basic mathematics for class 12 (jee mains)

rawatyamini1115 71 views 56 slides Jun 01, 2024
Slide 1
Slide 1 of 56
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56

About This Presentation

basic maths for class 12th


Slide Content

Page 1
Limits
Sat Apr 20 2024

Introduction to Limits Nedantu

Sage 2

Limits, Continuity and Differentiability

Lim —* —_

0 Buse

“page 3

Limits, Continuity and Differentiability

| Rationalization Method | Method

- _
x0 EE ree 7

If we put x = 0 here; it is indeterminate form
——t ___[N5-x+V5+x

xu V5 —x— V5+x Is ニュ + Ys

Lim *O5—x+V54x ]

0 (5-x) - (54x)

Lim ァ [Ns ー ェ +YVSTr )

x0

-2%
Le er) -

‘page 4

Infinity limits and Some Example Nedanti,
General form of infinity limits
Lim

x>0

Lim
x>0

Lim
x>0

Page 5

Infinity limits and Some Example \edantu,

Ifm<n 0

Ifm > n and ayb, > 0 oo

If m>n and ayb, <0 —o

Page 6

Infinity limits and Some Example Nedantu,

"Example | [Example |

Lim 4+20+3 Lim _Xtl_
x>0 3-1 DO X+x+1

dim RAF E
N 220 Er q Ex)

‘page 7

Infinity limits and Some Example Vedantin

amp
— | Example |
Lim 412043
>. x3_1 Lim x+1

— coo。 ol
fe)
im

rs Fein Lim «|: +1)

Lim xx
x>0
e Lim 1_
me Y

~ u

Page 8

> Limits, Continuity and Differentiability Nedantu

0 en es ー ax -b) = 수 , の の
- >00 HI
(a) az1 ,b=% JD así, b=-4
(> a=z , b=-3 (A) a=2,b=3
Tee (2012)
la Kant ~ axcerd EC?) -4 (ck vad 5
ズ っ の "ーーーーーーーーーーーーーーーー ーー ーー 1
K+]
(im
ズ っ oo

Page 9

Trigonometric and Exponential Limits Wed

Trigonometric Limits | ee
sinx is below

sin x =

Lim =1
x70 x © y=tanx Pr

. y=x tanx is above x
Lim sm 人 9 _ 1- A
fix) 0 fx |

y=sinx

Lim tanx + _

ーーーーー = x ax - 4
x>0 x = fe) Su de
Lim fanflx)_ + .
Fe Te mad.

Note: In all these standard limits , x is in radians

‘page 10

Trigonometric and Exponential Limits Wed

Standard Limits of Inverse Trigonometric Functions

Lim == =1

x>0 x
Lim Sin" fl) -1
7 っ 0 fx)

Lim tam!x

x>0 x =]

Lim LAO,
700 700

Page 11

RE 1 [0192179 zen
Trigonometric and Exponential Limits

Example:

Lim [= sini 이 Where | x | is greatest integer function

x70
tin [7] =0
Rs D ン
Lim [x] = bom [ 1*] A
x>ol * as

Ve

Page 12

Trigonometric and Exponential Limits \edantı,

1- Cs2e= Lem:

fs Lim (1- cosx (2)

x>0 sie ¡NAS Ss の

La (Et). y
Mo Y ~

‘page 13

Trigonometric and Exponential Limits Vedanti,

Example: |

Lim 1-cosx

x>0 x
Lim 2sin?(x/2) Remember this limit!!
x>0 x?

Lim ¿Sin (2) a
x90 NG の 4 4

1

“tifnits, Continuity and Differentiability Wed

y
| SC) = FR
ey him ELECO Cob 2 (2-1) dd ft = la)
204 a,
+
(a) 6004 and it equals S2 © O
(6) euh and ot equals -VR 168 1 48.

© hots met crust because (1) + ©
fa? dots net el becouse, safe tard Limit u not equal to
AGE hand, mt.
LIT Pyeious Year (1998

+ Ru し
Js (x-N a. ¥2 ] weCx-)1 _
LA = de Health.
Er = hina ~ 一

ne" um | wn (|
LHL? Lire pe hoo

h
ちっ ゃ o = = & B _
L? um ash] _ un BD pios = 2
E à à

‘Limits, Continuity and Differentiability coo = 4. Nedantu,

He ‘a
シーー lim Ta (57490. MEIN, ek。 E
o tan Im
oo
(a) 4 (hy 3 (ed 2 CNA
EE Main (2013)
ae
tan ( u

Re



red = 의 4 (2)

4 + se
ze

. km er @) = ant > の

no

Timits, Continuity and Differentiability Nedantu

ES lim som (nee) ig equal to : Sin (1-6) = sin O
R>0 >
ce) TE (> 1 で ぐう - で DT

+ TEE Cram) - 2014

>

Lin (TE) © sn oa) = SCH) = ©
Te 0

mo enn Gs)

L len Er (Ti) a ÉD = Sin (sis)

HPO = ADO =

a
eb
Wir [em( Tin =
O

wz% っ っ

Page 17

an Et

2 ~ ai て ee
テニ E

= = 2 x À

N =.

Um

Ro

Page 18 . my = a ma

Trigonometric and Exponential Limits Wed

Exponential limits

Standard results ン
(Lim Gu e 1)

0 ASMA x: ak
D Ina _
= E D x Ina
Lim e-1 ‘ xIna | ~ 一
fo->0 {00 =Ina

+0 er =Ina {a>0)

These are standard formats
of exponential limits

Page 19

dnt =O |
Logarithmic limits and Rationalization method Vedanti,

Logarithmic Limits
\
malin Gi
Standard results A, mr) | (ON
4

2 Lim In(1 +x)
x70 x

A
Lim Indi+f@))

9 っ 0 fae 7.

Page 20

Limits, Continuity and Differentiability Nedantu

Lim 21 (1+x-a) '
620 Lim 1049)
L x>0 3-1

~ \ / 했지
(=)-0 = ^ es)
A+ 0 e

CDs

= A.
FT

Page 21

Limits, Continuity and Differentiability Nedantu

Example |

Lim In(1+x-a)

。 jm d+
xoa Lim 一 -- 一
(x-a) x30 *ー1
Lim A(A+x-a) Lim d+ けり
x-a20 (x-a) ンー nu
Lim (nl +@-ol) _ im (in A +3)
ah ea! =. ㅜㅠ
ここ ===
(GAL
Nr

Page 22

Logarithmic limits and Rationalization method
LM hea (e na

tt
| oa bg

L xian

= nal ¿n>0

il

Page 23 “m
um ATE nor!

xa AA

Logarithmic limits and Rationalization method Nedantu,
MAT
Lim x+x+x-3 Ee} aad cd
x 1 x-1 の

ー る =-1ー|
kai (2 Ea _

Page 24

Logarithmic limits and Rationalization method

[Example

Lim AHH)
xol ャ ー1

Lim &-ND+@&-D+@-D

x>1 ャ ー1

Lim 오그 4 #21 x 1
x>! x-1 x-1 x-1

= 1+ 2x (1) +3x (19

bee 22)
RL yy

L tes er
mob RZ

= By

Um x _ (6 DICELED)
RL RL - (< D

= E

Page 25

LH RULE

Page 26

LH Rule

It says that if Lim E is such that | it is either in 一 or 一 format ; then
|

Lim fa) _ Lim だ が @⑤

x= x>a ㆍ
7" 2) ge) Can again use if still in

0 oo
Functions are to be differentiated On 09
individually; not as a whole

Use this method
only for verifying answer

Page 27

Example :

Lim X-—sinx
x70

Page 28

Example :
As it is again giving 一 form so we have

Lim エーsiny .
e to apply LH rule one more time

x70 x
LL (1 - cos)
Tin dx
EM 4 。| ツー
Lim 2 dx
x>0 d
ーー y
dx Lim sine _ ML
x30 6x ーー 6
Lim 1-cosx |
x #0 3x2 Lim 1-cosx

x 0 3x2

Page 29

Example :

Lim x?
x70

Page 30

Example :
Lim x?-tan?x
x>0 xt
BUS Lim (x—tanx) (x+tanx)
x70 - A ur
x
Lim (x-tanx) (x+tanx)
* っ 0 a * x
ame)
Lim dx (x+tanx)
x30 ds x u

dx

Break this limit in
two parts out of
which one part is
giving a finite value

If some part of limit
is giving finite value
then no need to

apply LH rule on it

Page 31

Lim Te MY) (x+tanx)
x30 Ly x
Lim (1-secx) (x+tanx)
x30 3x2 x u. Ws
Lim (-tanx) (x +tanx)
* っ 0 3x2 并 — an
x x)
Lim | 그 /tan?x x ‚tan
x>0|73 FF} * | 된 a =
-1 =)
= —(1+1)=|=
3 ( ) su

Page 32

NS
Format of 1” and Miscellaneous problems

Format of 1°

Page 33

\edartu

Format of 1” and Miscellaneous problems

Format of 1°
Cc?

Li = Li
m fe) =1 and MN g(x) > ©

の ) E ) ° =
Consider the limit es 0600) 9 Le Lio (4 17 à -
s of the form |

It is simplified by following expression

8%)

5

Lim
. xa NW) -D x g(x)
Lim (DO = e 7

Page 34

Format of 1” and Miscellaneous problems Nedantu

[00006 2 (2) © Ge + a
aS ga

Y
y da 一

IS

a

x — 00

ん =

‘page 35

Format of 1° and Miscellaneous problems Nedantin

Lim 1+ 237 we

Lim 000) 400 = @

xa

Lim (Ax) -1)x 800

Given expression becomes

Lin a+ 之 -Dx

Lim x

x30 X
< -@

its, Continuity and Differentiability Lar Wedantu
AZ

a a : 2 ん
Qi Lee pz ln (ir tenia) wer equal to :

(o> 2 it KB 4 CIA
JEE Man (2016)

Gy ras
0 4 = 1 /
ast

LgeP = ん
tr)
Y
HE Han A 1 e*-p
ee 980
ie €
Han VA tan VA
_ pee an we TH )
” €
Lan AY
Les = = hy
= € = e 、 =

£
⑳ 5
O 1

©»

Ou

in (( (1-cos?(3z) sin*(42) :
z>0 cos*(47) (log, (22+1))" )) is equal to .

2023 Main 8 April | ©

と (1—cos*(3z) sin?(4z) =
en (( cos*(4z) ) Fa 3) ii

AS _
1-ce's 24 2 (as
lin (va Wh (wie) O ,

#0 (5) (49° 202 9 で の
CON)! 소

Dx

A A

(る 6 +a)

Solution
ma) (mer) .,
개 ES e) e “ED
_[1x9x1 1x 64 +
| 0) E 1x2)

=9x2=18

Page 40

mA,

の lim (VSzHi+V3z-1)"+(VSz+1-V3z-1)" 3
m っ ュー の
25700 (<+v2?-1) +(z-v2?-1)

© is equalto 9
© is equalto q
lc] does not exist

[o] is equal to 27

lim (v3r+1+V32-1)°+H{V3r
2700 ee 를 ;

Solution lim (¥32+1+v32—1)*+ (v32-+1—v32—1)° „3

zoo (2/21) +(2- 1271)

= lim zs x (rt) + (yard 53)
200 (나 1 +) +( 1 x) |

CaO 他
~ 640 。

Page 43

Page 44

JEE Main 27" Jan 2024 S-2

~ Y
3+asinz+Pßcosze+log, (1-x) 1

If lim = 5
| 1>0 3tan?z 3°
\ v
\ then 2a - B is equal to:

ch
hm | 3 + “mw + BA a + hl

146 Où
ES Ds

Page 45

Limits Using Expansion Series

A 23 28 -

sino =x— 3 +5 > VE
一 一 a Ed ㆍ

csz=1-7 +7 -:..3Vr

3 975
tang=2+ +47 +...5Ve

ef =ltet 4% 4...¡Ve

pn | 3

h(1+%)=x-%+2

Yo fo,

Page 46

. 3+asinz + Bcosæ + log, (1— x)
If lim 들

+ ) 20 3tan?r
3! then 2a - 0 is equal to: 2
+f 1-22
x +

NE

New, Cot 9 タ =o
, Gulf tum =o
fa Limi be be ruse ㆍ

Page 47

Aro >

ae

Lv A 一 file Y

mao

9
=

NO

Page 48

Page 49

JEE Main 27" Jan 2024 S-2

3+asinz+Pßcosze+log, (1—zx) 1

If lim = 5
f 230 3tan?r 3”
\ \ then 2a - 0 is equal to:

©"
OL

Page 50

JEE Main 31 Jan 2024 S-1

2\sin x

. € —2|sinz|—1
lim

\ = x”

( A ) is equal to 1
6 ) Does not exist

c ) 16 equal to 2

D ) Is equal to - 1

‘Page 51

2\sinz| _ 2 [sin «| — 1

nn 52

Xo

~ に alsimx| + La » ㅣ

>

+ ere |
+ eine y | sive? Isa) (
一 ae

:Q

2/ Sino}
= lim € ー 2 JSinx] —| , six
SO
| Sima] 5

21Sinoe)
= Uw € - 2 Sina] I an
^
30 [Sox]? ar
26 -
= lim € -2t-) そ = /Sinx)
fo 一 テー
5 te 일으 의 ta ete) = O
E 270 RE

JEE Main 31 Jan 2024 S-1

2\sin x

. € —2|sinz|—1
lim

\ = x”

( A ) is equal to 1
6 ) Does not exist
CE) Is equal to 2

D ) Is equal to - 1

Sage 56

All the very best :-)

DREAM ON!