Chapter 10 Practice Exercises 675
the equations have the same graph, which is a cardioid
69 - 70. Example CAS commands:
:Maple
with( plots );#69
f := (r,k,e) -> k*e/(1+e*cos(theta));
elist := [3/4,1,5/4]; # (a)
P1 := seq( plot( f(r,-2,e), theta=-Pi..Pi, coords=polar ), e=elist ):
display( [P1], insequence=true, view=[-20..20,-20..20], title="#69(a) (Section 10.8)k=-2" );
P2 := seq( plot( f(r,2,e), theta=-Pi..Pi, coords=polar ), e=elist ):
display( [P2], insequence=true, view=[-20..20,-20..20], title="#69(a) (Section 10.8)k=2" );
elist2 := [7/6,5/4,4/3,3/2,2,3,5,10,20]; # (b)
P3 := seq( plot( f(r,-1,e), theta=-Pi..Pi, coords=polar ), e=elist2 ):
display( [P3], insequence=true, view=[-20..20,-20..20], title="#69(b) (Section 10.8)k=-1, e>1" );
elist3 := [1/2,1/3,1/4,1/10,1/20];
P4 := seq( plot( f(r,-1,e), theta=-Pi..Pi, coords=polar ), e=elist3 ):
display( [P4], insequence=true, title="#69(b) (Section 10.8)k=-1, e<1" );
klist := -5..-1; # (c)
P5 := seq( plot( f(r,k,1/2), theta=-Pi..Pi, coords=polar ), k=klist ):
display( [P5], insequence=true, title="#69(c) (Section 10.8)e=1/2, k<0" );
P6 := seq( plot( f(r,k,1), theta=-Pi..Pi, coords=polar ), k=klist ):
display( [P6], insequence=true, view=[-4..50,-50..50], title="#69(c) (Section 10.8)e=1, k<0" );
P7 := seq( plot( f(r,k,2), theta=-Pi..Pi, coords=polar ), k=klist ):
display( [P5], insequence=true, title="#69(c) (Section 10.8)e=2, k<0" );
: (assigned function and values for parameters and bounds may vary):Mathematica
To do polar plots in Mathematica, it is necessary to first load a graphics package
In the command, it is assumed that the variable r is given as a function of the variable .PolarPlot )
<<Graphics`Graphics`
f[ _, k_,ec_]:= (k ec) / (1 ec Cos[ ]))) "
PolarPlot[{ f[ , 2, 3/4], f[ , 2, 1], f[ , 2, 5/4]}, { , 0, 2 }, PlotRange { 20, 20},))))1 Ä
PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]}];Ä
PolarPlot[{ f[ , 1, 1], f[ , 2, 1], f[ , 3, 1], f[ , 4, 1], f[ , 5, 1]}, { , 0, 2 }, PlotRange { 20, 20},))))) )1 Ä
PlotStyle Ä
{RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1, RGBColor[.5, .5, 0], RGBColor[0, .5, .5]}];ß
The limitation on the range is primarily needed when plotting hyperbolas.
Problem 70 can be done in a similar fashion.
CHAPTER PRACTICE EXERCISES"!
1. x 4y y 4p 4 p 1; 2. x 2y y 4p 2 p ;
# #
##
"
œÊœ Ê œÊœ œ Ê œÊ œÊœ
xx
4
" "
therefore Focus is (0 1), Directrix is y 1 therefore Focus is ; Directrix is yß œ!ßœ ˆ‰
""
##