BASIC SURVEYING - AREAS AND VOLUMES COMPUTATION

SunealBirkur 179 views 31 slides Jul 15, 2024
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

AREAS AND VOLUMES


Slide Content

RGM COLLEGE OF ENGINEERING AND TECHNOLOGY
(AUTONOMOUS)
SUBJECT: SURVEYING
UNIT-III
COMPUTATION OF AREA AND VOLUME

Content:
•Introduction
•Methodsofcomputingarea
•Averageordinaterule
•Midordinaterule
•simpson’srule

INTRODUCTION
Incivilengineeringworksuchasdesignofbridges,dam
,reservoirsetc.Theareaofcatchmentofariverisrequired.Forroad
andrailwayslandistobeacquiredonthebasisofarea.Thus,finding
areasisessentialpartofsurveying.Itmaybenotedthattheareatobe
foundistheprojectedareauponthehorizontalplane.

unitsusedforfindingtheareaaresquare,meters,hectare,acres
etc.
100Sq.m=1are
100are=1hectare=10000Sq.m
1acre=4047Sq.m=2.5vigha
1vigha=16guntha
1acre=40guntha
1Hectare=2.471acres
1Sq.m=10000000Sq.m

COMPUTATION OF AREA FROM PLOTTED PLAN
•Boundary area can be
calculated as one of the
following rule:
–The mid-ordinate rule
–The average ordinate
rule
–The trapezoidal rule
–Simpson’s rule

METHODS OF COMPUTING AREA
Computationofareabytakingoffsets
1.Mid-ordinaterule
2.Averageordinaterule
3.Trapezoidalrule
4.Simpson’srule

MID-ORDINATE RULE
Inthismethodthebaselineisdividedintoa
numberofdivisionsandtheordinatesaremeasuredatthepoints
ofeachdivisions.Boundariesbetweentheoffsetsareconsidered
straightlines.

Whereh1,h2,h3,………… =midordinates
d=distanceofeachdivision
L=lengthofbaseline=nd
n=numberofdivision 
 
 
1 2 3
1 2 3
1 2 3
............
............
............
n
n
n
h h h h
Area L
n
h h h h
Area nd
n
Area h h h h d
   

   

     

AVERAGE ORDINATE RULE
Thisrulealsoassumesthattheboundariesbetweenthe
extremitiesoftheordinatesarestraightlines.

Whereh0,h1,h2,……=ordinatesofoffsets
d=distanceofeachdivision
n=numberofdivision
n+1=numberofoffsets
L=lengthofbaseline=nd 
 
1 2 3
1 2 3
............
1
............
1
n
n
h h h h
Area L
n
h h h h
Area nd
n
   


   


TRAPEZOIDAL RULE
Inthismethod,entireareaisdividedintotrapezoids.
Theruleismoreaccuratethantheprevioustworules.

whichisknownastrapezoidalrule.  
  
0 1 2 3 1
2
15
2 ..........
2
15
0 4.85 2 1.65 3.50 2.70 4.65 3.60 3.95
2
15 22.475
337.125
nn
dm
d
Area h h h h h h
Area
Area
Area m


       

        



Example:seriesofoffsetsweretakenfromachainlinetoan
boundary,intervalof15m,inthefollowingorder.
0,1.65,3.50,2.70,4.65,3.60,3.95,4.85m
Computetheareabytrapezoidalrule.
Solution:  
  
0 1 2 3 1
2
15
2 ..........
2
15
0 4.85 2 1.65 3.50 2.70 4.65 3.60 3.95
2
15 22.475
337.125
nn
dm
d
Area h h h h h h
Area
Area
Area m


       

        



SIMPSON’S RULE
Thisruleassumesthattheshortlengthsofboundary
betweentheordinatesareparabolicarcs.

Forsimpson’srule,thenumberofordinatemustbeodd.
simpson’sruleis:   
0 1 3 1 2 4 2
4 ........ 2 ..........
2
n n n
d
Area h h h h h h h h

         

APPLICATION:
•Simpson’s rule used for find the earthwork volume using
contour maps.it gives more accurate area.
•Trapezoidal rule can be applied for any number of ordinates. It
gives an approximate area
•A planimeter is used to measure the area of any shape with
more accuracy.
•Zero circle is used when the tracing point is moved , no
rotation of wheel will take place .

Example:Followingperpendicularoffsetsweretakenfroma
chainlineacurvedboundarylineatanintervalof10m.
0,7.26,5.83,6.45,7.20,8.18,8.0,0
computetheareabysimpsonsrule
Solution:
Tofindareabysimpson’srule,numberofoffsetsmustbe
odd.Herewehave8offsets.Therefore,foroffsetsh0toh6apply
simpson’sruleandforoffsetsh6andh7applytrapezoidalrule.

(continue)  
  
67
0 6 1 3 5 2 4
2
42
32
10 8 0
0 8 4 7.26 6.45 8.18 2 5.83 7.20 10
32
405.4 40
445.4
hhd
Area A h h h h h h h d
A
A
Am

        
 


       
 



COMPUTATION OF VOLUME
Content :
•Formulae for Calculation of Cross-Sectional Area
(a) Level Section
(b) Two level section
(c) Three Level Section
(d) Side Hill Two-Level Section
(e) Multi-Level Section

•Introduction:
•Forcomputationofvolumeofearthwork,thesectionalareaofthe
crosssectionwhicharetakentransversetothelongitudinalsection
duringprofilelevelingarefirstcalculated.Againcrosssectionmay
bedifferenttypesnamely…
(a) Level Section
(b) Two level section
(c) Three Level Section
(d) Side Hill Two-Level Section
(e) Multi-Level Section

•Themethodofcalculatingareasofsuchsectionsarecalculated
•Aftercalculationofcross-sectionalareas,thevolumeofearthwork
calculatedby…
•(a)thetrapezoidal(oraverageendarea)
•(b)theprismoidalrule
•Note:1.ThePrismoidalrulegivesthecorrectvolumedirectly
2.thetrapezoidaldoesnotgivethecorrectvolume.Prismoidal
correctionshouldbeappliedforthispurpose.This
correctionisalwayssubtractive.
3.cuttingisdenotedbyapositivesignandfillingbyaNegative
sign

Level Section :
When the ground is level along the transverse section

Example:Calculatethesectionalareaofanembankment10mwide
withasideslopeof2:1.Thegroundislevelinatransversedirection
tothecentreline.Thecentralheightoftheembankmentis2.5m
Here b = 10 m
s = 2
h = 2.5
Cross sectional area = (b + s X h)h
= (10+2 X 2.5)X2.5
= 37.5 m2

THANK YOU
Two-Level Section :
When the ground surface has transverse slope

Example:Thewidthoftheformationlevelofacertaincutting
is10mandthesideslopeis1:1.Thesurfaceofthegroundhas
auniformslopeof1in6intransversedirection.Letusfindthe
crosssectionalareawhenthedepthofthecuttingatthecenter
is3m