Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 1
Course: B.Tech- II
Subject: Engineering Mathematics II
Unit-2
RAI UNIVERSITY, AHMEDABAD
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 2
Unit-II: GAMMA, BETA FUNCTION
Sr. No. Name of the Topic Page No.
1 Definition of Gamma function 2
2 Examples Based on Gamma Function 3
3 Beta function 5
4 Relation between Beta and Gamma Functions 5
5 Dirichlet’s Integral 9
6 Application to Area & Volume: Liouville’s
extension of dirichlet theorem
11
7 Reference Book 13
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 3
GAMMA, BETA FUNCTION
The Gamma function and Beta functions belong to the category of the
special transcendental functions and are defined in terms of improper
definite integrals.
1.1 Definition of Gamma function :
The gamma function is denoted and defined by the integral
Γ�=∫�
−�
�
�−1
�� (�>0)
∞
0
1.2 Properties of Gamma function :
1) Γ(�+1)=�Γ�
2) Γ(�+1)=�! When m is a positive integer.
3) Γ(�+??????)=(�+??????−1)(�+??????−2)………??????Γ??????, when n is a
positive integer.
4) Γ�=2∫�
−�
2
�
2�−1
�� (�>0)
∞
0
⟹ ��=
��
log�
in (i), we have
??????=∫(
�
log�
)
�
�
−�
3.1 BETA FUNCTION:
Definition: The Beta function denoted by �(�,�) or ??????(�,�) is defined as
??????(�,�)=∫�
�−1
(1−�)
�−1
��, (�>0,�>0)
1
0
Example 5: Show that ??????(�)??????(�−�)=
�
�??????� ��
(�<�<1)
Solution: We know that
�(�,�)=∫
�
�−1
(1+�)
�+�
��
∞
0
4) Prove that Γ(
1
4
) Γ(
3
4
)=�√2
5) Show that �(�,�)=�(�+1,�)+(�,�+1)
5.1 DIRICHLET’S INTEGRAL :
If �,�,� are all positive, then the triple integral
∭�
�−1
�
�−1
�
�−1
�� �� ��
Example1: Show that ∭
�� �� ��
(�+�+�+�)
�
=
�
�
��??????�−
�
��
, the integral being
taken throughout the volume bounded by
�=�,�=�,�=�,�+�+�=�.
Solution: By Liouville’s theorem when 0<�+�+�<1
∭
�� �� ��
(�+�+�+1)
3
=∭
�
�−1
�
�−1
�
�−1
�� �� ��
(�+�+�+1)
3
(0≤�+�+�≤1)
=
Γ1Γ1Γ1
Γ(l+m+n)
∫
1
(u+1)
3
u
3−1
du
1
0
∴∭
�� �� ��
(�+�+�+�)
�
=
�
�
��??????�−
�
��
_______ Proved.
Example 2: Find the mass of an octant of the ellipsoid
�
�
�
�
+
�
�
�
�
+
�
�
�
�
=�,
the density at any point being �=� � � �.
Solution: Mass =∭� ��
=∭(� � � �)�� �� ��
Unit-2 GAMMA, BETA FUNCTION
RAI UNIVERSITY, AHMEDABAD 14
6.2 EXERCISE:
1) Find the value of ∭���(�+�+�) �� �� �� the integral extending
over all positive and zero values of �,�,� subject to the condition �+
�+�<1.
2) Evaluate ∭
√1−�
2
−�
2
−�
2
1+�
2
+�
2
+�
2
�� �� ��, integral being taken over all
positive values of �,�,� such that �
2
+�
2
+�
2
≤1.
3) Find the area and the mass contained m the first quadrant enclosed by
the curve (
�
�
)
�
+(
�
�
)
�
=1 �ℎ��� �>0,�>0 given that density at
any point �(��) is � √��.
7.1 REFERENCE BOOK :
1) Introduction to Engineering Mathematics
By H. K. DASS. & Dr. RAMA VERMA
2) Higher Engineering Mathematics
By B.V.RAMANA
3) A text book of Engineering Mathematics
By N.P.BALI
4) www1.gantep.edu.tr/~olgar/C6.SP.pdf