7
Example2.1: Denote byf
ithefaces of a die. Thesefaces are the
elementsof a set S= {f
1, f
2, . . . , f
6}. Shas 2**6 = 64 subsets
includingtheemptyset and thesamplespaceSwhichisa set:
{φ}, {f
1}, . . . , {f
1, f
2}, . . . , {f
1, f
2, f
3}, . . . , S. Howcan be proved
thatthenumberof subsetsof Swithnelementsequals2**n?
Example2.2: Supposethata coinistossedtwice, thenS= {HH,
HT, TH, TT}. Shas 2**4 = 16 subsets.
A= {headsat thefirsttoss} = {HH, HT}, B = {onlyonehead
showed} = {HT, TH}.
C= {headsshow at leastonce} = {HH, HT, TH}
Example2.3: Sistheset of allpointsin thesquare, itselementsare
allorderedpairsof numbers(x, y) with0 ≤ x≤ Tand 0 ≤ y≤ T.
A subsetof Sconsistingof allpoints(x, y) suchthat–b≤ x–y≤ a
describes Ain termsof thepropertiesof xand yas in A, B, Cabove