NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
a)Vîix=42N,tacâ
p
x=
p
4=2khængl sèvæt¿.
b)8y2R,y
2
>0.
c)Vîin=02Z,tacâ0+0=0.
d)Tacâ2m1=0,m=
1
2
=2Z.
¡p¡n:asai
dsai..........................................................
C¥u10.C¡cc¥usaul ónghaysai?
a)Tªphñpc¡csètünhi¶nl´l A=
n
x
x=2n;n2N
o
.
b)Tªphñpc¡cnghi»mcõaph÷ìngtr¼nhx+3y=1l B=
n
(x;y)
x;y2Z;x+3y=1
o
.
c)Tªphñpc¡csènguy¶ntènhähìn18l C=f2;3;5;7;11;13;17g.
d)Tªphñpc¡cnghi»mcõaph÷ìngtr¼nhx
2
+3x4=0l D=f4;1g.
Líigi£i.
a)Tªphñpc¡csètünhi¶nl´l A=
n
x
x=2n+1;n2N
o
.
b)Tªphñpc¡cnghi»mcõaph÷ìngtr¼nhx+3y=1l B=
n
(x;y)
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
C¥u21.ChohaitªphñpA=(1;+1),B=(1;1].
a)AnB=(1;+1).b)BnA=(1;1].c)CRA=(1;1).d)CRB=(1;+1).
Líigi£i.
a)AnB=(1;+1).
b)BnA=(1;1].
c)CRA=(1;1].
d)CRB=(1;+1).
¡p¡n:aóng
thuëcmi·nnghi»mcõa(1).
d)Ph¦nkhængbàg¤ch(kºc£bí)trongh¼nhv³b¶nd÷îibiºudi¹nmi·nnghi»mcõa(1).
x
y
O
2
2
.
Líigi£i.
Tacâ2(x+1)+2(y+3)12,x+y2.
a)iºmA(1;1)thuëcmi·nnghi»mcõa(1).
b)iºmB(0;3)khængthuëcmi·nnghi»mcõa(1).
c)iºmC
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C3-B1.tex
b)f(3)=4.
c)Tøb£nggi¡tràtacây=x+1.
d)Tøgi¡tràcõacõaytacâtªpgi¡tràl f1;2;3;4;5;6;7;8;9g.
¡p¡n:asai
dóng..........................................................
C¥u34.Choh msèf(x)=
p
1x+
p
x+3.Méik¸tqu£d÷îi¥yónghaysai?
a)f(1)=3. b)f(2x)=
p
12x+
p
2x+3.
c)Tªpx¡cànhD=[3;1]. d)f(x)2,8x2D.
Líigi£i.
a)f(1)=
p
11+
p
1+3=2.
b)f(2x)=
p
12x+
p
2x+3.
c)i·uki»n
8
<
:
1x0
x+30
n¶nD=[3;1]
d)(f(x))
2
=4+2
p
(1x)(x+3)4)f(x)2(v¼f(x)>0).
¡p¡n:asai
bóng
cóng
dóng.......................................................
C¥u35.
Choh msèy=f(x)câçthành÷h¼nhv³b¶n.Méik¸tqu£
d÷îi¥yónghaysai?
x
y
O2 2468
2
4
6
2
18
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C3-B1.tex
a)f(0)=
p
10=1.
b)i·uki»n1x0,x1)D=(1;1].
c)Vîimåix1,x22Dsaochox16=x2.
X²tM=
f(x1)f(x2)
x1x2
=
p
1x1
p
1x2x1x2
=
1
p
1x1+
p
1x2
<0.
Vªyh msènghàchbi¸ntr¶n(1;1).
d)f(x
2
)=
p
1x
2
1.
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C3-B1.tex
b)f(2)+f(2)=22+1+(2)(2)=5.
c)D=(1;1)[[1;+1)=R
d)f(x
2
)=2x
2
+1.
¡p¡n:aóng
bsai
csai
dóng..........................................................
C¥u50.Choh msèf(x)=
p
1x+
p
x+3.Méik¸tqu£d÷îi¥yónghaysai?
a)f(1)=3. b)f(2x)=
p
12x+
p
2x+3.
c)Tªpx¡cànhD=[3;1]. d)f(x)2,8x2D.
Líigi£i.
a)f(1)=
p
11+
p
1+3=2.
b)f(2x)=
p
12x+
p
2x+3.
c)i·uki»n
8
<
:
1x0
x+30
n¶nD=[3;1]
d)(f(x))
2
=4+2
p
(1x)(x+3)4)f(x)2(v¼f(x)>0).
¡p¡n:asai
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C3-B2.tex
b)H msèkhængnghàchbi¸ntr¶n(1;2).
c)H msèçngbi¸ntr¶n(2;+1)(1;+1).
d)H msènghàchbi¸ntr¶n(1;0)(1;1).
¡p¡n:asai
dóng..........................................................
C¥u72.Choh msèbªchaiy=ax
2
+bx+ccâçthành÷h¼nhv³
x
y
O
C¡ckh¯ngànhsau¥yónghaysai?
a)a>0. b)b<0. c)c>0. d)4acb
2
<0.
Líigi£i.
a)Tøçthàh msètath§ya>0.
b)Tröcèixùngn¬mb¶ntr¡in¶n
b
2a
<0)b>0.
c)çthàcttröctungt¤iiºmn¬md÷îitröcho nhn¶nc<0.
d)çthàcttröcho nht¤ihaiiºmph¥nbi»tn¶n>0,b
2
4ac>0.
¡p¡n:aóng
bsai
csai
dóng..........................................................
C¥u73.Choh msèbªchaicâçthành÷h¼nhv³
x
y
O
1
3
5
4
C¡ckh¯ngànhsau¥yónghaysai?
a)çthàh msèbªchaicâ¿nhl (4;3).
b)H msènhªngi¡trà¥mvîimåix2(1;5).
c)÷íngth¯ngy=mctçthàh msè¢chokhiv ch¿khim>4.
d)÷íngth¯ngx=nctçthàh msè¢chokhiv ch¿khin>0.
Líigi£i.
a)çthàh msèbªchaicâ¿nhl (3;4)
b)H msènhªngi¡trà¥mvîimåix2(1;5)v¼tr¶n(1;5)çthàn¬md÷îitröcho nh.
37
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
c)÷íngth¯ngy=mctçthàh msè¢chokhiv ch¿khim>4
d)÷íngth¯ngx=nluænctçthàh msèbªchaivîimåin.
¡p¡n:asai
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
óng
b
Sai
c
Sai
d
óng
C¥u2.
a
óng
b
Sai
c
Sai
d
óng
C¥u3.
a
óng
b
Sai
c
Sai
d
óng
C¥u4.
a
óng
b
óng
c
óng
d
Sai
C¥u5.
a
óng
b
óng
c
Sai
d
Sai
C¥u6.
a
Sai
b
óng
c
óng
d
óng
42
dóng..........................................................
C¥u2.Chotamgi¡cABCcâa=BC,b=AC,c=ABv Rl b¡nk½nh÷íngtránngo¤iti¸p.
Khiâ
a)
a
2R
=sinA. b)sinC=
csinA
a
. c)csinC=2R. d)sinB=
b
2R
.
Líigi£i.
TheoànhlþSintacâ
a)
a
sinA
=2R,
a
2R
=sinA.
b)
a
sinA
=
c
sinC
,sinC=
csinA
a
.
c)
c
sinC
=2R,csinC=2Rsin
2
C.
d)
b
sinB
=2R,sinB=
b
2R
.
¡p¡n:aóng
bóng
csai
dóng.......................................................
C¥u3.Méicængthùcd÷îi¥yónghaysai?
a)S=
1
2
absinC. b)S=
p
p(pa)(pb)(pc).
c)S=
abc
4R
. d)S=
a
2
sinBsinC
2sin(B+C)
.
Líigi£i.
a)S=
1
2
absinCl cængthùcdi»nt½chtamgi¡ckhibi¸t2c¤nhv gâcgiúachóng.
b)S=
p
p(pa)(pb)(pc)l cængthùcHeront½nhdi»nt½chtamgi¡ckhibi¸t3c¤nhcõatam
gi¡c,trongâp=
a+b+c
2
l nûachuvitamgi¡c.
c)S=
abc
4R
l cængthùcdi»nt½chtamgi¡ckhibi¸t3c¤nhv b¡nk½nh÷íngtránngo¤iti¸p.
43
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C4-B2.tex
d)S=
a
2
sinBsinC
2sin(B+C)
=
a
2
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
Sai
b
óng
c
Sai
d
óng
C¥u2.
a
óng
b
óng
c
Sai
d
óng
C¥u3.
a
óng
b
óng
c
óng
d
óng
C¥u4.
a
óng
b
óng
c
Sai
d
Sai
C¥u5.
a
Sai
b
óng
c
óng
d
óng
C¥u6.
a
óng
b
Sai
c
óng
d
óng
46
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C4-B3.tex
C¥u1.Tamgi¡cABCcâAB=2,AC=1v
b
A=60
.
a)ëd ic¤nhBC=
p
3.
b)Di»nt½chtamgi¡cABCb¬ng
p
3.
c)ëd i÷íngcaok´tø¿nhBcõatamgi¡cl hb=
p
32
.
d)B¡nk½nh÷íngtránngo¤iti¸ptamgi¡cABCl R=1.
Líigi£i.
a)TacâBC
2
=AB
2
+AC
2
2ABACcos
b
A=2
2
+1
2
221cos60
=3n¶nBC=
p
3.
b)TacâS4ABC=
1
2
ABACsinA=
p
32
.
c)Dohb=
2S4ABC
b
=
2
p
321
=
p
3.
d)Tacâ
BC
sinA
=2R,
p
3sin60
=2R,R=1.
¡p¡n:aóng
bsai
csai
dóng..........................................................
C¥u2.Chotamgi¡cABCcâBC=12
p
3;A=120
;B=45
.
a)ëd ic¤nhAC=12
p
2v AB=6(
p
6
p
2).
b)Di»nt½chtamgi¡cABCb¬ng5418
p
3.
c)ëd i÷íngtrungtuy¸nk´tø¿nhAcõatamgi¡cl ma=36(52
p
3).
d)B¡nk½nh÷íngtránnëiti¸ptamgi¡cABCl r=9
p
2+3
p
618.
Líigi£i.
a)X²ttamgi¡cABCcâ
b
A+
b
B+
b
C=180
(ànhl½têng3gâctrongtamgi¡c).
Suyra
b
C=180
b
A
b
B=180
120
45
=15
.
pdöngànhl½sintrongtamgi¡cABC,tacâ
BC
sinA
=
AC
sinB
)AC=
BCsinB
sinA
=
12
p
3sin45
sin120
=12
p
2.
VªyAC=12
p
2.
M
BC
sinA
=
AB
sinC
)AB=
BCsinC
sinA
=
12
p
3sin15
sin120
=6
p
6
p
2
.
VªyAB=6
p
6
p
2
.
b)Di»nt½chtamgi¡cABCl
SABC=
1
2
ACBCsinC=
1
2
12
p
212
p
3sin15
=10836
p
3.
VªySABC=10836
p
3.
c)Dom
2
a=
b
2
+c
2
2
a
2
4
=
(12
p
2)
2
+36
p
6
p
2
2
2
(12
p
3)
2
4
=36
52
p
3
.
Suyrama=6
p
52
p
3.
d)TacâS=pr)r=
S
p
=2
10836
p
312
p
3+12
p
2+6
p
66
p
2
=9
p
2+3
p
618.
47
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C4-B3.tex
¡p¡n:aóng
(h¼nhv³thamkh£o).
a)Kho£ngc¡chtøvàtr½A¸nvàtr½Hg¦nb¬ng630m.
b)Kho£ngc¡chtøvàtr½Ctr¶n£otîivàtr½Ag¦nb¬ng2330m.
c)Kho£ngc¡chtøvàtr½Ctr¶n£otîivàtr½Bg¦nb¬ng2826m.
d)Kho£ngc¡chtøvàtr½Ctr¶n£otîibíbiºng¦nb¬ng2251m.
A B
C
H
75
80
Líigi£i.
TacâC=180
(A+B)=180
(75
+80
)=25
.
pdöngànhl½sinchotamgi¡cABCtacâ
AC
sinB
=
AB
sinC
,AC=
ABsinB
sinC
=
1sin80
sin25
2;330km=2330m:
CB
sinA
=
AB
sinC
,CB=
ABsinA
sinC
=
1sin75
dóng..........................................................
C¥u4.Khuv÷ínnh anhTcâd¤ngmi·ntùgi¡cABCDvîic¡ck½chth÷îco¤c÷ñcghitr¶n
h¼nhv³b¶nd÷îi
A
B
C
D
6m
20m
22m
30
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
óng
b
Sai
c
Sai
d
óng
C¥u2.
a
óng
b
Sai
c
Sai
d
óng
C¥u3.
a
Sai
b
óng
c
Sai
d
óng
C¥u4.
a
óng
b
Sai
c
óng
d
Sai
50
dóng............................................................
BƒNGPN
C¥u1.
a
óng
b
óng
c
Sai
d
Sai
C¥u2.
a
óng
b
Sai
c
Sai
d
óng
C¥u3.
a
Sai
b
Sai
c
óng
d
óng
C¥u4.
a
óng
b
Sai
c
óng
d
Sai
C¥u5.
a
óng
b
Sai
c
óng
d
Sai
C¥u6.
a
óng
b
óng
c
Sai
d
óng
C¥u7.
a
óng
b
Sai
c
óng
d
óng
C¥u8.
a
óng
b
Sai
c
óng
d
óng
C¥u9.
a
Sai
b
óng
c
Sai
d
óng
C¥u10.
a
óng
b
óng
c
Sai
d
Sai
C¥u11.
a
óng
b
Sai
c
óng
d
óng
C¥u12.
a
Sai
b
Sai
c
Sai
d
óng
55
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C5-B3.tex
C¥u1.Vîihaiv²c-tì
#
a;
#
bv måisèthüchv k,x¡cànht½nhóngsaicõac¡cm»nh·
sau
a)k(
#
a+
#
b)=k
#
a+k
#
b. b)(h+k)
#
a=h
#
a+k
#
a.
c)h(k
#
a)=(hk)
#
a. d)(
#
a
#
b)
#
c=
#
a(
#
b
#
c).
Líigi£i.
a)Theot½nhch§t,tacâk(
#
a+
#
b)=k
#
a+k
#
b.
b)Theot½nhch§t,tacâ(h+k)
#
a=h
#
a+k
#
a.
c)Theot½nhch§t,tacâh(k
#
a)=(hk)
#
a.
d)Khængcât½nhch§tk¸thñp.
¡p¡n:aóng
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
óng
b
óng
c
óng
d
Sai
C¥u2.
a
Sai
b
óng
c
óng
d
Sai
C¥u3.
a
óng
b
Sai
c
óng
d
Sai
C¥u4.
a
óng
b
óng
c
óng
d
óng
C¥u5.
a
Sai
b
Sai
c
óng
d
Sai
C¥u6.
a
Sai
b
Sai
c
óng
d
Sai
C¥u7.
a
Sai
b
Sai
c
óng
d
óng
C¥u8.
a
óng
b
óng
c
óng
d
óng
C¥u9.
a
óng
b
Sai
c
óng
d
óng
C¥u10.
a
óng
b
Sai
c
óng
d
óng
C¥u11.
a
Sai
b
óng
c
Sai
d
óng
C¥u12.
a
óng
b
Sai
c
Sai
d
óng
61
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C5-B4.tex
C¥u1.Chotamgi¡c·uABC,câëd ic¡cc¤nhb¬ng1.X¡cànht½nhóngsaicõac¡cm»nh
·sau
a)
dsai..........................................................
C¥u5.ChobèniºmA,B,C,D.X¡cànht½nhóngsaicõac¡cm»nh·sau
a)
#
AB(
#
AD
#
AC)+
#
AC(
#
AB
#
AD)+
#
AD(
#
AC
#
AB)=0.
b)
#
AB
#
CD+
#
AC
#
DB+
#
AD
#
BC=0.
c)
#
AB(
#
AD
#
AC)+
#
AC(
#
AB
#
AD)+
#
AD(
#
AC
#
AB)=AB.
d)
#
AB
#
CD+
#
AC
#
DB+
#
AD
#
BC=AB
2
.
Líigi£i.
62
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C5-B4.tex
Tacâ
#
AB
#
CD+
#
AC
#
DB+
#
AD
#
BC
=
#
AB(
#
AD
#
AC)+
#
AC(
#
AB
#
AD)+
#
AD(
#
AC
#
AB)=0:
¡p¡n:aóng
bóng
csai
dsai..........................................................
C¥u6.Choo¤nth¯ngAB.iºmMthuëc÷íngtrán÷íngk½nhAB.X²tt½nhóngsaicõac¡c
m»nh·sau
a)
#
MA
#
MB=0. b)
#
MB
#
MA=0. c)
#
MA
#
MB=1. d)
#
MB
#
MA=1.
Líigi£i.
Mthuëc÷íngtrán÷íngk½nhABn¶nMA?MB.
N¶n
#
MA
#
MB=0v
#
MB
#
MA=0
¡p¡n:aóng
bóng
csai
dsai..........................................................
C¥u7.Choo¤nth¯ngAB.Bi¸t
#
MA
#
MB=0.Lócâ,iºmMcâthº:
a)TròngvîiiºmA. b)TròngvîiiºmB.
c)TròngvîitrungiºmIcõaAB. d)Thuëc÷íngtrán÷íngk½nhAB.
Líigi£i.
a)
#
AA
#
AB=0
b)
#
BA
#
BB=0
c)
#
IA
#
IB=IA
2
d)
#
MA
#
MB=0n¶nMA?MB.
VªyMthuëc÷íngtrán÷íngk½nhAB.
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
óng
b
óng
c
Sai
d
Sai
C¥u2.
a
óng
b
Sai
c
Sai
d
Sai
C¥u3.
a
óng
b
óng
c
Sai
d
Sai
C¥u4.
a
óng
b
óng
c
Sai
d
Sai
C¥u5.
a
óng
b
óng
c
Sai
d
Sai
C¥u6.
a
óng
b
óng
c
Sai
d
Sai
C¥u7.
a
óng
b
óng
c
Sai
d
óng
64
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
C¥u25.Choh msèbªchaif(x)=x
2
+1;5x1câçthành÷h¼nh
b¶n.
a)Tamthùcbªchaif(x)câhainghi»mph¥nbi»t.
b)Tamthùcbªchaif(x)¥mtrongkho£ng
2;
1
2
.
c)Tamthùcbªchaif(x)d÷ìngt¤ix=
1
3
.
d)Tamthùcbªchaif(x)¥mt¤ix=3.
x
y
O2 1
2
Líigi£i.
Tøçthà,tath§ytamthùcbªchaif(x)=x
2
+x+1d÷ìngtrongc¡ckho£ng(1;2),
dsai.......................................................
C¥u36.Câ3th nhphèA,B,C.Câ5con÷íngnèitøA¸nB,câ4con÷íngnèitøB¸n
C.
a)Câ20c¡chchånmëtcon÷íngºitøAquaBrçi¸nC.
79
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C8-B1.tex
b)Câ9c¡chchånmëtcon÷íngºitøAquaBrçi¸nC.
c)Khængcâcon÷íngn oºitøAquaBrçi¸nC.
d)Câ20c¡chchånmëtcon÷íngºitøCquaBrçi¸nA.
Líigi£i.
Theoquytcnh¥n,tacâ54=20c¡chchånmëtcon÷íngºitøAquaBrçi¸nC.Ng÷ñc
l¤i,tacôngcâ45=20c¡chchånmëtcon÷íngºitøCquaBrçi¸nA.
¡p¡n:aóng
dsai............................................................
C¥u38.Mëthëpüng3vi¶nbiä,4vi¶nbiv ngv 5vi¶nbixanh.
a)Câ47c¡chchånhaivi¶nbikh¡cm u.
b)Câ12c¡chchånhaivi¶nbikh¡cm u.
c)Câ12c¡chchånmëtvi¶nbi.
d)Câ60c¡chchånbavi¶nbikh¡cnhauv·m u.
Líigi£i.
Chånhaivi¶nbikh¡cm utacâc¡ctr÷ínghñp:haivi¶näv ng,haivi¶näxanhho°chaivi¶n
v ngxanh.Vªycâ34+35+45=47c¡chchånhaivi¶nbikh¡cm u.
Câ3+4+5=12c¡chchånmëtvi¶nbi.
Chånbavi¶nbikh¡cnhauv·m utac¦nmëtvi¶nä,mëtvi¶nv ngv mëtvi¶nxanh.Doâ,câ
345=60c¡chchånbavi¶nbikh¡cnhauv·m u.
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
Câ2!c¡chx¸p3ph¡io nv ob ntrán.Vîiméic¡chx¸pth¼câ:3!c¡chx¸pc¡cth nhvi¶n
ph¡io nAnh,5!c¡chx¸pc¡cth nhvi¶nph¡io nPh¡p,7!c¡chx¸pc¡cth nhvi¶nph¡i
o nMÿ.Vªycât§tc£2!3!5!7!=7257600c¡chx¸pnhúngng÷íicâcòngquèctàchth¼
ngçig¦nnhau.
¡p¡n:aóng
bsai
cóng
dsai..........................................................
BƒNGPN
C¥u44.
a
óng
b
óng
c
Sai
d
Sai
C¥u45.
a
óng
b
Sai
c
óng
d
Sai
C¥u46.
a
Sai
b
Sai
c
óng
d
óng
C¥u47.
a
Sai
b
Sai
c
óng
d
óng
C¥u48.
a
Sai
b
óng
c
óng
d
Sai
C¥u49.
a
óng
b
Sai
c
óng
d
Sai
C¥u50.
a
Sai
b
Sai
c
óng
d
óng
C¥u51.
a
óng
b
óng
c
Sai
d
óng
C¥u52.
a
óng
b
óng
c
Sai
d
Sai
C¥u53.
a
óng
b
óng
c
óng
d
óng
C¥u54.
a
óng
b
Sai
c
óng
d
Sai
C¥u55.
a
óng
b
óng
c
Sai
d
óng
C¥u56.
a
Sai
b
óng
c
Sai
d
óng
C¥u57.
a
Sai
b
óng
c
Sai
d
óng
C¥u58.
a
Sai
b
óng
c
Sai
d
óng
C¥u59.
a
óng
b
Sai
c
óng
d
Sai
88
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C8-B3.tex
C¥u3.SûdöngnhàthùcNewton,khaitriºn(3x+2)
4
v t¼mh»thùcóngtrongc¡ch»thùc
óng.
TT Ph¡tbiºuSaH»sècõasèh¤ngchùax
2
l 216.bH»sècõasèh¤ngchùaxl 24.cH»sècõasèh¤ngchùax
3
l 108.dH»sècõasèh¤ngchùax
4
l 16.
Líigi£i.
Tacâ
(3x+2)
4
=(3x)
4
+4(3x)
3
2+6(3x)
2
2
2
+4(3x)2
3
+2
4
=81x
4
+108x
3
+216x
2
+96x+16:
Vªyh»sècõax
3
l 108v h»sècõasèh¤ngchùax
2
l 216.
¡p¡n:aóng
bsai
cóng
dsai..........................................................
C¥u4.A
k
n;C
k
n;Pnl¦nl÷ñtl sèch¿nhhñpchªpkcõanph¦ntû,sètêhñpchªpkcõanph¦ntû
v sèho¡nvàcõakph¦ntû.Trongc¡ckh¯ngànhsau,kh¯ngànhn oóng?
TT Ph¡tbiºuSaPn=n!.bC
k1
n+C
k
n=C
k+1
n+1.cC
k
n=C
nk
n.
dA
k
n=
C
k
n
k!
.
Líigi£i.
Tacâ
Pn=n!:
A
k
n=
n!
(nk)!
:
C
k
n=
n!
(nk)!k!
=
A
k
n
Pk:
[CængthùcPascal]C
k1
n1+C
k
n1=C
k
n:
¡p¡n:aóng
bsai
cóng
dsai..........................................................
C¥u5.Trongkhaitriºn(a+b)
n
,sèh¤ngtêngqu¡tcõakhaitriºnl
90
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C8-B3.tex
TT Ph¡tbiºuSaC
k
na
nk
b
k
.bC
k1
na
n+1
b
nk+1
.cC
k
nb
nk
a
k
.dC
k+1
na
nk+1
b
k+1
.
Líigi£i.
TheocængthùckhaitriºnnhàthùcNewtontacâ
(a+b)
n
=
n
X
k=0
C
k
na
nk
b
k
;(0kn):
Ho°c
(b+a)
n
=
n
X
k=0
C
k
na
k
b
nk
;(0kn):
Doâsèh¤ngtêngqu¡tcõakhaitriºnl C
k
na
nk
b
k
;(0kn)ho°cC
k
na
k
b
nk
;(0kn).
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C8-B3.tex
C¥u7.Chån¯ngthùcóngóngtrongc¡c¯ngthùcsau
92
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C8-B3.tex
TT Ph¡tbiºuSaS=C
0
5+2C
1
5+2
2
C
2
5++2
5
C
5
5=3
5
.bS=4
0
C
0
8+4
1
C
1
8+4
2
C
2
8++4
8
C
8
8=5
8
.c3
10
C
0
103
9
C
1
10+3
8
C
2
103
7
C
3
10++3
1
C
9
10C
10
10=2048.dC
1
12+C
2
12++C
11
12+C
12
12=4096.
Líigi£i.
a)Tacâ(a+b)
5
=C
0
5a
5
+C
1
5a
4
b+C
2
5a
3
b
2
+C
3
5a
2
b
3
+C
4
5ab
4
+C
5
5b
5
.
Choa=1,b=2,tacâ
3
5
=C
0
5+2C
1
5+2
2
C
2
5+2
3
C
3
5+2
4
C
4
5+2
5
C
5
5:
VªyS=3
5
.
b)Tacâ(a+b)
8
=C
0
8a
8
b
0
+C
1
8a
7
b
1
+C
2
8a
6
b
2
++C
8
8b
8
.
Choa=1,b=4,tacâ
5
8
=4
0
C
0
8+4
1
C
1
8+4
2
C
2
8++4
8
C
8
8:
VªyS=5
8
.
c)Tacâ(a+b)
n
=C
0
na
n
+C
1
na
n1
b+C
2
na
n2
b
2
+C
3
na
n3
b
3
++C
n
nb
n
.
Choa=3,b=1,tacâ
2
n
=3
n
C
0
n3
n1
C
1
n+3
n2
C
2
n3
n3
C
3
n++(1)
n
C
n
n=2048:
Suyran=10v¼nch®nn¶nsèh¤ngcuèi(1)
n
C
n
n=+C
10
10,khængph£iC
10
10.
d)Tacâ(a+b)
n
=C
0
na
n
+C
1
na
n1
b+C
2
na
n2
b
2
+C
3
na
n3
b
3
++C
n
nb
n
.
Choa=1,b=1,n=12tacâ
2
n
=C
0
n+C
1
n+C
2
n++C
n1
n+C
n
n=4096:
SuyraC
1
12+C
2
12++C
11
12+C
12
12=4095.
¡p¡n:aóng
bóng
csai
dsai..........................................................
C¥u8.Chån¯ngthùcóngóngtrongc¡c¯ngthùcsau
TT Ph¡tbiºuSaC
1
n+C
2
n++C
n1
n+C
n
n=2
n
.
93
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C8-B3.tex
bC
0
2n+C
2
2n++C
2n
2n=C
1
2n+C
3
2n++C
2n1
2n=2
2n1
.c3
16
C
0
163
15
C
1
16+3
14
C
2
16+3C
15
16+C
16
16=2
16
.
dC
0
2024+3
2
C
2
2024+3
4
C
4
2024++3
2024
C
2024
2024=
4
2024
2
2024
2
.
Líigi£i.
a)Tacâ(a+b)
n
=C
0
na
n
+C
1
na
n1
b+C
2
na
n2
b
2
+C
3
na
n3
b
3
++C
n
nb
n
.
Choa=1,b=1tacâ
2
n
=C
0
n+C
1
n+C
2
n++C
n1
n+C
n
n:
SuyraC
1
n+C
2
n++C
n1
n+C
n
n=2
n
1.
b)X²t(1+1)
2n
=
2n
X
k=0
C
k
2n1
2nk
1
k
=C
0
2n+C
1
2n+C
2
2n+C
3
2n+C
4
2n++C
2n
2n. (1)
X²t(11)
2n
=
2n
X
k=0
C
k
2n1
2nk
(1)
k
=C
0
2nC
1
2n+C
2
2nC
3
2n+C
4
2n++C
2n
2n. (2)
L§y(1)cëng(2)ta÷ñc
2
2n
+0
2n
=2
n
=
8
X
k=0
C
k
82
8k
x
k8
(x
3
)
k
=
8
X
k=0
C
k
82
8k
x
4k8
.
Thayx=1ta÷ñctêngh»sèl (21)
8
=1.
ºtrongkhaitriºn¢chocâsèh¤ngchùax
4
l 4k8=4,k=3(nhªn).
Vªyh»sècõax
4
trongkhaitriºn¢chol C
3
82
5
=1792.
¡p¡n:aóng
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
b
S
c
d
S
C¥u2.
a
b
S
c
d
S
C¥u3.
a
b
S
c
d
S
C¥u4.
a
b
S
c
d
S
C¥u5.
a
b
S
c
d
S
C¥u6.
a
b
S
c
d
S
C¥u7.
a
b
c
S
d
S
C¥u8.
a
S
b
c
d
S
C¥u9.
a
b
c
S
d
S
C¥u10.
a
b
c
S
d
S
97
NHÂMTONVL
AT
E
X
Ch֓ng9
Ph÷ìngph¡ptåaëtrongm°tph¯ng
C¥u1.Tr¶nh»tröc(O;
#
e),choc¡ciºmA(3),B(2),C(7).X²tt½nhóngsaicõac¡cm»nh·
sau
a)
AB=5. b)OA=3. c)CB=5. d)CO=7.
Líigi£i.
a)Tacâ
AB=2(3)=5.
b)Tacâ
OA=3(0)=3.
c)Tacâ
CB=27=5.
d)Tacâ
CO=07=7.
¡p¡n:asai
bóng
csai
dóng..........................................................
C¥u2.Tr¶nh»tröc(O;
#
e),choc¡ciºmA(4),B(3),C(5).X²tt½nhóngsaicõac¡cm»nh·
sau
a)TrungiºmcõaABl O.. b)AB=7.
c)TrungiºmcõaBCl D(4). d)
AC=9.
Líigi£i.
a)TrungiºmcõaABl E
dóng.......................................................
C¥u4.Tr¶nh»tröctåaëOxy,chotamgi¡cABCvîiA(2;1),B(2;3),C(1;7).X²tt½nhóng
saicõac¡cm»nh·sau
a)TrungiºmcõaACcâtåaël F
1
2
;4
.
b)ëd itrungtuy¸nùngvîi¿nhAtrongtamgi¡cABCl
p
85.
c)Tåaëtrüct¥mtamgi¡cABCl H
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX "T-FGiapThin2024".tex
BƒNGPN
C¥u1.
a
Sai
b
óng
c
Sai
d
óng
C¥u2.
a
Sai
b
óng
c
óng
d
óng
C¥u3.
a
Sai
b
óng
c
óng
d
óng
C¥u4.
a
óng
b
Sai
c
Sai
d
óng
C¥u5.
a
óng
b
Sai
c
óng
d
Sai
C¥u6.
a
óng
b
Sai
c
óng
d
Sai
C¥u7.
a
óng
b
Sai
c
óng
d
Sai
C¥u8.
a
óng
b
Sai
c
óng
d
Sai
C¥u9.
a
Sai
b
óng
c
óng
d
Sai
C¥u10.
a
óng
b
óng
c
Sai
d
óng
C¥u11.
a
óng
b
Sai
c
Sai
d
óng
C¥u12.
a
óng
b
óng
c
óng
d
Sai
104
#
c=3x+2y
(
#
a+2
#
c)
#
b=4x+2y+3
,
8
<
:
3x+2y=1
4x+2y=2
,
8
<
:
x=1
y=1:
Vªy
#
c=(1;1).
a)j
#
cj=
p
(1)
2
+1
2
=
p
2.
b)
#
b
#
c=2(1)+11=1.
c)
#
a
#
c=1(1)+11=0)
#
a?
#
c.
d)Tacâ
#
a
#
b=(1;0),suyra
#
a
#
b
#
c=(1)(1)+10=1.
¡p¡n:asai
bóng
cóng
dóng.......................................................
C¥u14.Trongh»tåaëOxy,choc¡ciºmA(0;3),B(4;0),C(2;5).Méik¸tqu£d÷îi¥yóng
haysai?
a)
#
AB
#
AC=16. b)
#
OB
#
CA=9. c)
#
CA
#
CB=10.d)
#
AB
#
BC=9.
Líigi£i.
Tacâ
#
AB=(4;3),
#
AC=(2;8),
#
BC=(6;5),
#
OB=(4;0).
a)
#
AB
#
AC=4(2)+(3)(8)=16.
b)
#
OB
#
CA=42+08=8.
c)
#
CA
#
CB=26+85=52.
d)
#
AB
#
BC=4(6)+(3)(5)=9.
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B2.tex
b)Tacâ
#
a
#
b=(3;4).
Suyra(
#
a
#
b)
#
a=3443=0.
Vªy(
#
a
#
b)?
#
a.
c)Tacâcos
#
a;
#
i
=
#
a
#
i
j
#
aj
#
i
=
41+30
p
4
2
+3
2
1
=
4
5
.
d)Tacâcos
#
a;
#
b
=
#
a
#
b
j
#
aj
#
b
=
41+37
p
4
2
+3
2
p
1
2
+7
2
=
p
22
.
Suyra
#
a;
#
b
=45
.
¡p¡n:aóng
bóng
csai
dóng.......................................................
C¥u16.Trongh»tåaëOxy,choc¡cv²c-tì
#
a=(1;3),
#
b=(4;3).Gåil gâcgiúahaiv²c-tì
#
a,
#
b.C¡ckh¯ngànhsau¥yónghaysai?
a)
#
a
#
b=5. b)2(90
;180
). c)cos>0. d)<90
.
Líigi£i.
Tacâj
#
aj=
p
1
2
+3
2
=
p
10,
#
b
=
p
(4)
2
+3
2
=5.
Suyra
#
a
#
b=1(4)+33=5.
Doâcos=
#
a
#
b
j
#
aj
#
b
=
1
p
10
.Vªy71
.
¡p¡n:aóng
bsai
cóng
dóng.......................................................
C¥u17.Trongh»tåaëOxy,choc¡ciºmA(1;4),B(3;2).GåiMl trungiºmAB.C¡ckh¯ng
ànhsau¥yónghaysai?
a)
#
MA
#
AB=MAAB. b)
#
MB
#
AB=MBAB.
c)
#
AM
#
AB=AMAB. d)
#
MA
#
MB=MAMB.
Líigi£i.
DoMl trungiºmAB)M(1;3).
Tacâ
#
MA=(2;1),
#
MB=(2;1),
#
AB=(4;2).
KhiâAB=2
p
5)MA=MB=
AB
2
=
p
5.
a)Tacâ
#
MA
#
AB=2(4)+1(2)=10.
M MAAB=
p
52
p
5=10.
Suyra
#
MA
#
AB=MAAB.
b)Tacâ
#
MB
#
AB=(2)(4)+(1)(2)=10.
M MBAB=
p
52
p
5=10.
Suyra
#
MB
#
AB=MBAB.
c)Tacâ
#
AM=(2;1)n¶n
#
AM
#
AB=(2)(4)+(1)(2)=10.
M AMAB=MAAB=
p
52
p
5=10.
Suyra
#
AM
#
AB=AMAB.
106
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C9-B2.tex
d)Tacâ
#
MA
#
MB=2(2)+1(1)=5.
M MAMB=
p
5
p
5=5.
Suyra
#
MA
#
MB=MAMB.
¡p¡n:aóng
bsai
cóng
dóng.......................................................
C¥u18.Trongh»tåaëOxy,choc¡ciºmA(0;3),B(4;3),C(2;0).GåiIl trungiºmcõao¤n
OA,M(x;y)l mëtiºmtòyþ.C¡ckh¯ngànhsau¥yónghaysai?
a)
#
OI
#
IB+
#
AI
#
IB6=0. b)AB
2
+
#
AB
#
BC+
#
AB
#
CA=0.
c)(
#
IA+
#
IB)
#
IO=
9
2
. d)
#
MA
#
BC+
#
MB
#
CA+
#
MC
#
AB=0.
Líigi£i.
a)Tacâ
#
OI
#
IB+
#
AI
#
IB=
#
IB(
#
OI+
#
AI)=
#
IB
#
0=0.
b)TacâAB
2
+
#
AB
#
BC+
#
AB
#
CA=
#
AB(
#
AB+
#
BC
#
CA)=
#
AB
#
0=0.
c)DoIl trungiºmcõao¤nOAn¶nI
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B3.tex
C¥u21.Trongh»tåaëOxy,cho÷íngth¯ngdcâmëtv²c-tìph¡ptuy¸nl
#
n=(a;b),vîia,
b2R.Trongc¡ckh¯ngànhsau,kh¯ngànhn oóng,kh¯ngànhn osai?
a)N¸ub=0th¼÷íngth¯ngdkhængcâh»sègâc.
b)N¸ub6=0th¼h»sègâccõa÷íngth¯ngdl k=
a
b
.
c)÷íngth¯ngdcâmëtv²c-tìch¿ph÷ìngl
#
u=(b;a).
d)V²c-tìk
#
n,(k2R)l v²c-tìph¡ptuy¸ncõad.
Líigi£i.
dcâmëtv²c-tìph¡ptuy¸nl
#
n=(a;b))ph÷ìngtr¼nhd:ax+by+c=0.
N¸ub=0th¼÷íngth¯ngd:ax+c=0khængcâh»sègâc.
N¸ub6=0th¼÷íngth¯ngd:y=
a
b
x
c
b
câh»sègâcl k=
a
b
.
Vîi
#
u=(b;a))
#
u
#
n=0)
#
u?
#
n
)
#
ul mëtv²c-tìch¿ph÷ìngcõad.
Chånk=0)k
#
n=(0;0)khængph£il v²ctìph¡ptuy¸ncõad.
¡p¡n:aóng
dsai..........................................................
C¥u28.Trongh»tåaëOxy,gi£sûl gâcgiúahai÷íngth¯ngd:x
p
3y+2=0v
d
0
:x+
p
3y1=0.C¡ckh¯ngànhsau¥yónghaysai?
a)sin=
p
32
. b)cos=
1
2
. c)tan=
p
3. d)cot=
p
33
.
Líigi£i.
÷íngth¯ngd,d
0
l¦nl÷ñtcâv²c-tìph¡ptuy¸nl
#
n=(1;
p
3),
#
n
0
=(1;
p
3).
Khiâcos=
j13j
p
1+3
p
1+3
=
1
2
)=60
.
Doâsin=
p
32
,cos=
1
2
,tan=
p
3v cot=
p
33
.
¡p¡n:aóng
bsai
csai
dóng..........................................................
C¥u29.C¡ckh¯ngànhsau¥yónghaysai?
a)Kho£ngc¡chtøiºmM(x0;y0)¸n÷íngth¯ngax+by+c=0(a
2
+b
2
6=0)b¬ng
ax0+by0+c
p
a
2
+b
2
.
b)Kho£ngc¡chtøiºmO(0;0)¸n÷íngth¯ngx+y+2=0b¬ng2.
c)Kho£ngc¡chtøiºmO(0;0)¸n÷íngth¯ngx+y2=0b¬ng
p
2.
d)Kho£ngc¡chtøiºmM(1;1)¸n÷íngth¯ngx+y+2=0b¬ng2
p
2.
Líigi£i.
113
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B3.tex
a)Kho£ngc¡chtøiºmM(x0;y0)¸n÷íngth¯ngax+by+c=0(a
2
+b
2
6=0)l
jax0+by0+cj
p
a
2
+b
2
.
b)Kho£ngc¡chtøiºmO(0;0)¸n÷íngth¯ngx+y+2=0l
j0+0+2j
p
1
2
+1
2
=
p
2.
c)Kho£ngc¡chtøiºmO(0;0)¸n÷íngth¯ngx+y2=0l
j0+02j
p
1
2
+1
2
=
p
2.
d)Kho£ngc¡chtøiºmM(1;1)¸n÷íngth¯ngx+y+2=0l
j1+1+2j
p
1
2
+1
2
=2
p
2.
¡p¡n:asai
bsai
cóng
dóng..........................................................
C¥u30.ChoiºmA(2;3),÷íngth¯ngd:xy2=0,÷íngth¯ng:2x+y3=0.C¡c
kh¯ngànhsau¥yónghaysai?
a)Kho£ngc¡chtøiºmA¸ntröcOxl 3.
b)Kho£ngc¡chtøiºmA¸ntröcOyl 5.
c)Kho£ngc¡chtøiºmA¸n÷íngth¯ngdl 3.
d)Kho£ngc¡chtøiºmA¸n÷íngth¯ngl
2
p
55
.
Líigi£i.
a)Kho£ngc¡chtøiºmA¸ntröcOx:y=0l
j3j
p
0
2
+1
2
=3.
b)Kho£ngc¡chtøiºmA¸ntröcOy:x=0l
j2j
p
1
2
+0
2
=2.
c)Kho£ngc¡chtøiºmA¸n÷íngth¯ngdl
j2+32j
p
1
2
+(1)
2
=
3
p
22
.
d)Kho£ngc¡chtøiºmA¸n÷íngth¯ngl
j2233j
p
2
2
+1
2
=
2
p
55
¡p¡n:aóng
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C9-B3.tex
a)Tacâd(A;(BC))=
j2+2+2j
p
1
2
+1
2
=3
p
2.
b)Tacâd(O;(AB))=
j8j
p
5
2
+(1)
2
=
8
p
26
,d(O;(AC))=
j8j
p
1
2
+(5)
2
=
8
p
26
.SuyraiºmO
c¡ch·uhai÷íngth¯ngABv AC
c)Tacâd(O;(BC))=
j2j
p
1
2
+1
2
=
2
p
2
=
p
2v d(A;(BC))=
j2+2+2jp
1
2
+1
2
=3
p
2,suyra
d(O;(BC))6=d(A;(BC)).
d)Tacâd(B;(AC))=
j1+15+8j
p
1
2
+(5)
2
=
24
p
26
v d(C;(AB))=
j1518j
p
5
2
+(1)
2
=
24
p
26
,suyra
d(B;(AC))=d(C;(AB)).
¡p¡n:aóng
bóng
csai
dóng.......................................................
C¥u32.Trongm°tph¯ngtåaëOxy,cho÷íngth¯ngd:
8
<
:
x=2t
y=1+2t
.C¡ckh¯ngànhsau¥y,
kh¯ngànhn oóng,kh¯ngànhn osai?
a)iºmM(a;b)(a<2)thuëc÷íngth¯ngdsaochoOM=
p
10thäam¢n3ab=0.
b)GåiNl iºmcâho nhëcthuëc÷íngth¯ngdsaochokho£ngc¡chtøN¸ntröcOx
b¬ng3.Têngc¡cgi¡tràcõacb¬ng6.
c)iºmPthuëcdsaochokho£ngc¡chtøA(1;2)¸nPnhänh§tcâho nhël
7
5
.
d)iºmQthuëcdsaochoQc¡ch·uhaiiºmB(1;2)v C(2;1)câtungël 3.
Líigi£i.
a)iºmM2dn¶nM(2t;1+2t))OM=
p
(2t)
2
+(1+2t)
2
=
p
5+5t
2
.
SuyraOM=
p
10,5+5t
2
=10,t=1.
Doa<2n¶n2t<2,t>0)t=1,suyraM(1;3).Tøâtacâa=1,b=3,3ab=0.
b)iºmN2dn¶nN(2t;1+2t).Kho£ngc¡chtøN¸nOxb¬ng3n¶n
j1+2tj=3,
2
4
t=1
t=2:
SuyraN(1;3)ho°cN(4;3),doâc2f1;4g.Vªytêngc¡cgi¡tràcõacb¬ng5.
c)iºmP2dn¶nP(2t;1+2t).Khiâ
AP=
p
(2t1)
2
+(1+2t2)
2
=
p
5t
2
6t+2=
s
5
t
3
5
2
+
1
5
p
55
:
VªyminAP=
p
55
khit=
3
5
,khiâP
7
5
;
11
5
.
115
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B3.tex
d)iºmQc¡ch·uhaiiºmB,Cn¶nQn¬mtr¶n÷íngtrungtrüccõaBC.
Gåil ÷íngtrungtrüccõaBC.Tacâ
#
BC=(3;3)l v²c-tìph¡ptuy¸ncõa,iºm
I
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B4.tex
C¥u34.Trongm°tph¯ngtåaëOxy,cho÷íngtrán(C):(x+1)
2
+y
2
=1,iºmA(2;1)v
B(1;3).C¡ckh¯ngànhsau¥yónghaysai?
a)÷íngtrán(C)cât¥mI(1;0).
b)÷íngtrán(C)câb¡nk½nhR=1.
c)÷íngtránt¥mAv iquaiºmBcâb¡nk½nhR=
p
5.
d)÷íngtrán÷íngk½nhABcâb¡nk½nhR=
p
5.
Líigi£i.
÷íngtrán(C)cât¥mI(1;0).
÷íngtrán(C)câb¡nk½nhR=1.
÷íngtránt¥mAv iquaiºmBcâb¡nk½nhR=AB=
p
(12)
2
+(32)
2
=
p
5.
÷íngtrán÷íngk½nhABcâb¡nk½nhR=
AB
2
=
p
52
.
¡p¡n:asai
dsai............................................................
C¥u45.Chotamgi¡cABCvuængt¤iA,câA(0;2),B(1;1),C(6;0).C¡ckh¯ngànhsau¥y
ónghaysai?
a)÷íngtránt¥mBti¸pxócvîi÷íngth¯ngACt¤iiºmC.
b)÷íngtránt¥mCti¸pxócvîi÷íngth¯ngABcâb¡nk½nhR=2
p
10.
c)÷íngtránngo¤iti¸ptamgi¡cABCcât¥ml iºmI
5
2
;
1
2
.
d)÷íngtránngo¤iti¸ptamgi¡cABCcâ÷íngk½nhb¬ng5
p
2.
Líigi£i.
Tamgi¡cABCvuængt¤iAcâAB=
p
(1)
2
+(12)
2
=
p
10,AC=
p
6
2
+2
2
=2
p
10v
BC=
p
(6+1)
2
+1
2
=5
p
2.
a)DoBA?ACt¤iAn¶n÷íngtránt¥mBti¸pxócvîi÷íngth¯ngACt¤iiºmA.
b)÷íngtránt¥mCti¸pxócvîi÷íngth¯ngABt¤iAn¶ncâb¡nk½nhb¬ngCA=2
p
10.
c)÷íngtránngo¤iti¸ptamgi¡cABCcât¥mIl trungiºmcõaBC,doâI
5
2
;
1
2
.
d)÷íngtránngo¤iti¸ptamgi¡cABC÷íngk½nhBC=5
p
2.
¡p¡n:asai
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C9-B5.tex
C¥u47.Choelipcâph÷ìngtr¼nhch½nhtc
x
2
25
+
y
2
16
=1.Trongc¡cm»nh·sau,m»nh·n o
óng,m»nh·n osai?
a)Elipcâti¶uiºml F1(3;0).
b)Elipcâhaiti¶uiºml F2(3;0).
c)Ti¶ucücõaelipl F1F2=6.
d)Têngc¡ckho£ngc¡chtøméiiºmtr¶neliptîihaiti¶uiºmb¬ng10.
Líigi£i.
Tacâa
2
=25,b
2
=16.Doâ,c=
p
a
2
b
2
=3.
VªyF1(3;0),F2(3;0)v ti¶ucüF1F2=2c=6.
Tøâ,suyratêngc¡ckho£ngc¡chtøméiiºmtr¶neliptîihaiti¶uiºmb¬ng2a=10.
¡p¡n:aóng
bóng
cóng
dóng.....................................................
C¥u48.Choelipcâph÷ìngtr¼nhch½nhtc
x
2
36
+
y
2
9
=1.Trongc¡cm»nh·sau,m»nh·n o
óng,m»nh·n osai?
a)Elipcâti¶uiºml F1(3
p
3;0).
b)Elipcâti¶uiºml F2(0;3
p
3).
c)Ti¶ucücõaelipl F1F2=6
p
3.
d)Têngc¡ckho£ngc¡chtøméiiºmtr¶neliptîihaiti¶uiºmb¬ng6.
Líigi£i.
Tacâa
2
=36,b
2
=9.Doâ,c=
p
a
2
b
2
=3
p
3.
VªyF1(3
p
3;0),F2(3
p
3;0)v ti¶ucüF1F2=2c=6
p
3.
Tøâ,suyratêngc¡ckho£ngc¡chtøméiiºmtr¶neliptîihaiti¶uiºmb¬ng2a=12.
¡p¡n:aóng
bsai
cóng
dsai..........................................................
C¥u49.Choelip(E)iquaiºmA(5;0)v câmëtti¶uiºml F2(3;0).Trongc¡cm»nh·sau,
m»nh·n oóng,m»nh·n osai?
a)Ti¶uiºmF1(3;0).
b)Têngc¡ckho£ngc¡chtøméiiºmtr¶neliptîihaiti¶uiºmb¬ng10.
c)Ti¶ucücõaelipl F1F2=6.
d)Elipcâph÷ìngtr¼nhch½nhtcl
x
2
25
+
y
2
16
=1.
Líigi£i.
Gåiph÷ìngtr¼nhch½nhtccõaelipl
x
2
a
2
+
y
2
b
2
=1vîia>b>0.
TacâA(5;0)2(E)n¶na
2
=25.
L¤icâc=3,suyrab
2
=a
2
c
2
=16.Ti¶ucül 2c=6.
Vªyph÷ìngtr¼nhch½nhtccõaelipl
x
2
25
+
y
2
16
=1.
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B5.tex
a)C¡cti¶uiºml F1(12;0);F2(12;0).
b)ëd itröclîn20.
c)Ph÷ìngtr¼nhch½nhtccõaelipl
x
2
100
+
y
2
64
=1.
d)C¡cgiaoiºmcõa(E)vîitröctungl B1(8;0);B2(8;0).
Líigi£i.
Gåiph÷ìngtr¼nhch½nhtccõaelipl
x
2
a
2
+
y
2
b
2
=1vîia>b>0.
Tacâti¶ucü2c=12,suyrac=6v 2a=20n¶na=10.
Suyrab
2
=a
2
c
2
=10036=64.Vªyph÷ìngtr¼nhch½nhtccõaelipl
x
2
100
+
y
2
64
=1.
¡p¡n:asai
bóng
cóng
dsai..........................................................
C¥u51.Choelip(E)câph÷ìngtr¼nhch½nhtcl
x
2
a
2
+
y
2
b
2
=1,bi¸tr¬ng(E)iquaiºmM(2;1)
v c¡c¿nhtr¶ntröcnhänh¼nhaiti¶uiºmd÷îimëtgâcvuæng.Trongc¡cm»nh·sau,m»nh·
n oóng,m»nh·n osai?
a)b=c.
b)
4
a
2
+
1
b
2
=1.
c)C¡cti¶uiºml F1(
p
3;0);F2(
p
3;0).
d)Têngc¡ckho£ngc¡chtøméiiºmthuëcelip¸nc¡cti¶uiºmb¬ng4
p
6.
Líigi£i.
GåiBl ¿nhtr¶ntröcnhä,F1,F2l haiti¶uiºm.
Khiâtamgi¡cF1BF2vuængc¥nn¶nb=c.Doâa
2
=b
2
+c
2
=
2b
2
.
M°tkh¡cM2(E)n¶n
4
a
2
+
1
b
2
=1.Tøâsuyrab
2
=3,a
2
=6.
VªyA1(
p
6;0),A2(
p
6;0),B1(0;
p
3),B2(0;
p
3).
x
y
O
F1 F2
a
b
a
B
¡p¡n:aóng
bóng
cóng
dsai.......................................................
C¥u52.Choelip(E)câph÷ìngtr¼nhch½nhtcl
x
2
a
2
+
y
2
b
2
=1.Bi¸tr¬ng(E)iquaiºmM(
p
5;1)
v kho£ngc¡chtømët¿nhn¬mtr¶ntröclîn¸nmët¿nhn¬mtr¶ntröcnhäb¬ngti¶ucü.Trong
c¡cm»nh·sau,m»nh·n oóng,m»nh·n osai?
a)iºmQ(1;1)thuëcelip.
b)C¡cti¶uiºml F1
2
p
63
;0
!
,F2
2
p
63
;0
!
.
c)Ti¶ucüb¬ng
5
p
63
.
d)Ph÷ìngtr¼nhch½nhtccõaelipl
x
2
43
+
y
2
4
=1.
Líigi£i.
GåiA(a;0),B(0;b)l hai¿nh.KhiâAB=2c,suyraa
2
+b
2
=4c
2
.
M c
2
=a
2
b
2
n¶n3a
2
=5b
2
.
128
y
2
16
=1.
Líigi£i.
Gåiph÷ìngtr¼nhch½nhtccõahypeboll
x
2
a
2
y
2
b
2
=1vîia>0;b>0.
129
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C9-B5.tex
TacâA(5;0)2(H)n¶na
2
=25.
L¤icâc=9,suyrab
2
=c
2
a
2
=56.
Vªyph÷ìngtr¼nhch½nhtccõahypeboll
x
2
25
y
2
56
=1.
Ti¶ucücõahypeboll F1F2=2c=18.
¡p¡n:aóng
bóng
csai
dsai..........................................................
C¥u56.Chohypebol(H)câti¶ucüb¬ng20v hi»uc¡ckho£ngc¡chtøméiiºmthuëchypebol
âtîihaiti¶uiºmâb¬ng12.Trongc¡cm»nh·d÷îi¥y,m»nh·n oóng,m»nh·n o
sai?
a)C¡cti¶uiºml F1(10;0);F2(10;0).
b)Ph÷ìngtr¼nhch½nhtccõahypeboll
x
2
36
y
2
64
=1.
c)C¡cgiaoiºmcõa(H)vîitröctungl B1(8;0);B2(8;0).
d)C¡cgiaoiºmcõa(H)vîitröcho nhl A1(10;0);A2(10;0).
Líigi£i.
Gåiph÷ìngtr¼nhch½nhtccõahypeboll
x
2
a
2
y
2
b
2
=1vîia>0;b>0.
Tacâti¶ucü2c=2
p
a
2
+b
2
=20,suyrac=10v 2a=12n¶na=6.
Suyrab
2
=c
2
a
2
=10036=64.Vªyph÷ìngtr¼nhch½nhtccõahypeboll
x
2
36
y
2
64
=1.
¡p¡n:asai
bóng
csai
dóng..........................................................
C¥u57.Chohypebol(H)câph÷ìngtr¼nhch½nhtcl
x
2
a
2
y
2
b
2
=1,bi¸tr¬ng(H)iqua
iºmM
p
7;0
v N
2
p
7;3
p
3
.Trongc¡cm»nh·d÷îi¥y,m»nh·n oóng,m»nh·n o
sai?
a)Ti¶ucül 8.
b)
28
a
2
27
b
2
=1.
c)Ph÷ìngtr¼nhch½nhtccõahypeboll
x
2
7
y
2
9
=1.
d)Hi»uc¡ckho£ngc¡chtømëtiºmtr¶nhypeboltîihaiti¶uiºmcâgi¡tràtuy»tèib¬ng
4
p
7.
Líigi£i.
Gåiph÷ìngtr¼nhch½nhtccõahypeboll
x
2
a
2
y
2
b
2
=1vîia>0;b>0.
Tacâh»ph÷ìngtr¼nh
8
>
<
>
:
7
a
2
=1
28
a
2
27
b
2
=1
,
8
<
:
a
2
=7
b
2
=9:
Ph÷ìngtr¼nhch½nhtccõahypeboll
x
2
7
y
2
9
=1.
ëd iti¶ucül 2c=2
p
a
2
+b
2
=8.
Hi»uc¡ckho£ngc¡chtømëtiºmtr¶nhypeboltîihaiti¶uiºmcâgi¡tràtuy»tèib¬ng2a=2
p
7.
¡p¡n:aóng
bóng
cóng
dsai.......................................................
C¥u58.Chohypebol(H)câph÷ìngtr¼nhch½nhtcl
x
2
a
2
y
2
b
2
=1,bi¸tr¬ng(H)iquaiºm
130
DÜNEX-ÓNG/SAI-2024
FacebookNhâmTo¡nv LaTeX 10-C9-B5.tex
M
3
p
2;4
v hi»uc¡ckho£ngc¡chtømëtiºmtr¶nhypeboltîihaiti¶uiºmcâgi¡tràtuy»tèi
b¬ng6.Trongc¡cm»nh·d÷îi¥y,m»nh·n oóng,m»nh·n osai?
a)ëd iti¶ucül 2c=2
p
a
2
+b
2
=12.
b)
18
a
2
16
b
2
=1.
c)Ph÷ìngtr¼nhch½nhtccõahypelboll
x
2
9
y
2
16
=1.
d)Hi»uc¡ckho£ngc¡chtømëtiºmtr¶nhypeboltîihaiti¶uiºmcâgi¡tràtuy»tèib¬ng8.
Líigi£i.
Gåiph÷ìngtr¼nhch½nhtccõahypelboll
x
2
a
2
y
2
b
2
=1vîia>0;b>0.
Tacâh»ph÷ìngtr¼nh
8
>
<
>
:
18
a
2
16
b
2
=1
2a=6
,
8
<
:
a
2
=9
b
2
=16:
Ph÷ìngtr¼nhch½nhtccõahypeboll
x
2
9
y
2
16
=1.
ëd iti¶ucül 2c=2
p
a
2
+b
2
=10.
Hi»uc¡ckho£ngc¡chtømëtiºmtr¶nhypeboltîihaiti¶uiºmcâgi¡tràtuy»tèib¬ng2a=6.
¡p¡n:asai
bóng
cóng
dsai..........................................................
C¥u59.Choparabol(P)câph÷ìngtr¼nhch½nhtcl y
2
=x.Trongc¡cm»nh·d÷îi¥y,m»nh
·n oóng,m»nh·n osai?
a)Parabolcâti¶uiºmF
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C10-B1.tex
aA:"m°tl´xu§thi»n".bB:"xu§thi»nm°tcâsèch§mlînhìn3".cC:"xu§thi»nm°tcâsèch§mchiah¸tcho3".dD:"xu§thi»nm°tcâsèch§mchiakhængqu¡5".
Líigi£i.
a)A=f1;3;5g:bi¸ncèm°tl´xu§thi»nl kh¯ngànhóng.
b)B=f3;4;5;6g:bi¸ncèxu§thi»nm°tcâsèch§mlînhìn3l sai.
c)C=f3;6g:bi¸ncèxu§thi»nm°tcâsèch§mchiah¸tcho3l óng.
d)D=f1;2;3;4g:bi¸ncèxu§thi»nm°tcâsèch§mchiakhængqu¡5l saiv¼thi¸um°t6ch§m.
¡p¡n:aóng
NHÂMTONVL
AT
E
X
FacebookNhâmTo¡nv LaTeX 10-C10-B2.tex
c)Sèph¦ntûcõakhænggianm¨ul n()=2
3
=8.
GåiAl bi¸ncè½tnh§tmëtçngxuxu§thi»nm°tngûa.
Suyra
Al bi¸ncèC£3l¦ngieo·uxu§thi»nm°ts§p.
Tacân