SlidePub
Home
Categories
Login
Register
Home
General
Beam formulas
Beam formulas
sanjibkrjana
12,059 views
5 slides
Aug 12, 2015
Slide
1
of 5
Previous
Next
1
2
3
4
5
About This Presentation
Beam formulas
Size:
1.28 MB
Language:
en
Added:
Aug 12, 2015
Slides:
5 pages
Slide Content
Slide 1
BEAM DEFLECTION FORMULAE
BEAM TYP
E
SLOPE AT FREE END
DEFLE
C
TION AT
ANY SECTION IN TERMS
OF
x
M
A
X
I
M
U
M
D
E
F
L
E
C
T
I
O
N
1. Cantilever Beam
– Concentrated load
P
at the free e
nd
2
2Pl
E
I
θ=
()
2
3
6Px
yl
x
EI
=
−
3
max
3Pl
E
I
δ=
2. Cantilever Beam
– Concentrated load
P
at any poi
nt
2
2Pa
E
I
θ=
()
2
3f
o
r
0
6Px
ya
x
x
a
EI
=
−<
<
()
2
3f
o
r
6Pa
yx
a
a
x
l
EI
=
−<
<
()
2
max
3
6Pa
l
a
EI
δ
=−
3. Cantilever Beam
– Uniform
l
y
distributed load
ω
(N/
m
)
3
6
lE
I
ω
θ=
()
2
22
6
4
24
x
yx
l
l
x
EI
ω
=+
−
4
max
8
lE
I
ω
δ=
4. Cantilever Beam
– Uniform
l
y
var
y
ing load: Maxi
m
u
m intensity
ω
o
(N/
m
)
3
o
24
lE
I
ω
θ=
()
2
32
2
3
o
10
10
5
120
x
yl
l
x
l
x
x
lEI
ω
=−
+
−
4
o
ma
x
30
lE
I
ω
δ=
5. Cantilever Beam
– Couple
m
o
m
e
nt
M
at the free en
d
M
l
E
I
θ=
2
2M
x
y
E
I
=
2
ma
x
2M
l
E
I
δ=
Slide 2
BEAM DEFLECTION FORMULAS
BEAM TYP
E
SLOPE A
T
ENDS
DEFLE
C
TI
ON AT
ANY
SECTI
O
N I
N
TERMS
OF
x
MAX
I
MUM
AND C
E
NT
ER
DEFLE
C
TI
ON
6. Beam
Simpl
y
Su
pporte
d at Ends – C
oncentrated load
P
at the center
2
12
16
Pl
E
I
θ=
θ
=
2
2
3
for
0
12
4
2
Px
l
l
yx
x
EI
⎛⎞
=
−<
<
⎜⎟⎝⎠
3
ma
x
48
Pl
E
I
δ=
7. Beam
Simpl
y
Su
pporte
d at Ends – C
oncentrated load
P
at an
y
point
22
1
() 6
Pb
l
b
lEI
−
θ=
2
(2
)
6
Pab
l
b
lE
I
−
θ=
()
22
2
for
0
6Pb
x
yl
x
b
x
a
lEI
=
−−
<
<
()
()
3
22
3
6
for
Pb
l
yx
a
l
b
x
x
lE
I
b
ax
l
⎡
⎤
=−
+
−
−
⎢
⎥
⎣
⎦
<
<
(
)
32
22
ma
x
93
Pb
l
b
lE
I
−
δ=
at
()
22
3
xl
b
=−
(
)
2
2
at the center, if
3
4
48
Pb
l
b
EI
δ=
−
ab
>
8. Beam
Simpl
y
Su
pporte
d at Ends – U
n
iform
l
y
distr
i
buted load
ω
(N/
m
)
3
12
24
lE
I
ω
θ=
θ
=
()
32
3
2
24
x
yl
l
x
x
EI
ω
=−
+
4
ma
x
5
384
lE
I
ω
δ=
9. Beam
Simpl
y
Su
pporte
d at Ends – C
ouple m
o
m
e
n
t
M
at the right end
1
6M
l
E
I
θ=
2
3M
l
E
I
θ=
2 2
1
6M
lx
x
y
E
Il
⎛⎞
=−
⎜⎟⎝⎠
2
ma
x
93
M
l
EI
δ=
at
3l
x
=
2
16
M
lE
I
δ=
at the center
10. Beam
Sim
p
ly
Supp
ort
e
d at Ends –
Uniform
l
y
vary
i
ng l
o
ad: M
a
xim
u
m
intensity
ω
o
(N/
m
)
3
o
1
7360
lE
I
ω
θ=
3
o
2
45
lE
I
ω
θ=
()
42
2
4
o
71
0
3
360
x
yl
l
x
x
lEI
ω
=−
+
4
o
ma
x
0.00652
l
E
I
ω
δ=
at
0.51
9
x
l
=
4
o
0.0
065
1
l
E
I
ω
δ=
at the center
Slide 3
file:///G|/BACKUP/Courses_and_seminars/0MAE4770S12/url%20for%20beam%20formulas.txt[1/23/2012 12:15:35 PM]
http://www.advancepipeliner.com/Resources/Others/Beams/Beam_Deflection_Formulae.pdf
Tags
beam
mechanical
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
12,059
Slides
5
Favorites
5
Age
3764 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
30 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
32 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
30 views
14
Fertility awareness methods for women in the society
Isaiah47
29 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
26 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
28 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-5)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better