B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdf

2,095 views 21 slides May 09, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

A project on effect of waste plastic bottles strips in soil improvement


Slide Content

A project report on effect of waste plastic
bottles strips in soil improvement
Deepak Kumar (19101155012)
Shivam Kumar (19101155016)
Ankit Kr Aryan (19101155037)
Alok Raj (19101155021)
Under the Supervision of
Prof. Suket Kumar (Assistant Professor)
Department of Civil Engineering
Government Engineering College, Buxar
Submitted in partial fulfilment of the requirements for the Award of degree of
Bachelor of Technology
in
Civil Engineering
By

Contents
1 2 3 4 5
Introduction Objective Literature
Review
Test & Result Conclussion
2 8/28/2023Major Project

Introduction
Plasticproductshavebecomeanintegralpartinourdailylifeasabasicneed.Itis
producedonamassivescaleworldwideanditsproductioncrosses150milliontonnes
peryearglobally.
Soilstabilizationusingrawwasteplasticbottlestripsisanalternativemethodfor
improvingsubgradeandstabilityofearthembankments.Thisnewtechniqueofsoil
stabilizationcanbeeffectivelyusedtomeetthechallengesofsocietyandtoreducethe
quantityofwasteplasticthatleadtoeco-friendlysafeenvironment.Plasticwastes
generallyincludePolyethyleneTerephthalate(PET),HighDensityPolyethylene(HDPE),
LowDensityPolyethylene(LDPE),PolyVinylChloride(PVC),PolyPropylene(PP)and
Polystyrene(PS).Inthisstudy,PETplasticbottlestripsareusedtoimprovethe
engineeringPropertiesofsoil.
3

4
Process of using plastic bottle
8/28/2023Major Project

Objective
➢ToincreasethedensityandCaliforniaBearingRatio(CBR)ofsoilusingplasticasanadmixture.
➢Toprovideanalternativeforthedisposalofplasticwaste.
➢Toprovideaneconomicalsolutionforsoilstabilizationusingplasticwaste.
➢Todeterminetheoptimumplasticcontenttobeused.
5 8/28/2023Major Project

Literature Review
Vidal (1969)
Vidalhadreducedtothedangerof
slopestability,increasebearing
capacityandreducethelateral
deformationbyreinforcingthe
tensileresistingmaterials(Geo-
syntheticsetc.)intotheweak
soils.
Dutta and Rao (2004)
Headdedcombinationofdifferent
wasteplasticmaterialstothe
planesoilandcoarsegranular
materials.Asaresult,Khabiri
Mahammad(2011)observedthat,
tensileandcompressivestrengths
ofsoilsimprovedsignificantly.
Khabiri Mahammad
(2011)
Theyhadappliedanewtensile
forceresistingmaterialcalledLow
DensityPolyethylene(LDPE)
plasticstripsandperformed
conventionaldrainedtriaxial
compressiontestsmixingLDPE
stripswithsandysoil.
While performing constructions on weak soils, it is very common practice to use a variety of ground improvement techniques
(such as cement, lime etc.) to address the poor shear strength and bearing capacity properties of the subgrade or foundation
soil. Later over the years, new advanced technology has been introduced by
6 8/28/2023Major Project

Literature Review
Chouksey and Babu (2011)
Introducedanewformofplasticwastei.e.drinkingwater
bottlestoinvestigatetheeffectofthebottlestripson
consolidationcharacteristics.Aseriesofbothunconfined
compressiontest(UCC)andconsolidatedundrained(CU)
triaxialtestsshowedthatthereisbenefitofincreasingthe
engineeringstrengthofthesoilandalsoobservedthat
thereissignificantreductioninthecompressibility
parameters.Buttheydidnotconsidertheparticular
proportionsofbottlestripssothatthebehaviorofthese
stripscouldbeidentifiedwithchangeinpercentageof
strips.Furthertounderstandthebehaviorofplasticstrips
assoilreinforcement.
Chebet and Kalumba (2014)
ConsideredHDPEplasticstripsobtainedfromshopping
bagsandreinforcedthemtotwokindofsandysoilscalled
KlipheuwelandCapeFlatsands.Theinvestigators
consideredthestripperforationswithdifferentdiametersas
reinforcementtosandysoils.Seriesofdirectsheartests
wereperformedonthetwotypeofsandsreinforcedwith
HDPEstripsofconcentrationsi.e.0.1–0.3%byweight.
Theyalsoconsideredtheeffectofvariationinthestripsize
havinglengthsfrom15to45mmandstripwidthsfrom6
mmto18mm.
7 8/28/2023Major Project

Scope of work
8
Thescopeofpresentworkincludesadditionofplasticbottlestripstothelocallyavailablesoilstoenhancethe
engineeringproperties.Theworkpresentedinthispaperaimstoinvestigatetheimprovementofsoilpropertiessuchas
shearstrength,maximumdrydensity(MDD)andCBRvaluesbyaddingstripscutfromplasticbottles.Aseriesof
laboratorytestsareconductedonbothvirginsoilsaswellasonplasticreinforcedsoiltocomparetheimprovementof
soilproperties.ListofexperimentsconductedinlaboratoryasperIS/ASTMCodesaregiveninTable.
S. noList of experiments List of codes (IS/ASTM)
1 Specific gravity of soil solidsIS:2720-Part 3-1980/ASTM D854-14
2 Particle size analysis IS:2720-Part 4-1985/ASTM D6913-04
3 Atterberg limits IS:2720-Part 5-1985/ASTM D4318-05
4 Compaction test (standard proctor test)IS:2720-Part 7-1980/ASTM D698
5 Direct shear test IS:2720-Part 13-1986/ASTM D3080
6 California bearing ratio test IS:2720-Part 16-1987/ASTM D1883
8/28/2023Major Project

Test Procedure
Liquid Limit (LL) Test Plastic Limit (PL) Test
A small ball of moist plastic soil is
repeatedly remolded and rolled
out into a 1/8
th
inch (3.18 mm)
thread. The moisture content at
which the thread crumbles before
it is completely rolled out is the
plastic limit.
Shrinkage Limit (SL) Test
A soil pat from the moist soil
sample is molded into a special
shrinkage dish. The dish along
with the soil pat is oven-dried
and weighed and the volume of
the specimen is determined. The
test is described in ASTM D4943.
A portion of the soil sample is
spread in the brass cup of the liquid
limit machine. It is then divided at
the center using the Casagrande
grooving tool. The liquid limit is
reached when the groove closes a
distance of 0.5inches along the
bottom of the groove after 25 blows.
The moisture content is noted. The
test is conducted at varying
moisturecontent for the same soil
with the number of blows varying
between 15 and 35.
Atterberg Limits Test : The soil samples for each test consist of soil that is able to pass through a No. 40 sieve and is
prepared using standard methods. Moisture is adjusted by adding water and thoroughly mixing it. The sample is allowed
to condition for at least 16 hours.
9 8/28/2023Major Project

Atterberg Limits Test
10 8/28/2023Major Project

2. Compaction Test
➢Fromcompactiontest,watercontent-drydensityrelationshipofsoilwith
varyingpercentages(2,4,6and8%)ofplasticstripsisobtained.Aseries
ofStandardProctorTestsareconductedonreinforcedplasticsoilasper
(IS-2720Part-VII)Procedure.First,theamountofplasticstrips(Wp)needed
tobemixedingivennaturalsoil(Wd=2500gm)iscalculatedfor
particularpercentageofplasticstrips(a)asgivenbytheEq.Thecutplastic
stripsthusobtainedareaddedtonaturalsoilaftermakingdrysoilpartially
wetsoilbyaddingsufficientamountofwatertoensurethatthesoil
samplesareapproximatelyuniformandplasticpastecouldbeformed.
Stripsandsoilaremixedthoroughlyuntilmixbecomesuniformand
homogeneousapproximately.AsperStandardProctorTestprocedure,
testsareperformedforallsoilspecimenscontainingdifferentpercentage
ofplasticstripsandwithdifferentlengthsofstrips.
11

12
➢Aseriesofun-soakedCaliforniabearingratioTestsare
performedonreinforcedsoilwithvaryingplasticpercentagesof
2,4,6and8%respectivelyforplasticstripsizeof(15mmx25
mm)asperIS2720Part16procedureforlightstaticcompaction.
Atfirst,plasticstripsareblendedwith5kgofsoil,andthen
mixedthoroughlyuntilhomogeneousmixisobtained.Load
requiredforpenetratingthroughthesoilsampleupto10mm
penetrationdepthsisnoted
➢CaliforniaBearingRatio,CBR=(Load/StandardLoad)*100
3. California Bearing Ratio
(CBR) Test

Methodology
➢Natural Soil
In this section, theresultsforvarioustestssuchasstandardproctortests,AtterberglimittestsandCBRtestsperformedon
naturalsoilarepresented.Theresultsforpropertiesofnaturalsoilobtainedfromtheseexperimentsresultsareshownin
Table.
•Indexandengineeringpropertiesofnatural/virginsoilwithoutplasticstrips.
S. no Property of natural soil Value
1 Specific gravity (Gs) 2.62
2 Atterberg limits Liquid limit (LL)
Plastic limit (PL)
Plasticity index (PI)
68.5%
33.3%
35.2%
3 Particle size distribution Gravel (20–4.75 mm)
Sand (4.75–0.075 mm)
Silt (0.075–0.002 mm)
Clay ( < 0.002 mm)
0%
21.4%
57.2%
22.4%
4 California Bearing Ratio Test, CBR 1.0%
5 Compaction properties Optimum Moisture Content, OMC
Maximum Dry Density, MDD
20.5%
1.62 gm/cc
6 Shear strength parameters Cohesion (C)
Angle of internal friction
19 kN/m
2
23.2
0
13 8/28/2023Major Project

Theplasticwhichwascollectedfromusedplasticchairsarecollectedandaremadeintodifferentstrips.Plasticstripswithadensityabout
0.42gm/ccareaddedtotheNaturalSoilinpercentagesof2%,4%,6%and8%themodifiedproctortesthasbeenconductedonthesample
andgraphsobtainedareshownbelowinFigures1&4
1.68
1.72
1.75
1.7
1.66
1.65
1.66
1.67
1.68
1.69
1.7
1.71
1.72
1.73
1.74
1.75
1.76
0 5 10 15 20 25 30
Dry Density
Moisture Content
Moisture Content Vs Dry Density
1.68
1.75
1.81
1.75
1.68
1.66
1.68
1.7
1.72
1.74
1.76
1.78
1.8
1.82
0 5 10 15 20 25 30
Dry Density
Moisture Content
Moisture Content Vs Dry Density
Fig. 1. Soil with 2% plastic
OMC : 19%
MDD : 1.75 gm/cc
Fig. 2. Soil with 4% plastic
OMC : 18.5%
MDD : 1.81 gm/cc
14 8/28/2023Major Project

15
1.6
1.68
1.71
1.66
1.57
1.56
1.58
1.6
1.62
1.64
1.66
1.68
1.7
1.72
0 5 10 15 20 25 30
Dry Density (gm/cc)
Moisture Content (%)
Moisture Content Vs Dry Density
1.55
1.62
1.65
1.58
1.54
1.52
1.54
1.56
1.58
1.6
1.62
1.64
1.66
0 5 10 15 20 25 30
Density (gm/cc)
Moisture Content (%)
Moisture Content Vs Dry Density
Fig. 4. Soil with 8% plastic bottle strips
OMC : 17.4%
MDD : 1.65 gm/cc
Fig. 3. Soil with 8% plastic bottle strips
OMC : 18%
MDD : 1.71 gm/cc
8/28/2023Major Project

Similarly,CaliforniaBearingRatio(CBR)TestwasconductedtoobtaintheCBRValueonthesampleswithplasticstripsinvarious
percentagesof2%,4%,6%and8%theresultsobtainedarepresentedasloadvspenetrationgraphsbelowinFigures5&8.
CaliforniaBearingRatio,CBR=(Load/StandardLoad)*100
0.5
1
2
2.5
3
4
5
6
8
10
12
0
2
4
6
8
10
12
14
0 10 20 30 40 50 60 70
Penetration (mm)
Load (Kgs)
Load Vs Penetration
0.5
1
2
2.5
3
3.5
4
4.3
5
6
8
10
12
0
2
4
6
8
10
12
14
0 50 100 150 200 250
Penetration (mm
Load (Kgs)
Load Vs Penetration
Fig. 5 Soil with 2% plastic
CBR : 2.02%
Fig. 8 Soil with 4% plastic
CBR : 11.7%
16 8/28/2023Major Project

17
0.5
1
1.74
2
3
4
4.5
6
8
10
12
0
2
4
6
8
10
12
14
0 20 40 60 80 100 120
Penetration (mm)
Load (Kgs)
Load Vs Penetration
0.5
1
2
2.5
3
3.5
5
6
8
10
12
0
2
4
6
8
10
12
14
0 20 40 60 80 100
Penetration (mm)
Load (Kgs)
Load Vs Penetration
Fig. 6 Soil with 6% plastic bottle strips
CBR 4.80
Fig. 7 Soil with 8% plastic bottle strips
CBR 4.40
8/28/2023Major Project

18
➢CBR can be said as the indirect measure of the strength as soil deformed was shear in nature. From the results, it is
evident that waste plastic increases the CBR value.
➢There is a major increase in CBR value when the soil is incorporated with Plastic strips and compared to that of soil with
no plastic.
➢CBR test is performed on the samples with varying percentages of Plastic strips i.e., 2%, 4%, 6% and 8%. In this regard,
the CBR value has been increasing up to 4% plastic content and thereon it started to decrease.
➢From this, it can be inferred that, 4% plastic content is the OPTIMUM CONTENT of utilization of waste plastic in the soil.
Result and discussion
8/28/2023Major Project

➢EffectofPlasticContentforStripSize(15mmx25mm)
Inthissection,detailedresultsforplasticreinforcedsoilfordifferentplasticcontents(%)ofsoilfor(15mmx25mm)stripsizearepresented.
AseriesofcompactionandCBRtestsareperformedandtheircorrespondingtestsresultsareshowninTable.
•Testresultsofreinforcedsoilwithplasticcontentsforstripsizeof(15mmx25mm)
where,
MDD is maximum dry density
OMC is optimum moisture content
CBR is California bearing ratio
S. noPercent of plastic content for strip size (15 x 25) mmMDD (gm/cc) OMC (%) CBR (%)
1 Natural Soil with 2% waste plastic strips 1.75 19.0 2.02
2 Natural Soil with 4% waste plastic strips 1.81 18.5 11.70
3 Natural Soil with 6% waste plastic strips 1.71 18 4.80
4 Natural Soil with 8% waste plastic strips 1.65 17.4 4.40
19 8/28/2023Major Project

CONCLUSIONS
➢Inthepresentstudy,theimprovedCBRvalueofthesoilisduetotheadditionofplasticstrips.Plasticcanbeutilizedasoneof
thematerialthatcanbeusedasasoilstabilizingagentbuttheproperproportionofplasticmustbethere,whichhelpsin
increasingtheCBRofthesoil.
➢ItcanbeconcludedthatCBRpercentagegoesonincreasingupto4%plasticcontentinthesoilandthereonitdecreaseswith
increaseinplasticcontent.Hence,wecansaythat4%plasticcontentistheoptimumcontentofplasticwasteinthesoil.
➢Utilizationofplasticproductsinvariousformsisenormouslyincreasingdaybyday.Thishasanadverseeffectinnatureanditis
notpossibletorestrictitsuses.Inthisregard,thedisposaloftheplasticwasteswithoutcausinganyecologicalhazardshas
becomearealchallengetothepresentsociety.Thus,usingplasticasasoilstabilizerisaneconomicalandgainfulusage
becausethereislackofgoodqualitysoilforvariousconstructions
➢ThisworkservesasameanstomeetthechallengesofPatna,thecapitalofBiharStateandalsotothewholesocietyby
reducingtheamountofplasticwasteandproducingusefulproductfromnonusefulwastematerialsleadingtothefoundationof
sustainablesociety.
20 8/28/2023Major Project

Thank you