Basic Calculus Lesson 1

alicelagajino 8,197 views 36 slides Jan 14, 2021
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

Limits


Slide Content

BASIC CALCULUS

BASIC CALCULUS Course Content Limits and Continuity Derivatives Intergretion

Limits and Continuity Introduction to Limits Properties of Limits Limit of Non – Algebraic Function Horizontal and Vertical Asymptotes Continuity

Review on Functions Function - is a binary relation over two sets that associates every element of the first set, to exactly one element of the second set. Evaluating a Function Means replacing the variable in the function.

Evaluate the following functions at x = 1.5 . f(x) = 2x + 1 h(x) = x 2 + 2x + 2 r(x) = g(x) =  

Evaluate the following functions at x = 1.5 . f(x) = 2x + 1 f( 1.5 ) = 2( 1.5 ) + 1 = 3 + 1 = 4 f( 1.5 ) = 4

Evaluate the following functions at x = 1.5 . 2. h(x) = x 2 + 2x + 2 h ( 1.5 ) = ( 1.5 ) 2 + 2( 1.5 ) + 1 = 2.25 + 3 + 1 = 6.25 h ( 1.5 ) = 6.25

Evaluate the following functions at x = 1.5 . 3. r(x ) =   r( 1.5 ) =   =   = 1.58 r( 1.5 ) = 1.58

Evaluate the following functions at x = 1.5 . 4. g(x) =   g( 1.5 ) =   =   = 8 g ( 1.5 ) = 8 =  

Given r( a+h ), evaluate r(x) = Replace the value of x r( a+h ) = Note: Use FOIL( First,Outer,Inner,Last ) method for ( a+h )( a+h ) = r( a+h ) = = 3( ) + 5(a + h) – 10 Use distributive property for 3( ) and 5(a + h) 3( 5(a + h) = 5a + 5h Perform the operation r( a+h ) = = 3( ) + 5(a + h) – 10 + 5a + 5h – 10 r( a+h ) = + 5a + 5h – 10  

Seatwork

Find g(2x – 1) and r(3c + 5). r(x) = g(x) =   Evaluate the following functions at f(3x – 1) and h(2x + 3) 3. f(x) = 2x + 1 4. h(x) = x 2 + 2x + 2 Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 .

Find r(3c + 5). r(x) =   r (3c + 5) =   (3c+5)(3c+5)   = 5(                              

Find g(2x – 1). 2. g (x) =   g (2x-1) =   (2x-1)(2x-1)   = ( )                            

Evaluate the following functions at f(3x – 1 ) f(x) =   f (3x – 1) =   =          

4. h(x) = x 2 + 2x + 2 h (2x+3) =   (2x+3)(2x+3)   = ( )                             Evaluate the following functions at h(2x + 3)

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f (-4) = (-4) 2 + 2(-4) – 3 =16 – 8 – 3 = 5 5

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f (-3) = (-3) 2 + 2(-3) – 3 = 9 – 6 – 3 = 0 5

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f (-2) = (-2) 2 + 2(-2) – 3 = 4 – 4 – 3 = -3 5 -3

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f (-1) = (-1) 2 + 2(-1) – 3 = 1 – 2 – 3 = -4 5 -3 -4

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f(0) = (0) 2 + 2(0) – 3 = 0 – 0 – 3 = -3 5 -3 -4 -3

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f(0) = (1) 2 + 2(1) – 3 = 1 + 2 – 3 = 0 5 -3 -4 -3

Evaluate each value of x in the table below using f(x) = x 2 + 2x – 3 . f(x) = x 2 + 2x – 3 f(0) = (2) 2 + 2(2) – 3 = 4 + 4 – 3 = 5 5 -3 -4 -3 5

LIMITS

INTRODUCTION TO LIMITS T he analysis of the behaviour of a function as it approaches some point (which may or may not be in the domain of the function!). This comes up in the real world all the time: any time a model uses “ideal” conditions, we are looking at a limit.

LIMITS Is the value that a function (or sequence) "approaches" as the input (or index) "approaches" some value.  

LIMITS The fact that a function f approaches the limit L as x approaches a is sometimes denoted by a right arrow (→), as in :  

When we evaluate a we do one of the following.   1. Find the limit value L in simplified form:  We write:  

When we evaluate a we do one of the following.   2. When the limit is infinity ( or negative infinity ( : We write:      

When we evaluate a we do one of the following.   3. When the limit “Does Not Exist (DNE)” in some other way,we write:  

When we evaluate a we do one of the following.   If we say the limit is or , the limit is still not exist. Think of or as “special cases of DNE”.   exists The limit is a real number, L . does not exist “DNE” œ -œ x ® a

EXAMPLE: Let f(x) = 3x 2 – x + 1, evaluate                          

EXAMPLE: Let f(x) = 12x 2 – 3x + 8, evaluate                        

EXAMPLE: Let f(x) = , evaluate                  

Seatwork

1. 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10.
Tags