Graphical Representa tion
Ba up ef analyeing numerical deta
“Th euhibits tne relation behueen
ss
si de
alado dependa Jan tte. ype af gor mation tn a pantiuutar domain
the diferent forms of graphical xepresentation . Soma aa of joe
line graphs “Histograms Preguengy Table,
> bax gaps + dine plot
Genenal Rules for Graphical Kepretentation af hata
Suitable Te > ‘propriate ette & given fo dhe graph
Measurement unit + mention unie in ehe geoph
Propex geal — To rerent Jue data in an ecumate manner
choose a paper scale
Inden > Index due op rake LEnes min bie hs fr
A ETA
Bala Souses > Include the docrces of Information cuherener
ane necemary gen mag $e. graph
Beep tb Simple == Fay ne lo all
Prinerples af Graphical Representation
are ER de le represented Se Buo Lines called coordinates
‘He Weripntal line % denoted ot the mans
a + ==1 EEE
Ok dosed we ain
Geedirate tystem Dada
Here.
5h a propio vpraanméten ap die distribution af dale
en is Pr AL vopresenta.tion aba gage sequen, dixtoibution weit
the het sean axe proporttonal. pen. clases.
Re yar eer a ee
(ene
In other worde, A nMogrnn a diagram énvoluipg recharges bete aren &
proporitorat so die PI a variable. £ udn E equal Udo te clas inter,
Hou to plot ittogram ?
in hing the class Intervals an due X- ark uencies an
Begin Ay marking Inte: an due X= ark £ frepi te
Ye als ¿or both the ares haue do be tame
Cia Interuals need Lo be exclusive
bras rectangles uta boses at clar intervals L oerrusporalir uencien
ed en
Arackungle E built an each ders interual wince dhe dans Limits axe maital
an the borfyontal amis wd the jpequemies ane Codiatal an the verbal ande
Toe Peres proportional tothe, correspording_ cass fequenag i de.
== op mutangle à proportional. to fe corresponding ds pe
then to use. Kikogrem À
We date should be rumerteol
A Mlogram ds used to check $e stage of tie data distathutton
sok de dick uteniter toe prow. cheryl. pom one pen. to anat
ied te determine uuheatter the cotput ts diferent: ahen te Tnlver duo or more precetes
md to nuque aos the plan cas mettle customer ryabrements
Frepuney Peters
x pong Poire m en Br wad. fo compane sets
De uses a ee ea quantisative. dat
A ant ae à auhatantiol mettad af nantitative.
Sepa ts broma Frequency fon
Sepi + choose ¿e lors interval. ond. mask the values en. the horizontal,
anta
Lep2 = Mask due mid ualues af each interunl an de horizontal axes
Sep 3 = Muck ther frepuensden af te ca an the vertical anes
SS
Sn See oro ae a
5 ee
a Cm
elmenart. = (oppor limits tower limit) /2
Preg wen Polygon Sadyramı
Number of students
735 140 145 150 155 160 165 170 175 180
Height (nem)
—>
Cumulabóne. proper tue
A um dir utio
a SA
teme axe 2 hype A opos
Mare dean esper camulalivo. Rroquenry Caves
dex San bypel cumulative. frqueng Graves
Hom b ple a More than ape give.
pui de tower Lim on due 1~ axis
Mart te _tumulative._fyequery en dhe, y arte
Mat Me prins mirg doar Limit 4 Mer corrapording amulathe fequergy
den Shan ype cumulative. purge curve,
put de upper dembec on the 1- axis.
Mask die cumule freueny an die ys
Lis fia pias a ging open dimié 0) 1 ir wrrapondiig