Beta & Gamma functions
Nirav B. Vyas
Department of Mathematics
Atmiya Institute of Technology and Science
Yogidham, Kalavad road
Rajkot - 360005 . Gujarat
N. B. Vyas Beta & Gamma functions
Introduction
The Gamma function and Beta functions belong to the
category of the special transcendental functions and are
dened in terms of improper denite integrals.
These functions are very useful in many areas like asymptotic
series, Riemann-zeta function, number theory, etc. and also
have many applications in engineering and physics.
The Gamma function was rst introduced by Swiss
mathematicianLeonhard Euler(1707-1783).
N. B. Vyas Beta & Gamma functions
Introduction
The Gamma function and Beta functions belong to the
category of the special transcendental functions and are
dened in terms of improper denite integrals.
These functions are very useful in many areas like asymptotic
series, Riemann-zeta function, number theory, etc. and also
have many applications in engineering and physics.
The Gamma function was rst introduced by Swiss
mathematicianLeonhard Euler(1707-1783).
N. B. Vyas Beta & Gamma functions
Introduction
The Gamma function and Beta functions belong to the
category of the special transcendental functions and are
dened in terms of improper denite integrals.
These functions are very useful in many areas like asymptotic
series, Riemann-zeta function, number theory, etc. and also
have many applications in engineering and physics.
The Gamma function was rst introduced by Swiss
mathematicianLeonhard Euler(1707-1783).
N. B. Vyas Beta & Gamma functions
Gamma function
Denition:
Letnbe any positive number. Then the denite integral
Z
1
0
e
x
x
n1
dxis called gamma function ofnwhich is
denoted by nand it is dened as
(n) =
Z
1
0
e
x
x
n1
dx; n >0
N. B. Vyas Beta & Gamma functions
Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)
1
2
=
p
N. B. Vyas Beta & Gamma functions
Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)
1
2
=
p
N. B. Vyas Beta & Gamma functions
Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)
1
2
=
p
N. B. Vyas Beta & Gamma functions
Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)
1
2
=
p
N. B. Vyas Beta & Gamma functions
Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)
1
2
=
p
N. B. Vyas Beta & Gamma functions
Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m
log
1
x
n
dx
N. B. Vyas Beta & Gamma functions
Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m
log
1
x
n
dx
N. B. Vyas Beta & Gamma functions
Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m
log
1
x
n
dx
N. B. Vyas Beta & Gamma functions
Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m
log
1
x
n
dx
N. B. Vyas Beta & Gamma functions
Beta Function
Denition:
The Beta function denoted by(m; n) orB(m; n) is dened as
B(m; n) =
Z
1
0
x
m1
(1x)
n1
dx;(m >0; n >0)
N. B. Vyas Beta & Gamma functions
Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions
Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions
Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions
Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions
Exercise
Ex.
Z
2
0
sin
p
cos
q
d=
1
2
p+ 1
2
;
q+ 1
2
N. B. Vyas Beta & Gamma functions
Exercise
Ex.
Z
1
0
x
m1
(a+bx)
m+n
dx=
(m; n)
a
n
b
m
N. B. Vyas Beta & Gamma functions
Relation between Beta and Gamma functions
(m;n) =
(m)(n)
(m+n)
N. B. Vyas Beta & Gamma functions
Exercise
Ex.
Z
2
0
sin
p
cos
q
d=
1
2
(
p+1
2
)(
q+1
2
)
(
p+q+2
2
)
Ex. B(m;n) =B(m;n+ 1) +B(m+ 1;n)
N. B. Vyas Beta & Gamma functions
Exercise
Ex.
Z
2
0
sin
p
cos
q
d=
1
2
(
p+1
2
)(
q+1
2
)
(
p+q+2
2
)
Ex. B(m;n) =B(m;n+ 1) +B(m+ 1;n)
N. B. Vyas Beta & Gamma functions