“The motion of apatite is define by the relation = 127° 180421 5, where and fare expressed in
‘meters nd condo, espestively. Determine the postion and he velocity when he acceleration of the perte
‘sequal o zer.
he motion of a patch is defined by the relation x = 6/8 + 4004, where x and are expressed in
inches and seconds, respectively. Determine the position, the velocity and the acceleration when /=65.
E u a
SOLUTION
We have x26? 8480081
Then Hata ane sin ae
and ae À 12-40 cost
a
Auta6s 5-0 8 rind
va = 126) 402 sin 6 a nina 4
a 12-40 en Ri
‘The motion ofa particle is dined by the elation x=0Y 2 12 +3143, where x and rate expressed in
ters and second, respectively. Determine the tine, the position, andthe velocity when «0.
SOLUTION
an
" ven
a
28) 8] (Qu coin 4
2Ÿ _{2Ÿ 2
Ge ross 4
PROPRES ara. € ED eu Cove ae rl eo Md et
en acer und ers porated Me fr me pp Je ln e Mase.
ins o porno
PROBLEM 11.6
“The motion of a particle is defied by the relation = 26 187° + 2är+d, where is expressed in meters
and in seconds. Determine (a) when the veoct is zor, (8) he psiton and the foal distance aveled when
Uo acceleration is ero.
‘The motion of a particle i dena by the relation x=»
| and seconds, respectively. Determine a) hen the vel
Total distncetaveled when x =0,
61-40, where x amd rare expressed in feet
iy is zero, (6) the velocity, the acceleration, and the
SOLUTION
Weave
Then
aná
@ When you,
ar ET
a 25 (Rejet and 12600 4
6) When x Pat 360-400
Freeing Etam 20 or
Nowobsenethat Dean vO
sscrsios v>0
dat 20 27-00
(268: (6) (GP ~36(6) 40.
2560
DT do =1200)=36
wo
EN ES
Then In 6-4 216 8
Fy Fo 0250) 2256
Total dis tele (216 +256) 8472 «
“The motion fa article is defined by the elation x=0" 978 +248, where x and fare expressed in inches
and seconds, respectively Determine (a) when the velocity is zero, (9) the poston and the tia distance
eave when the acceleration ero.
SOLUTION
We have
then
and
(When PART
er 209-0
or 122405 and
0) When a=0: Gino où as
Arras y ETT
Fin ohne that 0-128 wo
Peer
Now
amo wo
aunts MO) 124) -8= 12,
#1
Pt,
STE] oar te
o as GS
Then
“The acera ofa parle is defined by the relation a = ~8 ms”. Knowing hat x
16 mvs, determine (a) he timo when the velocity is ein, (1) he veloc wa Ub ot
20 m when 1=4 and
[soLurion
We hase
‘hen
Aso
Arr 4x2 20m
When v 216 4 à = 4 m:
Combining
Simplifying
and
(a) When »=0.
(6) Velocity and distance se LL,
on mi
ja frase c
A+ C (ms)
La ferro
2-20 par 4.0%,
42 + Cure 84000)
or
16-84 C2
40 400-8486
OA ONE 4180
41+4=0
Ce ms
vase 32(ms)
CET
‘The acelraton ofa parucl i directly proportional 1 he square of the time. When £0, the pale is
st 5=24m. Knowing that at 36m and y= 18s, express x and io er of
SOLUTION
| Werne an aia
Now ke?
a mi: [o [ira
m QE)
zu an
Lo
or + = 216K)
Kunst
a Ceres
EE
Le
AmO mam - (Ji-tuo-
0 ae [fis jae-noja
“ perenne ee
ano tata)
Now
ıfı
126 296m no tal Mot
nenas molto]
0 ok me
5
yıyı
Then fie
EM alla 210)
“ et eimen «
| me
fi
mi vars (Eee
16) 2
1
e «
“The acceleration of a parce is dice proportional to the tine £ At ¿=0, the velocity of the particle
is #216 ind, Knowing thet 915 in/s and that x= 20 in, when 171 1, determine the velocity, the postion,
std tet distanceteled when #27 5.
The wecclration ofa parle ie dined by the elation aK, (a) Knowing that v=-32 Me when 4 = 0
and hat v=+32 (Vs when 14, determine the constant & (9) Waite the equations of motion, owing alse |
hat x=0 when r= 4s. |
wel
| The accleaton of a parce is defined bythe reiiona = AGF, where À à constant. AU 1-0 the
parle stars a a= wi v0. Knowing thal at TA v= 1010, doin () ls me at wi the
Tes know that ‘of patch is inversely proportional to the cube
ofthe me £ When 125, v=-15 m8, and when #=10 3, 90.36 mis. Knowing at the particle sie
35 far from the origin when #25 as i when 1=10s, determino (a) the postion of the pack
‘when 22 sand when (105, (9) the ttl distance we hy the particle Tun 4
SOLUTION
We have
Now
Ares va 15 a
AL /=10 5, v0.36 mé
a
@ Vene Pan:
In fa fear cso
or Luci
won easy veut)
“ cm
m Kerner
‘he acceleration oF a patil i defined hy the raion hi, Khas been experimentally determined that
wets when +206 1 and that y=9 U6 when x=12 Determine (a) the velocity of te particle
‘when 2215, (9) the position ofthe parce at which ts velociy izo.
SOLUTION
ant,
ae
Separate and integrate using x = 0.6 N, y=15 Rés.
[pra
del = kins]
‘Kit actress psd co fr Bb capa iron eg a
Sova aufero
PROBLEM 11.16
A parce sting fiom es at <1 fis accented so that it velocity doubles in manie between
À und À 80. Knight accion ofthe pale dein bythe relation aeäfe- ADI.
Akemi the vals of the ort 4 and ihe parte has a elo 029s when 167
SOLUTION
Weine
When af, v=0: fro [aras
o |
Lo amx-t)
pen aang)
1 E |
zar amz-4]=4(3 ue)
Le |
PAT er oe ee |
ws 1618-48) |
o |
|
“ Antes 4
1 Lao 285 |
Yon]
‘Noting that In(16)=41 |
mass |
Webave sua [236 ama
ee]
15284 |
PROPRIETARE MATERIA. 20 The Nh Crane ttc. prof ha Maa na e dep,
‘ree ote ny or ay ta oth tr ete pr faster al eon fee
Wine tae oul actor par DA ea
PROBLEM 11.17
A parie osiltes betwcen the puis x=40 mm and x =160 mun with an acceleration a 4100 - x),
‘whore und x ar expresso in mau" and mm, respectively, and kis constat. The velocity of the particle
is IS mov when x= 100 mm end is zero at bath
(0) the velocity when = 120 mm.
SOLUTION
(0) Wetave
When x=40 mm, v=0: [rare Lruo- ar
=)
Na
Lau vo]
o)
PROPRIETARY MATERIAL. 0250 e Mil Compra rl ut ot en ais
red ral muy ym mi apr ef e bl, ral od a
ret eras poy choi eal canta meando
PROBLEM 11.18
A particle starts from est at the origin and is given an acceleration A+ 4), where and ne expressed
in Ms and m, respectively, and & i a cortan. Krowing thatthe velocity ofthe parce l 4 més when
2x8 m, determine (2) the value of , (9) the position of de partici when +=4,5 m, (e) the maximum
velocity ofthe pace
PROPRISTARS MATERIA. € 290 ue Mean Comps, Ir. A it eae prt of th Bal wy e denne
sn ted ny fa 6 y ni. ve ptr ven pron fh fll llo e od
Ton armani ru Mh le proie Pomares mt Be Ma,
PROBLEM 11.19
A piece of electonic cqui
Fuster is dropred so Im
mus. After impact the equips experiences an acceleration
of a=—kx, where Ki a constant and i he compression of
‘he packing material. U the packing malcil experisnect a
maimum compresion of 20 mm, determino the maximum
acceleration of the equipment,
SOLUTION
Separate and iterate
Use 1) = mvs = 002 mand v, =0, Solve ford
= Laon? besos?
‘Maximum aceleracion.
ne = Ain (40, 0004002) = 800 més
a= 800 m7 4
PROPRIETARY MATERIA 3 2 he Nas Con Ni al Me of i Mam ma edie,
rar hurt ay aro yma hate se pron of phd pe eed
‘Sion tessa pty iT rsa nee pre ung am
PROBLEM 11.20
Based on experimental obewvatons tbe aceleration of: patil defined by the relation a =~(0.1+ sin 8),
‘where a and x are expres in mA and meters, sepoctivey. Knowing that = 0.8 m apd that y més
‘when 4 =U, determino (2) the velocity oF the parce when = 1m, () the position where the ven is
rim, () the maximum veloc
String from x 20 wih ao initial velocity, pace is given an acceleration a = 0.5/0? 249, where a and
‘ae expressed in més and mé, respectively, Determine (a) the position of the particle when v=24 ms,
(0) the speed of te particle when x= 40m.
‘SOLUTION
Weine CT
When 120,90 Et fee
or IES
« Foios
(a) When y= 24 mis: 4 449-7
or send
o
er va ta ms €
morte Maru. 6300 e Mi Conan, nM el pt Hé a os
Eo e talco presio i ig nl concep ena le cg ee,
PROBLEM 11.22
‘The section of a parle i defined by the ation a= À V5, whee sa constant, Knowing that 0
and y= 81 més at 4 = and that v= 36 més when x= 18 m. determine (a) the velocity ofthe pace when
220 m (0) the time required forthe particle t come to rest
| SOLUTION
Le) Webwe
sota
| Wien x=0 valia:
When sitcom Zoe us)
a Er
Finally
When «=20 m: 20° 2-190
A vr
0) Wetave Hanf
fa
as [00
|
Loa Ann |
Loa 20-919
Wien ve: a9
PROBLEM 11.23
The acceleration of panic is defined by the relation a = -O., there a is expressed inn and y in in
Knowing hat at = the velocity i 40 i, determine (a) the distance the partici wll vel before coming
to est, (6) time reputed forthe pate o come 1 es, (che time required or the pale 10 bs reduced
by SO percent fi intial value
‘SOLUTION
@
Separa and integra with
Distance ore,
Tor v=0,
¿Lucio <
10)
mon rauf)
turrones
O tros
a <
‘PROPRIETARY MATERIAL 290 To Mr Cal. a iis ced a por is Sal mp de pet
end el noon br np es erry pon oh aay, wa end ee
‘Ren cence panty Shon hel arp Prana Sh
PROBLEM 11.24
A Dowling ball s dropped om a boat so tht it tikes the
surface of à lake with a speed of 25 fs. Assuming the ball
‘experiences downward veelerion of 2100.92 thes
in the water, determine the velocity ofthe bl when it tis
‘the boom of the lake.
SOLUTION
WA 28 MS, rn
210-090 = -
. 10 y
ero 090 and nas
Wh 3-0 3
eo 33083 Me
Since vp > 6, write
4 =e)
), where i a constant, Kong tha
= 4m, determine (a) the constant,
ofthe price,
‘The aceceratio of» particle is defined by the reluion a= 0.4 —
1 1=0 the particle starts om ees at x à m and thal when 4
(5) the position of ths article when v= 6 ms, (0) the masinum vlad
PROPRIETARY MATRELL. € 202 the Meur Compare, AY igh ey fr Aa be ied
‘vec a duet nar by a mn, at th tr wen prs lee od et
Soetoro onsen polly to ifr hse Com ron o sl hm
A ati is projected to the righ rom the position x = with an inti! velocity of ms wecleaton
Of the particle is defined by the relation a=-0.60" where a and y ate express in mv and mis,
respectively, determine (a the distance the particle wil have travel when ls velocity 8 m, (8) the tins
when ¥= 104 () the time raja forthe parte o tuve 6
‘Based on observations, the spect of a jogger can be approximated by the
relation v= 75(1~ 0.4)", where wand are expressed in mi and ils.
respectively. Knowing ae à 20 at 2=0, detemino (0) the distance the
Jonger has run whew 21h, (0) he jogger’ acceleration in RU at 2
{6) the time required forthe jogger o un 6 mi
ttn tees ond svar ratty ate Mfrs be cpp Up ambas eee
PROBLEM 11.28
‘Experimental data indicate that in a region downsteearn of a
given louvered supply vet, the velocity of the emit ar is
defined by »=0 IAA, whore y and x are expresced in mis and.
meters, respectively, and x, isthe inal diverge veloc of
the aie For vy =3.6 mis, determine (a) the acceletion ofthe air
atx=2m, (0) sui ore air to flow from x= 10
rim.
‘The accctran due to gravity at an altitude y above the surf of
expressed as
“Toray
where a and y are expressed in "and fect, respectively. Using this expression,
‘compute the height reached by a prject red vertical upward from the trace
‘ofthe earth fit intl velocity i (a) 1500 As, (8) 3000 fe, (0) 36,700 fs,
ry PROBLEM 11.30 Î
| ‘he sen dst iy of «pre tiling ad al
! ines gti ar nd fm coer af eth
|| hep iste ran ee a andr oe ace de
i I
Proce el un ee ete fi ca oo
A Bean (at 30 here)
SOLUTION
Vete
ven
ne
(emana merino mi
* mena vs 4
PROPRIETARY MATERIA. € 209 The Mi Copado, be, A ii remo. por is ol ea,
‘yee st yf sl y mae oa ro rt pra of ea roe ee eo
dende Arme Ptr coh a,
PROBLEM 11.31
‘Tho velocity of « particle is v=y[l-sinGa7J]. Knowing thatthe partite starts fo the origin with an
initial velocity», determine (0) ts position and is acceleration a = 37, () it average velocity dering the
interval 15010 4>7.
PROPRISTANY MATERIAL 6209 Th eC Cour, be, AL gt sor, Me pa fs Sa a e nd
dame ay om by ay na ps ven pon fh li, ml bd ad
‘Ree ref tly co ht cl app pont
PROBLEM 11.31 (Continued)
Auer: |
er)
fot
(5)
cor
tbe sgt o 0367-0
aro
PROPRIPEARY MATERIA. 200 Te Mine Conan Is AB hs ec at fi Moe arb pa
‘pm or ne lo fe na rar write poof nr et a ed
hance nen eh, ine fr ala o eatin rot are ae ae a,
PROBLEM 11.32
‘The velocity o sider is defino bythe elation v= sin (a). Denoting the velocity and he postion
ofthe adc at 1-0 by amd. espectvch, and knowing thal the man displacement ofthe aides
is 26, show that (a) Y (1 +:300)/200,. (6) the maximum valve of the veloc occurs when
DR.
| SOLUTION
Le Asa += van
hen cp äh Se
exces
Now Lo avncag+9)
At 120.2%) [lam [sincere so
di = r
or sue]
+ ones 14
mt Dar)
Now ober th gg oes ten co 4/46) =. Then
San = 2419 ee CD)
Pa
Sinai or a . =.)
or sv =
Squaring bat ide of his équation
el ~ Dagan, + V9 =v? —
PURA
o OED.
An cs. on of Al Be pc,
PROPRIETARY MATERIAL. 209 ie Mei Coop.
PR did ym ry yes Ra de fe mane oros of ple a gon ed
Mote oxic ray ioe na repr pes
PROBLEM 11.32 (Continued)
(9) Fes observe that nu, occur when au +=. “The comesponding value of is
A mori enters a fieeway at 45 Kavi and accelerates
itumly 10 99 kn. rom the ameter in the car, he
‘motors knoe hat she traveled 02 km ile aelerain.
Detenine (a) the acceleration of the ca, (9) the time
ruta rc 9 kh,
A truck travels 220 m ig 10 while being decelerated at a
constan rae 006 mA, Dotermine (a) inal velo,
(0) its final velocity, (c) the distance waveled during the
fist 15
[PROPRIETARY MATERIAL € 09 Th Main Cm a A ee ok an of hs Mona may Be ye
er dd yom oy np swf riven prin pe te pet
‘Sereno i ifs cc res a ch Ma
Em PROBLEM 11.35
Assuming a uniform accleaton of 11 MAT and knowing
A. Aero tte mec fcr a pss 4 $30 mi, dermis
PHARE (a) the time required forthe cart reach 8, () the sped of
RATA MATERIAL. 1320 x Me Ceogn eA a cc, p of Ma mr Be ie
‘emake don? nym By a a a DJ e por of the llo. alpen a
‘tron ans ens ported Selo a Ia ae Pian Drs me
Sonor on pr
N | PROBLEM 11.36
LE a group af students anne n model rocket inthe vertical direcion. Rad on tacking
T ua, they determine that the altitude of the rocket was 89.6 fat the end of the powered
" ‘parachute failed to deploy sa that the racket fell fieely to the ground after reaching its
DT
: we
an |
ec - ama
aed At
Then 102 (282 MSN +2(-32.2 Ms” gas — 89.6) M
{PROPRIETARY MATERIAL € 3099 Ts Mind Camp eA ge emo pur Haul may Be pie
(nn dd as form hy ny ms, tte rape of pao, al en ead
‘Beanery onlay nt Meh
PROBLEM 11.37
A sprimer in 100-m ace acelerates uniformly forthe Fest 35 m and the runs
‘with constant velocity. he sprinters time for the fst 35 m in 54 , determino
(a) his acceleration, (b) his final velocity (es time for the race,
‘SOLUTION
Given: O=x=35m, u 2 constan
35m<x 100m, »
ALO, 0=0 ven
A small package is released from rest al and
‘moves along the skate wheel eoaveyor ABCD.
‘The peckago has uniform pecceration of
D 45 més as moves down Setions AB and CD.
es fa eo am even a CF
2 the veloci of the package a D ix 72 má
ts determine (a) the distanced between C and Da
(0) the time required forthe package o each D.
Pal)
We =0+ 2(4.8 ms )3-0) m
Ame Ce = 52666 ms)
era damen
02m EEE
40m 4
vota
53666 me =0+ 8 m8 Yay
DATE
72 ole 5.3666 mis Ami Ve
Lo = 0381965
PROPRIRTARY MATERIA. 209 Te een! Cuisine At eel ds Man ma Be ed
Pen er nt la o Bayne thn jr wren pm of te yaar, nl oe
‘Kein sas lap Set ad re ppt wo sing an
PROBLEM 11.38 (Continued)
Kom,
fr Bae,
weave eet ctas
o 3m 2 (82666 male
e hac 055901 à
Final ty Lan az len (LBD 0 58901 +038196) 5
o 120654
PROPRIETARY MATERIA. 200 ie No MA Con, A ii ote Se of e Al ma e gt
‘eh ore ny fon by ct, eh ra ori porcion oh Far ar on de nt
ert calc Sab iu hel ac por en sn i Mm,
PROBLEM 11.39
A police olor ina pat! car parked ia a 70 kn speed zone chere a passing automobile waveling a a
‘ow, consta poet Relieeing that the driver ofthe automobile might be stented, the officer sare hit
far, seceleratesunifornly to 90 km in $ 5, and, maintaining a constat velocity of 90 km, overakes he
motorist 42 safer he automobile passed him. Knowing that 18s elapsed before de lficer began pursuing
the motor, detennine (a Me dite Le air Ice befre overtaking the motors, (4) Uh
As relay cannes 4 enters the 20-u lo exchange vr with w
Speed oF 129 mó, he begins o slow down. tle hands te baton (0
runner 41.82 ltr as they leave the exchange zone withthe
@ turas aorta
ars be
“e 210008 4
| ao (debt
Mans: Ga IRAN
5078 ms
Former: wa
When wer OTE Ws? +20)
Door ig "20603 mt
ae =20 4
(0) Forrummer ET
where 44 th tie at which be begin onu.
Aus: AS
or 107-2398
Runner 8 should stat to run 259 s before À reaches ino exchange one. «
PROPRIETARY MATERIA D 20 Te Mean Congo e. A es tof ie Mal may in
‘ota sad nye by ng as fear poof fab ow en ea
‘Rei ian sein stereos Pw aang ho
PROBLEM 11.41
les À and B ae travcling in adjacent Nighy L
0 ave the posiios und spect shown. Kn
at automobile 4 has a constant acceleration of 18 Ws? and
that B has a constant deceleration of 1.2 4°, determine
(@) when and whore À will ovetake B, (5) the spe u ch
sutomobile a hat tine,
sa
een
TOS
—
nenne o
Le soessare us
ede taal COUT
0
(o
Kama: 35214096 = 754528 044
126, -75~0
150546
1222 and 4
Dre:
320150903415 05)"
PROPRIETARY MATERIAL. 290 Se Nie Canin, tN iis oe Me ft of he Ma mae Be pane
‘eed nn yf a a rage of per wae
s
PROBLEM 11.41 (Continued)
| ® Yeats sn 15054
Es: 123524180505)
1,2629 0 1,7425 mith €
EG M =82.8-1.215.05)
In a boat race, boat is Fading boat 120
and both boats are traveling ta constant speed
of 1OS mish. At 1=0, the boats accent a
constant rates, Knowing thal when 1 passes 4.
5 and yy =138 mi, determine (a) the
acceleration 04, (8) the accleraion o.
‘SOLUTION
@ Wehave
CRT
and
Aus:
rado ta
(2p =105 ai ECTS
Pet mith =198 Us
198 tvs =154 e+ a (8)
Pe
anne dad? Garon
rent rise
rons ass no eos ms
en
80 eas
ansia
at oo Ms a yb dhe,
‘ral sed ma hy eo i jr te prin oh yar ied joie ae
‘tite each nd tly Mere Trt dl ree pat ng Maw
PROBLEM 11.43
Bones are placed on a chute at uniform intervals af time 1, and
slide down the chute with uniform acceleration. Knowing that as
ox Bis released, the precoding ox À has lead sid 6 m
nd tha ter they’ are 10 m apart, determino () the vale
OF ter (8) the acceleration ofthe boxes
SOLUTION
E Es,
Let 12 = 1 se the time when the boxes are 30 A apar,
ster te
ta na (as A
CE bon
AS
For lao Aa zu)
a ten ein 8 ba o
‘Two automobiles 4 and B ace approaching
eich ote in adjacent highway les. At
10, A and Bar I kon apar, hir speeds
fe ¥, =108 kin and vg = 63 ky and
they ine al Points P and Q, respectively.
Knowing that passes Point (240 safer
was there and that B passes Pint 2-42 s
fcr À wae there, determine (0) the
nor accelerations off and (0) wen
the vehicles pass each oer, (e) the speed.
‘of bat ie
SOLUTION
Wem steed? etant
mo, soe Sr
sea osa
“ aos ON:
(6) When ocu pas each other
‘Then O0 hy 0250 a 117.5 md
020005 mig 1000
o 0.05045tjg +98 ~2000
Solving
0822 5 and = 1908s
120-219-2085 4
PROPRIETARY MATERIA. 203 ir Men Cyan, A a ono pon o St may be dt.
‘wc rel nr rae io rr en pena of alada. me oa e ed
Re ps are tn
PROBLEM 11.44 (Continued)
Weine ep Cp yb aat
At va = 17.3 ms +(0.30045 OR.)
2375610
$ 997855 km 4
PROPRIETARY MATERIAL. 309 es ci Can be. AU re ene pa y ir Maal y e nna
id dba fm iy my me ts wre E os, a ed Roe ea
‘Ronen ony acct ml arpa ania he od
PROBLEM 11.45
Car A is parked along the northbound
Jane of gay, and car is tve.
in the soulhbound lane at a constan!
speed of 60 mh. At £=0, A starts nd
ects ata constant rate ay. whl
at r= Ss, B begins to slow down ih a
constant deceleration of magnitude 4/6.
Knowing that when the cas pass each
her x=294 and 9, = vg, determine
(a) the accelention ay, (3 when the
vehicles pas euch oer, () te distance
ete the vehicles st 170.
SOLUTION
kur 20: moral
lie
ort
uses sOy 760 mi = Wis
Au=ss sa = ER MANSO = 440
For ass orto ale,
PO OR =~}
Gas +=) Pre)
A
Assume £5 «when the cars pass eae othe,
ime (uch
mi DAC ET
1
x, 72941: zu
‘PROPRIETARY SUATERLAL.& 200 Th Mn Comic, A gs i Mp of ie Moa a din
‘pd dung ay form eb sm, ht prion of aor, ced Net ad
‘Sei cond ater Wr tap tae a oh
PROBLEM 11.45 (Continued)
ES
Then wae
e AA ML +520
Solving La 20.955 and 14-105
CRUE 296 R= 0 Y
er Pen
6 Fromabove La = 7.005 4
ote: An acceptable solution cannot be found fi assumed a 1 = 9
“Two blocks 4 and B are placed on an inline as shen. At
120, 4 is projected the incline with a initial velocity
OF 23 1 and Bis leased rom ret The blocks pass each
other 1 5 Inter, and A reaches the baton of the inline
‘rom
the bottom of the incline reached by block 41621 fe and
That the acceleration of 4 and (due to gravity and
Seton) ae consant and are directed down the incline,
‘determine a) he acccerations ofA nd (1) the distance
(E) espec A when he block pa each her.
PROPRIETARY MATERIAL. 2919 Meo oem, Me A go rc. a at ay e
ind dd x fama yo sna M BS i pon of ef a mal Ed
Beeches
PROBLEM 11.47
Slider block A moves tw the Jef with a constant velocity of 6 mé.
Deren (a) the velocity of block (9) the velocity of poston D of
‘he able, () the relative velocity of potion Co the cable with respect
to pontion D.
rom he diagram, we have
24437 =comata
tren eth 0
und arto, 20 @
(o) Substting ino Eq.(1) ms + 3, 20
er vins 4 |
6) Fromihedigrm 35135 =enmunt
then en
vo=2miel 4
(9 Frum hedingron xy ye “constant
Then PRET
6m) (2 ms) E me
von=smst 4
PROPRIETARY MATERIAL. € 2009 te Mn Capa M, A a eme D an a hs owe my el
hd er ind e 9 o oy ny macs. ws sr prof ae, ee Re a a
Sis nner ly Wr ha mim ins Bran
PROBLEM 11.48
lock & stats rom reat und moves demand with a constant
secceration. Knowing that fer slider block 4 has moved 400 wm is
velocity e 4 ma, termi (a) he acelerations of and B, (9) the
velocity and the Change in poston PA lr 2s.
‘SOLUTION
From the digran, we have
sg By Senna
Then ro 0)
and ayr3ay=0 @
(a) Fa.@X ag 1309 =0 and ay is constant and
The elevator shown in the figure moves downward with constan
velocity af 15 Ra. Determine (a) the velocity ofthe cable €, (6) the
velocity of the counterwsight (ete relative velocity ofthe cable C
acceleration. IF the eouncerseight W moves through 30 in $
(a) the secclerations ofthe elevator and he cable €, (5) the velocity of he
ly | q dar
SOLUTION
‘We choose Positive diction donnant for motion a counterweight.
demon
Auı=ss, PET
mn Lao?
pza 0 al
(o) Acedera of and C.
Since WA Ye SCOT Ye yy =O, and ay +
Thus Ae ty = CARS). ag =240 eT 4
Also, Yow Zn = consi, 442,0, and te 42g 20
Tous: eBay ZA) AS, aan 4
Inthe post
(a) he velit
velocity of portion Cof te cable with respect a nr A.
sown, collar 5 moves downward with a velocity of
iy of collar, () the velocity of potion C ofthe cat
12 in. Determine
ble, (e) the relative
SOLUTION
rm hedge
2g tye == constant
Then u o
and ay+ay o
lo) Substring into #4.) vy #20228)
From the diagram By, ye constan
Then Berre
E nds) Hyp 0
er ven dtinal 4
CR
= (48 nds) (2 ind
“ Yon =36 A4 4
AL the instant show, sider Block 3 is moving
‘with a consant acceleration, and is speed 5
150 mms, Knowing that air der Dick À
has moved 240 mm to the right its velocity is
0 mm, determine a) the acceleration of À
srl) the aeceention of po he
able, () e velocity and change i position of
Slider block # ar 4 a
SOLUTION
Prom the ig Beta) 2a constant
Then 29,00 o
and 2ay Ba, a
(@) Firstobserve ati block 4 move the right, y, and Fg. (1) = ve >. Then, in
lock B moves wma with a constant velocity of 20 mays.
nd its Velocity is 30 mm King that at 3 slider Block C
Tas move 87 mm Lo the righ, determine (a) the velocity of sider
block Cat #0, (9) the accelertons of and €, (ey the lame in
positon of block falter 5s.
SOLUTION
rom the digram
Br yg + fe =consant
Then Brg tig bye = o
and Bay tay tac =0 e
Give vo =20 mus bs
Bock 1 stars from rest, Block 4 moves with a consta
acceleration, and sides block C moves to the sight with a
‘cantantacelestion ol 75 mm, King that at ¢=28 the
ects of and Care 480 munis dowward and 280 mn io
the right respectively, determine (a) the accelerations of A and,
(6) the int velocities oF À und €, () the change in position of
Sidor Calera.
ve = 280 mm +
(2) Le (2)and a, constan and a = constant = ay = consta
Then vy =O at
Atr=2s 480 mms 0,625)
A0 mms? or 2.240 ms? L 4
Substituting ato ba.)
30444240 mas?) +01 mnie?) = 0
45 ms et
PROPRIETE MATERIA. 203 Tie Mein Corp A ae pr of he Malay Be ee
(er duel y om $ y ar. mh U Jrs rn prin per, cm a ed
ac pat er ie tia tao re alta has an,
ae i pero
PROBLEM 11.56 (Continued)
@ Wetase Cora
Arz 280 mms (re), + 75 mm s)
Ve 130 mm for A 4
Then, substituting into Eg, (1) at =
36,040) + ((30 mm) 0
wem aint
lc) Weave Al
ai oo osa
Stem ma
MROPRULTARY MATERIA. 036 Te een! Cog, A ve pe Mal pr
Ieper eno e, o Js wien pri Ja. jon a
‘Sr o nad anden periods noo o ar Ibal career iia aa Mal
PROBLEM 11.57
Collar A sars fom xt at 1=D and moves downward with a constant
cocon of 7 inde Collar B moves upward with corstentseceleation,
And its ina veloc I 8 ins. Knowing that collar moves through 20 in,
between 1=0 end £=2 5, determine () the sccclertions of collar 8 and
loe €, (ih time at wih the velocity of block Cs ee, () the tance
through which block C wil have moved at tht time,
SOLUTION
tee +0
- thes e ica D
HT
tl ai nu ag o
me Given;
i
J meds
Wehe
wi nes
en te
ents, 6
Collar 4 and sat fom res, and collar A moves wand with an
of Min 2. King a colla A man doer witha
‘mst acceleration and that tz velocity is 8 i
eternine (a) the necleation of block C () the distance rough which
block Call have moved aes 3s
vs efter moving 32 in.
SOLUTION
Frame diagram
1 ea) #2pe A) coma
Then entre o
and aura +40 =0 o
Given: Oe
CE
DITS
a, = contnt L
Wien AL,
CET
(2 Weine Vale Cu]
When yy Co) 2 ins (into =20,(12 0)
or PS
Then, subsitating io La (2)
AP im A) (in) bag 20
oe rind
o
210) ~
Now
‘Substituting nto Lg. (at 20
Wan =0 OF OCI =0
eg acai
te ea lamer
DE + a 0-6)
PROPRIREARY MATERIAL 8 799 he Mtn Coupes N At yet of dé Ml ela
‘emda ny fr oy ni a ef lm i ed
arn pn Mt lf tbe amor prin Hn ang rt
PROBLEM 114
(Continued)
Pie [jo-aña
Loa
ÿ Luca!
Loam
hs, reso
m
à
> me eds
‘Theo, ck City moves downy (>) nd hn mores up (<0)
re
Now PTE
Mure [de Lea
we Der
rm,
“The system shown sets from wet, ad each component moves with san
acceleration. I the roatve accelerion of block C with respect to collar B
‘paar andthe relative acceleration of tock D with respect o Bock À
un? downward, determine (2) the volociy of Black Cafe 3, (0) he
‘eign positon oF block D ater,
SOLUTION
al ee
SEE
rom the gram
atte Data ye zona
E Then 22,120 11090 o
an Lay Vay ice o
GX Go 79 10m ~ ro) constant
hes 14012930 o
and gy 2up =0 o
Givers At 120, v= alarcon constan
don = 60 mm, de
(O Werne dap Heap
md mu
Sabino E) 0 (8)
IE DEE Deren
æ Wera 0
BR hay M0) (ar +02 0
“e rn 6
Ne os pe a Ms y be rt
ri po of epi, a eed he
a rept oe ang a
PROBLEM 11.59 (Continued)
Solving os. (3) and (6) foray and ap
10 munis?
AUIS 3s: (40 m/s? (3 8)
w ome 4
Lo Weine row
een poco
yor RS nt 4
PROBLEM 11.60
The system shown tarts from rest, andthe length ofthe upper cord is used so
that, 8, and € ae italy atthe sane level, Fach component moves with a
‘consist seecleration, and fier 2 the reaiv change in positon of Dick € with
respecto block 41s 280 mm upward. Anowing that when the relative velocity 07
lla 8 with espec o block is RO mun denn, ih dsplaoements ef A
ud B are 160 mn downwand and 320 mm downward, respectively, determine
(a) he sccleratins o À and 44 ay > 10 mms", (1) the change in position of
block D en te velocity block C's 600 mund pur,
Prom the gra
= y j wen 2y,12v 1 yo = constant
EN mm mern w
Ot om at a
| Cable 2: (yp =34)+0% =>) constant
à nu o
7 Ing +2 ~0 (0)
re
Oh = 0-60
All accelerations constant a 2
on 2280 man À
Vas mis
| Bien
nO 320 me
8 10m
PROPRIETARY MATERIAL. 5 208 D ero Cori, Le, A rom e or of eM o do
re rn yo ab ay ma. ont the tr wien pre fable or mt oa aed
‘iin a nina na het ht vpn eran Mas
o ge 704-140 o
Sabin ito Eg.)
2a, +20, +(0, -140)=0
or 6
Now
DEA
CE]
fs
Ako aby MO Lag
When a 80 mm Le 80 (ox ~0,38 o
Then 160
Using En. OY ne más
then e. a= 20 mis À
and o ay 40m 4
Not that Ea, (6) 5 not used; ths, the problem i over determined.
PROPRULEARY MATERIAL, 0500 He em Compa nc. A gb ch par of Ma y pi
apr 0 tty fo a nt re ee prin do, ed go ed
com nd pty Sn for es a cae pr orcas e a
PROBLEM 17.60" (Continued)
Altematve ston
Weine CETTE
W504 2s Che]
Tien Maa Ha v4 Bars Cdt at, Cool
Wien Veg =80 mens La
50 mons = V2{ yep 320 m) — fa ¿A mr) |
& 20-20, Vo.)
Solving Eqs. (6) and (8) yields a, and ay
€) Subaiuting into Hg (5)
= 20-140 -120 eit
and into Ea.)
20 mms!) 40 nnd?) 20,
or ap 30 mv
Now Deren
Wien ve 000 ns 120 sm
Also
Ares
Le PACA
®
375 mn L 4
etic tm i are Mo ofr na ay ean
Intro rte e Jara e y es ot i re i ern fbi ml he eit
Terao hanes perl re mh carpe nase a,
PROBLEM 11.61
A panicle moves in righ ine
the igure, Knowing that stars rom the origin with y =
(a) plot the v 2 and x 2 curves for 0. 1. 206, (0) detemine ts
velocity, is posi, and he al distance rele sehr 2 125,
‘SOLUTION
(a
Initial conditions: 120, 162185, gi
Change in v equal sre under amt un
TA
OSI: ETC MAEM 66.8
ancien nen MENO RIE Mg = 130
Deren Ba S WERDE na 120 «
rare vy Hy ETES ION ra 20
PET
PROPRIETARY MATERIAL) 309 MC Covi I A he werd o of Mama u be pt
‘rhe or dred yor by ry mar mühe te rr inp of pao, or et pond rad
‘Katine oad Ser eo tn Cc pra Y paar cc mt