where al = (13272Q 1),ald« (11920), a13-(2/9 20)
421-219 AQ, a22> (e 154 AQ), 423° U9AQ , 1 = 1/1BAQ,a32- 0 &
a33=(- 1/54 0-1) , Where Q=PP VFL
‘This is he characteristic equation fr solution of rtical buckling load AP ‚where is the kad
factor To determine the solution of the equation it is mandatory that the set of linear
homogeneous equation for us, uz and w il have mon zero solutions only if the determinant
ofthe coefficient mauris [ A | zero. Acconlingy,
ALL (022s 483-2324023)- a2I(ol2x a33-a32x 913) + 031(212x323-022x013) = Oiom the
determinant which is a eubieal equation for AQ. the three posible values uf the roots are
obtained as,
AQ =2.5267, 269247, and 90.17856
‘which means luce posible values of 2. can be found from AQ x EMPL? as
Au 2.5267 BIN”, k= 26.9247 BIN, hy=90.1 7856 KIA?
The lowest val i the erica! buckling lad
23,2 Case Ik, For axial load with effect of springs.
rom the fice body dingra forthe members as shown in Figure 822 V=0,H 0 &
EM = 0, similar equations can be formulated.
‘The deflections usta ty for the concentrated Jonds at a distance of V3, 243 and Y can be
Found (rm fist principles by superposition a,
FL RE + ABER PILLS P/E
use By AB PAR AS FPL
ae AL PIE AG FPE ISP
Rearanging he above. sauntions by subsiving expressions for 1° sin ws the characters
equation an be expressed in Matrix form as,
alt ald a3} | w Jo
EN om alu) 0
EN a #3) fe + o
5718) 101 =101
where,
ae [13127 1 Kx WO-(BN LC el; a1 (119) LAON K à €]
13e (29) 5 21 (29) (14181) Ke (619) K 3 €
CAD GS) K à 3230 [C40 a]; 931 = [(/18)a-(481) Kb-(U6) K ¿e
A (116) Ke; A330] (SEQ)
Where, a PIEL, N= PPE, es MEL
Dra