Beta gamma functions

43,642 views 24 slides Sep 21, 2011
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

A lecture note on Beta and gamma functions..


Slide Content

Beta & Gamma functions
Nirav B. Vyas
Department of Mathematics
Atmiya Institute of Technology and Science
Yogidham, Kalavad road
Rajkot - 360005 . Gujarat
N. B. Vyas Beta & Gamma functions

Introduction
The Gamma function and Beta functions belong to the
category of the special transcendental functions and are
dened in terms of improper denite integrals.
These functions are very useful in many areas like asymptotic
series, Riemann-zeta function, number theory, etc. and also
have many applications in engineering and physics.
The Gamma function was rst introduced by Swiss
mathematicianLeonhard Euler(1707-1783).
N. B. Vyas Beta & Gamma functions

Introduction
The Gamma function and Beta functions belong to the
category of the special transcendental functions and are
dened in terms of improper denite integrals.
These functions are very useful in many areas like asymptotic
series, Riemann-zeta function, number theory, etc. and also
have many applications in engineering and physics.
The Gamma function was rst introduced by Swiss
mathematicianLeonhard Euler(1707-1783).
N. B. Vyas Beta & Gamma functions

Introduction
The Gamma function and Beta functions belong to the
category of the special transcendental functions and are
dened in terms of improper denite integrals.
These functions are very useful in many areas like asymptotic
series, Riemann-zeta function, number theory, etc. and also
have many applications in engineering and physics.
The Gamma function was rst introduced by Swiss
mathematicianLeonhard Euler(1707-1783).
N. B. Vyas Beta & Gamma functions

Gamma function
Denition:
Letnbe any positive number. Then the denite integral
Z
1
0
e
x
x
n1
dxis called gamma function ofnwhich is
denoted by nand it is dened as
(n) =
Z
1
0
e
x
x
n1
dx; n >0
N. B. Vyas Beta & Gamma functions

Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)

1
2

=
p

N. B. Vyas Beta & Gamma functions

Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)

1
2

=
p

N. B. Vyas Beta & Gamma functions

Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)

1
2

=
p

N. B. Vyas Beta & Gamma functions

Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)

1
2

=
p

N. B. Vyas Beta & Gamma functions

Properties of Gamma function
(1) n+ 1) =nn
(2) n+ 1) =n!, wherenis a positive integer
(3) n) = 2
Z
1
0
e
x
2
x
2n1
dx(4)
n
t
n
=
Z
1
0
e
tx
x
n1
dx(5)

1
2

=
p

N. B. Vyas Beta & Gamma functions

Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m

log
1
x

n
dx
N. B. Vyas Beta & Gamma functions

Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m

log
1
x

n
dx
N. B. Vyas Beta & Gamma functions

Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m

log
1
x

n
dx
N. B. Vyas Beta & Gamma functions

Exercise
(1)
Z
1
1
e
k
2
x
2
dx
(2)
Z
1
0
e
x
3
dx(3)
Z
1
0
x
m

log
1
x

n
dx
N. B. Vyas Beta & Gamma functions

Beta Function
Denition:
The Beta function denoted by(m; n) orB(m; n) is dened as
B(m; n) =
Z
1
0
x
m1
(1x)
n1
dx;(m >0; n >0)
N. B. Vyas Beta & Gamma functions

Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions

Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions

Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions

Properties of Beta Function
(1)B(m; n) =B(n; m)
(2)B(m; n) = 2
Z
2
0
sin
2m1
cos
2n1
d
(3)B(m; n) =
Z
1
0
x
m1
(1 +x)
m+n
dx(4)B(m; n) =
Z
1
0
x
m1
+x
n1
(1 +x)
m+n
dx
N. B. Vyas Beta & Gamma functions

Exercise
Ex.
Z
2
0
sin
p
cos
q
d=
1
2


p+ 1
2
;
q+ 1
2

N. B. Vyas Beta & Gamma functions

Exercise
Ex.
Z
1
0
x
m1
(a+bx)
m+n
dx=
(m; n)
a
n
b
m
N. B. Vyas Beta & Gamma functions

Relation between Beta and Gamma functions
(m;n) =
(m)(n)
(m+n)
N. B. Vyas Beta & Gamma functions

Exercise
Ex.
Z
2
0
sin
p
cos
q
d=
1
2
(
p+1
2
)(
q+1
2
)
(
p+q+2
2
)
Ex. B(m;n) =B(m;n+ 1) +B(m+ 1;n)
N. B. Vyas Beta & Gamma functions

Exercise
Ex.
Z
2
0
sin
p
cos
q
d=
1
2
(
p+1
2
)(
q+1
2
)
(
p+q+2
2
)
Ex. B(m;n) =B(m;n+ 1) +B(m+ 1;n)
N. B. Vyas Beta & Gamma functions