
Other
Equipment (QF−406)
Power Supply
Power Cord Material  Gage Length
Processor Manufacturer
Model No.
Saddle clamp
Technique (QF−407)
Scraping Device
Cleaning Agent
Low Temperature Coupons:
Joint Number:
Temperature     (QF−405.8)
Pipe alignment 
Pipe out−of−round
Fusion Voltage   (QF−405.6)
Fusion Time       (QF−405.7)
Cool−down time (QF−405.5)
Joint Number:
Temperature     (QF−405.8)
Fit−up Gap         (QF−402.4)
Fit−up Gap         (QF−402.4)
Pipe alignment 
Pipe out−of−round
Fusion Voltage   (QF−405.6)
Fusion Time       (QF−405.7)
Cool−down time (QF−405.5)
High Temperature Coupons:
Page 1 of 3
(07/19) ASMEBPVC.IX-2023
337

PQR No.FORM QF−483(b)
Visual Examination (QF−141)
Elevated Temperature Sustained Pressure Test (QF−142.1)
Minimum Hydraulic Quick Burst Test (QF−142.2)
Joint Integrity Test (QF−145)
Low Temperature Coupons
JointPressure
Failure
Fitting Pipe (Ductile)Accept JointPressureFitting Accept
High Temperature Coupons
Low Temperature Coupons
Joint Pressure
Failure
Fitting Accept
High Temperature Coupons
Joint Pressure
Failure
Fitting Accept
Low Temperature Coupons — Crush Test (QF−145.1)
JointSpecimen
Ductile
Fitting Pipe Wire Accept
1
2*
1
2*
1
2*
1
2*
*Two specimens required for socket−type joints. *Two specimens required for socket−type joints.
High Temperature Coupons — Crush Test (QF−145.1)
JointSpecimen
Failure
Bond
Ductile
Fitting Pipe Wire Accept
JointSpecimen
Visual
Accept
Failure
Bond
Ductile
Fitting   Pipe   WireAccept JointSpecimen
Visual
Accept
Failure
Bond
Ductile
Accept
1
2
3
4
1
2
3
4
High Temperature Coupons — Bend Test (QF−143.3)Low Temperature Coupons — Bend Test (QF−143.3)
Fitting   Pipe   Wire
1
2
3
4
1
2
3
4
JointJoint
Failure
Bond
Page 2 of 3
(07/19)
Joint
Failure
JointPipe (Ductile) ASMEBPVC.IX-2023
338

PQR No.
Page 3 of 3
FORM QF−483(b)
Electrofusion Axial Load Resistance Test (QF−144.2)
Impact Resistance* (QF−145.2)
*Only when required by contract
Attach additional sheet(s) for explanation as required.
Fusing Operator Name  Identification No.
Tests Conducted by
Manufacturer or Contractor
Date
Low Temperature Coupon Tensile Test [QF−144.2(a)] High Temperature Coupon Tensile Test [QF−144.2(a)]
Joint
Pipe
Elongation
Failure
Pipe Break Accept Joint
Pipe
Elongation
Failure
Pipe Break Accept
Low Temperature Coupon
Peel Test [QF−144.2.1(b)(1)]
High Temperature Coupon
Peel Test [QF−144.2.1(b)(1)]
JointSpecimen
Failure
Brittle Sep
Ductile Tears
WireFittingPipeAccept
1
2
3
4
JointSpecimen
Failure
Brittle Sep
Ductile Tears
WireFittingPipeAccept
1
2
3
4
Short−Term Hydrostatic Test [QF−144.2.1(b)(2)] Short−Term Hydrostatic Test [QF−144.2.1(b)(2)]
Joint
Failure
Fitting Accept Joint
Failure
Fitting Accept
Low Temperature Coupon Impact Resistance (QF−145.2.4) High Temperature Coupon Impact Resistance (QF−145.2.4)
Joint
Failure
Bond Separation >15% Accept Joint
Failure
Bond Separation >15% Accept
We certify that the statements in this record are correct and that the test joints were prepared, fused, and tested in 
accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Certified by
(Record of test details are illustrative only and may be modified to conform to the type and number of tests required by the Code.)
(07/19)
Fusion Interface Fusion Interface
Stamp No. 
Laboratory Test No.(s) ASMEBPVC.IX-2023
339

?23?Position (QF−404)
Position of Header
Equipment (QF−406)
Fusing Machine Manufacturer
Data Acquisition System Manufacturer
YesData Acquisition Used
Hydraulic Extension Hose Length
Thermal Conditions (QF−405)
Heater Surface Temperature 
Initial Heating Interfacial Pressure
Fusing Pressure
Melt Bead Size or Time
Heater Plate Removal Time
Cool−Down Time at Fusing Pressure
Drag Pressure 
FORM QF−483(c)  SUGGESTED FORMAT FOR SIDEWALL−FUSING PROCEDURE QUALIFICATION RECORDS (PQR) 
[See QF−201.5(d), Section IX, ASME Boiler and Pressure Vessel Code]
Company Name
Date
FPS No.
Joints (QF−402)
Material (QF−403)
Fitting Specification
Fitting Manufacturer
Other
Procedure Qualification Record No.
Fusing Process(es)
Branch Size (Diameter)
Header Size (Diameter)
Other
Other
Technique (QF−407)
Location Fabrication Shop
Classification
Classification
to Header Specification
Field
No
Fitting Projected Base Area/Cross−Sectional Area
(07/23)
Other
Position of Branch
Time at Pressure
Heat Soak Interfacial Pressure
Cleaning Agent or Method
Abrasion Method
ASMEBPVC.IX-2023
340

Elevated Temperature Sustained Pressure Tests (QF−142)
FORM QF−483(c) (Back) PQR No. 
Joint 
No.
Spec. 
No.
Type of 
Failure
Interfacial 
Pressure
Location 
of Failure
Heater 
Temperature
Impact Resistance Tests (QF−145)
Joint 
No.
Heater 
Temperature
Interfacial 
Pressure
Result
Fusing Operator's Name Identification No. Stamp No.
.oNtseTyrotarobaLyBdetcudnoCstseT
We certify that the statements in this record are correct and that the test joints were prepared, fused, and tested 
in accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Date
Organization
Certified By
(Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests
 required by the Code.)
Visual Examination (QF−141)
(07/19)
Other ASMEBPVC.IX-2023
341

Type of Bend
FORM QF−484(a) SUGGESTED FORMAT FOR BUTT−FUSING MACHINE OPERATOR
PERFORMANCE QUALIFICATIONS (FPQ) 
(See QF−301.4, Section IX, ASME Boiler and Pressure Vessel Code)
(07/19)
Fusing Machine Operator's Name Identification No.
Type of Test:
Pipe Specification
Original qualification
Fusing Variables (QF−360)
Pipe Size (Diameter)
Actual Values
Testing Conditions and Qualification Limits
Fusing Machine Manufacturer
Pipe Position
Bend Tests (QF−302.2)
Visual Examination of Completed Joint [QF−305.2(a)]
Identification of FPS or SFPS Followed
Company
Fusing Supervised By
Mechanical Tests Conducted By
We certify that the statements in this record are correct and that the test coupons were prepared, fused, and 
tested in accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Bend Specimens Evaluated By
Requalification
Date Coupon Was Fused
Range Qualified
Test Description (Information Only)
RESULTS
Laboratory Test No.
Examination of Data Acquisition Output [QF−305.2(b)]
Data Acquisition Output Examined By
Date
Organization
Certified by
 Type of Bend
Classification to Specification Classification
Pipe Material
Specimen No. Result Specimen No. Result
Pipe Size (Diameter) Pipe Wall Thickness ASMEBPVC.IX-2023
342

FORM QF−484(b) SUGGESTED FORMAT FOR ELECTROFUSION FUSING OPERATOR
PERFORMANCE QUA LIFICATION (FPQ)
(See QF−301.4, Section IX, ASME Boiler and Pressure Vessel Code)
Electrofusion Fusing Operator’s Name      Identification No.
Test Description (Information Only)
Type of test:  Original Qualification
Identification of FPS or MEFPS Followed
Date Coupon Was Fused
Fitting Specification    Classification  to Pipe Specification    Classification
Pipe Size (diameter)        Pipe Wall Thickness
Testing Conditions and Qualification Limits
Fusing Variables (QF−360) Actual Value Range Qualified
Socket or Saddle
Pipe Material
Pipe Diameter
RESULTS
Visual examination of completed joint [QF−305.2(a)]
Examination of data acquisition output [QF−305.2(b)]
Joint Integrity Test (QF−143.3)
Type of test:      Bend Test (QF−143.3) Crush Test (QF−145.1)
Specimen
Failure
Bond Area
Ductile
Fitting Result
Test specimens evaluated by
Mechanical tests conducted by  Laboratory Test No.
Fusing supervised by 
Data acquisition output reviewed by
We certify that the statements in this record are correct and that the test coupons were prepared, fused, and 
tested in accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Manufacturer or Contractor  
Requalification
Pipe Wire
Company
Date
Certified by
(07/19) ASMEBPVC.IX-2023
343

Type of Bend
FORM QF−484(c) SUGGESTED FORMAT FOR SIDEWALL−FUSING MACHINE OPERATOR
PERFORMANCE QUALIFICATIONS (FPQ) 
(See QF−301.4, Section IX, ASME Boiler and Pressure Vessel Code)
(07/19)
Fusing Machine Operator's Name Identification No.
Type of Test:
Branch Specification
Original qualification
Fusing Variables (QF−360)
Fusing Machine Type (Manual or Hydraulic)
Actual Values
Testing Conditions and Qualification Limits
Fusing Machine Manufacturer
Bend Tests (QF−302.2)
Visual Examination of Completed Joint [QF−305.2(a)]
Identification of FPS or SFPS Followed
Fusing Supervised By
Mechanical Tests Conducted By
We certify that the statements in this record are correct and that the test coupons were prepared, fused, and 
tested in accordance with the requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Requalification
Date Coupon Was Fused
Range Qualified
Test Description (Information Only)
RESULTS
Laboratory Test No.
Examination of Data Acquisition Output [QF−305.2(b)]
Data Acquisition Output Examined By
Date
Organization
Certified by
 Type of Bend
Classification to Header Specification Classification
Pipe Material
Specimen No. Result Specimen No. Result
Branch Connection Size (Diameter) Header Size (Diameter) Header Thickness
Header Position Branch Position ASMEBPVC.IX-2023
344

FORM QF−485  SUGGESTED FORMAT FOR PLASTIC PIPE FUSING DATA ACQUISITION LOG REVIEW 
(See QF−131 Section IX, ASME Boiler and Pressure Vessel Code)
Job Information
Date Time
Fusing Machine Operator Name Fusing Machine Operator Identification
Job Number
Fusing Machine Identification Joint Number
noitacificepSotnoitacificepSepiP
Pipe Size (Diameter)
Fusing Machine Manufacturer
FUSING VARIABLES
Heater Surface Temperature
Interfacial Fusing Pressure
Drag Pressure
Within Qualification Range Yes No
Within Qualification Range Yes No
Recorded Hydraulic−Fusing Pressure
Butt−Fusing Pressure:
elbatpeccAeulaVdetaluclaC
Butt−Fusing Pressure Drop to Less Than Drag Pressure?
Melt Bead Size
Yes No
Yes No
Gauge Pressure During Initial Heat Cycle
Gauge Pressure During Heat−Soak Cycle
Elapsed Time During Fusing and Cool Cycle
Within Qualification Range Yes No
eborPlanretxEeborPreggoLataD
Data Acquisition System Manufacturer
Review of the Recorded Pressure vs. Time Diagram
Acceptable Yes No
Heater Plate Removal Time Within Qualification Range Yes No
Within Qualification Range Yes No
Data Acquisition Acceptable Yes No
Examiner name Examiner signature
Date
Pipe Wall Thickness
Classification Classification
Elapsed Time During Initial Heat Cycle
Elapsed Time During Heat−Soak Cycle
Joint Configuration
FPS or SFPS Used
Gauge Pressure During Fusing and Cool Cycle
Within Qualification Range Yes No
(07/19) ASMEBPVC.IX-2023
345

QF-490DEFINITIONS
QF-491GENERAL
TermsrelatingtofusingusedinSectionIXarelistedin
QG-109. Othercommontermsrelatingtofusingare
definedinASTMF412,StandardTerminologyRelating
toPlasticPipingSystems.
QF-492DEFINITIONS
DefinitionsrelocatedtoQG-109.
ASMEBPVC.IX-2023
346

NONMANDATORYAPPENDIXB
WELDINGANDBRAZINGFORMS
B-100FORMS
ThisNonmandatoryAppendixillustratessample
formatsforWeldingandBrazingProcedureSpecifica-
tions,ProcedureQualificationRecords,andPerformance
Qualification.
B-101?23? WELDING
FormQW-482isasuggestedformatforWeldingProce-
dureSpecifications(WPS);FormQW-483isasuggested
formatforProcedureQualificationRecords(PQR).These
formsarefortheshieldedmetal-arc(SMAW),submerged-
arc(SAW),gasmetal-arc(GMAW),andgastungsten-arc
(GTAW)weldingprocesses,oracombinationofthese
processes.
Formsforotherweldingprocessesmayfollowthe
generalformatofFormsQW-482andQW-483, asappli-
cable.
FormsQW-484AandQW-484Baresuggestedformats
forWelderorWeldingOperatorPerformanceQualifica-
tion(WPQ)forgrooveorfilletwelds.
FormQW-485isasuggestedformatforDemonstration
ofStandardWeldingProcedureSpecifications.
B-102BRAZING
FormQB-482isasuggestedformatforBrazingProce-
dureSpecifications(BPS);FormQB-483isasuggested
formatforProcedureQualificationsRecords(PQR).
Theseformsarefortorchbrazing(TB),furnace
brazing(FB),inductionbrazing(IB),resistancebrazing
(RB),anddipbrazing(DB)processes.
Formsforotherbrazingprocessesmayfollowthe
generalformatofFormsQB-482andQB-483, asapplica-
ble.
FormQB-484isasuggestedformatforBrazeror
BrazingOperatorPerformanceQualification(BPQ).
ASMEBPVC.IX-2023
347

(07/17)
Sketches, Production Drawings, Weld Symbols, or Written Description 
should show the general arrangement of the parts to be welded. Where 
applicable, the details of weld groove may be specified.
Sketches may be attached to illustrate joint design, weld layers, and 
bead sequence (e.g., for toughness procedures, for multiple process 
procedures, etc.)
FORM QW−482   SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS)
(See QW−200.1, Section IX, ASME Boiler and Pressure Vessel Code)
Organization Name
Welding Procedure Specification No.
By
Date Supporting PQR No.(s)
Welding Process(es) Type(s)
Revision No. Date
JOINTS (QW−402) Details
Joint Design
*BASE METALS (QW−403)
P−No.
Specification and type, grade, or UNS Number  
OR
OR
Group No. to P−No. Group No.
to Specification and type, grade, or UNS Number
Chem. Analysis and Mech. Prop.
to Chem. Analysis and Mech. Prop.
Thickness Range:
Base Metal: Groove Fillet
Other
*FILLER METALS (QW−404)                                                                        1                                                                                 2
*Each base metal−filler metal combination should be specified individually.
Spec. No. (SFA)
AWS No. (Class)
F−No.
A−No.
Size of Filler Metals
Weld Metal
Deposited Thickness:
Groove
Fillet
Electrode−Flux (Class)
Flux Trade Name
Consumable Insert
Other
Backing:    Yes No
(Refer to both backing and retainers)
(Automatic, Manual, Machine, or Semi−Automatic)
Backing Material (Type)
Metal
Nonmetallic
Nonfusing Metal
Other
Root Spacing
Maximum Pass Thickness # 
1
/

in. (13 mm)
 
(Yes) (No)
Filler Metal Product Form
Supplemental Filler Metal
Flux Type ASMEBPVC.IX-2023
348

FORM QW−482 (Back)
POSITIONS (QW−405)
WPS No. Rev.
Position(s) of Groove
Position(s) of Fillet
PREHEAT (QW−406)
Preheat Temperature, Minimum
ELECTRICAL CHARACTERISTICS (QW−409)
TECHNIQUE (QW−410)
String or Weave Bead
Orifice, Nozzle, or Gas Cup Size
Initial and Interpass Cleaning (Brushing, Grinding, etc.)
Method of Back Gouging
Oscillation
Contact Tube to Work Distance
Multiple or Single Pass (Per Side)
Multiple or Single Electrodes
Electrode Spacing
Peening
Other
Tungsten Electrode Size and Type
Interpass Temperature, Maximum
Preheat Maintenance
(Continuous or special heating, where applicable, should be specified)
Welding Progression:  Up
POSTWELD HEAT TREATMENT (QW−407)
GAS (QW−408)
Percent Composition
Gas(es)
(Pure Tungsten, 2% Thoriated, etc.)
Mode of Metal Transfer for GMAW (FCAW)
Other
(Spray Arc, Short−Circuiting Arc, etc.)
(Mixture) Flow Rate
Temperature Range
Time Range
Shielding
Trailing
Backing
Down
(07/17)
Amps and volts, or power or energy range, should be specified for each electrode size, position, and thickness, etc.
Other
Other
Other
Other
Pulsing Current Heat Input (max.)
Weld
Pass(es)
Current 
Type and
Polarity
Energy or
Power
(Range)
Wire Feed
Speed
(Range)
Amps
(Range)
Volts
(Range)
Travel
Speed
(Range)
Other
(e.g., Remarks, Com−
ments, Hot Wire
Addition, Technique,
Torch Angle, etc.)Process
Classifi−
cation
Filler Metal
Diameter ASMEBPVC.IX-2023
349

?23?FORM QW−483   SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORDS (PQR)
(See QW−200.2, Section IX, ASME Boiler and Pressure Vessel Code)
Record Actual Variables Used to Weld Test Coupon
Organization Name
JOINTS (QW−402)
Groove Design of Test Coupon
(For combination qualifications, the deposited weld metal thickness shall be recorded for each filler metal and process used.)
Procedure Qualification Record No. Date
QG−106.4 Group QualificationYes NoWPS No.
Welding Process(es)
Material Spec.
BASE METALS (QW−403)
Type or Grade, or UNS Number
P−No. to P−No.
Temperature
POSTWELD HEAT TREATMENT (QW−407)
GAS (QW−408)
Time
Other
Current
ELECTRICAL CHARACTERISTICS (QW−409)
Polarity
Amps. Volts
Waveform Control
Arc Time
Weld Bead Length
Travel Speed
TECHNIQUE (QW−410)
String or Weave Bead
Oscillation
Multipass or Single Pass (Per Side)
Single or Multiple Electrodes
Other
Thickness of Test Coupon
SFA Specification
FILLER METALS (QW−404)             1                                  2
AWS Classification
Filler Metal F−No.
Weld Metal Analysis A−No.
Position(s)
POSITION (QW−405)
Weld Progression (Uphill, Downhill)
Other
Preheat Temperature
PREHEAT (QW−406)
Interpass Temperature
Other
Size of Filler Metal
Flux Trade Name
Other
Diameter of Test Coupon
Other
Types (Manual, Automatic, Semi−Automatic)
Shielding
Gas(es) (Mixture)
Percent Composition
Flow Rate
Trailing
Backing
(07/23)
Group No. Group No.
Maximum Pass Thickness
Weld Metal Thickness
Filler Metal Product Form
Supplemental Filler Metal
Electrode Flux Classification
Flux Type
Other
Power or Energy
Tungsten Electrode Size
Heat Input
Other
Mode of Metal Transfer for GMAW (FCAW)
ASMEBPVC.IX-2023
350

FORM QW−483 (Back)
Tensile Test (QW−150)
Other Tests
Fillet−Weld Test (QW−180)
Toughness Tests (QW−170)
Guided−Bend Tests (QW−160)
PQR No.
Comments
Specimen
No. Width Thickness Area
Ultimate
Total Load
Ultimate
Unit Stress,
(psi or MPa)
Result
Toughness Values
% Shear Mils (in.) or mm Drop Weight Break (Y/N)ft−lb or J
Test
Temperature
Specimen
Size
Specimen
No.
Notch
Location
Type and Figure No.
Type of
Failure and
Location
Alternative Tension Specimen Specification (QW−462)
Result — Satisfactory: Yes No NoPenetration into Parent Metal: Yes
Macro — Results
Type of Test
Deposit Analysis
Other
Welder’s Name
Date
(Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests required by the Code.)
Certified by
Organization
Tests Conducted by
Clock No. Stamp No.
Laboratory Test No.
We certify that the statements in this record are correct and that the test welds were prepared, welded, and tested in accordance with the
requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
(07/19) ASMEBPVC.IX-2023
351

?23?RT      or UT       (check one)
(07/23)
FORM QW−484A   SUGGESTED FORMAT A FOR WELDER PERFORMANCE QUALIFICATIONS (WPQ)
(See QW−301, Section IX, ASME Boiler and Pressure Vessel Code)
Welder’s name Identification no.
Test Description
Testing Variables and Qualification Limits
RESULTS
Actual ValuesWelding Variables (QW−350)
Identification of WPS followed
Specification and type/grade or UNS Number of base metal(s)
Welding process(es)
Date welded
Thickness
Alternative Volumetric Examination Results (QW−191):
Fillet weld — fracture test (QW−181.2) Length and percent of defects
Macro examination (QW−184) Fillet size (in.) Concavity or convexity (in.)
Other tests
Film or specimens evaluated by Company
Mechanical tests conducted by Laboratory test no.
Welding supervised by
We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with the
requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.
Date Certified by
Organization
Range Qualified
Type (i.e.; manual, semi−automatic) used
Backing (with/without)
Plate Pipe (enter diameter if pipe or tube)
Base metal P−Number to P−Number
Filler metal or electrode specification(s) (SFA) (info. only)
Filler metal or electrode classification(s) (info. only)
FIller metal F−Number(s)
Consumable insert (GTAW, PAW, LBW)
Filler Metal Product Form (QW−404.23) (GTAW or PAW)
Deposit thickness for each process
Process 1
Process 2
3 layers minimum Yes
3 layers minimum
Position(s)
Vertical progression (uphill or downhill)
Type of fuel gas (OFW)
Use of backing gas (GTAW, PAW, GMAW, LBW)
Transfer mode (spray, globular, or pulse to short circuit−GMAW)
GTAW current type and polarity (AC, DCEP, DCEN)
Type Result
Longitudinal bends [QW−462.3(b)] Side bends (QW−462.2)Transverse face and root bends [QW−462.3(a)]
Pipe bend specimen, corrosion−resistant weld metal overlay [QW−462.5(c)]
Plate bend specimen, corrosion−resistant weld metal overlay [QW−462.5(d)]
Pipe specimen, macro test for fusion [QW−462.5(b)] Plate specimen, macro test for fusion [QW−462.5(e)]
No
Yes No
Test coupon Production weld
Visual examination of completed weld (QW−302.4)
Type Result Type Result
Fillet welds in plate [QW−462.4(b)] Fillet welds in pipe [QW−462.4(c)]
For LBW or LLBW
 Type of equipment 
 Technique (keyhole LBW or melt−in)
 Torch−controlled oscillation       Yes         No
 Mode of operation (pulsed or continuous)
ASMEBPVC.IX-2023
352

(07/17)
FORM QW−484B   SUGGESTED FORMAT B FOR WELDING OPERATOR PERFORMANCE QUALIFICATIONS (WOPQ)
(See QW−301, Section IX, ASME Boiler and Pressure Vessel Code)
Welding operator’s name Identification no.
Test Description (Information Only)
Testing Variables and Qualification Limits When Using Automatic Welding Equipment
Welding Variables (QW−361.1) Actual Values Range Qualified
Testing Variables and Qualification Limits When Using Machine Welding Equipment
Welding Variables (QW−361.2) Actual Values Range Qualified
RESULTS
Identification of WPS followed
Specification and type/grade or UNS Number of base metal(s)
Welding process
Test coupon Production weldDate welded
Thickness
Base metal P−Number to P−Number Position(s)
Filler metal (SFA) specification Filler metal or electrode classification
Fillet weld — fracture test (QW−181.2) Length and percent of defects
Macro examination (QW−184) Fillet size (in.) Concavity or convexity (in.)3
Other tests
Film or specimens evaluated by Company
Mechanical tests conducted by Laboratory test no.
Welding supervised by
We certify that the statements in this record are correct and that the test coupons were prepared, welded, and tested in accordance with the
requirements of Section IX of the ASME Boiler and Pressure Vessel Code.
Date Certified by
Organization
FIller metal used (Yes or No) (EBW or LBW)
Type of welding (automatic)
Type of laser for LBW (CO
2
 to YAG, etc.)
Continuous drive or inertia welding (FW)
Vacuum or out of vacuum (EBW)
Welding process
Direct or remote visual control
Type of welding (Machine)
Automatic arc voltage control (GTAW)
Automatic joint tracking
Position(s)
Consumable inserts (GTAW or PAW)
Backing (with or without)
Single or multiple passes per side
Type Result
Longitudinal bends [QW−462.3(b)] Side bends (QW−462.2)Transverse face and root bends [QW−462.3(a)]
Pipe bend specimen, corrosion−resistant weld metal overlay [QW−462.5(c)]
Plate bend specimen, corrosion−resistant weld metal overlay [QW−462.5(d)]
Pipe specimen, macro test for fusion [QW−462.5(b)] Plate specimen, macro test for fusion [QW−462.5(e)]
Plate Pipe (enter diameter, if pipe or tube)
Visual examination of completed weld (QW−302.4)
Type Result Type Result
Fillet welds in plate [QW−462.4(b)] Fillet welds in pipe [QW−462.4(c)]
RT      or UT       (check one)Alternative Volumetric Examination Results (QW−191): ASMEBPVC.IX-2023
353

(07/17)
FORM QW−485  SUGGESTED FORMAT FOR DEMONSTRATION OF STANDARD WELDING 
PROCEDURE SPECIFICATIONS (SWPS)
(See Article V)
Specification and type or grade or UNS Number of Base Metal(s)
 to Specification and type or grade or UNS Number of Base Metal(s)
Base Metal P−Number                                            to Base Metal P−Number                                              Thickness
Welding Process(es) used
     Plate        Pipe (Enter Diameter of Pipe or Tube)
Groove Design (Single V, Double V, Single U, etc.)
Initial Cleaning Method
Backing (with or without)
Filler Metal Specification
Filler Metal or Electrode Classification
Filler Metal or Electrode Trade Name
Size of Consumable Electrode or Filler Metal
Tungsten Electrode Classification and Size for GTAW
Consumable Insert Class and Size for GTAW
Shielding Gas Composition and Flow Rate for GTAW or GMAW (FCAW)
Preheat Temperature 
Position(s)
Progression (Uphill or Downhill)
Interpass Cleaning Method
Measured Maximum Interpass Temperature 
Approximate Deposit Thickness for Each Process or Electrode Type 
Current Type and Polarity (AC, DCEP, DCEN)
Postweld Heat Treatment Time and Temperature
Identification of Standard Welding Procedure Specification Demonstrated
Visual Examination of Completed Weld (QW−302.4)                                                                                                 Date of Test
Bend Test (QW−302.1) Transverse Face and Root [QW−462.3(a)] Side (QW−462.2)
Alternative Radiographic Examination Results (QW−302.2)
Specimens Evaluated By
Welding Supervised By
Welder's Name                                                                                                                                                          Stamp No.
We certify that the statements in this record are correct and that the weld described above was prepared, welded, and tested in accordance with
the requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.
Organization
Signature                                                                        Date                                           Demonstration Number
Title
Title
Company
Company
Demonstration Welding Variables
Type Result Type Result Type Result
Date of Demonstration ASMEBPVC.IX-2023
354

FORM QB−482   SUGGESTED FORMAT FOR A BRAZING PROCEDURE SPECIFICATION (BPS)
(See QB−200.1, Section IX, ASME Boiler and Pressure Vessel Code)
Organization Name
P−Number Specification Number
to P−Number AWS Classification
Other
Maximum
Temperature Range
Positions Permitted
Flow Direction
Initial Cleaning
Flux Application
Torch Tip Sizes
Postbraze Cleaning
Inspection
Time Range
Minimum
Base Metal Thickness
F−Number
Filler Metal Product Form
Flux (AWS Class, Composition, or Trade Name)
Fuel Gas
Furnace Temperature
Atmosphere Type
Other
Joint Design:
Overlap:
Type
Minimum
Joint Clearance
Maximum
BPS Number Revision Date Issued
Supporting PQRs
Brazing Process(es) Type(s)
Joint Design (QB−408)
Base Metal (QB−402) Brazing Filler Metal (QB−403)
Brazing Temperature (QB−404)
Brazing Flux, Fuel Gas, or Atmosphere (QB−406)
Postbraze Heat Treatment (QB−409)
Flow Position (QB−407)
Technique (QB−410) and Other Information
(07/19)
By
(Automatic, Manual, Machine, or
Semi−Automatic)
Brazing Temperature Range
Nature of Flame (Oxidizing, Neutral, Reducing)
AWS BM−Number
  to AWS BM−Number ASMEBPVC.IX-2023
355

FORM QB−483   SUGGESTED FORMAT FOR A BRAZING PROCEDURE QUALIFICATION RECORD (PQR)
(See QB−200.2, Section IX, ASME Boiler and Pressure Vessel Code)
Record of Actual Variables Used to Braze Test Coupon
Organization Name
BPS Followed During Brazing of Test Coupon PQR No.
Brazing Process(es) Used Date Coupon Was Brazed
Base Metal Specification to Base Metal Specification
P−Number to P−Number
Plate or Pipe or Tube
Base Metal Thickness
Joint Type
Filler Metal Specification:  AWS Classification F−No. Filler Metal Product Form
Nature of Flame (Oxidizing, Neutral, Reducing)
Flux (AWS Class., Compostion, Trade Name, or None) Atmosphere Type
Overlap Joint Clearance
Position
Fuel Gas Furnace Temperature
Temperature Time
Cleaning Prior to Brazing
Postbraze Cleaning
Other
Tensile Tests (QB−150)
(07/19)
Specimen
Width or
Diameter Thickness Area Ultimate Load UTS (psi or MPa)Failure Location
Bend Tests (QB−160)
Type TypeResults Results
Peel Tests  (QB−170) or Section Tests (QB−180)
Type TypeResults Results
Other Tests
Brazer’s or Brazing Operator’s Name ID No.
Brazing of Test Coupon Supervised by
Test Specimens Evaluated by Company
Organization
 Certified by Date
Laboratory Test Number
We hereby certify that the statements in this record are correct and that the test coupons were prepared, brazed, and tested in accordance with the 
requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE .
Base Metal (QB−402)
to Base Metal Thickness
Brazing Filler Metal (QB−403)
Joint Design (QB−408)
Brazing Temperature (QB−404)
Brazing Temperature Range
Brazing Flux, Fuel Gas, or Atmosphere (QB−406)
Other
Flow Position (QB−407)
Flow Direction
Postbraze Heat Treatment (QB−409)
Technique (QB−410)
AWS BM−Number to AWS BM−Number ASMEBPVC.IX-2023
356

FORM QB−484   SUGGESTED FORMAT FOR A BRAZER OR BRAZING OPERATOR PERFORMANCE 
QUALIFICATION (BPQ)
(See QB−301, Section IX, ASME Boiler and Pressure Vessel Code)
Brazer’s or Brazing Operator’s Name
Identification of BPS Followed During Brazing of Test Coupon
Specification of First Test Coupon Base Metal
Specification of Second Test Coupon Base Metal
Brazing Process(es)
Type of Brazing (Manual, Semi−Automatic, Automatic,
   Machine)
Torch Brazing: Manual or Mechanical
Base Metal
 
Joint Type (Butt, Lap, Scarf, Socket, etc.)
If Lap or Socket, Overlap Length 
Joint Clearance
Filler Metals
 
Brazing Flow Positions
We certify that the statements in this record are correct and that the test coupons were prepared, brazed, and tested in accordance with the 
requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE.
Organization
Certified by                                                                                                                 
Mechanical Tests Conducted by
Specimens Evaluated by
Lab Test No.
Company
Company
Identification No.
Testing Variables and Ranges Qualified
Actual Values Range QualifiedBrazing Variables (QB−350)
Testing and Results
Visual Examination of Completed Joint (QB−141.6)
Mechanical Test Peel (QB−462.3) Section (QB−462.4) Tension (QB−462.1)
Date of Test
Position Result Position Result Position Result
Date Coupon Was Brazed
(07/21)
Date
Transverse Bends [QB−462.2(a)] Longitudinal Bends [QB−462.2(b)]
       P−Number               to P−Number
           AWS BM−Number          to AWS BM−Number         r
       Plate         Pipe (enter diameter if pipe or tube)
Thickness
to Thickness
SFA Specification(s) (info. only)
  Classification(s) (info. only)
  F−Number
  Product Form ASMEBPVC.IX-2023
357

MANDATORYAPPENDIXE
PERMITTEDSTANDARDWELDINGPROCEDURE
SPECIFICATIONS(SWPSs)
E-100INTRODUCTION
TheSWPSslistedinthisAppendixmaybeusedinaccordancewiththerulesofQW-500. SWPSsaregeneratedand
managedbytheAmericanWeldingSociety(AWS).
E-200BACKGROUND
TheAWSrevises,reaffirms,andamendsSWPSsinaccordancewithAmericanNationalStandardsInstitute(ANSI)
proceduresasfollows:
(a)RevisedSWPSs.Revisionsmayormaynotcontainsignificanttechnicalchanges.Whenarevisiontoapublished
SWPSoccurs,aneweditionoftheSWPSispublished.TheyeareditiondateisrevisedaccordinglyintheSWPSdesignation,
e.g.,inB2.1-2-019:1994,the“1994”indicatesthe1994editionofthatSWPS,publishedin1994.Thedateofthesuper-
seded,previouseditionoftheSWPSisalsonotedonthecoverpage.
(b)ReaffirmedSWPSs.WhenreaffirmationoccurswithoutrevisiontotheSWPS,theletter“R”isaddedtotheSWPS
designationalongwiththedateofthereaffirmation,e.g.,“(R1998)”or“(R05).”Therearenotechnicaldifferencesbetween
SWPSsofthesameeditionthathavedifferentreaffirmationdates.Forexample,thecontentofB2.1-1-020:1994(R98)is
exactlythesameasthatinB2.1-1-020:1994(R05).
(c)AmendedSWPSs.Amendmentsareissuedwhenessentialforthepromptcorrectionofanerrorthatcouldbe
misleading.Whenanamendmentoccurs,thesuffix“AMD1”isaddedtotheSWPSdesignation.Thecorrectionisincor-
poratedintotheexistingtextoftheSWPS,whichisreprintedandclearlymarkedasincludingtheamendment(s).The
correctionisidentifiedintherevisedForewordoftheamendedSWPS.
E-300?23? INSTRUCTIONSFORADOPTION
ThelisthereincontainsbriefdescriptionsofthetitlesofalltheSWPSsthathavebeenadopted.
OrganizationsadoptingSWPSsshalladoptthemostrecenteditionofthatSWPS.Forexample,eventhoughSectionIX
hadapprovedanearliereditionofSWPSB2.1-8-023thanthe2018editionlistedherein(the1994edition,tobespecific),
anorganizationwantingtoadoptSWPSB2.1-8-023in2021mustadoptthe2018edition.Ifanorganizationhadadopted
andproperlydemonstratedthe1994editionofthatSWPSbeforetheacceptanceofthe2018editionbySectionIX,that
1994editionofthatSWPSremainsvalidandmaystillbeused.
AnyreaffirmeddateofalistedSWPSisacceptableforuse.Unlessotherwisespecifiedherein,listedSWPSsthathave
beenamendedareacceptableforadoption.
Gotohttps://pubs.aws.org/t/proceduresfordetaileddescriptionsoftheSWPSs.
ThefollowingAWSStandardWeldingProcedureSpecificationsmaybeusedundertherequirementsgiveninArticleV:
SWPS Designation Edition
CarbonSteel
ShieldedMetalArcWelding(SMAW)
SMAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through1
1

2
inchThick B2.1-1-016 2018andearlier
B2.1-1-017 2018andearlier
B2.1-1-022 2018andearlier
B2.1-1-026 2018andearlier
CombinationGasTungstenArcWelding(GTAW)andSMAW
GTAWandSMAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through1
1

2
inchThick B2.1-1-021 2018andearlier
ASMEBPVC.IX-2023
358

SWPS Designation Edition
CarbonSteel(Cont’d)
FluxCoredArcWelding(FCAW)
FCAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through1
1

2
inchThick B2.1-1-019 2018andearlier
B2.1-1-020 2018andearlier
CarbonSteel—PrimarilyPipeApplications
SMAW
SMAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through
3

4
inchThick B2.1-1-201 1996
B2.1-1-202 1996
B2.1-1-203 1996
B2.1-1-204 1996
SMAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through1
1

2
inchThick B2.1-1-205 1996
B2.1-1-206 1996
B2.1-1-208 1996
GTAW
GTAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through1
1

2
inchThick B2.1-1-207 1996
B2.1-1-210 2001
FCAW
FCAWofCarbonSteel(M-1/P-1/S-1,Groups1and2),
1

8
through1
1

2
inchThick B2.1-1-234 2006
GasMetalArcWelding(GMAW)—SprayTransfer
GMAWofCarbonSteel(M-1/P-1/S-1,Groups1and2),
1

8
through1
1

2
inchThick B2.1-1-235 2006
CombinationGTAWandSMAW
GTAWandSMAWofCarbonSteel(M-1/P-1/S-1,Group1or2),
1

8
through1
1

2
inchThick B2.1-1-209 2019
B2.1-1-211 2001
AusteniticStainlessSteelPlateandPipe
SMAW
SMAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick B2.1-8-023 2018andearlier
GTAW
GTAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

16
through1
1

2
inchThick B2.1-8-024 2001
CombinationGTAWandSMAW
GTAWandSMAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick
B2.1-8-025 2001
AusteniticStainlessSteel—PrimarilyPipeApplications
SMAW
SMAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick B2.1-8-213 1997
GTAW
GTAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

16
through1
1

2
inchThick B2.1-8-212 2001(R12)
GTAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick B2.1-8-215 2001andearlier
CombinationGTAWandSMAW
GTAWandSMAWofAusteniticStainlessSteel(M-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick
B2.1-8-214 2001
B2.1-8-216 2001
ASMEBPVC.IX-2023
359

SWPS Designation Edition
CarbonSteeltoAusteniticStainlessSteel
GTAW
GTAWofCarbonSteeltoAusteniticStainlessSteel(M-1/P-1/S-1,Groups1and2Welded
toM-8/P-8/S-8,Group1),
1

16
through1
1

2
inchThick
B2.1-1/8-227 2002
B2.1-1/8-230 2002
SMAW
SMAWofCarbonSteeltoAusteniticStainlessSteel(M-1/P-1/S-1,Groups1and2Welded
toM-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick
B2.1-1/8-228 2002
CombinationGTAWandSMAW
GTAWandSMAWofCarbonSteeltoAusteniticStainlessSteel(M-1/P-1/S-1,Groups1and
2WeldedtoM-8/P-8/S-8,Group1),
1

8
through1
1

2
inchThick
B2.1-1/8-229 2002
B2.1-1/8-231 2002
ASMEBPVC.IX-2023
360

MANDATORYAPPENDIXF
STANDARDUNITSFORUSEINEQUATIONS
TableF-100
StandardUnitsforUseinEquations
Quantity U.S.CustomaryUnits SIUnits
Lineardimensions(e.g.,length,height,thickness,radius,diameter)inches(in.) millimeters(mm)
Area squareinches(in.
2
) squaremillimeters(mm
2
)
Volume cubicinches(in.
3
) cubicmillimeters(mm
3
)
Sectionmodulus cubicinches(in.
3
) cubicmillimeters(mm
3
)
Momentofinertiaofsection inches
4
(in.
4
) millimeters
4
(mm
4
)
Mass(weight) poundsmass(lbm) kilograms(kg)
Force(load) poundsforce(lbf) newtons(N)
Bendingmoment inch-pounds(in.-lb) newton-millimeters(N·mm)
Pressure,stress,stressintensity,andmodulusofelasticity poundspersquareinch(psi)megapascals(MPa)
Energy(e.g.,Charpyimpactvalues) foot-pounds(ft-lb) joules(J)
Temperature degreesFahrenheit(°F) degreesCelsius(°C)
Absolutetemperature Rankine(°R) kelvin(K)
Fracturetoughness ksisquarerootinches(ksiin.)
MPasquarerootmeters(MPam)
Angle degreesorradians degreesorradians
Boilercapacity Btu/hr watts(W)
ASMEBPVC.IX-2023
361

MANDATORYAPPENDIXG
GUIDANCEFORTHEUSEOFU.S.CUSTOMARYANDSIUNITSIN
THEASMEBOILERANDPRESSUREVESSELCODE
G-100USEOFUNITSINEQUATIONS
TheequationsinthisSectionaresuitableforusewith
eithertheU.S.CustomaryortheSIunitsprovidedin
MandatoryAppendixF,orwiththeunitsprovidedin
thenomenclaturesassociatedwiththeequations.Itis
theresponsibilityoftheindividualandorganization
performingthecalculationstoensurethatappropriate
unitsareused.EitherU.S.CustomaryorSIunitsmay
beusedasaconsistentset.Whennecessarytoconvert
fromonesystemofunitstoanother,theunitsshallbe
convertedtoatleastthreesignificantfiguresforusein
calculationsandotheraspectsofconstruction.
G-200GUIDELINESUSEDTODEVELOPSI
EQUIVALENTS
ThefollowingguidelineswereusedtodevelopSI
equivalents:
(a)SIunitsareplacedinparenthesesaftertheU.S.
Customaryunitsinthetext.
(b)Ingeneral,separateSItablesareprovidedifinter-
polationisexpected.Thetabledesignation(e.g.,table
number)isthesameforboththeU.S.Customaryand
SItables,withtheadditionofsuffix“M”tothedesignator
fortheSItable,ifaseparatetableisprovided.Inthetext,
referencestoatableuseonlytheprimarytablenumber
(i.e.,withoutthe“M”).Forsomesmalltables,whereinter-
polationisnotrequired,SIunitsareplacedinparentheses
aftertheU.S.Customaryunit.
(c)SeparateSIversionsofgraphicalinformation
(charts)areprovided,exceptthatifbothaxesaredimen-
sionless,asinglefigure(chart)isused.
(d)Inmostcases,conversionsofunitsinthetextwere
doneusinghardSIconversionpractices,withsomesoft
conversionsonacase-by-casebasis,asappropriate.This
wasimplementedbyroundingtheSIvaluestothenumber
ofsignificantfiguresofimpliedprecisionintheexisting
U.S.Customaryunits.Forexample,3,000psihasan
impliedprecisionofonesignificantfigure.Therefore,
theconversiontoSIunitswouldtypicallybeto20000
kPa.Thisisadifferenceofabout3%fromthe“exact”
orsoftconversionof20684.27kPa.However,thepreci-
sionoftheconversionwasdeterminedbytheCommittee
onacase-by-casebasis.Moresignificantdigitswere
includedintheSIequivalentiftherewasanyquestion.
ThevaluesofallowablestressinSectionII,PartDgener-
allyincludethreesignificantfigures.
(e)Minimumthicknessandradiusvaluesthatare
expressedinfractionsofaninchweregenerallyconverted
accordingtothefollowingtable:
Fraction,in.ProposedSIConversion,mm Difference,%
1

32
0.8 −0.8
3

64
1.2 −0.8
1

16
1.5 5.5
3

32
2.5 −5.0
1

8
3 5.5
5

32
4 −0.8
3

16
5 −5.0
7

32
5.5 1.0
1

4
6 5.5
5

16
8 −0.8
3

8
10 −5.0
7

16
11 1.0
1

2
13 −2.4
9

16
14 2.0
5

8
16 −0.8
11

16
17 2.6
3

4
19 0.3
7

8
22 1.0
1 25 1.6
(f)Fornominalsizesthatareinevenincrementsof
inches,evenmultiplesof25mmweregenerallyused.
Intermediatevalueswereinterpolatedratherthan
convertingandroundingtothenearestmillimeter.See
examplesinthefollowingtable.[Notethatthistable
doesnotapplytonominalpipesizes(NPS),whichare
coveredbelow.]
Size,in. Size,mm
1 25
1
1

8
29
1
1

4
32
1
1

2
38
2 50
2
1

4
57
ASMEBPVC.IX-2023
362

Tablecontinued
Size,in. Size,mm
2
1

2
64
3 75
3
1

2
89
4 100
4
1

2
114
5 125
6 150
8 200
12 300
18 450
20 500
24 600
36 900
40 1000
54 1350
60 1500
72 1800
Sizeor
Length,ft
Sizeor
Length,m
3 1
5 1.5
200 60
(g)Fornominalpipesizes,thefollowingrelationships
wereused:
U.S.
Customary
Practice
SI
Practice
U.S.
Customary
Practice
SI
Practice
NPS
1

8
DN6 NPS20 DN500
NPS
1

4
DN8 NPS22 DN550
NPS
3

8
DN10 NPS24 DN600
NPS
1

2
DN15 NPS26 DN650
NPS
3

4
DN20 NPS28 DN700
NPS1 DN25 NPS30 DN750
NPS1
1

4
DN32 NPS32 DN800
NPS1
1

2
DN40 NPS34 DN850
NPS2 DN50 NPS36 DN900
NPS2
1

2
DN65 NPS38 DN950
NPS3 DN80 NPS40 DN1000
NPS3
1

2
DN90 NPS42 DN1050
NPS4 DN100 NPS44 DN1100
NPS5 DN125 NPS46 DN1150
NPS6 DN150 NPS48 DN1200
NPS8 DN200 NPS50 DN1250
NPS10 DN250 NPS52 DN1300
NPS12 DN300 NPS54 DN1350
NPS14 DN350 NPS56 DN1400
NPS16 DN400 NPS58 DN1450
NPS18 DN450 NPS60 DN1500
Tablecontinued
(h)Areasinsquareinches(in.
2
)wereconvertedto
squaremillimeters(mm
2
),andareasinsquarefeet
(ft
2
)wereconvertedtosquaremeters(m
2
).Seeexamples
inthefollowingtable:
Area
(U.S.Customary)
Area
(SI)
1in.
2
650mm
2
6in.
2
4000mm
2
10in.
2
6500mm
2
5ft
2
0.5m
2
(i)Volumesincubicinches(in.
3
)wereconvertedto
cubicmillimeters(mm
3
),andvolumesincubicfeet
(ft
3
)wereconvertedtocubicmeters(m
3
).Seeexamples
inthefollowingtable:
Volume
(U.S.Customary)
Volume
(SI)
1in.
3
16000mm
3
6in.
3
100000mm
3
10in.
3
160000mm
3
5ft
3
0.14m
3
(j)AlthoughthepressureshouldalwaysbeinMPafor
calculations,therearecaseswhereotherunitsareusedin
thetext.Forexample,kPaisusedforsmallpressures.Also,
roundingwastoonesignificantfigure(twoatthemost)in
mostcases.Seeexamplesinthefollowingtable.(Notethat
14.7psiconvertsto101kPa,while15psiconvertsto100
kPa.Whilethismayseematfirstglancetobeananomaly,it
isconsistentwiththeroundingphilosophy.)
Pressure
(U.S.Customary)
Pressure
(SI)
0.5psi 3kPa
2psi 15kPa
3psi 20kPa
10psi 70kPa
14.7psi 101kPa
15psi 100kPa
30psi 200kPa
50psi 350kPa
100psi 700kPa
150psi 1MPa
200psi 1.5MPa
250psi 1.7MPa
300psi 2MPa
350psi 2.5MPa
400psi 3MPa
500psi 3.5MPa
600psi 4MPa
1,200psi 8MPa
ASMEBPVC.IX-2023
363

Tablecontinued
Pressure
(U.S.Customary)
Pressure
(SI)
1,500psi 10MPa
(k)Materialpropertiesthatareexpressedinpsiorksi
(e.g.,allowablestress,yieldandtensilestrength,elastic
modulus)weregenerallyconvertedtoMPatothreesignif-
icantfigures.Seeexampleinthefollowingtable:
Strength
(U.S.Customary)
Strength
(SI)
95,000psi 655MPa
(l)Inmostcases,temperatures(e.g.,forPWHT)were
roundedtothenearest5°C.Dependingontheimplied
precisionofthetemperature,somewereroundedto
thenearest1°Cor10°Coreven25°C.Temperatures
colderthan0°F(negativevalues)weregenerally
roundedtothenearest1°C.Theexamplesinthetable
belowwerecreatedbyroundingtothenearest5°C,
withoneexception:
Temperature,
°F
Temperature,
°C
70 20
100 38
120 50
150 65
200 95
250 120
300 150
350 175
400 205
450 230
500 260
550 290
600 315
650 345
700 370
750 400
800 425
850 455
900 480
925 495
950 510
1,000 540
1,050 565
1,100 595
1,150 620
1,200 650
Tablecontinued
Temperature,
°F
Temperature,
°C
1,250 675
1,800 980
1,900 1040
2,000 1095
2,050 1120
G-300SOFTCONVERSIONFACTORS
Thefollowingtableof“soft”conversionfactorsis
providedforconvenience.MultiplytheU.S.Customary
valuebythefactorgiventoobtaintheSIvalue.Similarly,
dividetheSIvaluebythefactorgiventoobtaintheU.S.
Customaryvalue.Inmostcasesitisappropriatetoround
theanswertothreesignificantfigures.
U.S.
Customary SI Factor Notes
in. mm 25.4 ...
ft m 0.3048 ...
in.
2
mm
2
645.16 ...
ft
2
m
2
0.09290304 ...
in.
3
mm
3
16,387.064 ...
ft
3
m
3
0.02831685 ...
U.S.gal m
3
0.003785412 ...
U.S.gal liters 3.785412 ...
psi MPa(N/mm
2
)0.0068948 Usedexclusivelyin
equations
psi kPa 6.894757 Usedonlyintextand
fornameplate
psi bar 0.06894757 ...
ft-lb J 1.355818 ...
°F °C
5

9
×(°F−32)Notfortemperature
difference
°F °C
5

9
Fortemperature
differencesonly
°R K
5

9
Absolute
temperature
lbm kg 0.4535924 ...
lbf N 4.448222 ...
in.-lb N·mm 112.98484 Useexclusivelyin
equations
ft-lb N·m 1.3558181 Useonlyintextksiin. MPam
1.0988434 ...
Btu/hr W 0.2930711 Useforboilerrating
andheattransfer
lb/ft
3
kg/m
3
16.018463 ...
ASMEBPVC.IX-2023
364

NONMANDATORYAPPENDIXH
WAVEFORMCONTROLLEDWELDING
H-100BACKGROUND
Advancesinmicroprocessorcontrolsandwelding
powersourcetechnologyhaveresultedintheabilityto
developwaveformsforweldingthatimprovethe
controlofdropletshape,penetration,beadshapeand
wetting.Someweldingcharacteristicsthatwere
previouslycontrolledbythewelderorweldingoperator
arecontrolledbysoftwareorfirmwareinternaltothe
powersource.Itisrecognizedthattheuseofcontrolled
waveformsinweldingcanresultinimprovementsin
productivityandquality.TheintentionofthisCodeis
toenabletheirusewithbothnewandexistingprocedure
qualifications.
TheASMESectionIXheatinputmeasurementmethods
inQW-409.1(a)andQW-409.1(b), weredevelopedata
timewhenweldingpowersourceoutputwasrelatively
constant.Theheatinputofweldsmadeusingwaveform
controlledpowersourcesisnotaccuratelyrepresentedby
QW-409.1(a)duetotherapidly-changingoutputs,phase
shifts,andsynergicchanges,butiscorrectlyrepresented
byQW-409.1(b)orQW-409.1(c). Duringwaveform
controlledwelding,currentandvoltageandvalues
observedontheequipmentmetersnolongerarevalid
forheatinputdetermination,andmustbereplacedby
instantaneousenergy(joules)orpower(joules/second
orwatts)tocorrectlycalculateheatinput.
QW-409.1(c)moreaccuratelyreflectsheatinput
changeswhenperformingwaveformcontrolled
welding,butisalsosuitablefornonwaveformcontrolled
(conventional)welding.
H-200WAVEFORMCONTROLLEDWELDING
ANDHEATINPUTDETERMINATION
Powersourcesthatsupportrapidlypulsingprocesses
(e.g.,GMAW-P)arethemostcommonwaveform
controlledpowersources.Powersourcesthatare
marketedassynergic,programmable,ormicroprocessor
controlledaregenerallycapableofwaveformcontrolled
welding.Inthesecases,heatinputiscalculatedbythe
methodsoutlinedineitherQW-409.1(b) or
QW-409.1(c)whenperformingprocedurequalification
ortodeterminecompliancewithaqualifiedprocedure.
Ifanydoubtexistsonwhetherwaveformcontrolled
weldingisbeingperformed,theweldingequipment
manufacturershouldbeconsulted.Itisrecognizedthat
waveformcontrolsmaynotbeactiveforallofthe
weldingprocessesorequipmentsettingsforaparticular
powersource.Whenthewaveformcontrolfeaturesofthe
equipmentarenotused,theheatinputdetermination
methodsofeitherQW-409.1(a), QW-409.1(b), or
QW-409.1(c)areused.
Whentheweldingequipmentdoesnotdisplayinstan-
taneousenergyorpower,anexternalmeterwithhigh
frequencysamplingcapableofdisplayinginstantaneous
energyorpoweristypicallyused,ortheweldingequip-
mentisupgradedormodifiedtodisplayinstantaneous
energyorpower.
Weldingpowersourcesorexternalmeterstypically
displayinstantaneousenergyascumulativemeasure-
mentsofinstantaneousenergy,i.e.,thesumofinstanta-
neousenergymeasurementsmadeduringatimeperiod
suchastrigger-ontotrigger-off.Theunitsofmeasurement
maybejoules(J).Otherconvenientlyobtainedunitsof
energy,suchascaloriesorBritishthermalunits(Btu),
maybeusedwiththeappropriateconversionfactors.
Theothermeasurementthatisneededtousethecalcula-
tionsgiveninQW-409.1(c)(1)isweldlength.
Weldingpowersourcesorexternalmeterstypically
displayinstantaneouspowerasaveragemeasurements,
i.e.,theaveragevalueofinstantaneouspowermeasure-
mentsmadeduringatimeperiodsuchastrigger-onto
trigger-off.Theunitofmeasurementmaybewatts
(W).Onewattisequalto1joule/second(J/s).Other
convenientlyobtainedunitsofpowersuchashorsepower
(hp)orkilowatts(kW)maybeusedwiththeappropriate
conversionfactors.Becausepowermustbemultipliedby
timetoobtainenergy,thearc-ontimeneedstobe
recorded,andthedistancetraveledduringthattime
needstobemeasured;withthesedata,thecalculation
inQW-409.1(c)(2)canbemade.Eitheroftheequations
inQW-409.1(c)(1)andQW-409.1(c)(2)maybeused,
dependingonwhethertotalinstantaneousenergy(IE)
oraverageinstantaneouspower(IP)isdisplayed.
H-300NEWPROCEDURESQUALIFICATIONS
Whenqualifyinganewprocedureusingwaveform
controlledwelding,theinstantaneousenergyorpower
rangeisusedinlieuofthecurrent(amperage)and
voltagerangestodeterminetheheatinputper
QW-409.1(c).
ASMEBPVC.IX-2023
365

Whenqualifyinganewprocedureusingnonwaveform
controlledwelding,eitherthecurrentandvoltageis
recordedandheatinputdeterminedusingthemethods
ofQW-409.1(a)orQW-409.1(b), aspreviouslyrequired,
ortheinstantaneousenergyorpowerisrecordedandthe
heatinputdeterminedbythemethodinQW-409.1(c).
H-400EXISTINGQUALIFIEDPROCEDURES
Weldingprocedurespreviouslyqualifiedusingnonwa-
veformcontrolledweldingandheatinputdeterminedby
QW-409.1(a)maycontinuetobeusedforwaveform
controlledwelding,providedtheyareamendedto
requireheatinputdeterminationforproductionwelds
usingthemethodsofQW-409.1(c). Weldingprocedures
previouslyqualifiedusingnonwaveformcontrolled
weldingandheatinputdeterminedbyQW-409.1(b)
continuetobeapplicableforwaveformcontrolled
weldingwithoutchangestotheheatinputdetermination
method.
(a)Todetermineiftheheatinputofawaveform
controlledproductionweldmeetstheheatinputrange
ofaweldingprocedurequalifiedwithnonwaveform
controlledweldingwithheatinputdeterminedusing
QW-409.1(a)
(1)theheatinputoftheproductionweldisdeter-
minedusinginstantaneouspowerorenergyperthe
methodofQW-409.1(c)
(2)theheatinputoftheproductionweldis
comparedtotheheatinputrangeoftheweldingproce-
durespecification
(b)todetermineiftheheatinputofanonwaveform
controlledproductionweldmeetstheheatinputrange
ofaweldingprocedurequalifiedwithwaveform
controlledweldingwithheatinputdeterminedusing
QW-409.1(c)
(1)theheatinputoftheproductionweldisdeter-
minedusingQW-409.1(a)orQW-409.1(c)
(2)theheatinputoftheproductionweldis
comparedtotheheatinputrangeoftheweldingproce-
durespecification
H-500PERFORMANCEQUALIFICATIONS
Separateperformancequalificationsarenotrequired
forwaveformcontrolledwelding.However,itisrecog-
nizedthatawelderorweldingoperatormayrequire
instructiononproperuseoftheequipment.Theextent
ofsuchinstructionisbestdeterminedbytheorganization,
asneededtounderstandhowtoproperlysetupandadjust
theequipmentforweldingandconformancetotheWPS
requirements.
Powersourcescapableofwaveformcontrolledwelding
oftenhaveadditionaloperatorsettingsthataretypically
notusedduringnonwaveformcontrolledwelding.Itis
importantforaweldertobefamiliarwithotherequip-
mentparametersthatcaninfluencetheoverall
weldingperformance.Thesecanincludethemode,arc
control,program,cablelength,wirefeedspeed,trim,
andothermachineandsoftwaresettings.
ASMEBPVC.IX-2023
366

MANDATORYAPPENDIXJ
GUIDELINEFORREQUESTINGP-NUMBERASSIGNMENTSFOR
BASEMETALSNOTLISTEDINTABLEQW/QB-422
J-100?23? INTRODUCTION
ThisMandatoryAppendixprovidesrequirementsto
CodeusersforsubmittingrequestsforP-Numberassign-
mentstobasemetalsnotlistedinTableQW/QB-422orat
https://pnumbers.org.Suchrequestsshallbelimitedto
basemetalsthatarelistedinASMECodeSectionII,
PartsAorB;ASTM;orotherrecognizednationalorinter-
nationalspecifications.QW-420shouldbereferenced
beforerequestingaP-Number,toseeifthebasemetal
canbeconsideredaP-Numberunderexistingrules.
Fornewmaterials,usersshallreferencetheSubmittal
ofTechnicalInquiriestotheBoilerandPressure
VesselCommitteeinthisSectionandtheGuidelineon
theApprovalofNewMaterials,underASMEBoilerand
PressureVesselCodeinSectionII,PartD.P-Number
assignmentdoesnotconstituteapprovalofabase
metalforASMECodeconstruction.Theapplicable
ConstructionCodeshallbeconsultedforbasemetals
thatareacceptableforuse.
J-200REQUESTFORMAT
ArequestforaP-Numbershallincludethefollowing:
(a)productapplicationoruse
(b)thematerialspecification,grade,class,andtypeas
applicable
(c)themechanicalpropertiesandchemicalanalysisre-
quirements
(d)weldingorbrazingdata,suchascomparableP-
Numbers;publishedweldingorbrazingdata;welding
procedurespecificationsandprocedurequalification
data;orbrazingprocedurespecificationsandprocedure
qualificationdata
(e)propertiesofweldedorbrazedbasemetaljoints,if
lessthantheminimumspecifiedintheapplicablespec-
ification
J-300SUBMITTALS
SubmittalstoandresponsesfromtheCommitteeshall
meetthefollowing:
(a)Submittal. RequestsforP-Numberassignments
shallbeinEnglishandpreferablyinthetype-written
form.However,legiblehandwrittenrequestswillalso
beconsidered.Theyshallincludethename,address,tele-
phonenumber,faxnumber,ande-mailaddress,ifavail-
able,oftherequesterandbemailedtoTheAmerican
SocietyofMechanicalEngineers,Attn:Secretary,BPV
IXCommittee,TwoParkAvenue,NewYork,NY
10016–5990.Asanalternative,requestsmaybe
[email protected].
(b)Response. TheSecretaryoftheASMEBPVIX
Committeeshallacknowledgereceiptofeachproperly
preparedrequestandshallprovidewrittenresponse
totherequesteruponcompletionoftherequested
actionbytheCodeCommittee.
ASMEBPVC.IX-2023
367

MANDATORYAPPENDIXK
GUIDANCEONINVOKINGSECTIONIXREQUIREMENTSINOTHER
CODES,STANDARDS,SPECIFICATIONS,ANDCONTRACT
DOCUMENTS
K-100BACKGROUNDANDPURPOSE
ASMESectionIXprovidesrulesforthequalificationof
welding,brazing,andfusingpersonnelandtheprocedures
thattheyfollowinwelding,brazingandfusing.Whilethe
historicalapplicationofSectionIXhasbeeninserviceto
theASMEBoilerandPressureVesselCodeandtheASME
B31CodesforPressurePiping,SectionIXisinvokedby
manyotherstandardswithoutthebenefitofmembersof
theSectionIXCommitteeparticipatinginthosecommit-
tees.Inaddition,SectionIXisinvokedinspecificationsand
relatedcontractdocuments.ThepurposeofthisNonman-
datoryAppendixistoprovideguidanceoninvoking
SectionIXinotherdocumentsinaclear,concise,andaccu-
ratemanner.
K-200SCOPEOFSECTIONIXANDWHAT
REFERENCINGDOCUMENTSMUST
ADDRESS
SectionIXaddressesonlythemandatorycontentof
welding,brazing,andfusingprocedures;thequalification
ofthoseprocedures;andthequalificationofpersonnel
whofollowthoseproceduresinthemanufacture,fabrica-
tion,assembly,andinstallationofwelded,brazed,and
fusedproducts.Accordingly,toensureconstructionof
suitableproducts,therequirementsfortheservicecondi-
tions,materialsused,thedesignofjoints,preheating,post-
weldheattreatment(PWHT),metallurgicaleffectsof
welding,acceptancecriteriaforweldquality,and
relatedexaminationsmustbeaddressedintheCodes,
standards,specifications,orcontractdocumentsthat
invokeSectionIX.
Further,constructioncodesmayspecifydifferentre-
quirementsthanthosespecifiedbySectionIX;for
example,ASMESectionIIIhasrequirementsforPWHT
ofprocedurequalificationtestcouponsthataremore
restrictivethanthoseofSectionIX,andASMEB31.1
allowsorganizationstouseweldingprocedurespecifica-
tions(WPSs)qualifiedbyatechnicallycompetentgroupor
agency,whereasSectionIXrequireseachorganizationto
qualifyWPSsthemselves.Whensuchrequirementsare
specifiedinthereferencingconstructionCodesthat
invokeSectionIX,theserequirementstakeprecedence
overthoseofSectionIX,andtheorganizationisrequired
tocomplywiththem.
Specificationsorcontractdocumentsthatarerequired
tofollowSectionIXmayaddadditionalrequirements,and
theorganizationshallcomplywithbothsetsofrequire-
ments.
WhenthereferencetoSectionIXisnottheresultof
mandatoryrequirements,suchaslaws,butisamatter
ofchoice,thespecificationorcontractdocumentmay
imposeadditionalordifferentrequirementsthanthose
inSectionIX,andtheorganizationshallcomplywith
them.Materialspecificationsareanexampleofthis.
MoststandardsthatrefertoSectionIXconsiderthere-
quirementsofSectionIXtobeadequatetocoverthebasic
needsforthecontentofwelding,brazing,andfusing
proceduresandforqualificationofthoseprocedures,
aswellasforthequalificationofthepersonnelwho
usethem.However,forsomeapplications,additional
informationmayberequiredfromtheinvokingparty,
asnotedinK-300.
K-300RECOMMENDEDWORDING—
GENERAL
WheninvokingSectionIXingeneral,thefollowing
wordingisrecommended:
“Welding,brazing,andfusingshallbeperformedusing
proceduresandpersonnelqualifiedinaccordancewith
therequirementsofASMEBPVCSectionIX.”
Whentheaboveisspecified,qualificationforthe
followingareautomaticallyincluded:
(a)allweldingprocessesthatarelistedinQW-250for
grooveandfilletwelding
(b)useofstandardweldingproceduresspecifications
(SWPSs)listedinMandatoryAppendixE
(c)applicationofhard-facingweldmetaloverlay
(hardnessvaluesshallbeamatterofagreement
betweenthesupplierandthepurchaser)
(d)applicationofcorrosion-resistantweldmetal
overlay(chemicalcompositionoftheweldoverlay
surfaceshallbeamatterofagreementbetweenthe
supplierandthepurchaser)
ASMEBPVC.IX-2023
368

(e)laserbeamlapjoints
(f)joiningofcladmaterials
(g)attachmentofappliedlinings
K-301RECOMMENDED WORDINGFOR
TOUGHNESS—QUALIFIEDAPPLICATIONS
WheninvokingSectionIXandqualificationoftheWPS
fortoughnessapplicationsisrequired,thefollowing
wordingisrecommended:
“Weldingproceduresshallbequalifiedfortoughness,
andthesupplementaryessentialvariablesofSectionIX
shallapply.”
Thereferencingcode,standard,orspecificationshall
alsobespecified.
K-302RECOMMENDEDWORDING—TUBE-TO-
TUBESHEETWELDING
WheninvokingSectionIXforqualificationoftube-to-
tubesheetweldingproceduresandpersonnel,andquali-
ficationbyuseofmock-upsisdesired,thefollowing
wordingisrecommended:
“Weldingprocedures,welders,andweldingoperators
shallbequalifiedusingmock-upsinaccordancewith
SectionIX.”
Notethatifqualificationusingmock-upsisnotspecified
butqualificationtoSectionIXis,tube-to-tubesheet
weldingproceduresandpersonnelmayalsobequalified
followingthestandardgrooveweldingrules.
K-303RECOMMENDEDWORDING—TEMPER
BEADWELDING
WheninvokingSectionIXforqualificationoftemper
beadweldingprocedures,thefollowingwordingisrecom-
mended:
“Temperbeadweldingproceduresshallbeprepared
andqualifiedinaccordancewithSectionIX.”
K-304RECOMMENDEDCODECASETEMPLATE
FigureK-305providesaproposedCodeCasetemplate
toassistusersandensureconsistentpresentationof
weldingqualificationrequirementsformaterialCode
Cases.
ASMEBPVC.IX-2023
369

FigureK-305
ProposedCodeCaseTemplateApproval Date: [Month Day, Year]
Code Cases will remain available for use until annulled by the applicable Standards Committee. 
Case[Number]
Material Grade, Type, and Form(s)
Section(s) [Number(s)]
Inquiry:Under what conditions may [material 
grade, type,and form] be used in the welded 
construction of [pressure vessel type or piping 
system]?
Reply:It is the opinion of the Committee that the 
material described in the Inquiry may be used in 
the welded construction of [pressure vessel type or 
piping system], provided the following 
requirements are met:
(a)Product speci!ication or product form limitations, 
if any.
(b)Thickness limitations,if any.
(c)Speci!ic chemical composition ranges(refer to 
applicabletables).
(d)Allowable stresses (refer to applicable tables).
(e)Special tests, if required.
(f)Welding process limitations,if any.
(g)Heat treatment requirements,if any.
(h)Welding quali!ication requirements. The following 
examples provide standard wording for two common
Code Case situations:
Example 1: For Code Cases specifying a non−
ASME recognized material, the following standard 
sentence may be considered: “Separate welding 
procedure and performance quali!ications shall be 
conducted in accordance with Section IX.”
Example 2:For Code Cases where the material 
has been assigned to a P−Number, the following 
standard sentences may be considered: “Welding 
procedure and performance quali!ications shall be 
conducted in accordance with Section IX. This 
material shall be considered P−Number [XX].”
(i)All other applicable rules of Section [number]
shall be met.
(j)This Case number shall be referenced in the 
documentation and marking of the material and 
shown on the Manufacturer’s Data Report.
GENERALNOTE:Italicizedand/orbracketedtextindicatesinstructionsorinformationthatwillbeuniquetoeachCodeCase.
ASMEBPVC.IX-2023
370

NONMANDATORYAPPENDIXL
WELDERSANDWELDINGOPERATORSQUALIFIED
SIMULTANEOUSLYTO(EN)ISO9606-1,ISO14732,
ANDSECTIONIX
?23?
L-100INTRODUCTION
Whenawelderoraweldingoperatorweldsatest
couponormakesaproductionweld,thatpersondoes
notweldonewaywhentheapplicablestandardis
ASMEandanotherwaywhentheapplicablestandard
isAWS,EN,JIS,orISO.Recognizingthis,recentrevisions
byISOTC44toISO9606-1andISO14732bringthem
muchclosertotherequirementsofSectionIX.ThisAppen-
dixdescribestherequirementsforqualifyingweldersor
weldingoperatorssimultaneouslytotheaboveISOstan-
dardsandSectionIX.
ThisAppendixisbasedontherequirementsofISO
9606-1:2012,ENISO9606-1:2017,andISO14732:2013.
L-200ADMINISTRATIVEREQUIREMENTS
Thefollowingnontechnicalrequirementsmustbemet:
(a)Awelderoraweldingoperatorshallfollowa
weldingprocedure.
(b)Weldingofthetestcouponshallbedoneunderthe
fullsupervisionandcontroloftheorganization.This
responsibilityshallnotbedelegated.
(c)Personnelperformingsupervision,control,evalua-
tion,andacceptanceofqualificationactivitiesshallmeet
thecriteriaspecifiedinQG-106.
(d)Testingoftestcouponmaybeperformedbyothers,
butthequalifyingorganizationisresponsibleforensuring
thatworkperformedbyothersisincompliancewiththe
requirementsofSectionIX.
(e)Thecompletedqualificationrecordmustbecerti-
fiedbysignatureorothermeansdescribedintheorga-
nization’squalityprogrambytheorganizationthat
supervisedthewelderorweldingoperatorduring
weldingofthetestcoupon.
L-300TECHNICALREQUIREMENTS
Thequalificationrecordmustrecordtheessentialvari-
ablesfortheweldingprocessandlisttherangesqualified.
Whilethe“actualvalues”recordedonthetestrecordwill
bethesameasforatestrecordpreparedaccordingto
ISO9606-1orISO14732,therangesqualifiedwillbe
differentforarecordpreparedaccordingtoSectionIX.
Careshouldbetakentoselectmaterialusedforthetest
couponfromthosethatareassignedaP-Numberunder
QW-420andfillermetalsthatareassignedF-Numbersin
accordancewithTableQW-432inordertoensurefull
interchangeabilitywithothermaterialsthatareassigned
P-NumbersorF-Numbers.
Sincetheformsmaybeinanyformataslongasthe
actualvalues,rangesqualified,andtestresultsare
recorded,arecordshowingtherangesqualifiedunder
bothISOandASMEmaybeonseparateformsorthey
maybeononeformatthediscretionoftheorganization.
L-400TESTINGREQUIREMENTS
Whenevaluatingatestcoupon,theorganizationshould
notethefollowing:
(a)Therequirementsfortestcouponsthathavebeen
mechanicallytestedaccordingtotherequirementsofISO
9606-1orISO14732andfoundacceptablealsosatisfythe
requirementsofSectionIX.
(b)Theradiographicexaminationtechniqueshall
satisfyQW-191.1, theultrasonicexaminationtechnique
shallsatisfyQW-191.2, andtheNDEpersonnelqualifica-
tionandcertificationshallsatisfyQW-191.4.
(c)Radiographicandultrasonicexaminationaccep-
tancecriteriasatisfyingtherequirementsofISO9606-
1orISO14732alsosatisfytherequirementsof
SectionIX,exceptthatindicationscharacterizedas
linearslagmaynotexceedthethicknessofthetest
coupondividedby3(i.e.,theflawlengthmaynot
exceedt/3).
(d)Whenusingtheultrasonictestmethod,thetest
couponmustbe
1

4
in.(6mm)thickorthicker.
(e)Testcouponstestedbyfracturetestaccordingto
ISO9017donotsatisfytherequirementsofSectionIX.
ASMEBPVC.IX-2023
371

INTENTIONALLYLEFTBLANK
ASMEBPVC.IX-2023
372

ASME Boiler and
Pressure Vessel Cod e
AN IN TERNA TIONAL CODE
• referenced standards
• related standards, reports, and guidelines
• conformity assessment programs
• conferences, seminars, and other events
• learning and development solutions
• ASME Press books and journals
For additional information and to order:
Phone: 1.800.THE.ASME
(1.800.843.2763)
Email: [email protected]
Website: go.asme.org/bpvc
2023
The ASME Boiler and Pressure Vessel Code (BPVC) is a globally recognized and
trusted source of technical requirements and guidance for the design,
construction, and certification of boilers, pressure vessels, and nuclear
components. With each new edition, the Code continues to evolve,
introducing new technologies and processes to promote safety across pressure
equipment applications and disciplines. Developed through a rigorous
consensus process and fueled by the foresight of leading industry experts from
around the world, the ASME BPVC is an ever-evolving set of standards that
meets the needs of a changing world.

ASME provides BPVC users with an integrated suite of related offerings, which includes
Tags