CAL1-CH0-NEW-CAL1-CH0-NEWCAL1-CH0-NEW.pdf

abdallahodeibat 17 views 81 slides May 07, 2024
Slide 1
Slide 1 of 81
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81

About This Presentation

math


Slide Content

Lecture Notes for Calculus 101
Chapter 0 : Before Calculus
Feras Awad
Philadelphia University

Functions
Idea and Definition
Definition 1
A functionfis a rule that associates with each input, a unique
(exactly ONE
✓✗
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 2 / 81

Functions
Idea and Definition
Example 1
Letf(x) =3x
2
−4x+2. Then
f(−1)=3(−1)
2
−4(−1) +2=3+4+2=9
NOTE:There are 4-ways to represent functions:
Table of values Words Graph Formula
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 3 / 81

Functions
Some Graphs
y=xy=x
2
y=x
3
y=

xy=
3

xy=
1
x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 4 / 81

Functions
Vertical Line Test
A curve in thexy−plane is the graph of some functionfif and only
if no vertical line intersects the curve more than once
Example 2
Which of the following graphs is a function?
✓✗✗
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 5 / 81

Functions
Domain (and Range) of Functions
The set of all allowable inputs
is theDomainoff.
The set of all resulting
outputs is theRangeoff.
NOTE:
possible domain, called theNatural Domain.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 6 / 81

Functions
Examples on Function Domain
Example 3
Find the natural domain of the functionf(x) =x
3
−2x
2
+1.
dom(f)=all real numbers= (−∞,∞)=R−∞∞-2-1012
NOTE:
P(x) =anx
n
+an−1x
n−1
+· · ·+a1x+a0
has domainR.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 7 / 81

Functions
Examples on Function Domain
Example 4
Find the natural domain of the functionf(x) =
1
(x+1)(x−3)
.
dom(f)=all real numbers except−1 and 3=R− {−1,3}= (−∞,−1)∪(−1,3)∪(3,∞)−∞∞-13
NOTE:Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 8 / 81

Functions
Examples on Function Domain
Example 5
Find the natural domain of the functionf(x) =

x−1.
dom(f)=all real numbers such thatx−1≥0=allx∈Rsuch thatx≥1= [1,∞)−∞∞1
NOTE:
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 9 / 81

Functions
Examples on Function Domain
Example 6
Find the natural domain of the functionf(x) =

x
2
−5x+6.
dom(f)=all real numbers such thatx
2
−5x+6≥0(x−2)(x−3)≥0= (−∞,2]∪[3,∞)−∞∞23+−+
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 10 / 81

Functions
Examples on Function Domain
Example 7
Find the natural domain of the functionf(x) =
3

4−3x
2
.
dom(f)=all real numbers=RNOTE: +,−, 0 but depends on the function inside
it.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 11 / 81

Functions
Examples on Function Domain
Example 8
Find the natural domain of the functionf(x) =
3
s
1
x
.
dom(f)=all real numbers except 0= (−∞,0)∪(0,∞)−∞∞0
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 12 / 81

Functions
Examples on Function Domain
Example 9
Find the natural domain of the functionf(x) =

x
x
2
−4
.
dom(f)=all real numbers such thatx≥0 except±2= [0,2)∪(2,∞)−∞∞-202
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 13 / 81

Functions
Examples on Function Domain
Example 10
Find the natural domain of the functionf(x) =

x+1−

2−x.
dom
“√
x+1

=x∈R;x+1≥0x≥ −1= [−1,∞)dom
“√
2−x

=x∈R;2−x≥0−x≥ −2x≤2= (−∞,2]−∞∞-1−∞∞2−∞∞-12∴dom(f) = [−1,∞)∩(−∞,2]= [−1,2]
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 14 / 81

Functions
Examples on Function Domain
Exercise 1
(1)Compare the domain of g(x) =x and f(x) =
x
2
+x
1+x
.
(2)Find the domain of each of the following.
a)f(x) =
p
x
2
+2x+4
b)g(x) =
x
x
2
−x−2
c)f(x) =

9−x
2
1−x
2
d)g(x) =
x−3
1−

x
e)f(x) =
x−3
1+

x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 15 / 81

Functions
Piecewise Functions
Functions can be defined in pieces (cases).
Example 11
Letf(x) =





0 :x≤ −1

1−x
2
:−1<x<1
x :x≥1
f(0)=

1−0
2
=1f(−3)=0f(5)=5f(1)=1-111
NOTE:x=−1 andx=1 are called piecewise points.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 16 / 81

Functions
Absolute Value
The absolute value ofx∈Ris defined by
|x|=
(
x:x≥0
−x:x<0
For example,|4|=4,
|0|=0,



1
2


=
1
2
.-111
NOTE:(1)|x|=a⇔x=±a.
Ex.|x|=4⇔x=±4
(2)|x| ≤a⇔ −a≤x≤a.
Ex.|x| ≤4⇔ −4≤x≤4
(3)|x| ≥a⇔x≥aorx≤ −a.
Ex.|x| ≥4⇔x≤ −4 orx≥4
(4)

x
2
=|x| (5) |g(x)|=dom(g(x))
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 17 / 81

Functions
Absolute Value
Example 12
Write the functiong(x) =|2x−1|as piecewise function.
g(x)=
(
2x−1:2x−1≥0
−(2x−1) :2x−1<0
=
(
2x−1:x≥
1/2
−2x+1:x<
1/2
g(x) =0⇒ |2x−1|=0⇒2x−1=0⇒x=
1/2−∞∞0.5+2x−1−1−2x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 18 / 81

Functions
Trigonometric Ratios (Right Triangle)
acbθa:adjacentb:oppositec:hypotenusesinθ=
b
c
,cosθ=
a
c
,tanθ=
b
a
secθ=
c
a
,cscθ=
c
b
,cotθ=
a
b
NOTE:
secθ=
1
cosθ
,cscθ=
1
sinθ
,cotθ=
1
tanθ
tanθ=
sinθ
cosθ
,cotθ=
cosθ
sinθ
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 19 / 81

Functions
Angle Measures and Standard Position
We measure angles either by
degrees or by radians, where
πrad=180

Example 13
90

=90×
π
180
=
π
2

3
=

3
×
180
π
=120

Initial RayVertexTerminal Rayθ
Counterclockwise
θis positive
Initial RayVertexTerminal Rayθ
Clockwise
θis negative
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 20 / 81

Functions
Angle Measures and Standard Position
Example 14
RightAcuteObtuseStraight90

=
π/230

=
π/6150

=
5π/6180

=π270

=
3π/2−90

=−
π/2−45

=−
π/4−540

=−3π
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 21 / 81

Functions
Some Trigonometric Values
θdeg0

30

45

60

90

θrad0
π/6
π/4
π/3
π/2
sinθ
0
1/2
1/

2

3/21
cosθ
1

3/2
1/

2
1/20
tanθ
0
1/

31

3✗
cscθ
✗2

2
2/

31
secθ
1
2/

3

2 2 ✗
cotθ


3 1
1/

30
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 22 / 81

Functions
Trigonometric Values in Coordinate Plane
-11-110

90

180

270

(x,y)1θxyQ1Q2Q3Q4All +sin+csc+tan+cot+cos+sec+
(x,y) = (cosθ,sinθ)
4 Quadrants
θ Pointsincos
0

(1,0)0 1
90

(0,1)1 0
180

(−1,0)0−1
270

(0,−1)−1 0
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 23 / 81

Functions
Trigonometric Functions
1
f(x) = sinx
Domain:R
Range:
h
−1,1
i
Period:2π
-11−2π−

2
−π−
π
2


2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 24 / 81

Functions
Trigonometric Functions
2
f(x) = cosx
Domain:R
Range:
h
−1,1
i
Period:2π
-11−2π−

2
−π−
π
2


2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 25 / 81

Functions
Trigonometric Functions
3
f(x) = tanx
Domain:x̸=±
π
2


2
,· · ·
Range:R
Period:π
-11−2π−

2
−π−
π
2


2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 26 / 81

Functions
Trigonometric Functions
4
f(x) = cotx
Domain:x̸=0,±π,±2π,· · ·
Range:R
Period:π
-11−2π−

2
−π−
π
2


2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 27 / 81

Functions
Trigonometric Functions
5
f(x) = secx
Domain:x̸=±
π
2


2
,· · ·
Range: (−∞,−1]∪[1,∞)
Period:2π
-11−2π−

2
−π−
π
2


2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 28 / 81

Functions
Trigonometric Functions
6
f(x) = cscx
Domain:x̸=0,±π,±2π,· · ·
Range: (−∞,−1]∪[1,∞)
Period:2π
-11−2π−

2
−π−
π
2


2
π
π
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 29 / 81

Functions
Trigonometric Identities
sin
2
θ+ cos
2
θ=1
tan
2
θ+1= sec
2
θ
1+ cot
2
θ= csc
2
θ
sin(2θ) =2sinθcosθ
cos(2θ) = cos
2
θ−sin
2
θ
=2cos
2
θ−1
=1−2sin
2
θ
cos
2
θ=
1+ cos(2θ)
2
sin
2
θ=
1−cos(2θ)
2
sin(−θ) =−sinθ
cos(−θ) = cosθ
tan(−θ) =−tanθ
Ex:sin


π
6
«
=−sin

π
6
«
=−
1
2
tan


π
4
«
=−tan

π
4
«
=−1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 30 / 81

Functions
Reference Angle
Example 15
Find all anglesθsuch that
cosθ=−
1/2.
θ1=π−
π
3
=

3
±2nπθ2=π+
π
3
=

3
±2nπwheren=0,1,2,· · ·0

90

180

270

απ−απ+α2π−α=
π/3✓✓
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 31 / 81

Functions
Reference Angle
Example 16
Find all anglesθsuch that
sinθ=−
1/

2.
θ1=π+
π
4
=

4
±2nπθ2=2π−
π
4
=

4
±2nπwheren=0,1,2,· · ·0

90

180

270

απ−απ+α2π−α=
π/4✓✓
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 32 / 81

Functions
Reference Angle
Example 17
Find all anglesθsuch that
tanθ=

3.
θ1=
π
3
±2nπθ2=π+
π
3
=

3
±2nπ∴θ=
π
3
±nπwheren=0,1,2,· · ·0

90

180

270

απ−απ+α2π−α=
π/3✓✓
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 33 / 81

Functions
Reference Angle
Example 18
Find all anglesθsuch thatsinθ=0.
θ1=0±2nπθ2=π±2nπ∴θ=0±nπ=±nπwheren=0,1,2,· · ·
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 34 / 81

Functions
Reference Angle
Example 19
Find all anglesθsuch thatcosθ=0.
θ1=
π
2
±2nπθ2=

2
±2nπ∴θ=
π
2
±nπwheren=0,1,2,· · ·
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 35 / 81

Functions
Reference Angle
Example 20
Find all anglesθsuch thatcosθ=−1.
θ=π±2nπ=

1±2n

πwheren=0,1,2,· · ·
Example 21 Find all anglesθsuch thatsinθ=1.
θ=
π
2
±2nπwheren=0,1,2,· · ·
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 36 / 81

Functions
Reference Angle
Example 22
Find the value ofsin


3
«
.
2π−α=

3
α=2π−

3
=
π
3
∴sin


3
«
=−sin

π
3
«
=−

3
2
0

90

180

270

απ−απ+α2π−α=
π/3✓
5π/3=300

Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 37 / 81

Functions
Reference Angle
Example 23
Find the value of
tan

−3π
4

=−tan


4

π−α=

4
α=π−

4
=
π
4
∴tan

−3π
4
«
=−tan


4
«
=−(−) tan

π
4
«
=10

90

180

270

απ−απ+α2π−α=
π/4✓
3π/4=135

Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 38 / 81

Functions
Reference Angle
Example 24
Find the domain off(x) = tanx
=
sinx
cosx
dom(tanx)=R−
n
cosx=0
o
=R−
n
x=
π/2±nπ
o
=dom(secx)
Example 25
Find the domain off(x) = cscx
=
1
sinx
dom(cscx)=R−
n
sinx=0
o
=R−
n
x=±nπ
o
=dom(cotx)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 39 / 81

New Functions from Old
Operations on Functions
Letfandgbe functions, then

f
×
+

g
«
(x)=f(x)
×
+

g(x) ;x∈dom(f)∩dom(g)(f÷g)(x)=f(x)÷g(x) ;x∈dom(f)∩dom(g)−
n
g(x) =0
o
Example 26
Letf(x) =

x
→dom(f) = [0,∞).
g(x) =

x
→dom(g) = [0,∞)
Find(f·g)(x)and its domain.
(f·g)(x)=



x=
“√
x

2
=xdom(f·g)=[0,∞)∩[0,∞)= [0,∞)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 40 / 81

New Functions from Old
Composition of Functions
xgg(x)ff(g(x))f◦gf"circle"gofxf"after"gofx
Definition 2
(f◦g)(x) =f(g(x))
dom(f◦g) =set of allx∈dom(g)such thatg(x)∈dom(f)
NOTE: f◦g̸=g◦f.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 41 / 81

New Functions from Old
Composition of Functions
Example 27
Given thatf(1) =1,f(−1) =0,g(−1) =1 andg(0) =0. Find
(f◦g)(−1).
(f◦g)(−1) =f(g(−1)) =f(1) =1Example 28
Letf(x) =x
2
+3 andg(x) =

x. then
(1)(f◦g)(x) =
f(g(x)) =f(

x) =
“√
x

2
+3=x+3dom(f◦g)=[0,∞)∩R= [0,∞)
(2)(g◦f)(x) =
g(f(x)) =g(x
2
+3) =

x
2
+3dom(g◦f)=R∩R=R
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 42 / 81

New Functions from Old
How Operations Affect Functions Graphs
(Translation)
Example
f(x) +cf(x)−cf(x+c)f(x−c)
f(x) =x
2
updownleftrightx
2
+cx
2
−c(x+c)
2
(x−c)
2
(0,0)(0,c)(0,−c)(−c,0)(c,0)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 43 / 81

New Functions from Old
How Operations Affect Functions Graphs
(Translation)
Example 29
Draw the graph off(x) = (x+1)
2
−1.
(0,0)(−1,0)(−1,−1)x
2
(x+1)
2
(x+1)
2
−1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 44 / 81

New Functions from Old
How Operations Affect Functions Graphs
(Reflection)
Abouty−axisAboutx−axisf(−x)−f(x)f(x)f(−x)f(x)−f(x)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 45 / 81

New Functions from Old
How Operations Affect Functions Graphs
(Reflection)
Example 30
Draw the graph off(x) =4− |x−2|
(0,0)(2,0)(2,0)(2,4)|x||x−2|−|x−2|4− |x−2|
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 46 / 81

New Functions from Old
How Operations Affect Functions Graphs
(Reflection)
NOTE:
(1) f(x±c)
(2) f(−x)and/or−f(x)
(3) f(x)±c
Example 31
Draw the graph off(x) =2−

3−x
(0,0)(−3,0)(3,0)(3,0)(3,2)

x

x+3

−x+3−

3−x2−

3−x
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 47 / 81

New Functions from Old
Functions with Symmetric Graphs
Definition 3
f(x)is aneven functioniff(−x) =f(x). In this case,fis
symmetric about they−axis.−11
−3/2
3/2
−π/3
π/3x
2
|x|cosx
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 48 / 81

New Functions from Old
Functions with Symmetric Graphs
Definition 4
f(x)is anodd functioniff(−x) =−f(x). In this case,fis
symmetric about the origin.−11
−π/2
π/2
−π/4
π/4x
3
sinx−tanx= tan(−x)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 49 / 81

New Functions from Old
Functions with Symmetric Graphs
NOTE:
(1)
nor Even likef(x) =x+2cosx.
(2)▶Odd±Odd=Odd
▶Even±Even=Even
▶Odd×Odd=Even , Odd ÷Odd=Even
▶Even×Even=Even , Even÷Even=Even
▶Odd×Even=Odd , Odd ÷Even=Odd
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 50 / 81

Inverse Functions
Idea of Inverse Functions
When two functions "UNDO"
each other.The inverse function is denoted by
f
−1
and readf−inverse.
NOTE:
*f
−1
̸=
1
f
*y=x
3
, thenx=
3

y
* f, are the
outputs off
−1
and vice-versa.
xy=x
3
ff−inverse
domain

f
−1

=range(f)
range

f
−1

=domain(f)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 51 / 81

Inverse Functions
When Do the Inverse Exist?
Function
but NOT1−1
Function
and1−1A functionfhas inverse⇔it is one-to-one(1−1)⇔x1̸=x2,thenf(x1)̸=f(x2).⇔The graph intersects any horizontal⇔line at most once (Horizontal Line Test)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 52 / 81

Inverse Functions
When Do the Inverse Exist?
Example 32 Letf(x) =x
3
.
* fisR.* x1,x2∈Rsuch
thatx1̸=x2, then
x
3
1̸=x
3
2⇒f(x1)̸=f(x1)
* x
3
is 1−1 onR.
−11
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 53 / 81

Inverse Functions
When Do the Inverse Exist?
Example 33
Letf(x) =x
2
.
* fisR.* −1̸=1, but
(−1)
2
= (1)
2
.
* x
2
isNOT1−1 onR.* x
2
is 1−1 on[0,∞).
−11
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 54 / 81

Inverse Functions
Definition of Inverse Function
Definition 5
The functionsf,f
−1
are inverses provided both

f◦f
−1

(x) =f

f
−1
(x)

=x;x∈dom

f
−1


f
−1
◦f

(x) =f
−1
(f(x)) =x;x∈dom(f)
Example 34
Letf(x) =2x
3
+5x+3. Findxiff
−1
(x) =1.
f
−1
(x) =1⇒f

f
−1
(x)

=f(1)⇒x=f(1) =10
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 55 / 81

Inverse Functions
Finding the Inverse Function
To find the inverse function off(x):(1) y=f(x).
(2) xas a function ofy.(3) xbyf
−1
(x), andybyx.
Example 35
Findf
−1
(x)given thatf(x) =x
3
.
y=x
3
3

y=
3

x
3
x=
3

yf
−1
(x)=
3

xx
33

xy=x(3/4,27/64)(27/64,3/4)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 56 / 81

Inverse Functions
Finding the Inverse Function
Example 36
Findf
−1
(x)given that
f(x) =

1+2x.
y=

1+2x⇒y
2
=
“√
1+2x

2
⇒y
2
=1+2x⇒x=
y
2
−1
2
⇒f
−1
(x) =
1
2

x
2
−1
”√
1+2x
x
2
−1
2
y=x(1,0)(0,1)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 57 / 81

Inverse Functions
Finding the Inverse Function
Example 37
Findf
−1
(x)given thatf(x) =
x+1
x−1
.
y=
x+1
x−1
⇒(x−1)y=x+1⇒xy−y=x+1⇒xy−x=y+1⇒x(y−1) =y+1⇒x=
y+1
y−1
⇒f
−1
(x) =
x+1
x−1
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 58 / 81

Inverse Functions
Inverse Trigonometric Functions
f
−1
DomainRange Graph Note
sin
−1
x[−1,1]
h

π
2
,
π
2
i
−11π/2−π/2
arcsinx
cos
−1
x[−1,1][0, π]
−11π
arccosx
tan
−1
x R


π
2
,
π
2

π/2−π/2
arctanx
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 59 / 81

Inverse Functions
Inverse Trigonometric Functions
Example 38
Find the domain off(x) = sin
−1
(x−1).
−1≤x−1≤1⇒ −1
+1
≤x−1
+1
≤1
+1
⇒0≤x≤2⇒dom(f) = [0,2]
Example 39
Find the exact value.
(1)sin
−1
(
1/2)
=
π/6∈[
−π/2,
π/2]
(2)cos
−1
(
1/2)
=
π/3∈[0, π]
(3)tan
−1
(1)
=
π/4∈(
−π/2,
π/2)
(4)cos
−1
(2)
undefined
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 60 / 81

Inverse Functions
Inverse Trigonometric Functions
NOTE:
*sin
−1
(−x) =−sin
−1
x
*tan
−1
(−x) =−tan
−1
x*cos
−1
(−x) =π−cos
−1
x
*sin
−1
(x) + cos
−1
(x) =
π
2
*tan
−1
(x)̸=
sin
−1
(x)
cos
−1
(x)
Example 40
Find the exact value.
(1)sin
−1
(
−1/2)
=−sin
−1
(
1/2)=−
π/6∈[
−π/2,
π/2]
(2)tan
−1
(−1)
=−tan
−1
(1)=−
π/4∈(
−π/2,
π/2)
(3)cos
−1
(
−1/2)
=π−cos
−1
(
1/2)=π−
π/3=
2π/3∈[0, π]
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 61 / 81

Inverse Functions
Inverse Trigonometric Functions
Example 41
Find the exact value.
(1)sin

sin
−1
(
1/4)

=
1/4
Note that dom

sin
−1

= [−1,1]and
1/4∈[−1,1]Also,sinandsin
−1
are inverses and cancel each other
(2)tan (tan
−1
(
−17/9))
=
−17/9
Note that dom(tan
−1
) =Rand
−17/9∈RAlso,tanandtan
−1
are inverses and cancel each other
(3)cos (cos
−1
(
−2/3))
=
−2/3
Note that dom(cos
−1
) = [−1,1]and
−2/3∈[−1,1]Also,cosandcos
−1
are inverses and cancel each other
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 62 / 81

Inverse Functions
Inverse Trigonometric Functions
NOTE:
sin
−1
(sinx) =



π−x :
π/2≤x≤
3π/2
x−2nπ:x≥
3π/2
cos
−1
(cosx) =2nπ−x;ifx≥π
Example 42
Find the exact value.
(1)sin
−1
(sin (
5π/3))
= sin
−1
(sin (
5π/3−2π))= sin
−1
(sin (
−π/3))=
−π/3
(2)sin
−1
(sin (
4π/3))
= sin
−1
(sin (π−
4π/3))= sin
−1
(sin (
−π/3))=
−π/3
(3)cos
−1
(cos (
17π/4))
= cos
−1
(cos (4π−
17π/4))= cos
−1
(cos (
−π/4))= cos
−1
(cos (
π/4))=
π/4
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 63 / 81

Inverse Functions
Inverse Trigonometric Functions
Example 43
Find the exact value of
tan
−1

tan


6
««
.
π−α=

6
α=π−

6
=
π
6
tan
−1

tan


6
««
=−tan
−1

tan

π
6
««
=
−π
6
0

90

180

270

απ−απ+α2π−α
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 64 / 81

Inverse Functions
Inverse Trigonometric Functions
Example 44
Simplify the expressiontan

sin
−1
x

.
Let θ= sin
−1
x
sinθ= sin

sin
−1
x

sinθ=x;x∈[−1,1]∴tan

sin
−1
x

= tanθ=
x

1−x
2
wherex∈(−1,1)θx1

1−x
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 65 / 81

Inverse Functions
Inverse Trigonometric Functions
Example 45
Find the exact value ofsin (2sec
−1
3).
Let
θ= sec
−1
3
secθ= sec

sec
−1
3

secθ=3∴sin

2sec
−1
3

= sin(2θ) =2sinθcosθ=2×

8
3
×
1
3
=
4

2
9
θ

831
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 66 / 81

Exponential and Logarithmic Functions
The Exponential Function
Definition 6
The exponential function to the
basebisf(x) =b
x
whereb>0
andb̸=1.
domain ofb
x
=Rrange ofb
x
= (0,∞)b>12
x
0<b<1

1
2

x
(0,1)
Example 46
2
x
, π
x
,(
1/3)
x
,· · ·are exponentialx
2
,x
π
,x
1/3
,· · ·are NOT exponential
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 67 / 81

Exponential and Logarithmic Functions
The Exponential Function
Example 47
Find the domain of the functionf(x) =4
x
x
2
−4.
dom(f) =R− {x
2
−4=0}=R− {±2}NOTE:
The numbere≈2.7182818285· · ·is
called theNatural Number.
The exponential functionf(x) =e
x
is
called theNatural Exponential
Function.
e
x
(0,1)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 68 / 81

Exponential and Logarithmic Functions
The Exponential Function: Properties
(1)b
0
=1
Ex:2
0
=1
(2)b
x
·b
y
=b
x+y
Ex:2
4
·2
3
=2
7
(3)b
x
÷b
y
=b
x−y
Ex:
3
5
/3
2=3
3
(4)b
−x
=
1/b
x
Ex:e
−2
=
1/e
2
(5)(b
x
)
y
=b
xy
Ex:

3
2

3
=3
6
(6)
n

b
m
=b
m/n
Ex:
3

2
6
=2
6/3
=2
2
(7)(a·b)
x
=a
x
·b
x
Ex:(2e)
3
=2
3
·e
3
=8e
3
(8)(a÷b)
x
=a
x
÷b
x
Ex:(
5/2)
2
=
5
2
/2
2
(9)b
x
=b
y
⇔x=y
One-to-One Property
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 69 / 81

Exponential and Logarithmic Functions
The Exponential Function: Properties
Example 48
Find the exact value:
(1)(−8)
2
3
=
3
q
(−8)
2
=
3

64=4
(2)
−1/2
=
1
9
1/2
=
1

9
=
1
3Example 49
Solve the equation 2
x
=64.
2
x
=64⇒2
x
=2
6
⇒x=6
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 70 / 81

Exponential and Logarithmic Functions
The Logarithmic Function
Definition 7
The logarithmic function to the
basebisf(x) = log
bxwhere
b>0 andb̸=1.
domain oflog
bx= (0,∞)range oflog
bx=Rb>1log
2x0<b<1log1/2x(1,0)
NOTE: log
exis called theNatural Logarithmic
Functionand denoted bylnx.
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 71 / 81

Exponential and Logarithmic Functions
The Logarithmic Function
NOTE:
dom(log
bg(x)) =All real numbers such thatg(x)>0
and defined.
Example 50
Find the domain off(x) = ln (9−x
2
).
domln

9−x
2

=Allx∈Rsuch that 9−x
2
>0⇒x
2
<9⇒

x
2
<

9⇒ |x|<3⇒ −3<x<3⇒x∈(−3,3)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 72 / 81

Exponential and Logarithmic Functions
The Logarithmic Function: Properties
(1)log
b1=0
Ex:log
101=0
(2)log
bb=1
Ex:lne= log
ee=1
(3)log
b(x
n
) =nlog
bx
Ex:log
39= log
3

3
2

=2
(4)log
ba=
lna
lnb
Ex:log
43=
ln3/ln4
(5)log
b(xy) = log
bx+ log
by
(6)log
b(
x/y) = log
bx−log
by
(7)log
bx= log
by⇔x=y
One-to-One Property
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 73 / 81

Exponential and Logarithmic Functions
The Logarithmic Function: Properties
Example 51
Find the exact value.
(1)log
232
= log
2(2
5
)=5log
22=5
(2)log
42
= log
4

4= log
4

4
1/2

=
1/2
Example 52
Simplify the expressionlog
69−log
65+ log
620.
(log
69−log
65) + log
620= log
6

9
5
«
+ log
620= log
6

9
5
×20
«
= log
636= log
6

6
2

=2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 74 / 81

Exponential and Logarithmic Functions
Logarithmic & Exponential are Inverses
FunctionDomainRange
b
x
R (0,∞)
log
bx (0,∞) R
log
b(b
x
)=x;x∈Rb
log
b
x
=x;x∈(0,∞)y=xb
x
log
bx
Example 53
Find the exact value of 5
2log
5
4
.
5
2log
5
4
=5
log
5(4
2
)
=4
2
=16
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 75 / 81

Exponential and Logarithmic Functions
Logarithmic & Exponential are Inverses
Example 54
Solve the following equations.
(1)e
x
=7
⇒ln (e
x
) = ln7⇒x= ln7
(2)log
10x=−2
⇒10
log
10
x
=10
−2
⇒x=
1
10
2
=0.01
(3)lnx=3
⇒e
lnx
=e
3
⇒x=e
3
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 76 / 81

Exponential and Logarithmic Functions
Logarithmic & Exponential are Inverses
Example 55
Solve the equatione
2x
+e
x
−6=0.
e
2x
+e
x
−6=0⇒(e
x
)
2
+e
x
−6=0(Lety=e
x
)⇒y
2
+y−6=0⇒(y+3)(y−2) =0Solution (1)⇒y=−3⇒e
x
=−3✗Solution (2)⇒y=2⇒e
x
=2 ✓⇒x= ln2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 77 / 81

Exponential and Logarithmic Functions
Logarithmic & Exponential are Inverses
Example 56
Solve the equationln(x−2) + ln(2x−3) =2lnx.
ln

(x−2)(2x−3)

= ln

x
2

⇒(x−2)(2x−3) =x
2
⇒2x
2
−7x+6=x
2
⇒x
2
−7x+6=0⇒(x−6)(x−1) =0⇒x=6✓orx=1✗
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 78 / 81

Exponential and Logarithmic Functions
Logarithmic & Exponential are Inverses
Example 57
True or False?
“The functionsln (x
2
)and 2lnxhave the same domain !!”
domain ofln

x
2

=R− {0}domain of 2ln (x)= (0,∞)∴FALSE
Example 58
Find the inverse function off(x) = ln(x+3).
y= ln(x+3)⇒e
y
=e
ln(x+3)
⇒x+3=e
y
⇒x=e
y
−3∴f
−1
(x) =e
x
−3
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 79 / 81

Exponential and Logarithmic Functions
Logarithmic & Exponential are Inverses
Example 59
Find the inverse function ofg(x) =e
2x−1
.
y=e
2x−1
⇒lny= ln

e
2x−1

⇒2x−1= lny⇒x=
1+ lny
2
∴g
−1
(x) =
1+ lnx
2
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 80 / 81

Exponential and Logarithmic Functions
One More Example
Example 60
Letf(x) =x
2
−2x−3.
(1) fby shifting the graph ofx
2
.

x
2
−2x

−3=

x
2
−2x+1

−1−3= (x−1)
2
−4
(2) f
−1
(x).
y= (x−1)
2
−4x=
p
y+4+1f
−1
(x)=

x+4+1
(3) f.
range off= [−4,∞)=domain off
−1
(1,−4)
Feras Awad (Philadelphia University) Lecture Notes for Calculus 101 81 / 81
Tags