Biopharming - Introduction, Application, benefits and potential threats

8,889 views 32 slides Jun 25, 2018
Slide 1
Slide 1 of 32
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32

About This Presentation

Biopharming is an upcoming research field related with genetic engineering and biotechnology which is ensuring the future health of the humanity while letting us making so many therapeutics. Also, it let us consume some vaccines as an oral food source, showing some perfect alternative for the develo...


Slide Content

BIOPHARMING
ISURU PRIYARANGA

OUTLINE
Definition
Key Millstones
The Process
Animal/ Plant Biopharming-Applications
Advantages and Disadvantages
Ethical Issues
Acknowledgement
References

The application of genetic engineering on living
organisms to produce pharmacologicallyactive
substances.
Theproductionofpharmaceuticalsbyusing
geneticallymodifiedplantsoranimals.
DEFINITION
-Segen'sMedical Dictionary (2012)
-McGraw-Hill Dictionary of Scientific &
Technical Terms (2003)

Major Categories
Animal
Biopharming
Plant
Biopharming

Biopharming(Molecular-pharming)
Vs.
Molecular Farming
What’s Correct ?

Key Milestones
•1982 -1
st
transgenic drug, insulinusing
Escherichia colibacteria.
•1990-1
st
GE plant-derivedprotein (PDP) -
Human serum albumin (P. C. Sijmonset al. ,1990)
•1998-1
st
animal-derivedtransgenic protein,
Human Tissue Plasminogen Activator in milk
of mice. (Clark, A.J., 1998)

Key Milestones
•2006-1
st
licensing of plant-made vaccine: for
Newcastle diseaseusing tobacco plants
•2009-1
st
licensing of animal-made
pharmaceutical Anticoagulant antithrombin
using GE goat (Heavey, S., 2009)
•2014-Highly suceededZmappvaccine, made
for Ebola virus using tobacco plants.
(Rybicki, E.P. ,2014)

The Basic Process
Gene of interest
Suitable
Vector
Plant or Animal
Protein Expression in
Harvest
Biochemical and
Clinical Tests
Extracted products or
Direct consumption
Electric Shock

Animal Biopharming
Enables an animal to make a certain
pharmaceutical proteinin its,
Milk
Urine
Blood
Sperm
Eggs
Human Proteins , Vaccines, Monoclonal Antibodies
Ex: Lipase (Sheep, Rabbits)
Growth Hormone (Goats)
Factor VIII (Cattle)

The Process
http://www.cas.miamioh.edu/~wil
sonkg/old/gene2005/manipulation
/geneengneering/tools/tools_files/
tech_apps.htm
Source:
Fig. 01 –Animal BiopharmingProcess

Animal Biopharming
Source: Goven, J., (2008)
Fig.2 –Detailed table on animal Biopharmingproducts

Advantages and Disadvantages
1)Can scale up & Cost reduction-(20-50 $ /g)
2)Complex protein processing
3)Very high expression levels
1)Viral contamination
2)Long time scales
3)Little regulatory experience
Advantages
Disadvantages

Plant Biopharming
Enables an plant to make a certain
pharmaceutical molecules for non food,
feed or fiber applications.
Plant-made antibodies (plantibodies)
Plant-made vaccines (edible vaccines)
Plant-made therapeutic proteins and
intermediates

1. Plant-made Antibodies
Source: Ko, K. and Koprowski, H. (2005)
Table 1 –Examples for monoclonal antibodies derived from plants

2. P-M Vaccines (Edible)
Hepatitis virus B surface antigen
-tobacco / potato / lettuse
Newcastle virus disease
-tobacco
Cholera -Rice

The Process
Source:Langridge, W. H. R. , (2000)

3. P-M Therapeutic Proteins
Human serum albumin
-potato and tobacco
Human GH produced
-tobacco chloroplast.
Human Lactoferine
-Potato

Plant Biopharming
Source: Ahmad, P., et el. (2012) , Gayatonde, V. (2016)
Fig. 4 & 5 –Expression of different antigens/antibodies, proteins in plants.

Advantages and Disadvantages
1)Easy scale up & Cost reduction-(10-20$ /g)
2)Stability -Storage
3)Safety -Free from animal Viruses, etc.
4)Shorter development Cycles
1)Environment contamination
2)Food supply contamination
3)Health safety concerns –allergens, field chemicals.
Advantages
Disadvantages

Widely Using Plants & The Problem
Elbehri, A., (2005)
2

Why we need Biopharming?
Expression
System
Production
Quality
Contam-
ination
Risk
Scale-up
Capacity
Storage
Ability
Time effort
Forthe
process
Ethical
Issues
Production
Cost
Bacteria Low EndotoxinsHigh Medium Low Low Low
Yeast Medium Low High Medium Medium Low Medium
Mammalian
Cell Cultures
Very High Virus,
Oncogenes
VeryLow DifficultHigh Exist High
Plant Cell
Cultures
High Low Medium Medium Medium Low Medium
Transgenic
Animals
Very High Virus,
Oncogenes
Low DifficultHigh Very HighHigh
Transgenic
Plants
High Low High Easy High Exist Low
Source: Biemelt, S. & Sonnewald, U. (2004) , Elbehri, A., (2005)
Table:03 –A comparison of pharmaceutical expression systems

Why we need Biopharming?
Elbehri, A., (2005)

Suggestions for some Biosafety Issues
GE Methods
Chloroplast transformation
Use completely closed facilities or greenhouses
Use of pharmaplants with a “terminator gene”
Use visual markers for easy identification

Suggestions for some Biosafety Issues
Physical Methods
Remove male flowers of GM plant
Use Isolated fields
Use Barrier crops

Ethical Issues ?

ACKNOWLEDGEMENT
Department of botany,
Faculty of Applied Science,
University of Sri Jayewardenepura.

REFERENCES
•Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N.A. and Al-Qurainy,
F., (2012). Role of transgenic plants in agriculture and biopharming.
Biotechnology advances, 30(3), pp.524-540.
•Barta, A., Sommergruber, K., Thompson, D., Hartmuth, K., Matzke, M.A. and
Matzke, A.J., (1986). The expression of a nopalinesynthase—human growth
hormone chimaericgene in transformed tobacco and sunflower callus tissue.
Plant Molecular Biology, 6(5), pp.347-357.
•Biemelt, S., Tschiersch, H. and Sonnewald, U., (2004). Impact of altered
gibberellin metabolism on biomass accumulation, lignin biosynthesis, and
photosynthesis in transgenic tobacco plants. Plant Physiology, 135(1), pp.254-
265.
•Byrne, P., (2003). Bio-pharming.Crop series. Production; no. 0.307.
•Clark, A.J., (1998). The mammary gland as a bioreactor: expression, processing,
and production of recombinant proteins. Journal of mammary gland biology
and neoplasia, 3(3), pp.337-350.

REFERENCES
•Elbehri, A., (2005). Biopharmingand the food system: examining the potential
benefits and risks.
•Fischer, R., Stoger, E., Schillberg, S., Christou, P. and Twyman, R.M., (2004).
Plant-based production of biopharmaceuticals. Current opinion in plant biology,
7(2), pp.152-158.
•Gayatonde, V., Singh, D. K., Reddy, P. S., & Vennela, P. R. (2016). Biopharming–
Making Plants into Factories.Advances in Life Sciences,5(6), 2019-2026.
•Goven, J., Hunt, L.M., Shamy, D. and Heinemann, J.A., (2008). Animal
biopharmingin New Zealand: drivers, scenarios and practical implications.
•Juarez, P., Virdi, V., Depicker, A. and Orzaez, D., (2016). Biomanufacturingof
protective antibodies and other therapeutics in edible plant tissues for oral
applications.Plant biotechnology journal,14(9), pp.1791-1799
•Laere, E., Ling, A.P.K., Wong, Y.P., Koh, R.Y., MohdLila, M.A. and Hussein, S.,
(2016). Plant-based vaccines: Production and challenges.Journal of
Botany,2016.

REFERENCES
•Langridge, W.H., (2000). Edible vaccines.SCIENTIFIC AMERICAN-AMERICAN
EDITION-,283(3), pp.48-53.
•Lillydiabetes.com. (2018). Heritage | LillyDiabetes.com. [online] Available at:
http://www.lillydiabetes.com/heritage.aspx [Accessed 20 Jan. 2018].
•QiuX, Wong G, AudetJ, Bello A, Fernando L, AlimontiJB, Fausther-BovendoH,
Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, BohorovO, BohorovaN,
Goodman C, Kim D, PaulyMH, Velasco J, PettittJ, OlingerGG, Whaley K, XuB,
Strong JE, ZeitlinL, KobingerGP, (2014). Reversion of advanced Ebola virus
disease in nonhuman primates with ZMapp. Nature 2014, 514: 47-53.
•Rishi, A.S., Nelson, N.D. and Goyal, A., (2001). Molecular farming in plants: a
current perspective. Journal of Plant Biochemistry and Biotechnology, 10(1),
pp.1-12.
•Rybicki, E.P., (2014). Plant-based vaccines against viruses. Virology journal,
11(1), p.205.

REFERENCES
•Sijmons, Peter C.; Dekker, Ben M. M.; Schrammeijer, Barbara; et al. (1990).
"Production of Correctly Processed Human Serum Albumin in Transgenic
Plants". Bio/Technology. 8 (3): 217–21.
•Sijmons, P.C., Dekker, B.M., Schrammeijer, B., Verwoerd, T.C., Van Den Elzen, P.J.
and Hoekema, A., (1990). Production of correctly processed human serum
albumin in transgenic plants. Nature Biotechnology, 8(3), pp.217-221.
•Takeyama, N., Kiyono, H. and Yuki, Y., 2015. Plant-based vaccines for animals
and humans: recent advances in technology and clinical trials.Therapeutic
advances in vaccines,3(5-6), pp.139-154.
•U.S. (2018). U.S. approves first drug from DNA-altered animals. [online]
Available at: https://www.reuters.com/article/us-gtc-atryn/u-s-approves-first-
drug-from-dna-altered-animals-idUSTRE5154OE20090206 [Accessed 22 Jan.
2018].

Thank You !
ISURU PRIYARANGA