0 ASMA x: ak
D Ina _
= E D x Ina
Lim e-1 ‘ xIna | ~ 一
fo->0 {00 =Ina
+0 er =Ina {a>0)
These are standard formats
of exponential limits
Page 19
dnt =O |
Logarithmic limits and Rationalization method Vedanti,
Logarithmic Limits
\
malin Gi
Standard results A, mr) | (ON
4
2 Lim In(1 +x)
x70 x
A
Lim Indi+f@))
9 っ 0 fae 7.
Page 20
Limits, Continuity and Differentiability Nedantu
Lim 21 (1+x-a) '
620 Lim 1049)
L x>0 3-1
~ \ / 했지
(=)-0 = ^ es)
A+ 0 e
CDs
= A.
FT
Page 21
Limits, Continuity and Differentiability Nedantu
Example |
Lim In(1+x-a)
。 jm d+
xoa Lim 一 -- 一
(x-a) x30 *ー1
Lim A(A+x-a) Lim d+ けり
x-a20 (x-a) ンー nu
Lim (nl +@-ol) _ im (in A +3)
ah ea! =. ㅜㅠ
ここ ===
(GAL
Nr
Page 22
Logarithmic limits and Rationalization method
LM hea (e na
tt
| oa bg
L xian
= nal ¿n>0
il
Page 23 “m
um ATE nor!
xa AA
Logarithmic limits and Rationalization method Nedantu,
MAT
Lim x+x+x-3 Ee} aad cd
x 1 x-1 の
ー る =-1ー|
kai (2 Ea _
Page 24
Logarithmic limits and Rationalization method
[Example
Lim AHH)
xol ャ ー1
Lim &-ND+@&-D+@-D
x>1 ャ ー1
Lim 오그 4 #21 x 1
x>! x-1 x-1 x-1
= 1+ 2x (1) +3x (19
bee 22)
RL yy
L tes er
mob RZ
= By
Um x _ (6 DICELED)
RL RL - (< D
= E
Page 25
LH RULE
Page 26
LH Rule
It says that if Lim E is such that | it is either in 一 or 一 format ; then
|
Lim fa) _ Lim だ が @⑤
x= x>a ㆍ
7" 2) ge) Can again use if still in
0 oo
Functions are to be differentiated On 09
individually; not as a whole
Use this method
only for verifying answer
Page 27
Example :
Lim X-—sinx
x70
Page 28
Example :
As it is again giving 一 form so we have
Lim エーsiny .
e to apply LH rule one more time
x70 x
LL (1 - cos)
Tin dx
EM 4 。| ツー
Lim 2 dx
x>0 d
ーー y
dx Lim sine _ ML
x30 6x ーー 6
Lim 1-cosx |
x #0 3x2 Lim 1-cosx
x 0 3x2
Page 29
Example :
Lim x?
x70
Page 30
Example :
Lim x?-tan?x
x>0 xt
BUS Lim (x—tanx) (x+tanx)
x70 - A ur
x
Lim (x-tanx) (x+tanx)
* っ 0 a * x
ame)
Lim dx (x+tanx)
x30 ds x u
dx
Break this limit in
two parts out of
which one part is
giving a finite value
If some part of limit
is giving finite value
then no need to
apply LH rule on it
Page 31
Lim Te MY) (x+tanx)
x30 Ly x
Lim (1-secx) (x+tanx)
x30 3x2 x u. Ws
Lim (-tanx) (x +tanx)
* っ 0 3x2 并 — an
x x)
Lim | 그 /tan?x x ‚tan
x>0|73 FF} * | 된 a =
-1 =)
= —(1+1)=|=
3 ( ) su