Cameron hydraulic data 16th ed

ErnestoGarca7 3,642 views 189 slides Nov 11, 2020
Slide 1
Slide 1 of 232
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232

About This Presentation

Cameron Hydraulic Data by Ingerson Rand


Slide Content

5

CAMERON
Hydraulic Data

A handy reference on the subject of hydraulics, and steam

Edited by
C. R. Westaway
and
A. W. Loomis
------------------ --------------- -------------- Sixteenth Edition (Third Printing) ------------------ --------------- --------------
Price $10.00

INGERSOLL-RAND Woodcliff Lake, N.J. 07675

CAMERON
HYDRAULIC DATA
A handy reference on the subject of hydraulics,
and steam
Edited by
C. R.
Westaway
and
A. W. Loomis
Sixteenth Edition
Third Printing
Price
$10.00 & INGERSOLLRANR
Woodcliff Lake, N.J. 07675

Pump Manufacturing Plants
Phillipsburg, N.J., U.S.A.
Allentown, Pa., U.S.A.
Gateshead, Co. Durham, England
Sherbrooke, Que., Canada
KitchnerICambridge, Ontario, Canada
Naucalpan de Juarez, Mexico
Alberton, Transvaal, So. Africa
Coslada, Madrid, Spain
Copyright 1926, 1930, 1934, 1939, 1942, 1951, 1958, 1961, 1965, 1970, 1977,
1979, 1981, 1984
by Ingersoll-Rand Company
All rights reserved
PRINTED IN
U.S.A.
Form 931
11
Preface to the Sixteenth Edition (2nd Printing)
The Cameron Hydraulic Data Book is an Ingersoll-Rand publication and, as in the
previous fifteen editions, is published as an aid to engineers involved with the
selection and application of pumping equipment.
The information in the sixteenth edition, has been updated and brought in line
with current practice, primarily the data dealing with the flow of liquids through
pipes, valves and fittings. Other information which has been expanded on in
considerable detail includes:
"Weight-Volume Relationships for Cellulose Fiber-
Water Suspensions" and the section on conversion factor (metric) data.
Also, minor rearrangements of certain material has been made for more convenient
reference; in addition, some additional data on density, specific gravity, specific
weight, vapor pressure and viscosity of various liquids that may be of help and
interest has been included.
To facilitate locating the desired data, a detailed index has been provided in the
rear of this book (Section IX). It should be noted that for convenient reference this
index is arranged in two
(2) parts; first a General Index with items listed alphabeti-
cally, page 9-2 through page 9-10, and secondly, an Index of Liquids arranged alpha-
betically, page 9-11 through page 9-14.
Frequent reference to this index is suggested for quickly locating the information
desired.
iii

WARNING
The misuse or misapplication of data in this book could result in
machinery or system failures, severe damage to other property
and/or serious injury to persons. Ingersoll-Rand Company does not
assume any liability for any losses or damages resulting from the use
or application of the materials and data set forth in this book.
INGERSOLLRAND CAMERON
Contents
.......................... Hydraulic principles
Selected formulas and equivalents ..............
Friction data. ................................
Water Paper stock
Viscous liquids Fittings
Liquids-miscellaneous data ..................
Density-specific gravity-vapor pressure
Viscosity etc
Steam data ..................................
Electrical data ...............................
Miscellaneous data. ...........................
Data for cast iron & steel pipe-Arithmetrical
formulas
Metric (SI) Conversions-General data.. .......
Index-Two Sections: ........................
Section No. 1-General Index (A to Z)
Section No. 2-Index of Liquids (A to Z)

SECTION I
HYDRAULICS

CAMERON HYDRAULIC DATA
CONTENTS OF SECTION 1
Hydraulics
Page
....................................... Introduction 1-3
Liquids ........................................... 1-3
........................................ Liquid Flow 1-4
.......................................... Viscosity 1-5
Pumping .......................................... 1-6
Volume- System Head Calculations- Suction Head ...... 1-6, 1-7
Suction Lift -Total Discharge Head
- Velocity Head
...... 1-7, 1-8
Total Sys
. Head - Pump
Head-- Pressure- Spec . Gravity ... 1-9, 1-10
........................... Net Positive Suction Head 1-11
NPSH - Suction Head-Lift ; Examples: ............ 1-1 1, to 1-16
.................... NPSH - Hydro-Carbon Corrections 1-16
........................ NPSH -Reciprocating Pumps 1-17
Acceleration Head
- Reciprocating Pumps
............... 1-18
...................... Entrance Losses - Specific Speed 1-19
............................ Specific Speed - Impeller 1-19
.......................... Specific Speed - Suction 1-20, 1-21
.................................. Submergence 1-21, 1-22
............. Intake Design-Vertical Wet Pit Pumps 1-22 to 1-27
.......................... Work Performed in Pumping 1-27
.................................. Temperature Rise 1-28
............................... Characteristic Curves 1-29
....................... Affinity Laws - Stepping Curves 1-30
.................................... System Curves 1-31
...................... Parallel and Series Operation 1-32, 1-33
................................. Water Hammer , .. 1-34
.................... Reciprocating Pumps - Performance 1-35
... Recip . Pumps-Pulsation Analysis & System Piping 1-36 to 11-45
Pump Drivers- Speed Torque Curves ................ 1-45, 1-46
..................... Engine Drivers - Impeller Profiles 1-47
...................... Hydraulic Institute Charts 1-48 to 1-52
...................................... Bibliography 1-53

HYDRAULICS
Introduction I
The following outline is offered for those who have a basic under-
standing and knowledge of hydraulic and fluid dynamic principles,
but who would like
a convenient reference to various items that must
be taken into consideration in the commercial selection and applica-
tion of pumping equipment. If more detailed information is desired,
or to investigate the subject in greater depth, reference is suggested
to the many Textbooks, Technical Papers, Engineering Handbooks,
Standards and Manuals that are available, some of which are listed
in the Bibliography at the conclusion of this section. (Page
1-53)
Liquids
Hydraulics is concerned with the behavior of liquids at rest and in
motion.
A liquid has a definite volume as contrasted to a gas which
will expand or contract depending on changes in temperature and
pressure.
Liquids are said to
be "practically" incompressible. This is true for
most considerations at low pressures but at higher pressures and as
temperatures vary, there will be changes in density which must be
taken into account.
The pressure existing at any point in a liquid at rest is caused by
the atmospheric pressure exerted on the surface, plus the weight of
liquid above the point in question. Such pressure is equal in all
directions and acts perpendicularly to any surfaces in contact with
the liquid.
All liquid pressures can be visualized as being caused by a column
of liquid which due to its weight would produce a pressure equivalent
to the pressure
at the point in question. Such a column of liquid, real
or imaginary, is called the "pressure head," or the "static head" and is
usually expressed in feet of liquid.
The flow of liquids may be caused by gravity or by mechanical
means using one of the many types of pumps that may be available
depending on the characteristics of the liquid and the nature of the
service conditions.

INGERSOLLRAND CAMERON HYDRAULIC DATA
Fig. No. 1
Volute Cas~ng
Reference is made to Figure 1 illustrating diagrammatically a sim-
ple centrifugal pump; here it will be observed that in its simplest
form a centrifugal pump consists of an impeller rotating within a
casing. Liquid directed into the center of the rotating impeller is
picked up by the impeller vanes and accelerated to a high velocity by
the rotation of the impeller and discharged by centrifugal force into
the casing and out the discharge. When the liquid in the impeller is
forced away from the center of the impeller a reduced pressure is
produced and consequently more liquid flows forward. Therefore a
steady flow through the impeller is produced unless something hap-
pens to break the vacuum at the inlet or disrupt the flow to the
center of the impeller or unless the flow at the discharge is restricted
by
a pressure greater than the pressure head developed by the rotat-
ing impeller.
Reciprocating Positive Displacement Pumps, on the other hand,
do not generate head. Instead, these pumps convert rotating motion
and torque into linear motion and force, generating variable flow at
the discharge connection. Head is generated by the system's resis-
tance to flow. Hence, this pump will draw upon available power and
energy until it overcomes all flow resistances downstream. If exces-
sive flow restrictions exist, the pump can be over pressurized and the
driver may stall or the weakest link in the system can fail. Therefore,
it is imperative that a safety relief valve is installed as close to the
pump as possible.
Liquid flow
During passage through a pipe the flow of a liquid is said to be
laminar (viscous) or turbulent depending on the liquid velocity, pipe
size and liquid viscosity. For any given liquid and pipe size these

HYDRAULICS
factors can be expressed in terms of a dimensionless number called
the Reynolds number
R where:
V
= Average velocity - f t/sec
D = Average internal diameter - ft
v = Kinematic viscosity of the fluid-ft2/sec (For pure fresh water
at 60°F v = 0.000 012 16 ft2/sec)
For values of
R less than approximately 2000 the flow is laminar
(viscous)
;
i.e., particles of the liquid follow separate non-intersecting
paths with little or no eddying or turbulence.
When
R is above 4000 turbulent flow is considered to exist.
Values of
R between 2000 and 4000 are in the critical zone where
the flow is generally considered to be turbulent for the purpose of
friction loss or pressure drop calculations; this gives safe results
because the friction loss is higher for turbulent flow than for laminar
(viscous
) flow.
Viscosity
In flowing liquids the existence of internal friction or the internal
resistance to relative motion of the fluid'particles with respect to
each other must be considered; this resistance
is called viscosity.
The viscosities of most liquids vary appreciably with changes in
temperature whereas the influence of pressure change is usually neg-
ligible. The viscosities of certain liquids can change depending on the
extent to which the liquid may be agitated.
t
A liquid is said to be a "Newtonian" or "true" fluid if its viscosity
is unaffected by the kind and magnitude of motion or agitation to
which it
may be subjected as long as the temperature remains con-
stant; an example of a "Newtonian" liquid would be water or mineral
oil.
A liquid is said to be "thixotropic" if its viscosity decreases as
agitation is increased at constant temperature; examples of "thixo-
tropic" liquids would be asphalts, cellulose compounds, glues, greases,
molasses, paints and soaps.

A liquid is said to be "dilatant" if the viscosity increases as agita-
tion is increased at constant temperature; examples of "dilatant"
liquids are clay slurries and candy compounds.
Pumping
To move a liquid against gravity or to force it into a pressure
vessel, or to provide enough head, or pressure head, to overcome pipe
friction and other resistance, work must be expended. The type of
pump to be considered for any application is normally
a financial
decision. Technically, centrifugal and reciprocating pumps can both
perform nearly any service function. But large flow applications re-
quire such a large reciprocating pump that it is cost prohibitive.
Normally such applications are better handled by centrifugal pumps.
As a general rule, reciprocating pumps are best suited for low flows
and high pressures.
No matter what type of pump is used, nor what service is required
of a pump, all forms of energy imparted to the liquid both on the
suction and discharge sides in performing this service must be ac-
counted for in establishing the duty to be performed.
In centrifugal pump applications in order that all these forms of
energy may be algebraically added it is customary to express them
all in terms of head expressed in feet of liquid. In reciprocating,
rotary, or positive displacement types of pumps it is customary to
express the heads in terms of pressure (psi).
The various items that must be taken into account in establishing
the total head (based on feet of liquid) including design capacity
(volume) are discussed below.
Volume
In this discussion the standard unit of volume will be the U.S.
gallon. The rate of flow shall be expressed in gallons per minute
(gpm 1.
The specific weight of water at a temperature of 65OF shall be
taken as
62.34 lbs per cubic foot. For other temperatures proper
specific weight corrections should be made in calculating the rate of
flow particularly if the required delivery is given in pounds per hour;
for example
:
lb per hour
gpm = '500 X specific gravity

HYDRAULICS
System head calculations
The total head (H)-formerly called "total dynamic headv-for a
specific system is equal to the total discharge head (h,) minus the
total suction head (h,) or plus the total suction lift.
It is recommended that total head calculations for the suction side
be listed separately from those for the discharge side to help avoid
the possibility of overlooking a troublesome suction condition.
In this discussion the terms suction head and suction life (or the
equivalent of a lift) are discussed separately to help visualize the
suction condition that may exist.
Suction head
AL k .LA
Suction head (h,) exists when the liquid supply level is above the
pump centerline or impeller eye. The
total suction head is equal to
the static height or static submergence in feet that the liquid supply
level is above the pump centerline less all suction line losses includ-
ing entrance loss plus any pressure (a vacuum as in a condenser hotwell being a negative pressure) existing at the suction supply
source.
Caution
- even when the liquid supply level is above the pump
centerline the equivalent of a lift will exist if the total suction line
losses (and vacuum effect) exceed the positive static suction head:
This condition can cause problems particularly when handling vola-
tile or viscous liquids.
On a'n existing installation total suction head would be the reading
of a gage at the suction flange converted to feet of liquid and cor-
rected to the pump centerline elevation plus the velocity head in feet
of liquid at point of gage attachment.
Suction lift
Suction lift (h,) exists when the liquid supply level or suction
source is below the pump centerline or impeller eye. Total suction lift
5\: : -
* Note: One gallon of water weighs 8.333 pounds at 65OF; therefore 60 X 8.333
equals
500.
For practical applications the
** specific gravity of water is considered to be
equal to
1.00 at normal temperatures
(60°F to 70°F); for some purposes it is
taken as
1.00 at
39.Z°F (4OC) which is its point of maximum density; for most
applications which base is selected makes little difference. See pages 2-3 and 4-3.
** Basis specific gravity of 1.00, one psi equals 2.31 ft of water at normal
temperatures.

HYDRAULICS
System head calculations
The total head (H)-formerly called "total dynamic headv-for a
specific system is equal to the total discharge head (h,) minus the
total suction head (h,) or plus the total suction lift.
It is recommended that total head calculations for the suction side
be listed separately from those for the discharge side to help avoid
the possibility of overlooking a troublesome suction condition.
In this discussion the terms suction head and suction life (or the
equivalent of a lift) are discussed separately to help visualize the
suction condition that may exist.
Suction head
AL k .LA
Suction head (h,) exists when the liquid supply level is above the
pump centerline or impeller eye. The
total suction head is equal to
the static height or static submergence in feet that the liquid supply
level is above the pump centerline less all suction line losses includ-
ing entrance loss plus any pressure (a vacuum as in a condenser hotwell being a negative pressure) existing at the suction supply
source.
Caution
- even when the liquid supply level is above the pump
centerline the equivalent of a lift will exist if the total suction line
losses (and vacuum effect) exceed the positive static suction head:
This condition can cause problems particularly when handling vola-
tile or viscous liquids.
On a'n existing installation total suction head would be the reading
of a gage at the suction flange converted to feet of liquid and cor-
rected to the pump centerline elevation plus the velocity head in feet
of liquid at point of gage attachment.
Suction lift
Suction lift (h,) exists when the liquid supply level or suction
source is below the pump centerline or impeller eye. Total suction lift
5\: : -
* Note: One gallon of water weighs 8.333 pounds at 65OF; therefore 60 X 8.333
equals
500.
For practical applications the
** specific gravity of water is considered to be
equal to
1.00 at normal temperatures
(60°F to 70°F); for some purposes it is
taken as
1.00 at
39.Z°F (4OC) which is its point of maximum density; for most
applications which base is selected makes little difference. See pages 2-3 and 4-3.
** Basis specific gravity of 1.00, one psi equals 2.31 ft of water at normal
temperatures.

INGERSOLL-RAND CAMERON HYDRAULIC DATA
is equal to the static lift in feet plus all friction losses in the suction
line including entrance loss.
When the liquid supply level or suction source is above the pump
centerline or impeller eye and under a vacuum, as in a condenser
hotwell, the equivalent of a suction lift will exist which will be equal
to the vacuum effect in feet less the net submergence.
On an existing installation the
total suction lift is the reading of a
mercury column or vacuum gage at the suction flange converted to
feet of liquid and corrected to the pump centerline elevation minus
the velocity head in feet of liquid at point of gage attachment.
Total discharge head
(h,)-is the sum of: (1) Static discharge head.
(2) All piping and friction losses on discharge side including straight
runs of pipe, losses at all valves, fittings, strainers, control valves,
etc.
(3) Pressure in discharge chamber (if a closed vessel). (4) Losses
at sudden enlargements (as in a condenser water box).
(5) Exit loss
at liquid discharge (usually assumed to be equal to one velocity head
at discharge velocity)
(6) Plus any loss factors that experience .indi-
cates may be desirable.
On an existing installation total discharge head would be the read-
ing of a pressure gage at the discharge flange converted to feet of
liquid and corrected to the pump centerline plus the velocity head (in
feet of liquid) at the point of gage attachment.
Velocity head
(hv)-in a pumping system is an energy component
that represents the kinetic or "velocity" energy in a moving liquid
at the point being considered in the system.
It is equivalent to the
vertical distance the mass of liquid would have to fall (in
a perfect
vacuum) to acquire the velocity
V and is expressed as:
where:
h, = velocity head in feet of liquid
V = velocity of liquid -ft/sec
d = inside diameter of pipe in inches
g = gravitational constant - 32.174 ft/sec2
gpm = gallons (U.S.) per minute
bph = barrels (42 gallons - U.S. ) per hour

HYDRAULICS
- -
The velocity head energy component is used in system head calcu-
lations as a basis for establishing entrance losses, losses in valves
and fittings, losses at other sudden enlargements and exit losses by
applying the appropriate resistance coefficient
K to the
VV2g term
(see page 3-110).
In system head calculations for high head pumps the velocity head
will be but a small percentage of the total head and is not significant.
However, in low head pumps it can be a substantial percentage and
must be considered.
When total heads on an existing installation are being determined
from gage readings then the velocity head values as calculated must
be included; i.e. the total suction lift will be the reading of a vacuum
gage or mercury column at the suction flange, corrected to the pump
centerline elevation minus the velocity head at point of gage attach-
ment. The
total suction head and total discharge head will be the
readings of gages at the flanges corrected to the pump centerline
elevation plus the velocity heads at the points of gage attachments.
Total system head
(H)-formerly total dynamic head-is the total
discharge head (h,) minus the total suction head (h,) if positive or
plus if a suction lift:
H
= h, - h, (head ) or H = h, + h, (lift). (Note:
For typical suction head calculation, see examples 1, 2, 3, 4 and 5
under NPSH pages 1-13 to 1-15. For total head calculation see example
on pages 3-9 and 3-10.
Pump head
- Pressure - Specific gravity
In a centrifugal pump the head developed (in feet) is dependent on
the velocity of the liquid as it enters the impeller eye and as it leaves
the impeller periphery and therefore is independent of the specific
gravity of the liquid. The pressure head developed (in psi) will be
directly proportional to the specific gravity.
Head and Pressure are interchangeable terms provided that they
are expressed in their correct units. In English Units to convert from
one to the other use:
Liquid Head in feet
=
psi x 2.31
SP gr
Liquid Head in feet =
psi x 144
W

INGERSOLLflAND CAMERON HYDRAULIC DATA
Pressure in psi =
Head in feet x sp gr
2.31
Pressure in psi =
Head in feet x W
144
Where W=*Specific weight in pounds per cubic foot of liquid
being pumped under pumping conditions; For Water
W
= 62.32
lb per cu ft at 68 degrees F (20°C).
A column of water 2.31 ft high will exert a pressure of one (I) psi
based on water at approximately
65 F.
*
Figures 2 and 3 are included to help visualize the head-pressure
relationships of centrifugal pumps when handling liquids of varying
specific gravities.
Fig.
2 illustrates three identical pumps, each pump designed to
develop
115.5 ft. of head ; when pumping water with a specific gravity
of
1.0 (at
6B°F) the pressure head will be 50 psi ( 115.5 ft divided by
2.31); when pumping liquids of other gravities, the head (in feet) will
be the same, but the pressure head (psi) will
be proportional to the
specific gravities as shown; to avoid errors, it is advisable to check
one's calculations by using the above formulas.
Fig.
2. Pressure-head relationship of identical pumps handling liquids of differ-
ing specific gravities.
*For other water temperatures see tables on pages 4-4 and
4-5.

HY DRAULKS
Fig. 3 Pressure-head relationship of pumps delivering same pressure handling
liquids
of differing specific gravity.
Figure 3 illustrates three pumps, each designed to develop the
same pressure head (in psi); consequently the head (in feet of liquid)
will be inversely proportional to the specific gravity as shown.
In these illustrations friction losses, etc., have been disregarded.
Net Positive Suction Head
I
The Net Positive Suction Head (NPSH) is the total suction head in
feet
of liquid (absolute at the pump centerline or impeller eye) less
the absolute vapor pressure (in feet) of the liquid being pumped.
It must always have a positive value and can be calculated by the
following equations: To help in visualizing the conditions that exist,
two
(2) expressions will be used; the first expression is basis a suc-
tion lift-liquid supply level is below the pump centerline or impeller
eye; the
second expression is basis a positive suction, (flooded), where
the liquid supply level is above the pump centerline or impeller eye.
For Suction Lift:
NPSH
= ha - h,,, - h,, - hf,
For Positive (Flooded) Suction:
NPSH = ha - h,,, + h,, - hf,

where:
ha = absolute pressure (in feet of liquid) on the surface of the
liquid supply level (this will be barometric pressure if suc-
tion is from an open tank or sump; or the absolute pressure
existing in a closed tank such as a condenser hotwell or
deareator ).
h,,, = The head in feet corresponding to the vapor pressure of the
liquid at the temperature being pumped.
hSt = Static height in feet that the liquid supply level is above or
below the pump centerline or impeller eye.
h,, = All suction line losses (in feet) including entrance losses and
friction losses through pipe, valves and fittings, etc.
Two values of net positive suction head must be considered; i.e.
Net Positive Suction Head Required (NPSHR) and Net Positive
Suction Head Available (NPSHA).
The NPSHR is determined by the pump manufacturer and will
depend on many factors including type of impeller inlet, impeller
design, pump flow, rotational speed, nature of liquid, etc. NPSHR is
usually plotted on the characteristic pump performance curve sup-
plied by the pump manufacturer. The Net Positive Suction Head
Available (NPSHA) depends on the system layout and must always
be equal to or greater than the NPSHR.
The vapor pressure of the liquid at the pumping temperature must
always be known to calculate the NPSHA. On an existing installa-
tion the NPSH available would be the reading of a gage at the
suction flange converted to feet of liquid absolute and corrected to
the pump centerline elevation less the vapor pressure of the liquid in
feet absolute plus the velocity head in feet of liquid at point of gage
attachment.
The
following examples show the importance and influence of va-
por pressure. In all cases, for simplicity, the same capacity will be
used; also the following suction line losses will be assumed in all
cases:
Friction loss through suction pipe and fittings
2.51 ft
*Entrance loss (assume equal to one half velocity head) 0.41
Total losses 2.92 ft
'Note:
For more exact entrance losses, refer to pages 3-116 thru 3-118.

HYDRAULICS
IOf
Fig. 4. (Example No 1)
Example No 1 ( Fig 4 )
Open system, source below pump; 68OF water at sea level. Atmo-
spheric pressures 14.696 psia, 33.96
ft abs. Vapor pressure of liquid
0.339 psia
= 0.783 ft abs.
NPSHA = 33.96 - 0.783 - 10.00 - 2.92 = 20.26 ft
Suction Lift = 10.00 + 2.92 = 12.92 ft-this is to be added to dis-
charge head to obtain total head.
Note: No pump can actually lift water on the suction side. In this
case, water is forced in
by an excess of atmospheric pressure over the
vapor pressure less 12.92
ft net static lift.
Example No 2 (Fig 5)
Open system, source above pump;
68OF water at sea level.
NPSHA = 33.96 - 0.783 + 10.00 - 2.92 = 40.26 ft.
Atmospheric
Pressure
- -- -
- -- - - --
68OF ~-~EFT'
--
- -
- - .- - -
Water +-
loft.
Fig. 5 (Example 2)

INGERSOLL-RAND CAMERON HYDRAULIC DATA
Suction Head- 10.00 - 2.92 = 7.08 ft-this is to be subtracted from
discharge head to obtain total head.
Atmospheric
Pressure
2 1 2 0 F --:-.----
Water 5: 10 ft.
Fig. 6 (Example 3)
Example No. 3 (Fig. 6)
Open system, source above pump; 212OF water at sea level; vapor
pressure same as atmospheric since liquid at boiling point.
NPSHA
= 33.96 - 33.96 + 10.00 - 2.92 = 7.08 ft. In this case, at-
mospheric pressure does not add to
NPSHA since it is required to
keep the water in liquid phase.
Suction Head
= 10.00 - 2.92 = 7.08 ft-this is to be subtracted from
discharge head to obtain total head.
Note: In this example it was assumed that pipe friction losses for 21z°F water were the same as for 68OF water whereas actually they
would be somewhat less, as will also be the case in Example
4.
7
Water
"' I,,,.
Fig. 7 (Example 4)

HYDRAULICS
--
Example No 4 (Fig 7 )
Closed system (under pressure as a feed water deareator) source
above pump.
350°F water V.P. = 134.60 psia = 348.76 ft abs (at 350°F sp gr =
NPSHA = 348.76 - 348.76 + 10.00 - 2.92 = 7.08 ft.
Suction
Head- (Figure basis gage pressures;
i.e., 119.91 psig = 310.69
ft) = 310.69 + 10.00 - 2.92 = 317.77 ft-This is to be subtracted
from the discharge head to obtain total system head. It is important
to note that while the suction head is 317.77
ft (122.64 psig) the
NPSHA is still only 7.08 ft.
Example No 5 (Fig 8)-Closed system (under vacuum as a condenser
hotwell) liquid source above pump. Absolute pressure (ha) = 1.50"
Hg X 1.139 = 1.71 ft. Water at saturation point 91.7Z°F; therefore
vapor pressure (h,,) = 1.50" Hg X 1.139 = 1.71 ft.
NPSHA = 1.71 - 1.71 + 10.00 - 2.92 = 7.08ft.
Suction Condition-In this example the suction condition (head or
lift) for the pump can best be visualized
by the calculations listed
below where it can be seen that we have a suction lift equal to the
vacuum effect at the suction source less the net static submergence.
I CONDENSER I
Abs = 1-50" Hg
Vacuum = 28-42" Hg
[--'It Condensate
d
Fin. 8 (Example 5)

INGERSOLL-AAND CAMERON HYDRAULIC DATA
28.42"Hg Vacuum = 28.42 x 1.139 = 32.37 ft
Static submergence 10.00 ft
Friction and entrance loss 2.92 ft
Net static submergence = 7.08 ft 7.08 ft
Equivalent suction lift = vacuum
effect less net submergence
-
- 25.29 ft
In this example it is noted that the NPSHA is equal to the static
suction head less the friction and entrance losses. Also the equivalent
suction lift must be added to the total discharge head to obtain the
total system head.
In the foregoing examples standard sea level atmospheric condi-
tions were assumed; for other locations where altitude is a factor
proper corrections must be made. These examples
(3, 4 and 5) illus-
trate that if the liquid is in equilibrium (vapor pressure corresponds
to saturation temperature) then the NPSH is equal to the difference
in elevation between the liquid supply level and the pump centerline
elevation (or impeller eye) less the sum of the entrance loss and the
friction losses in the suction line.
NPSH reductions- hydrocarbon liquids and hot water
The NPSH requirements of centrifugal pumps are normally deter-
mined on the basis of handling water at or near normal room temper-
atures. However, field experience and laboratory tests have confirmed
that pumps handling certain gas free hydrocarbon fluids and water
at elevated temperatures will operate satisfactorily with harmless
cavitation and less NPSH available than would be required for cold
water.
The figure on page
1-52 shows NPSH reductions that may be
considered for hot water
&d certain gas free pure hydrocarbon liquids.
The use and application of this chart is subject to certain limita-
tions some of which are summarized below:
1. The NPSH reductions shown are based on laboratory test data
at steady state suction conditions and on the gas free pure
hydrocarbon liquids shown; its application to other liquids must
be considered experimental and is not recommended.
2. No NPSH reduction should exceed 50% of the NPSH required
for cold water or ten feet whichever is smaller.

HYDRAULICS
3. In the absence of test data demonstrating NPSH reductions
greater than ten feet the chart has been limited to that extent
and extrapolation beyond that point is not recommended.
4. Vapor pressure for the liquid should be determined by the bub-
ble point method-do not use the Reid vapor pressure.
5. Do not use the chart for liquids having entrained air or other
non-condensible gases which may be released as the absolute
pressure is lowered at the entrance to the impeller, in which case
additional NPSH may be required for satisfactory operation.
6. In the use of the chart for high temperature liquids, particularly
with water, due consideration must be given to the susceptibil-
ity of the suction system to transient changes in temperature
and absolute pressure which might require additional NPSH to
provide a margin of safety, far exceeding the reduction other-
wise permitted for steady state operation.
Subject to the above limitations, which should be reviewed with the
Manufacturer, the procedure in using the chart is as follows: As-
sume a pump requires
16 feet NPSH on cold water at the design
capacity is to handle pure propane at
55 Deg F which has a vapor
pressure of approximately
100 psia; the chart shows a reduction of
9.5 feet which is greater than one half the cold water NPSHR. The
corrected value of the NPSHR is one half the cold water NPSHR or
8
feet. Assume this same pump has another application to handle
propane at
14 Deg F where its vapor pressure is 50 psia. In this case
the chart shows a reduction of
6 feet which is less than one half of the
cold water NPSH. The corrected value of NPSH is therefore
16 feet
less
6 feet or 10 feet. Note in reading the chart follow the sloping lines
from left to right.
For a more detailed discussion on the use of this chart and its
limitations reference is suggested to the Hydraulic Institute Standards.
NPSH
- Reciprocating pumps
The foregoing discussion on NPSH and accompanying calcula-
tions was primarily for the benefit of centrifugal pump selections and
applications.
NPSH available for a reciprocating pump application is calculated
in the same manner as for a centrifugal pump, except in the NPSH
required for a reciprocating pump some additional allowance must be
made for the reciprocating action of the pump; this
additional
re-

INGERSOLL-RAND CAMERON HYDRAULIC DATA
- --
quirement is termed "acceleration head." This is the head required to
accelerate the liquid column on each suction stroke so that there will
be no separation of this column in the pump or suction line.
If this minimum condition
is not met the pump will experience a
fluid knock caused when the liquid column, which has a vapor space
between it and the plunger, overtakes the receding plunger. This
knock occurs approximately two-thirds of the way through the suc-
tion stroke.
If sufficient acceleration is provided for the liquid to
completely follow the motion of the receding face of the plunger, this
knock will disappear.
If there is insufficient head to meet minimum acceleration require-
ments of
NPSH, the pump will experience cavitation resulting in loss
of volumetric efficiency; also, serious damage can occur to the plung-
ers, pistons, valves and packing due to the forces released in collaps-
ing the gas or vapor bubbles.
Acceleration head -reciprocating pumps
For
indepth information on NPSH and Acceleration Head, see the
section entitled "Pulsation Analysis and System Piping."
Fig. 9

HYDRAULICS
Entrance losses
Special mention is made of entrance loss considerations because
failure to appreciate and provide for this problem is one of the major
causes of faulty pump performance, particularly when handling liq-
uids that are in equilibrium such as light hydrocarbons from a vac-
uum tower or condensate from a condenser hotwell.
Reference to Figure 9 illustrates that when taking suction from the
bottom of a tower, or a side outlet from a condenser hotwell, suffi-
cient static height
(h) must be provided to account for the entrance
loss and velocity head at point
"A" plus any additional submergence
that may be required to prevent vortices from entering the suction
line. The submergence required to control vortices may be reduced by
using suitable baffles or other anti-swirl devices.
Specific speed
In the intelligent consideration of centrifugal pumps it is helpful to
have an understanding of specific speed to determine if the pump
design being proposed is within certain established limits for the
service conditions under which it will operate.
In Specific Speed terminology there are two considerations:
( 1 )
First-Impeller specific speed and (2) Secondly-suction specific
speed
; Impeller specific speed will be discussed first.
Impeller specific speed (N,)
This is an index of hydraulic design; it is defined as the speed at
which an impeller, geometrically similar to the one under consider-
ation, would run if it were reduced in size to deliver one gpm at one
foot head.
Mathematically it is expressed as:
where:
rpm
= Pump speed.
gpm = Design capacity at best efficiency point.
H = Total head per stage in feet at best efficiency point.

INGERSOLL-RAND CAMERON HYDRAULIC DATA
Impeller specific speed is an index as to the type of impeller when
the factors in the above formula correspond to its performance at
optimum (or best) efficiency point. It is a useful tool for the Hydrau-
lic Designer in the designing of impellers to meet varying conditions
of head, capacity (and shape of curve), suction conditions and speed.
Impellers for high heads and low net positive suction head required
usually have low specific speeds, whereas, impellers for low heads
and high NPSHR usually have high specific speeds. Depending
on
the type of impeller specific speeds can range between 400 to 20,000
for commercial designs. According to specific speed values impellers
and pumps can be classified roughly as follows:
Below 4200-Centrifugal or Radial type;
Between 4200 and 9000-Mixed Flow;
Above 900-Axial Flow.
The charts and illustrations included herewith-pages
1-47 to 1-48
show typical impeller types for various specific speed ranges; also
the variations in head-capacity performance characteristics for var-
ious specific speed are illustrated.
Specific speed is also a very valuable criterion in determining the
permissible safe maximum suction lift or the minimum net positive
suction head required for various conditions of capacity, head and
speed.
The Hydraulic Institute has established suggested specific speed
limitations with respect to suction conditions for various types of
pumps. These suggested limitations are expressed graphically on
charts
,(pages 1-49 to 1-52) reproduced herein with permission of the
Hydraulic Institute. For a more detailed discussion of these charts
and their application reference should be made to the Hydraulic
Institute Standards.
Suction specific speed (S)
Suction specific speed (S) like Impeller specific speed (N,) is a
parameter, or index of hydraulic design except here it is essentially
an index descriptive of the suction capabilities and characteristics of
a given first stage impeller. It is expressed as:
S =
rpm Vgpm
(NPSHR)3/4

CAMERON HYDRAULIC DATA
submergence is a term used to relate liquid level to the setting of a
vertical immersed wet pit type pump with a free air surface at the
liquid supply level.
In the case of a conventional horizontal pump operating with a
suction lift, or a large dry pit type pump, with a flooded suction,
some submergence or liquid level, in addition to the NPSHR, may be
necessary to prevent vortex formation on the liquid supply surface
and thus preclude or retard the possibility of air being drawn in the
pump suction intake. The amount of submergence will depend to
some extent on the design of the suction intake;
i.e. a bell or cone
shaped entrance should require less than
a straight pipe intake.
Intake design
In addition to providing sufficient submergence for vertical wet pit
immersed pumps it is imperative that the sump and intake structure
be of proper proportions-and that pump arrangements be such as
to preclude uneven velocity distributions in the approach to the pump
or around the suction bell.
Uneven velocity distributions particularly when accompanied by
insufficient submergence can result in the formation of vortices which
will introduce air in the pump suction causing a reduction in capac-
ity, unbalance and rough operation resulting in rapid deterioration of
equipment and costly outages. Also, underwater vortices can form,
causing uneven flow into the impeller resulting in rough operation.
Providing additional submergence will not compensate for an im-
properly designed intake and therefore careful consideration must be
given to pump arrangement and location of intake and sump
dimensions.
WARNING
Intake design, pump arrangements, location and setting are, among other
things, the complete responsibility of the user, and improper use of the following
data could result in severe damage to property and/or injury to person. Accord-
ingly, Ingersoll-Rand Company does not assume any liability for any losses or
damages to property or injury to persons that may result from the utilization of
the following suggested design data.
Such design data do not cover all technical considerations for proper opera-
tion. They have been developed as a result of extensive model testing and field
experience over many years, and are offered herein as a general guide for prelimi-
nary layout work.

HYDRAULICS
Vertical wet pit pumps
Referring to Figure 10 and using the pump suction bell diameter*
(D) as a reference:
1. Back wall distance to centerline of pump is 0.75D.
2. Side wall distance to centerline of pump is 1.00D.
3. Bottom clearance (approximate ) is 0.30D.
4. Location of the intake screen can vary depending on the partic-
ular design, but usually should be in the range of
3D to 4D
minimum from inside face of screen to centerline of pump.
5. Intake tunnel velocity should be less than 2 to 3
ft/sec.
6. No restrictions or sharp turns should occur less than 6D or 3
times the channel width in front of the pump, whichever is
greater.
7. Provide water depth (submergence) over the pump suction bell
in accordance with the "Capacity vs. Submergence" chart
- Fig.
No.
14.
*Check Manufacturer for dimensions.
Tra
Fig. 10 Standard Vertical Wet Pit Pump Fig. 11 Turning Vane Assembly
Multiple pump arrangements
The preferred arrangement is to have the pump suction bells lo-
cated in individual pump bays by means of separator walls or
parti-

tions so one pump will not interfere hydraulically with the operation
of another. However, if this is not practical, as may be the case with
small pumps, a number of units can be installed in a single large
sump provided that:
1. They are located in a line running perpendicular to the ap-
proaching flow.
2. Minimum spacing of
2D is provided between pump centerlines.
3. Back wall clearance, bottom clearance and submergence same as
for single pumps.
4. All pumps are running.
5.
The up-stream conditions should provide uniform flow to the
suction bells (avoid turns).
6. Each pump capacity is less than 15,000 gpm.
When individual pump bays are provided use dimensions for a
single pump in accordance with Fig. 10, page 1-23.
nrning vane intake assemblies
Structural costs can sometimes be reduced by employing a turning
vane assembly below the suction bell entrance to achieve a suitable
flow pattern as illustrated in Fig.
11. This arrangement normally
requires a deeper sump but the width
(W) may be reduced to 1.50D
or less resulting in reduced screen and construction costs.
The following guidelines are offered with a turning vane assembly:
1. Dimensions A and A' should be equal.
2. Pump bell should be as close as possible to the level of the
support beam bottom.
3. Dimension B should be as short as clearance permits.
4. Dimension W should be equal to the bell diameter plus the
necessary clearance to allow for variations in structural and
casting dimensions.
5. In order to prevent excessive velocity at pump entrance, the
suction bell should be
1D or greater above the sump bottom
depending on pump size.
6. The turning vanes should slightly accelerate the flow to the
pump
(i.e. the inlet area of each passage should be greater than
the corresponding exit
).
7. Intake tunnel velocity should be limited to 1 to 2
ft/sec maximum.
8. Submergence "S" should be per submergence vs capacity chart
Fig. 14, page 1-26.

HYDRAULICS
Side intake - dry pit pumps
The following guidelines are offered for typical dry pit type pump
arrangements as illustrated in Fig.
12 for a horizontal pump and Fig.
13 for a vertical centrifugal or scroll case type of pump. In these
illustrations dimension
"D" is the diameter, or effective diameter, of
the suction intake fitting.
1. Submergence "S" should be approximately one foot for each foot
per second at
"D." Velocity at "D" should be less than 6 ft/sec.
2. Radius "R" should be as large as possible within structure
limitations.
3. Submergence can be reduced to half the values indicated in (1)
with either a roof or vertical baffle. A vertical baffle should have
ample depth to be effective and centrally located. At location
D
alternate shapes can be used to further reduce depth;
i.e. rectan-
gular or elliptical areas. Effective
"D" then becomes the average
diameter of the two axes. Always check
NPSHR.
SEPARATOR WALL
FOR MULTIPLE PUMP
6D -1 INSTALLATIONS
Fig. 12
SEPARATOR WALL
Fig. 13
1-25

INGERSOLL43AND CAMERON HYDRAULIC DATA
4. Suction bays should be symmetrical with no turn in the ap-
proach. With two or more pumps, separator walls extending for
a length of
6D and a height
"S" should be provided between the
intakes of each pump.
5. Minimum water level must always be above the impeller eye.
When the level is below the top of the volute priming is preferable.
6. Stop logs in the bay are preferred to a suction valve. If a butter-
fly valve is used, stem should be horizontal for horizontal double
suction pumps and fully open when running.
7. Intake screens should be placed a minimum of 6D from the
pump inlet
(D
= diameter of suction intake fitting).
The above suggestions for alternative pump arrangements are of-
fered as general guidelines and should not be considered as optimum.
Analysis and design of intake structures and arrangement of pumps
should only be made on the basis of experience together with model
and field testing. If new or questionable arrangements are being
proposed, model tests should be conducted.
In most cases it is desir-
able to have the Manufacturer's comments before finalizing a design.
CAPACITY ( X
1000) GPM
Fig. 14 Capacity Vs Submergence over suction bell for Vertical Wet Pit Pumps.

HYDRAULICS
Work performed in pumping - horsepower
The work performed in pumping or moving a liquid depends on the
weight of the liquid being handled in a given time against the total
head (in feet of liquid) or differential pressure (in psi) being developed.
Since one horsepower equals 33000 ft lb per minute the useful or
theoretical horsepower (usually called the hydraulic horsepower
- hyd
hp
) will equal :
Hyd hp
=
lb of liquid per minute X H (in feet)
33,000
The actual or brake horsepower (bhp) of a pump will be greater
than the hyd hp by the amount of losses incurred within the pump
through friction, leakage, etc. The pump efficiency will therefore be
equal to:
Pump efficiency = hyd hp
bhp
hyd hp
Brake hp = pump efficiency
Since the above expressions apply to both centrifugal and recipro-
cating types of pumps, horsepower calculations can be simplified if
the weight of liquid being handled (capacity) is expressed in terms of
gpm and/or bph-and the differential pressure
(H ) in terms of head
in feet of liquid for centrifugal pumps, and psi (pounds per sq in.
) for
receiprocating pumps as follows
:
Brake hp
= gpm
(in feet)
sp gr (common centrifugal terms)
3960 x efficiency
- bph
(in feet) xsp gr (common centrifugal terms )
5657 x efficiency
- - gpm x psi
(common reciprocating terms)
1714
x eff
-
- bph psi (common reciprocating terms)
2450 x eff
Note: to obtain the hyd hp from the above expressions use a pump efficiency of
100%.

INGERSOLLRAND CAMERON HYDRAULIC DATA
In the above expressions:
gpm = U S gallons per minute delivered (one gallon = 8.33 lb at 68
Deg F. )
bph = barrels (42 gallons) per hour - delivered
H = total head in feet of liquid-differential
psi =lbs per sq in - differential
Electrical hp input to motor =
Pump bhp
motor efficiency
KW input to motor =
pump bhp X 0.7457
mot or efficiency
If a variable speed device is used between pump and driver then
overall efficiency will equal Pump eff
X Motor eff X eff of variable
speed drive.
From the above formulas it should be noted that it is important to
correct the (gpm) and
(H) for the temperature being pumped; it
should also be noted that more power is required to pump a given
weight of liquid hot against a given pressure than will be required to
pump the same weight of liquid cold.
When handling some liquids and for water at very high pressures,
the compressibility of the liquid may need to be considered as its
density may change within the pump.
Temperature rise - Minimum Flow :
Except for a small amount of power lost in the pump bearings and
stuffing boxes the difference between the brake horsepower and hy-
draulic horsepower developed represents the power losses within the
pump itself, most of which are transferred to the liquid passing
through the pump causing a temperature rise in the liquid.
It is sometimes desirable to have a curve showing temperature rise
versus pump capacity -which can be calculated from this formula:
The allowable minimum flow through a Centrifugal Pump may
depend to some extent on the allowable temperature rise permitted.
Since items other than thermal (such as hydraulic radial thrust) may
have to be considered, the manufacturer should be consulted on the
safe minimum flow permitted.
where
TR
= Temperature rise in Deg F
H = Total head in feet
E = Efficiency expressed as a decimal

HYDRAULICS
Characteristic curves
Since the head (in feet of liquid) developed by a centrifugal pump is
independent of the specific gravity, water at normal temperatures
with a specific gravity of
1.000 is the liquid almost universally used in
establishing centrifugal pump performance characteristics. If the head
for a specific application is determined in feet, then the desired head
and capacity can be read without correction as long as the viscosity
of the liquid is similar to that of water. The horsepower curve, which
is basis specific gravity of
1.0, can be used for liquids of other gravity
(if viscosity is similar to water) by multiplying the horsepower for
water by the specific gravity of the liquid being handled.
The hydraulic characteristics of centrifugal pumps usually permit
considerable latitude in the range of operating conditions. Ideally,
the design point and operating point should be maintained close to
the best efficiency point (BEP); however, substantial variations in
flow either to the right (increasing) or to the left (decreasing) of the
BEP are usually permissible. However, operating back on the curve
at reduced flow, or at excessive run out may result in radial thrust, or
cavitation causing damage and therefore the manufacturer should be
consulted when such conditions may exist.
Since a centrifugal pump is a machine which imparts velocity and
converts velocity to pressure, the flow and head developed may be
changed by varying the pump speed or changing the impeller diame-
ter. These modifications will change the tip speed or velocity of the
impeller vanes and therefore the velocity at which the liquid leaves
the impeller. Note that changing impeller diameters may result in a
loss in efficiency as the diameter is reduced. For reasonable speed
variations the efficiency should not change appreciably.
For pumps in the
centrifugal range of specific speeds (radial flow
impellers) the relationships between capacity, head and horsepower
with changes in impeller diameter and speed are approximately as
follows
:
For small variations in impeller diameter (constant speed)
BHP,
Dl3

INGERSOLLRAND CAMERON HYDRAULIC DATA
For variations in speed: (constant impeller diameter)
BHP, = S13
- -
BHP, S,3
where
D= Impeller diameters in inches
H=Heads in feet
QzCapacities in gpm
S =Speeds in rpm
BHP = Brake horsepowers
Note: Subscript 1 is for original design conditions.
The above relationships are known as the Affinity Laws and are
offered in this text with the understanding their application will be
limited to centrifugal (radical flow) type pumps only. When other
types such as axial, mixed flow or propeller type are involved consult
the manufacturer for instructions.
These laws can be summarized as follows:
With variable speeds the capacity varies directly and the head
varies as the square of the speed; efficiencies will not change for
reasonable variations in speed. The break horsepower (BHP) varies
as the cube of the speeds.
With variable impeller diameters the capacity varies directly and
the head varies as the square of the impeller diameter-efficiency
will be reduced as the diameter is reduced-check manufacturer for
limitations. The brake horsepower (BHP) varies as the cube of impel-
ler diameters. Note: These relations hold only for small changes in
impeller diameter.
Stepping curves-Using the above relationships the head-capacity
(HI-Q,) curves can be stepped up or down within reasonable limits
making the necessary efficiency corrections for changes in impeller
diameter. Solving for
S, and
D, to meet a specified H,-Q, is a cut and
try operation if exact values are desired; in all cases the manufac-
turer should be consulted before making final modifications to the
original design conditions.
I
HYDRAULICS
System curves
A centrifugal pump always operates at the intersection of its head-
capacity curve and the system curve which shows the head required
to make the liquid flow through the system of piping, valves, etc. The
head in a typical system is made up of three components:
1. Static head
2. Pressure head
3. All losses; i.e. friction, entrance and exit losses
To illustrate, take a typical system shown in Fig.
15 where the
total static head is
70 ft, the pressure head is 60 ft (2.31 X 26) and the
friction head through all pipe, valves, fittings, entrance and exit
losses in 18.9
ft at the design flow of 1500 gpm, total system head at
design flow is
70 + 60 + 18.9
= 148.9 ft.
In drawing the system curve (see Fig. 16, page 1-32) the static
head will not change with flow so it is represented by the line AB, the
pressure head
will not change with flow so it is added to the static
head and shown by the horizontal
line'^^. The friction head through
a piping system, however, varies approximately as the square of
the flow so the friction at
500 gpm will be X 18.9 = 2.1 ft
(Point E); likewise the friction at
1000 gpm will be 8.4 ft (Point F),
PRESSURE HEAD
26 PSlG
THROTTLE VALVE
J - Hf =FRICTION HEAD
u
Fig. 15

INGERSOLL-RAND CAMERON HYDRAULIC DATA
---
Water hammer
In fluid flow, water hammer can cause rupture and serious damage
to the entire piping system unless essential precautions are taken; in
the case of condenser circulating water systems it can cause rupture
and serious damage to the tube sheets and water boxes.
It is the result of a rapid increase in pressure which occurs in
a
closed piping system when the liquid velocity is suddenly changed by
sudden starting, stopping or change in speed of a pump; or sudden
opening or closing of a valve which may change the liquid velocity in
the system.
This increase, or dynamic change in pressure, is the result of the
kinetic energy of the moving mass of liquid being transformed into
pressure energy, resulting in an excessive pressure rise which can
cause damage on either the suction or discharge side of the pump.
Water hammer may be controlled by regulating valve closure time,
surge chambers, relief valves or other means.
Water hammer calculations are quite involved, and it is recom-
mended that specialized engineering services be employed in cases
where it may be a problem. For information on this subject the
following further references are suggested:
Symposium on Water Hammer
American Society of Mechanical Engineers
1933 (Reprinted 1949)
Symposium on Water
Hammer-Tkansactions
A.S.M.E. 59:651(1937)
Water Hammer Control- S. L. Kerr
Journal of American Water Works Assoc.
43:985 (December 1951)
Practical Aspects of Water Hammer-S.
L. Kerr
Journal of American Water Works Assoc.
40:599 (June 1948)
HYDRAULICS
Elements of Graphical Solution of Water Hammer
Problems in Centrifugal Pump Systems-A.
J. Stepanoff 'Ikansactions of A.S.M.E. 71:515 (1949)
Water Hammer Analysis- J. Parmakian
Prentice Hall Publication, New York (1955)
Reciprocating Pumps - Performance
The pressure on a reciprocating pump is determined by the maxi-
mum allowable plunger load and the area of the plunger:
M~~. psig = Max. Plunger Load
Plunger area
The flow rate is determined
by the area of the plunger, stroke
length, the number of plungers, the pump speed, and Volumetric
Efficiency:
GPM
= Plunger Area x Stroke Length x Number of Plungers
x RPM x Volumetric Efficiency
For
a given pump size with stroke length, number of plungers,
maximum RPM and maximum plunger load are constant; the maxi-
mum
BHP is fixed.
If the suction pressure is less than
10% of discharge pressure, the
horsepower required is equal to the hydraulic horsepower divided by
mechanical efficiency (M.E.
), as shown previously in the section titled
Work Performed in Pumping Horsepower.
When dealing with high suction pressure conditions (greater than
10% of discharge pressure), non-reversal of power end loading exists.
Therefore, special pump selections are necessary. Generally the plun-
ger rating is decreased reducing available rod load. In addition, the
required input horsepower becomes the sum of the hydraulic and
frictional horsepowers or:
BHP
= H.P. + F.H.P.
HYD HP = ( GPM ) ( Disch. Press.-Suction Press. )
1714

INGERSOLLffAND CAMERON HYDRAULIC DATA HYDRAULICS
F.H.P. =
( ,GPM). Press.)
(-1) (I+ :Ek::,"IS >1
NOTE: Pump mechanical efficiency decreases with a decrease in
rod load. Consult manufacturer for values.
Reciprocating Pumps
Pulsation Analysis and System Piping
hciprocating pumps produce flow variations which are converted
into fluid pressure pulsations by the piping system. Dependent upon
the design of the piping system this conversion can result in exces-
sive pressure pulsations leading to piping vibration and fatigue fail-
ures, loss of fluid flow due to cavitation, or damage to pump compo-
nents. However, the majority of these problems can be avoided if the
piping system design incorporates pulsation analysis or evaluates
the acoustic characteristics of the piping system.
Typically, reciprocating pump systems are designed and built fol-
lowing standard industry practices. However, the interaction between
the flow variation of the pump and the acoustic natural frequency of
the piping is not addressed. Past experience has indicated excessive
pulsation problems could occur if this interaction is ignored.
As illustrated in Figure
1 flow variations can range from 23% for a
triplex to only 2.2% for a nonuplex unit, three
(3) to nine (9) plung-
ers, respectively. Subsequently, these flow variations are converted
into pressure pulsations by the piping system because the system
pressure is generated by flow restrictions within the piping (i.e. fric-
tion effects, velocity head, flow through valves or orifice, etc.). There-
fore,
a varying flow will result in pressure variations or pulsations.
However, whereas the flow variation for the pump can be easily
predicted, the resultant pressure variations or pulsations are more
difficult to determine due to the acoustic characteristics of the piping
system.
FIGURE 1
FLOW VARIATION
DIAGRAMS FOR VARIOUS MULTIPLEX RECIPROCATING PUMPS SHOW
VARIATION
AT ALL
POINTS FOR ONE REVOLUTION
DUPLEX DOUBLE ACTING
VARIATION ABOVE MEAN - 24 1%
u
VARIATION BELOW MEAN - 21.50/b
TOTALVARIATION-456%W I I 11 1 I N/I I I .\hY i I I
TRIPLEX
VARIATION ABOVE MEAN - 6.1%
VARIATION BELOW MEAN
- 16.9%
TOTAL VARIATION
- 23.00/0
OUADRUPLEX
VARIATION ABOVE MEAN
-
11 .OOh
VARIATION BELOW MEAN - al.ssa
TOTALVARIATION-32.5%W 1 , 1IY.M 1 I I hW/ I I I IY\.VI 1 I I N
QUINTUPLO(
VARIATION ABOVE MEAN - 1.8%
VARIATION BELOW MEAN - 5.3C
TOTAL VARIATION - 7 1%
SEXTUPLEX
VARIATION ABOVE MEAN
-
4.8%
VARIATION BELOW MEAN -
TOTAL VARIATION - 14.0%
SEPTUPLEX
VARIATION ABOVE MEAN - 1 .Z0h
VARlAllON BELOW MEAN - 2.8%
TOTAL VARIATION - 4.0%
NONUPLEX
VARIATION ABOVE MEAN
- .7%
VARIATION BELOW MEAN
- 1 5%
TOTAL VARIATION -
0" 24" 48' 72" 96" 120" 144" 168" 192" 216' 240' 264" 288" 312' 336' 360"
Fig. 1 Flow Variation
Figure 2 indicates how the flow variations are converted into pul-
sations at distinct frequencies. These frequencies are directly related
to the number of plungers and pump speed. (f=NP/GO). In addition,
test data confirms the peak amplitudes will occur at multiples of the
primary or first order frequency. If the acoustic natural frequency of

INGERSOLLRAND CAMERON HYDRAULIC DATA
TABLE 1
Properties of Common Liquids
At
68 F and 14.7 psia
Liquid Density,
lb/ft3 Bulk Modulus
10"b/in2
Pure Water 62.3 318 (s)
Seawater 63.9 344 (s)
Benzene 54.8 222 (s)
Methanol 49.3 144 (s)
E than01 49.3 155 (s)
Turpentine 54.2 223 (s)
At 68' F and 200 psia
Acoustic Velocity
ft/sec
4865
4993
4324
3678
3812
4363
Propane 30.8 25 (t) 2000-2500
Isobutane 35.0 41 (t) 2200-2800
N-butane 35.8 53 (t) 3100-3700
Note: The values listed are average. For higher temperatures or
pressures obtain specific values.
t
= isothermal bulk modulus
s = isentropic bulk modulus
From Engineering Dynamics Incorporated technical report, ED1 85-
305, Oct. 85.
Once determined, the acoustic frequency of the piping system has
to be separated or removed from the excitation frequency generated
by the pump's normal flow variation. vpically, pulsation dampeners
or stabilizers are installed to generate this separation. Pulsation sup-
pression devices change the acoustic characteristics of the system.
Unfortunately, one cannot indiscriminately install pulsation damp-
eners and expect reliable results. If the proper selection techniques
are not followed, the addition of a dampener could increase system
problems instead of reducing or eliminating them. Basically, there
are four
(4) different types of styles of pulsation dampeners as shown
in Figure 4. Examining the attenuation characteristics of each type
indicates the problems that
can occur if the dampener is not married
to the system properly.
HYDRAULICS
A
HELMHOLTZ RESONATOR
f
-2
' - 2n
attenuate 1
f I
QUARTER WAVE STUB
f,
I*n 1) c
4L
C
SURGE VOLUME
f -5
' -- 2L
m = ~~/d~
attenuate
fl f2 f3
u
attenuate
f I f2 f3
attenuation Increases as m increases
D
HELMHOLTZ FILTER
I
m = ~~/d~ attenuate
- "C . - "C passband
P 2L, ' p 2L, frequency
attenuation increases as rn Increases
Fig. 4 Attenuation Characteristics of Acoustic Components

INGERSOLLRAND CAMERON HYDRAULIC DATA HYDRAULICS
Low frequency pulsations
( 1-20 hz) are the most damaging, easily
discovered and can be attenuated by gas-filled bladder type dampen-
ers or gas-charged volume devices (Helmholtz Resonators Figure
4a). Higher frequency pulsations (20-300 hz) on the other hand are
harder to discover and attenuate. Reduction of high frequency pulsa-
tions usually require a sophisticated pulsation device, Helmholtz
Filter (figure 4d). In addition, an acoustic analysis using either ana-
log or digital methods is required to identify the problem frequencies
and determine the effectiveness of the selected dampener.
Net Positive Suction Head (NPSH)
NPSH available for reciprocating pumps applications is calculated
in the same manner as for centrifugal pumps, except an additional
allowance must be made for the reciprocating action of the pump and
the acoustic characteristics of the piping system. Qpically, this addi-
tional requirement is termed "acceleration head", or the pressure
required to accelerate the liquid column on each stroke to prevent
separation of this column in the pump or suction piping.
If there is insufficient suction pressure to meet the NPSH require-
ments of the pump, cavitation resulting in loss of volumetric effi-
ciency may occur. In addition serious damage may occur to plungers,
valves, packing, and other pump components due to the force re-
leased during the collapse of the gas or vapor bubbles during
cavitation.
Approximation Method
The following equation is beneficial for approximating the
NPSH
available within a system. However, this method of analysis begins
to lose validity if the length of the suction line exceeds 50 feet,
simultaneous operation of more than two pumps, more than three
(3)
bends in suction line, or complex mixtures of fluids. In addition this
simplified method of analysis doesn't address the acoustic interac-
tion discussed previously.
NPSH
= hp - hvpa hst - hfs - ha
where:
hp = absolute pressure (psi) on the surface of the
Liquid supply level. (Barometric pressure for open
tanks or sump; Absolute pressure existing in
closed tanks or systems.)
hvpa = vapor pressure of the fluid at pumping temper-
ature (psi
)
hst
= static pressure developed by column of fluid
above ( + ) or below (-) the centerline of the suc-
tion manifold (psi).
hfs = suction line loss (psi) including entrance loss,
friction loss, pressure drop across valves, filters,
system components, etc.
ha = LVnCSG
2.31Kg
L = length of suction line (feet)
V = Fluid Velocity in suction line (fps)
n = Pump Speed (rpm)
c = Constant for pump type
= 200 for duplex single acting
= .I15 duplex double acting
= .066 triplex single or double acting
= .040 Quintuplex single or double acting
= .028 septuplex single or double acting
= .022 nonuplex single or double acting
K = Theoretical Fluid Factor representing the
reciprocal of the fraction of theoretical ac-
celeration head. (K=2.5 for hot oil; 2.0
most hydrocarbons; 1.5 amine, glycol,
water; 1.4 deareated water, 1.0 urea and
liquids with minimal entrained air.
SG = specific gravity of fluid
g = gravitational constant (32.2 ft/sec2)
Fkgarding cavitation, Figure 5 illustrates how pulsating pressure
waves can result in cavitation if the amplitude of the negative pres-
sure spike falls below the vapor pressure of the fluid. Figure 6 illus-
trates the magnitude of pressure spikes that may occur due to cavita-
tion. It is easy to see why cavitation results in damage to pump
components after reviewing Figure 6. Therefore, the best method of
insuring cavitation will not occur and system NPSH is accurately
predicted is to perform an acoustic analysis.
In summation, reciprocating pump piping systems built following
standard design practices can develop pulsation related problems if

INGERSOLLRAND CAMERON HYDRAULIC DATA HYDRAULICS
I
TRAVELING PULSATION WAVE
i /- POSITIVE PRESSURE
jw LINE PRESSURE
LL
a I pi-- - ---\--L'-- - -
\I I
- LIQUID VAPOR PRESSURE
VAPOR BUBBLES FORM AS NEGATIVE
PULSE PASSES
**A-
*
4
I d,"ZOi
BUBBLES COLLAPSE AFTER NEGATIVE
PRESSURE PULSE PASSES
DISTANCE ALONG PIPE
Fig. 5 Acoustic Pulse Producing Local Cavitation in Liquid Filled Pipe
acoustics are ignored. These problems are normally the result of
interaction between the flow variation characteristics
of the pumps
and the acoustic natural frequency of the piping system. The coinci-
dence of the flow variation and acoustic frequency can result in ex-
tremely high pressure pulsations. If unattenuated, the pulsations
can lead to cavitation, piping vibration, fatique failure of pipe ele-
ments, and possibly damage to pump components. An acoustic anal-
ysis is required to avoid these problems.
Typically, acoustic analyses of piping systems are conducted via
either electro-analog techniques or digital computer simulation. In
either instance, this analysis is extremely complex, requiring the as-
sistance of consultants or individuals experienced in this field. Previ-
ous experience has shown that systems built or modified to correct
pulsation related problems utilizing the benefits of acoustic analysis
operate reliably.
li Pd Ps - P then cavltatlon w~ll occur
P, = ~tatlg~~ressure
Pd - Dynam~c Pulsal~ons, 0 p
PVp Vapo~ Pressure
PS = 80 PSIG P
PD 1800 PSIG
WHEN NEGATIVE PRESSURE PULSATIONS
EXCEED STATIC PRESSURE, CAVITATION OCCURS
AND POSITIVE PRESSURE SPIKES RESULT.
PLUNGER
b2
262 RPM
400 PSliDlV
0 0 250 SEC FS
11 50 AM
12 10.83
PS - 84 PSIG
PD
= 1350 PSIG
Fig. 6 Cavitation of Liquids
Pump Drivers - speed torque curves
The driver must be capable of supplying more torque at each
successive speed from zero to full load than required by the pump in
order to reach rated speed. This condition seldom presents any prob-

HYDRAULICS
lem with the average centrifugal pump driven by standard induction
or synchronous motors, but with certain applications such as with
high specific speed pumps having high shut-off horsepower, or with
reduced voltage starting, motors with high pull-in torque may be
required.
Where centrifugal pumps in the low to medium specific speed
range (under 3500) are started with the discharge valve closed the
minimum torque requirements at various speeds for this condition
are calculated as follows:
Determine the maximum horsepower required at rated speed un-
der shut off conditions. Convert this horsepower to torque in (Ib. ft.)
by using the formula:
Tin(1b. ft.) = 5250xhp
rpm
Torquevariesasthe squareof thespeed; therefore, toobtaintorqueat:
3/4 speed-multiply full speed torque by 0.563
% speed-multiply full speed torque by 0.250
54 speed-multiply full speed torque by 0.063
% speed-multiply full speed torque by 0.016
At zero speed the torque would theoretically be zero, but the driver
must overcome stuffing box friction, rotating element inertia and
bearing friction in order to start the shaft turning. This requires a
torque at zero speed of from 2% percent to 15 percent of the maximum.
Speed torque requirements for starting conditions other than with
closed discharge will vary depending on the horsepower requirements
at each successive speed. This can be determined by superimposing
the pump
H-Q curve on the system curve; selecting several speeds
and calculating the horsepower at each of the speeds selected; then
calculating the torque for each speed selected.
On vertical axial flow and propeller pumps with high specific speeds
(and high shut off horsepower) it is standard practice to start the
pumps with discharge valves partially open to reduce starting horse-
power and thrust. In the case of the second of two pumps starting
with the first already pumping, it is possible that the water may be
flowing back through the discharge of the idle pump turning it
back-
wards. This complicates the speed torque cal~ul,~tion which should
be referred to the pump manufacturer.
Although torque is a function of the square of the speed in the case
of centrifugal pumps, in the case of positive displacement pumps the
torque is constant regardless of the speed, as long as the differential
discharge pressure remains unchanged. Therefore, a general rule is
the starting torque required for reciprocating pumps is approximately
125% of full load running torque when starting under load, and
ap- -
proximately 25% full load running torque when starting without
load.
Engine drivers f;
If reciprocating engine drivers are being considered the speed-
+
torque requirements of the pump must be checked against the speed
torque capabilities of the engine to assure their compatibility.
Caution must be used in the selection of reciprocating engine driv-
ers because excessive cyclic stresses may be superimposed on the
pump shaft due to the periodic power impulses produced by each
engine cylinder. These cyclic pulses produce a torsional vibration
whose magnitude depends on the state of resonance of the entire
system; this results in an increase in the cyclic tensile loading of the
pump shaft. For these reasons the allowable pump shaft horsepower
per 100 rpm (hp/100 rpm) limits must be reduced substantially.
Due to the torsional vibration problems that may develop, the
pump manufacturers should be checked to determine the suitability
of the engine drive being considered.
Impeller
Profiles
Values of
Spec~fic Speeds.
, 7-7 rl
8
- --.
- Irnpellar
;__ , nub
Y, AX,s oq
Radial-Vane Arab Franc,. Vane Are. Maxed Flow Araa Arnal Flow Area Rotatton
Fig. 18 showing profiles of impeller designs ranging from the low specific speed
radial
flow design on the left to a high specific axial flow design on the right. (Courtesy
of Hydraulic Institute.)
1-47

INGERSOLLUAND CAMERON HYDRAULIC DATA HYDRAULICS
I NS = 900 DOUBLE SUCT.
5700 SINGLE SUCT.
CAPACITY PER CENT OF NORMAL
Fig. 19 showing shape of typical head-capacity curves for various specific speeds.
-I
u
I
Q:
0
Z
SINOLE SUCT
0 25 50 75 100 125 150
CAPACITY PER CENT OF NORMAL
Fig. 21 Values of IFJ '
Fig. 20 showing shape of typical brake horsepower curves for various specific speeds.

INGERSOLLRAND CAMERON HYDRAULIC DATA
Fig. 22 Recommended maximum operating speeds for single suction pumps.
1-50
HYDRAULICS
Fig. 23 Recommended maximum operating speeds for double suction pumps.
1-51

INGERSOLLRAND CAMERON HYDRAULIC DATA HYDRAULICS
NOTE: This chart has been constructed from test data obtained using the
llqulds shown For applicability to other
llqulds refer to the text
Fig. 24 NPSH reduction for pumps handling hydrocarbon liquids and high
temperature water.
BIBLIOGRAPHY
The following references are among those available if it is desired to
investigate the subjects discussed herein in further detail:
Crane Technical Paper No 410-Flow of Fluids through Valves, Fittings and Pipe.
Crane Company. Advertising Division. 300 Park Avenue, New York, N.Y. 10022
Crane Technical Paper No. 41OM-Metric Edition-SI Units is now available;
order from above address. (orders for Crane Papers must be prepaid)
Hydraulic Institute Standards and Engineering Data Book- Address: Hydraulic
Institute, 712 Lakewood Center North, Cleveland, Ohlo 43107.
The following are published by McGraw-Hill Inc.:
Baumeister ant1 Marks-Standard Handbook for Mechanical Engineers.
Chow-Handbook of Applied Hydrology.
Hicks-Standard Handbook of Engineering Calculations.
Kallen-Handhook of Inslrumerltation and Controls.
King and Rrater-Handbook of Hydraulics.
Merritt-Standard Handbook for Civil Engineers.
Perry- Engineering Manual.
Streeter-Handbook of Fluid Dynamics.
Streeter and Wylie-Fluid Mechanics.
TTrguhart - Civil Engineering Handhook.
Karassik, Krutzsch, Fraser and Messina-Pump Handhook.
Shames-Mechanics of Fluids.
The following are published by the Macmillan Publishing Company:
Sahersky, Acosra and Hauptmann-Fluid Flow.
The following are published by John Wiley & Sons:
Stepanoff-Centrifugal and Axial E'low Pumps.
Rouse-Engineering. Hydraulics.
Vennard & Street-E:lementary Fluid L)ynamics
The following are published by Prentice Hall:
Binder-Fluid Mechanics.
Albertson, Barton and Simons-Fluid Mechanics for Engineers
Butterworth Publishers. 10 Tower Office Park
Woburn, Ma. 01801
Telephone 1-617-933-8260

FORMULAS
2- 1

CAMERON HYDRAULIC DATA FORMULAS AND EQUIVALENTS
i
!
1 :
CONTENTS OF SECTION 2 P
Selected Formulas and Equivalents
Page
.............................. General information on liquids 2-3
............................. Volume and weight equivalents 2-4
Head and pressure equivalents.. ............................ 2-5
................................... Flow equivalents 2-6 and 2-7
Flow through orifices and nozzles ........................... 2-8
........................................ Flow data - nozzles 2-9
................................. Flow data-weirs 2-10 and 2-11
............................................ Irrigation table 2-12
Frequently used formulas, constants and
conversions 2-13 through 2-16
I.
.................................
I
(For metric formulas see page 8-28)
0
General-Information on Liquids
In this section the more commonly used Formulas and Equivalents
are included for the convenience of the user.
With references to Volume and Weight Equivalents, the following
comments on tem~erature. ssecific mavitv. and ssecific weieht should
J A " U' "
be of interest.
Temperature affects the characteristics of a liquid. For most liquids
an increase in temperature decreases viscosity, decreases specific
gravity and increases volume (see page 1-6).
The Specific Gravity of a solid or liquid is the ratio of the mass
of the body to the mass of an equal volume of water at some selected
base or standard temperature.
Specific Gravity of Water is usually
given as 1.000 at 60°F
(15.6"C). However, in some cases, for con-
venience, it may be given as 1.000 at 68°F (20°C); and in other cases
as 1.000 at 39.Z°F (4°C) which is its point of maximum density.
Based on using water having a specific gravity of 1.000 at 39.Z°F
(4°C) as a reference point, water at 60°F (15.6"C) will have a specific
gravity of 0.9991, and 0.9983 at 68°F (20°C)- therefore, for practical
applications which temperature (39.Z°F-60°F or 68°F) is selected as
a base for reference makes little difference. At the present time the
base of 39.2"F (4°C) is commonly used by physicists, but the engineer
usually uses 60°F (15.6"C) or 68°F (20°C) as a base. For actual specific
gravities and specific weights of water for other temperatures to
705.47"F (374.15"C) see page 4-4.
Specific Gravities of Other Liquids is given relative to water-
usually at 60°F (15.6"C). Numerically, specific gravity is about the
same as the density in grams per cubic centimeter in the cgs system.
Other systems of measuring specific gravity or density are related;
conversion tables are shown on pages 4-6 to 4-19.
Specific Weight as used in this discussion, is the weight in lb per
cu ft. The specific weight of water at
39.Z°F is 62.4258 lb per cu ft.,
at 60°F is 62.3714 lb per cu ft; at 68°F is 62.3208 lb per cu ft. For
other temperatures proper specific weight values should be used
(see page 4-4).
Density is the mass per unit volume. It is usually stated in
lb/ft",
or g/cm3 or kg/m" For a detailed discussion see page 4-3.

Convert
';3
6 Volume & Weight Equivalents
Example:
20 U S gallons
x 3.7854 = 75.708 liters
Ibi~n" ......
Ib!ft2 ......
Atmospheres . .
kg/cm2 .....
kgim' .......
In. water'
ft water' ....
In. mercuryt
mrn mercuryt
...... Bars3
MPat .......
Equivalents of Head and Pressure
Example: 15 lblfth 4.88241 = 73.236 kglm2
Volume and weight equivalents
Atmos-
pheres kg/cm2
0.068046 0.070307
0.000473 0.000488
1 1.0332
0 96784 1
0.0000968 0.0001
0 002454 0.00253
0.029449 0.03043
0.033421 0.03453
0.0013158 0.0013595
0.98692 1.01 972
9.8692 10.1972
The capacity of a barrel varies in different industries. For instance .
1 bbl of beer = 31 U S gallons
1 bbl of wine = 31.5 U S gallons
1 bbl of oil = 42 U S gallons
1 bbl of whiskey
= 45 U S gallons
DRUMS:
The drum is not considered to be a unit of measure as is the barrel. Drums
are usually built to specifications and are available in sizes from 2% gallons to
55 gallons; the most popular sizes are the 5 gallon, 30 gallon and 55 gallon
drums.
Weight equivalent basis water
at
60°F (1
5.6"C)
In.
water
(68 F)'
Pounds
8.338
10.0134
0.036095
62.3714
2.2029
2202.65
1
U S
gallons
ft
water
(68
F)'
2 3106
0.01 605
33.9570
32.8650
0.003287
0.08333
1
1.1349
0.044680
33 5130
335.130
Imperial
gallons
0.8327
1
0.003605
6.229
0.2200
220.0
0.09987
pppp
199.7
0.2202
U S gallons
................
Imperial gallons ............
Cubic inches ...............
Cubic feet ..................
Liters ......................
............... Cubic meters
Pounds* ...................
Water at 68F (20C) t mercury at 32F (OC) $ 1 MPa (Megapascal) = 10 Bars = 1,000,000 Nlm' (Newtonslmeter')
Courtesy of Crane Co.. Techn~cal Paper 410
U S
tons
0.00417
0.005
55409
0.031 19
0.001 1
1.10133
0.0005
1
1.20094
0.004329
7.48052
0.2642
264.2
0.1 1 99
~n
mercury
(32 F)t
2.03602
0 014139
29.921
28 959
0.002896
0 073430
0.881 15
1
0.03937
29.5300
295 300
Kilo-
grams
3.782
2
4.542 $
0.016372 %
28.291
'0.
ce,
0.1000 ,S
rn
1000.0
<
0.45359
-
2000
2.205
rnm
mercury
(32F)t
Cubic
inches
231
277.39
1
1728
61.024
61024
27.71
U S tons*
..................
Kilograms*. ................
Bars
t
0 06895
0.000479
1 01325
0 98067
0.000098
0.00249
0 029839
0.033864
0 001333
1
10.0
Cubic
feet
0.13368
0.1 6054
0.0005787
1
0.035315
35.315
0.01 6033
Liters
3.7854
4.546
0.016387
28.31 7
I
1000
0.4539
239.87
0.2644
1
0.001 1
Mega-
Pascals $
(MPa)$ m
0
55409
61.08
Cubic
meters
0.0037854
0.004546
0.000016387
0.02832
0.001
1
,000454
pp
907.2
1
0.908
0.001
32.066
0.03534
907.9
1.000

INGERSOLLRAND CAMERON HYDRAULIC DATA
Flow Equivalents
FORMULAS AND EQUIVALENTS
Flow Equivalents
Note-gpm and gal per 24 hr glven to the nearest whole number
The value 7 48 gallons equals 1 cu ft is used In calculattng above table
2- 7
Cu Ft per Sec
Cu ft Gallons Gallons
Gallons per 24 hours
Gallons Gallons Cu ft
to
mVhr
20.39
40.78
61.17
81.56
102.0
122.3
142.7
163.1
183.5
203.9
224.3
244.7
265.1
285.5
305.9
326.2
346.6
367.0
387.4
407.8
428.2
448.6
469.0
489.4
509.8
1.020
2,039
3.059
4.078
5.098
6.1 17
7,137
7.646
8,156
9.176
10.195
10.297
10.399
10.501
10,603
10.705
10,807
10,909
per to
sec
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3
4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
75.0
800
90.0
100.0
101.0
102.0
103 0
104 0
105 0
106.0
107 0
per to
24 hrs
100,000
125,000
200,000
400.000
500,000
600.000
700.000
800.000
900,000
1,000,000
2,000.000
3.000.000
4.000.000
5,000,000
6,000,000
7,000,000
8.000.000
9.000.000
10.000.000
12.000.000
12,500.000
14,000,000
15,000,000
16,000,000
18,000.000
20.000.000
25.000.000
30.000.000
40.000.000
50.000,OOO
60.000,OOO
70.000.000
75.000.000
80.000.000
90.000.000
100,000,000
125.000.000
150.000.000
175.000.000
200,000.000
225,000,000
250,000,000 300,000,000
per to
sec
0.15 0.19
0.31
0.62
0.77
0 93
1 08
124
1 39
1.55
3.09
4.64
6.19
7.74
9.28
10.83
12.38
13.92
15.47
18 56
19 34
21.65
23 20
24.75
26.85
30.94
38.68
46.41
61.88
77.35
92.82
108.29
116.04
123.76
139.23
154.72
193.40
232 08
270.76
309 44
348.12
386 80
464 16
per to
mlnute
69
87
139
278
347
417
486
556
625
694
1.389
2.083
2.778
3.472
4,167
4,861
5.556
6,250
6.944
8.333
8.680
9.722
10,417
11.111
12.500
13,889
17,361
20,833
27,778
34,722
41.667
48,611
52,083
55.556
62.500
69.444
86,805
104.167
121.528
138.889
156.250
173.61 1
208,333
per to
mlnute
90
180
269
359
449
539
628
718
808
898
987
1.077
1.167
1,257
1,346
1,436
1.526
1.616
1.705
1.795
1.885
1,975
2.068
2.154
2.244
4.488
8,987
13.464
17,952
22.440
26,928
31.416
33.660
35.904
40.392
44.880
45.329
45.778
46.226
46.675
47.124
47.572
48.022
m3!h r
15.77
19.71
31.54
63.08
78.85
94 62
1 10.4
1262
141.9
157.7
315 4
473.1
630.8
788.5
946.2
1.104
1.262
1.41 9
1.577
1,892
1,971
2.208
2.366
2,523
2.839
3,154
3,943
4,731
6,308
7.885
9.462
11,039
11.828
12,616
14.193
15.770
19.71 3
23.665
27.598
31.540
35.483
39.425
47.310
per
24 hrs
129.263
258.526
387.789
517.052
646,315
775.578
904.841
1,034,104
1.163.367
1,292.630
1,421.893
1.551.156
1.680.420
1,809.683
1,938,946
2,068.209
2,197.472
2,326,735
2.455.998
2.585.261
2,714,524
2,843,787
2,973,050
3.102.313
3.231.576
6.463.152
12.926.304
19,389.456
25,852,261
32.315.760
38.778.912
45,242,084
48,473,640
51.705.216
58,160,368
64,631.520
65,277.835
65,924.150
86,570,466
67,216,781
67,863,096
68.509.411
69.155.726

INGERSOLLRAND CAMERON HYDRAULIC DATA
FLOW THROUGH ORIFICES AND NOZZLES
Approximate discharge through orifice or nozzle.
Q = 19.636 Cdlzfl J - ( 2 rwhere , d I is greater than 0.3
d
Q = 19.636 cdI2 fi where 2 is less than 0.3
d,
Q = flow, in gpm
d, = dia of orifice or nozzle opening, inches
h
= differential head at orifice, in feet of liquid.
d, = dia of pipe in which orifice is placed, inches .
C = discharge coefficient (typical values below for water)
Table on next page shows flow using a value of
C = 1.00. These flows
values may be multiplied by the
C value for a particular discharge
to obtain actual flow.
M-IH74ANT
~UBI
J +j==
W .II.UEDIA.
C= .52
Approximate flow through Venturi tube.
Q = 19.05 dl2- d , - ( 2 )" for any Venturi tube
SHARP-
IDGED
--i--
C = .61
Q = 19.17 d ,** for a Venturi tube in which d, = 113 d2
Q = flow, in gpm
d, = dia. of venturi throat, inches
d, = dia. of main pipe, inches
H = diff. in head between upstream end and throat (ft.)
SQUARE
EDGED
-=jri-
~~UCUUI~U
C = .61
These formulas are suitable for any liquid with viscosities similar to
water. The values given here are for water.
A value of 32.174 ft. per
sec2 was used for the acceleration of gravity and
a value of 7.48 gal.
per cu ft in computing the constants.
FORMULAS AND EQUIVALENTS
RE-CNTBANT
TUBE
I--J-.C-
LF~~CTII~Z~~DI*.
C = .73
Flow Data- Nozzles
Theoretical Discharge of Nozzles in U S Gallons Per Minute
.. -. -- ~
'* Head in feet basis water gt approx. 60'F
SQUARE
EDGER
+---+i-
mmwmrn
C = .82
WELL
ROUNDSD
-+ ,---
C=.%

INGERSOLLRAND CAMERON HYDRAULIC DATA
Discharge From Rectangu-
lar Weir with End
Contractions
h
Figures in Table are in Gallons Per Minute
This table is based on Francis formula:
Q = 3.33 (L - O.2H)H1,'
in which
Head
(HI
~n
inches
1
11/4
1%
1%
2
2%
2'/2
2%
3
3'/4
3V2
3Y4
4
4Y4
4'/2
4%
5
5'/4
5%
5%
6
6 '/4
6Y2
63h
7
7 '/4
7%
7%
Q = ft3 of water flowing per second.
L
= length of weir opening in feet (should be 4 to 8 times H).
H
= head on weir in feet (to be measured at least 6 ft back of weir opening).
a
= should be at least 3 H.
Length
3
2338
2442
2540
2656
2765
2876
2985
3101
3216
3480
3716
3960
4185
4430
4660
4950
5215
5475
5740
6015
6290
6565
6925
7140
7410
7695
7980
8280
FORMULAS AND EQUIVALENTS
w Data Weirs
Discharge from Triangular
Notch Weirs with
End
Contractions
E
Head
(H)
~n
inches
8
81/4
8M
8%
9
9'/4
9%
9Y4
10
10V2
11
11Yz
12
12V2
13
13l/z
14
14
15
15%
16
161/2
17
17Vz
18
18Vz
19
19fi
(L) of
5
3956
4140
4312
4511
4699
4899
5098
5288
5490
5940
6355
6780
7165
7595
8010
8510
8980
9440
9920
10400
10900
11380
11970
12410
12900
13410
13940
14460
1
35.4
49.5
64.9
81
98.5
117
136.2
157
177.8
199.8
222
245
269
293.6
318
344
370
395.5
421.6
449
476.5
weir in feet
Addi-
tional
gpm for
each ft
over5ft
814
850
890
929
970
1011
1051
1091
1136
1230
1320
1410
1495
1575
1660
1780
1885
1985
2090
2165
2300
2410
2520
2640
2745
2855
2970
3090
Based on Thompson formula:
Q = (C) (411 5) (L) (H) vm
in which
Length (L)
3
107.5
150.4
197
248
302
361
422
485
552
624
695
769
846
925
1006
1091
1175
1262
1352
1442
1535
1632
1742
1826
1928
2029
2130
2238
Q = flow of water in ft'lsec
L = width of notch in ft at H distance above apex
H = head of water above apex of notch in ft
C = constant varying with conditions, .57 being used for this table
a = should not be less than 3AL.
Head
~n
inches
1
1 l/4
1 112
1 3/4
2
2'/4
21/2
2%
3
3'/4
3'12
3Y4
4
4'14
4'12
43/4
5
5'14
5%
53A
6
6'/4
6%
For 90" notch the formula becomes
Head
in
(HI
inches
15
15l/z
16
l6V2
17 17%
18
l8l/2
19
1g1/z
20
201/2
21
21%
22
23%
23
23%
24
24%
25
of weir in
5
179.8
250.4
329.5
415
506
605
706
815
926
1047
1167
1292
1424
1559
1696
1835
1985
2130
2282
2440
2600
2760
2920
3094
3260
3436
3609
3785
For 60" notch the formula becomes
feet
Addi-
tional
gPm for
each ft
over5 ft
36.05
50.4
66.2
83.5
102
122
143
165
187
211
236
261
288
316
345
374
405
434
465
495
528
560
596
630
668
701.5
736
774
Flow in gallons Flow in gallons
Head
in
(HI
inches
6%
7
7'14
7%
7Y4
8
87/4
8'/2
83/4
9
9'/4
g1/2
9374
10
10%
11
12
12
121/2
13
13%
14
14%
per
.
90"
notch
2.19
3.83
6.05
8.89
12.4
16.7
21.7
27.5
34.2
41.8
50.3
59.7
70.2
81.7
94.2
108
123
139
156
174
193
214
236
per
90"
notch
1912
2073
2246
2426
2614
2810
3016
3229
3452
3684
3924
4174
4433
4702
4980
5268
4565
5873
6190
6518
6855
min
60"
notch
1.27
2.21
3.49
5.13
7.16
9.62
12.5
15.9
19.7
24.1
29.0
34.5
40.5
47.2
54.4
62.3
70.8
80.0
89.9
100
112
124
136
min
60"
notch
1104
1197
1297
1401
1509
1623
1741
1864
1993
2127
2266
2410
2560
2715
2875
3041
3213
3391
3574
3763
3958
Flow in gallons
per
90"
notch
260
284
310
338
367
397
429
462
498
533
571
610
651
694
784
880
984
1094
1212
1337
1469
1609
1756
min
60"
notch
150
164
179
195
212
229
248
267
287
308
330
352
376
401
452
508
568
632
700
772
848
929
1014

INGERSOLLRAND CAMERON HYDRAULIC DATA
Head and pressure: (For water at normal temperatures (60°F))
Head in psi x 2.31
Head in feet =
SP gr
Head in feet x sp gr
Head in psi =
2.31
Pumping power- See page 1-27
I
horsepower x 550 = ft-lblsec
x 33000 = ft-lblmin
x 2546 = BTUIhr
x 745.7 = watts
x 0.7457 = kilowatts
x 1.014 = metric horsepower
gpm x H (in feet) x sp gr
Brake hp
= (centrifugal terminology)
3960 x efficiency
- -
bph x H (in feet) x sp gr
(centrifugal terminology)
5657 x efficiency
- -
gpm x psi
(reciprocating terminology)
1714 x eff
- bph x psi
(reciprocating terminology)
2449 x eff
Note: To obtain the hydraulic horsepower from the above expres-
sions assume a pump efficiency of
100%.
In the above expressions:
I
gpm = U S gallons per minute delivered (one gallon = 8.338 Ibs at
60 Deg F.
bph = barrels (42 gallons) per hour-delivered = 0.7 gpm
H = total head in feet of liquid-differential I
psi = lb per sq in-differential
sp gr
= specific gravity
eff
= efficiency expressed as a decimal
Electrical hp input to motor
=
Pump bhp
motor efficiency
pump bhp
x 0.7457
KW input to motor =
motor efficiency
FORMULAS AND EQUIVALENTS
Torque- See page 1-35
bhp x 5250
Torque in lb-ft =
w m
bhp = brake horsepower
rpm = revolutions per minute
Specific speed-See page 1-19
rpmVgpm
Impeller specifi speed = N. =
HS,4
(See page 1-20)
where
gpm
= design capacity at best efficiency point
H = head per stage at best efficiency point
rpm
= speed
-
rpm d gprn
Suction speci$c speed = S = (See page 1-21)
(NPSHR)3'4
where
gprn =design capacity at best efficiency point for single suction
first stage impellers, or one half design capacity for double
suction impellers.
Affinity laws (See page 1-30)
At constant impeller diameter:-(Variable speed)
RPMl gpm, - a,
-
RPM, gpm, a>
At constant speed: -Variable impeller diameter)

INGERSOLLUAND CAMERON HYDRAULIC DATA
Miscellaneous
Temperature equivalents:
Degrees
Degrees Degrees Fahren-
Kelvin Rankine Celsius heit
Absolute zero .......... 0 0 - 273.15 - 459.67
Water freezing point:
(14.696 psia 101.325
KPa) ................ 273.15 491.67 0 32
Water boiling point:
(14.696 psia 101.325
KPa) ................ 373.15 671.67 100 212
Celsius/Fahrenheit conversions:
Deg C = 5/9 (OF - 32)
Deg F = 9/5 OC + 32
Reynolds Number (R): (see page 1-4)
V = Average velocity-ft/sec
D = Average internal diameter-ft
u = Kinematic viscosity of the fluid-ft2/sec (For pure fresh water
at
60°F v = 0.000
0 012 16 ft2/sec.)
Dare y - Weis bac h (see page 3-3)
Haxen and Williams (see page 3-7)
NOTE: For selected arithmetrical and geometrical formulas refer
to page
7-3

FRICTION
I
--
I
-
-
-
I
1
A
LLRAND-
1
- SECTION Ill

INGERSOLL-RAND CAMERON HYDRAULIC DATA
CONTENTS OF SECTION 3
Friction Data:
Friction loss principles .................
Page
...... 3-3
Darcy-Weisbach Formula ............................. 3-3
Hazen and Williams Formula ......................... 3-7
Example-Head loss Calculation ................. 3-9 to 3-10
Moody diagram-Reynolds Nos. Versus Friction
Factor Chart .................................... 3-11
........ Friction of water in cast iron and steel pipe 3-12 to 3-34
... Friction of water in copper tubing and brass pipe 3-34 to 3-48
Friction of viscous liquids in pipes ............... 3-48 to 3-88
Friction of paper stock in pipes ................ .3-88 to 3-101
Friction of paper stock in fittings ......... .3-101 to 3-102
*General Information-Pulp and Paper Industry .. .3-103 to 3-110
.......... Friction of water-valves and fittings .3-110 to 3-122
Friction of water-valves and fittings in terms equivalent
length straight pipe ...................... .3-120 to 3-121
............ Friction-viscous liquids-valves and fittings 3-122
* NOTE: Pages 3-103 through 3-109 are located in this section (fol-
lowing Paper Stock Friction Data) for convenience and
ready reference.
Friction Losses in Pipe
The resistance to flow as a liquid is moved through a pipe results
in
a loss of head or pressure and is called friction (measured in feet
of liquid). This resistance to flow is due to viscous shear stresses within
the liquid and turbulence that occurs along the pipe walls due to
roughness.
The amount of head loss for a given system depends on the
characteristics of the liquid being handled;
i.e. viscosity, size of pipe,
condition (roughness) of pipe's interior surface and length of travel;
also loss through various valves, fittings, etc. (see page
3-110).
A vast amount of research has been conducted to determine the
amount of friction loss for different conditions, and various expres-
sions based on experimental data have been developed for calculating
friction loss. The expression most commonly used in present day
practice and the one on which the tables in this book are based is
the
*Darcy-Weisbach equation. This formula recognizes that pipe
friction is dependent on condition (roughness of pipe's interior surface),
internal diameter of pipe, velocity of liquid and its viscosity. It is
expressed as:
- L V'
where
h, = friction loss- ft of liquid
L = pipe length -feet
D = average inside diameter of pipe-feet
V = average pipe velocity in ftisec
g = gravitational constant (32.174 ft/sec2)
f = friction factor-a dimensionless number which has been de-
termined experimentally and for turbulent flow depends on the
roughness of the pipe's interior surface and the Reynolds number
(see page
3-5).
For laminar (viscous) flow (Reynolds number below 2000) the
roughness or condition of the pipe's interior surface
has no effect
(except as it affects the cross sectional area) and the friction factor
(0 becomes:
For turbulent flow (Reynolds number above
4000) the friction
factor is affected by both the roughness of the pipe's interior surface
' Also known as the Fanning Formula

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION
and the Reynolds Number and can be determined from an equation
developed by C.
F. Colebrook (1939);
i.e.
1
-- - -2 log,, j& + .51j
RVT
where
VD
R = Reynold's Number = -
2'
f = Friction Factor
E = Absolute Roughness-in feet-(See following table)
D
= Inside diameter of pipe-ft
V = Average pipe velocity
-ft/sec
v = Kinematic Viscosity -ftz/sec
Since the Colebrook equation is non-factorable in f, awkward and
difficult to solve, the value of f may be obtained from a graph or
chart developed by
L. F. Moody
(ASME 1944) and included herein
on page
3-11. This graph shows the relation between the friction
factor
f, the Reynolds Number R, and the relative roughness clD,
where is the absolute roughness in feet and D is the pipe diameter
in feet; Note that for convenience the relative roughness is used in
developing the graph on page 3-11.
However, to avoid possible errors in reading the friction factor f
from the Moody graph the friction loss data presented in the tables
on pages 3-12 to 3-88 were calculated mathematically (programmed
on a digital computer) basis the following assumptions:
(a) Turbulent Flow -Reynolds Numbers above 2000 except as noted
(see pages 1-4 and 1-5).
(b) Absolute Roughness Parameters (€)-of 0.00015 for new clean
steel pipe (schedules as listed) and 0.0004 for new asphalt dipped
cast iron pipe; and 0.000005 for smooth copper tubing and brass
pipe.
(c) Water Friction-Pages 3-12 to 3-48 based on pure fresh water at
a temperature of 60°F
(15.6
"C); Kinematic viscosity (v) = 0.000
012 16 ft2/sec (1.130 Centistokes.) It should be noted that since
the viscosity of water can vary appreciably
from
32°F to 212°F
the friction can increase or decrease as much as 40% between the
two temperature extremes.
(d) Viscous Liquids-Friction -Pages 3-48 to 3-88, absolute roughness
parameter of 0.00015 for new clean steel pipe-schedules as
listed (see viscosity discussion page 4-23).
For pipes with other absolute roughness parameters see the follow-
ing table.
Absolute
Type of pipe roughness"
(new, clean, condition)
E (in feet)
Drawn tubing-glass, brass, plastic 0.000005
Commercial steel or wrought iron 0.0001
5
Cast iron -asphalt dipped 0.0004
Galvanized iron 0.0005
Cast iron -uncoated 0.00085
Wood stave
0.0006-0.0003
Concrete 0.001 -0.01
Riveted steel 0.003-0.03
' Basis data from Hydraulic Institute Engineering Data Book.
To obtain friction loss in pipes having other roughness parameters,
the applicable friction factor can be obtained from the Moody chart
on page
3-11 and then, if desired, checked for accuracy with the
Colebrook formula.
In using the Moody chart on page 3-11 the rela-
tive roughness
(€ID) is used where "E" is the absolute roughness in
feet and
"D" is the pipe diameter in feet.
Friction losses for pipe sizes between those listed in the tables may
be found with reasonable accuracy using
a ratio of the fifth power
of the diameters; thus
Desired friction loss in pipe
B
dia A
= Known friction loss in pipe A -
( dia I3
Use of a general multiplier to correct the head loss shown in these
tables to head loss for pipes of other roughness characteristics is not
recommended, or safe; multipliers can be developed, but they would
apply accurately to only one flow or capacity. Instead the best pro-
cedures to follow is to: Calculate the applicable Reynolds Number,
select the applicable friction factor from the Moody Chart and use it
in the Darcy formula to determine the head loss desired.
The effect of aging and the allowances that should be made in
estimating friction loss is beyond the scope of this discussion. It will
depend on the particular properties of the fluid being handled and
its effect on the interior pipe surface; any safety factors to allow for
this effect must be estimated for local conditions and the requirements
of each particular installation.
CAUTION-Since the friction loss data in the tables in this book
are calculated on the basis of the roughness parameters for clean new
pipe with no allowances for aging, manufacturing tolerances and
other conditions which may cause variations of the interior pipe
3-5

INGERSOLL-RAND CAMERON HYDRAULIC DATA
FRICTION
surfaces, it is suggested that for most commercial design purposes
a safety factor of 15 to 20% be added to the values in the tables.
For a more detailed discussion of friction loss calculations and
the various items that should be considered, reference is suggested
to the Engineering Data Book of the Hydraulic Institute; also to Crane
Technical Paper No. 410. See page 1-47 for bibliography.
For convenient reference formulas used in connection with the
Darcy-WeisbacWColebrook method are:
Head Loss
L
V2 0.03112 L(gpmI2 0.0153 L(bphjP
hf= f- -= f = f
LV"
= f-
D 2g d5 d5 4m2g
Friction Factor (f): (also see graph page 3-11.)
64
For
R less than 2000 (laminar flow): f
= -
R
Reynolds Number:
2799.5(gpm)
R (water at 60°F) =
d
Velocity:
Velocity Head:
SYMBOLS
USED IN FORMULAS, PAGES 3-6 and 3-7
bph = flow of liquid, barrels (42 gal) per hour.
d
= inside diameter of circular pipe-inches
C = Friction Factor for Hazen
& Williams
D = inside diameter of circular pipe-feet
f
=
Darcy-Weisbach friction factor, dimensionless.
3- 6
g = acceleration of gravity, ft/sec2 (taken as 32.174 ft/sec2 in making
conversionsj.
hf = head loss due to friction, ft of liquid
r = absolute roughness in feet -see page 3-5
h, = Velocity head-ft of liquid
z
k = kinematic viscosity, centistokes = -
S
v = kinematic viscosity, -ft2/sec
L = length of pipe including equivalent length for loss through
fittings- ft
flow area
m
= hydraulic radius = = ft
wetted perimeter
(use in calculating flow in open channels or unfilled pipes)
p = density at temp. and press. at which liquid is flowing, lb/ft3
gpm
= flow of liquid, gallons per minute.
p = absolute or dynamic viscosity, lb-sec/ft2
V = velocity of flow, ft/sec
s = density, glcm" (water at 4°C or 39.2"F = 1.000)
z = absolute or dynamic viscosity-centipoises
HAZEN AND WILLIAMS
Although the Darcy-Weisbach/Colebrook method (on which the
tables in this book are based) offers a rational mathematical solu-
tion to friction loss calculations (since it can be applied to any
liquid except plastics and those carrying suspended solids) some
engineers prefer to use one of the many empirical formulas that
have been developed for water flowing under turbulent conditions.
Of these, the most widely used and accepted is the
Hazen and
Williarn,~ empirical formula since it is convenient to use and experi-
ence has shown that it produces reliable results. In a convenient
form it reads:
This formula is basis a fluid having a kinematic viscosity, v =
0.000 012 16 ft2/sec (1.130 centistokes) or 31.5 SSU which is the case
for water at 60°F. But since the viscosity of water can vary appre-
ciably from
32°F to
212OF the friction can decrease or increase as
much as
40% between the two temperature extremes. However, this
formula can be used for any liquid having a viscosity in the range
of
1.130 centistokes.
Values of
C for various types of pipe with suggested design values
are given in the following table with corresponding multipliers that
can be applied, when appropriate, to obtain approximate results.
3- 7

INGERSOLLRAND CAMERON HYDRAULIC DATA
Hazen and Williams-Friction Factor C**
Values of C
Range- Average
Type of pipe
Hlgh = best. value Commonly
I $7- 1 .8, 1 vA70r
Low = poor new
or corroded PIP^
deslgn
purposes
Cement-Asbestos
Flbre
B~tumastlc-enamel lined Iron or steel
centrifugally applied
Cement lined Iran or steel centrifugally
applied
Welded and seamless steel.. ....... 150-80 130
Interior rlveted steel (no projecting
rlvets). ..................................
Wrought-1.0.. Cast-1.0. ................ ;&& 1 :ii I
Tar-coated cast-lron ......................
Copper brass lead tln or glass pope and
tublng
Wood-stave
Glrth-r~veted steel (projecting rivets in girth
seams only) .......................... - 130
Concrete. ......................... 152-85 120
Full-riveted steel (projecting rivets in g~rth
and horizontal seams1 ........... 1 - 1 11s 1
160-140
-
160 130
-
V~trlf~ed. Splral-rlveted iteel (flow wlth lap) I - I 116 I
150-120
145-110
150
150
148
150
FRICTION
140
140
140
140
140
120
Friction-head loss-sample calculation:
130
110
Spiral-riveted steel (flow agalnst lap) ......
To illustrate the application of the friction and head loss data in
calculating the total system head for a specific system the following
example is offered:
100
60
-
Problem-referring to the accompanying figure, page 3-10, a pump
takes water
(68°F)
&om a sump and delivers it through 1250 feet of
4" diameter schedule 40 steel pipe. The suction pipe is 4" vertical 5
feet long and includes a foot valve and a long-radius elbow. The dis-
charge
line includes two standard 90 degree flanged elbows, a swing
check valve
and an open wedge-disc gate valve. It is required to
find the suction lift
(hs) and the discharge head (h,) when the rate
of flow is
200 gpm.
90
60
ValuesofC.. ......... 150
Solution
Corrugated steel ................
(a) SUCTION LIFT-Data from table on page 3-20.
-
140
v2
Velocity head = - = 0.395 ft
2g
Pipe friction loss h, = 2.25 ft per 100 ft of pipe.
The resistance coefficient for the foot valve (page 3-115) is
K = 1.3 and for the long-radius elbow (page 3-112) is K = 0.27.
130
'Multiplier (Basis C
= 100) ... 47 .54
The head loss due to pipe friction will be:
' Multiplier to correct lrict~on loss tables (in prevlous ed~t~ons-14th Ed~t~on and earlier), cannot be used with tables In
thls book whlch are based on the Darcy-Weisbach-Colebrook formula.
" Note: the Hazen Willlams fr~ct~on factor "C" must not be confused wlth the Darcy-Weisbach-Colebrook frlction
factor "f": these two frlctlon factors are not In any way related to each other.
1.50
The head loss in the foot valve and long-radius elbow will be:
120
.62
Total suction lift (b) = (28.62 - 24.00) + 0.62 + 0.11 = 5.35 ft
1 93
(b) DISCHARGE HEAD-The head loss due to pipe friction in the
4" discharge line will be:
110
.71 2.57 .84 1 0 1 22
100
90 80 70 60

INGERSOLLRAND CAMERON HYDRAULIC DATA
FRICTION
ELEV 28900 1-1
ALL PIPE 1s NEW I-INCH
7' STD. STEEL-SCHEDULE a0
\FOOT VALVE
The resistance coefficient for the various fittings as obtained from
the tables will be:
Standard
90 degree flanged elbow (pg. 3-112)
Swing check valve (pg.
3-115)
Wedge-disc gate valve (pg. 8-111)
Sudden enlargement (pg. 3-116 to 3-118)
The total resistance coefficient for the fittings on the discharge
side and sudden enlargement at exit will be:
K = 2
x 0.51 + 1.70 + 0.14 + 1.0 = 3.86
Therefore the head loss due to the fittings on the discharge side
and sudden enlargement will be:
The total discharge head (h,) will be:
Total system head (H) = h, + h, = 290 + 5.35 = 295 ft
Add a reasonable safety factor to allow for any abnormal condition
of pipe's interior
or surface (see page 3-5).
Friction Factors for Commercial Pipe
(for Darcy-Weisbach formula, page
3-3)
Reldtive Roudllness =
1)
00-- r. --
+
a
,, , N" -8" B 0" 688s 8 8 8
cz
OO D OY 00- O - 000- O L -
D
0.
cz -
-m- - I, - cz F. a -
d9" 9 C q r
rn "7
4 -- 0 '=2
, Y c3 sgg
i Fr~ct~on Factor
lfoorly (liagrarn (V 1. Strretrr "1.'1,11il .lIerhantrc " 5th i.il Copyn~ht 1971 by Mctiraa-H111 Book Ci#mpan>.
Ner Yark)
Sote: Chart shows relation of 1,elatlvr t.ooghnra.i~-dl) whi.t.r r is atw~lutr rlnighnr,~ in f~rl am1 1) ~-;,liarnrtet.in feet.

INGERSOLLRAND CAMERON HYDRAULIC DATA
FRICTION
Friction of Water New Steel Pipe
(Based on Darcy's Formula)
1/4 lnch
% lnch
Calculations on pages 3-12 to 3-34 are by Ingersoll-Rand Co
Flow
US
gal
per
mln
Note No allowance has been made for age, dlfference In dlarneter, or any abnormal cond~t~on of Interlor
surface Any factor of safety must be est~mated from the local condltlons and the requirements of each
particular lnstallat~on It 1s recommended that for most cornmerclal des~gn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
'/a lnch
Standard wt steel-sch 40
0.493" inside dia
Y4 lnch
Velocity
ft per sec
Extra strong steel-sch 80
0.423 inside dia
Velocity
ft per sec
Note- No allowance has been made for age, dlfference In d~ameter, or any abnormal cond~tion of interior
surface. Any factor of safety must be est~mated from the local conditions and the requirements of each
part~cular installation It Is recommended that for most commercial des~gn purposes a Safety factor of 15 to
20% be added to the values In the tables-see page 3-5.
Flow
US
gal
per
mln
0.7
1.0
1.5
2.0
2.5
3.0
3.5
4.0
45
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10
Schedule 160
464"lnside dia
Velocity
hkad-ft
Veloclty
ft per
sec
1 90
2 85
3 80
4.74
5.69
6.64
7.59
8.54
9.49
10.44
11.38
12.33
13 28
1423
Extra strong steel-sch 80
Head loss
ft per 100 ft
Velocity
head-ft
Veloclty
It per
sec
.96
1.37
2.06
2.74
3.43
4.11
4.80
5.48
6.1 7
6.86
7.54
8 23
8 91
9.60
10.3
11.0
11.6
12.3
13.0
13.7
Standard wt steel-sch 40
Flow
US
gal
per
m~n
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6
7
8
9
10
11
12
13
14
16
18
20
Steel-schedule 160
Head loss
ft per l0OA
Velocity
head
ft
056
126
224
349
503
,684
,894
1.13
1 40
1.69
2.01
2.36
2.74
314
Veloc~ty
fl per
sec
0.739
1.056
1.58
2.11
2.64
3 17
3.70
4 22
475
5.28
5.81
6.34
6.86
7.39
7.92
8.45
8.98
9.50
10.03
10 56
Extra strong steel-sch 80
Head
loss
ft per
100
n
1.68
5.73
12.0
20.3
30.8
43.5
58.2
75.0
94.0
115
138
163
190
220
546"lnslde d~a
Veloc~ty
head
ft
.01
.03
.07
12
18
.26
.36
.47
.59
.73
.88
1.05
1.23
1.43
. 1.6
1.9
21
24
2.6
2.9
Head
loss
n per
loon
3.05
5.12
7.70
10.8
14.3
18.4
22.9 28.0
39.5
53.0
68.4
85.8
105
126
149
175
202
261
Veloclty
ft per
sec
1.64
2.18
2.73
3 27
3.82
4.36
4.91
5.45
6.54
7.64
8 73
9.82
10.91
12.00
13.09
14 18
15.27
17.45
Veloc~ty
ft per
sec
1.11
1.48
1.86
2.23
2.60
2.97
3 34
3.71
4 45
5 20
5.94
6 68
7 42
8 17
8 91
9.63
10.4
11.9
13.4
14.8
Standard wt steel-s~h 40
Head
loss
fl per
100 n
1.39
2.58
5.34
9.02
13.6
19.1
25.5
32.7
40.9
50.0
59.9
70.7
82.4
95.0
109
123
138
154
171
189
.622"inside d~a
Veloclty
head
ft
,008
017
,039
069
108
,156
,212
,277
351
433
,524
,624
,732
849
975
1 109
1 25
1 40
1.56
1 73
,612'inslde dla
Velocity
head
fl
042 074
115
166
226
295
374
462
.665
,905
1 18
1 50
185
2 23
2.66
3.13
3.62
473
Head
loss
ll per
100 n
0.74
1.86
2.82
4.73
7.10
9.94
13.2
17.0
21.1
25.8
30.9
36.4
42.4
48.8
55.6
63.0
70.7
78.9
87.6
96.6
,742"inslde d~a
Veloc~ty
head
ft
02
03
.05
.08
.ll
.I4
.17
'21
.31
.42
55
69
86
1 04
1.23
1.44
17
2 2
2.8
3.4
Head
loss
n per
100 R
0.72
1.19
1.78
2.47
3.26
4.16
5.17
6.28
8.80
11.7
15.1
18.8
23.0
27.6
32.5
37.9
43.7
56.4
70.8
86.8
Velocity
ft per
sec
0.90
1.20
1.50
1.81
2.11
2 41
271
3.01
3 61
4.21
4.81
5.42
6.02
6 62
7 22
7.82
8.42
9.63
10.8
12.0
Head
loss
fl per
100 n
1.19
1.99
2.97
4.14
5.48
7.01
6.72
10.6
14.9
19.9
25.6
32.1
39.2
47.0
55.5
64.8
74.7
96.7
121
149
,824"inslde d~a
Velocity
head
ft
013
023
.035
,051
,069
,090
,114
,141
,203
,276
360
456
563
681
722
,951
1 103
1.44
1.82
2.25

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
1 lnch
1% lnch
Flow
US
gal
per
mln
2
3
4
5
6
8
10
12
14
16
18
20
22
24
26
28
30
35
40
45
Note No allowance has been made for age dlfference ~n d~ameter, or any abnormal cond~t~on of Interlor
surface Any factor of safety must be estlmated from the local cond~tlons and the requlrements of each
particular lnstallatlon It IS recommended that for most commercial desdgn purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
3-14
Flow
US
gal
per
mln
4
5
6
7
8
10
12
14
16
18
20
25
30
35
40
50
60
70
80
90
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
1
YZ lnch
Standard wt steel-sch 40
1
Veloclty
ft per
sec
0 74
111
1 48
1 86
2 23
2 97
371
4 45
5.20
594
668
7 42
8 17
891
9.65
10 39
111
13 0
14.8
16 7
Note No allowance has been made for age dlfference In d~ameter or any abnorrnal cond~t~on Of lnterlor
surface Any factor of safety must be estlmated from the local condlt~ons and the requlrements of each
parllcular lnstallat~on It IS recommended that for most commerc~al des~gn purposes a safety factor of 15 to
2090 be added to the values In the tables-see page 3-5
Flow
US
gal
per
rn~n
4
5
6
7
8
9
10
12
14
16
18
20
22
24
26
26
30
32
34
36
38
40
42
44
46
48
50
55
60
65
70
75
80
85
90
95
1M)
110
120
130
140
150
160
170
180
Extra strong steel-sch 80
-
Standard wt steel-sch 40
049"lnslde
Velocity
head
ft
009
01 9
034
,054
077
,137
,214
,308
,420
548
694
857
1 036
1.23
1.45
1 68
193
2 62
3 43
4.33
Veloclty
fl per
sec
89
1 34
1 79
2 23
2 68
3 57
4 46
5 36
6 25
7 14
8.03
8.92
9.82
10.7
11.6
12.5
13.4
15.6
17.9
20 1
Schedule 160 steel
,815"lnslde dla
Veloclty
ft per
sec
.858
1073
1 29
1 50
1 72
215
257
300
3.43
386
4 29
5 36
6.44
7.51
8 58
107
129
15.0
17.2
193
dla
Head
loss
ll per
100
fl
,385
,787
1.270
1.90
2.65
4.50
6.81
9.58
12.8
16.5
20.6
25.2
30.3
35.8
41.7
48.1
55.0
74.1
96.1
121
;
Veloc~ty
11 per
sec
1 23
185
2 46
3 08
3 69
4.92
6.15
7.38
8.61
9.84
11 07
12 30
13.53
14 76
1599
Extra strong steel-sch 80
Standard wt steel-sch 40
957"lnslde
Veloc~ty
head
ft
.O1
03
05
.08
.ll
.20
31
45
.61
.79
1 00
124
1 50
1 .8
2.1
2.4
2.8
3.8
50
6.3
1.380'1nsde
Veloc~ty
head
ft
.Oil
018
.026
.035
,046
072
103
140
183
232
286
431
644
876
1 14
179
257
3.50
453
5.79
1
Veloclty
ft per
sec
1.00
1 25
1 50
1 75
2 00
2 50
3.00
3.50
4.00
4.50
5 00
6 25
7 50
8 75
10.0
125
150
17.5
20 0
22 5
Schedule 160-steel
Velocity
tt per
sec
63
.79
.95
1.10
1.26
1 42
1.58
1.89
2.21
2.52
2.84
3.15
3.47
3.78
4.10
4.41
4.73
5.04
5.36
5.67
5.99
6.30
6.62
6.93
7.25
7.56
7.88
8.67
9.46
10.24
11.03
11.8
12.6
13.4
14.2
15.0
15.8
17.3
18.9
20 5
22.1
23.6
25.2
268
284
dla
Head
loss
fl per
100 fl
,599
1.19
1.99
2.99
4.17
7.11
10.8
15.2
20.4
26.3
32.9
40.3
48.4
57.2
66.8
77.1
88.2
119
154
194
Velocity
head
ft
023
053
094
147
211
376
,587
845
1 15
1 50
1.90
2.35
2.84
3.38
3.97
dla
Head
loss
tt per
100R
.35
.52
.72
/ .95
1.20
1.74
2.45
3.24
4.15
5.17
6.31
9.61
13.6
18.2
23.5
36.2
51.5
69.5
90.2
114
1
Veloc~ty
ft per
sec
1.21
1 52
1 82
213
2 43
3 04
3 64
4.25
4 86
5 46
6 07
7 59
9.1 1
10.63
12.14
15.18
1822
2125
24 29
27.32
Extra strong steel-sch
80
Head
loss
tt per
10011
1.26
2.60
4.40
6.63
9.30
15.9
24.3
34.4
46.2
59.7
74.9
91.8
110
131
153
278" ins~de
Veloc~ty
head
It
015
024
034
048
062
097
140
190
249
315
388
607
874
1 19
1 55
243
350
4 76
6.21
786
1.610"lnslde
Veloclty
head
ft
006
010
,014
019
025
,031
,039
,056
076
,099
,125
,154
.I87
.222
,261
,303
,347
,395
,446
.500
577
.618
681
,747
,817
,889
965
1.17
1.39
1.63
1.89
217
2.47
2 79
3.13
3 48
3.86
4 67
5 56
6.52
7.56
8.68
9.88
11.15
1250
Veloclty
fl per
sec
33
.91
1.09
1 27
1.45
1.63
1.82
2.18
2.54
2.90
3 27
3.63
3.99
4.36
4.72
5.08
5.45
5.81
6.17
6.54
6 90
7 26
7.99
63
8.35
8.72
9.08
9.99
10.9
11.8
12.7
136
14.5
15.4
16.3
17.2
18 2
20.0
21.8
23.6
25.4
27.2
29.0
309
327
Schedule 160-steel
d~a
Head
loss
R per
100 ll
.51
.75
1.04
1.33
1.69
2.55
3.57
4.75
6.10
7.61
9.28
14.2
20.1
27.0
34.9
53.7
76.5
103
134
168
160"inslde
Veloclty
head
ft
023
.036
.051
070
092
143
,206
280
366
463
572
894
1 29
1 75
2 29
358
515
701
9 16
11 59
dla
Head
loss
ll per
100 n
,166
,246
.340
,447
,567
,701
,848
1.18
1.51
1.93
2.40
2.92
3.48
4.10
4.76
5.47
6.23
7.04
7.90
8.80
9.76
10.8
11.8
12.9
14.0
15.2
16.5
19.8
23.4
27.3
31.5
36.0
40.8
45.9
51.3
57.0
63.0
75.8
89.9
105
122
139
158
178
199
Velocity
It per
sec
,913
1.14
1.37
1.60
1.83
2 05
2 28
2.74
3.20
3 65
4.1 1
4.56
5.02
5.48
5.93
6.39
6.85
7.30
7.76
8.22
8.67
9.13
9.58
10.04
10.50
10.95
11.41
12.55
13.69
14.83
15.97
17.11
18.25
19.40
20.54
21.68
22.82
25.10
27.38
2966
dia
Head
loss
ll per
100 n
,806
1.20
1.61
2.1 4
2.73
4.12
5.78
7.72
9.92
12.4
15.1
23.2
32.9
44.2
57.3
88.3
126
170
221
279
1.500"1ns1de
Velocity
head
ft
.01
01
02
03
03
.04
.05
.07
.I0
.13
17
20
25
.30
.35
.40
.46
.52
.59
66
74
82
.SO
.99
1.08
1.18
1.28
1.55
1.8
2.2
2.5
2 9
3.3
3.7
4.1
4 6
5.1
6.2
7 4
87
10.0
11.5
13.1
148
16.6
dla
Head
loes
It per
roo n
,233
,346
,478
.630
.800
,990
1.20
1.61
2.14
2.74
3.41
4.15
4.96
5.84
6.80
7.82
8.91
10.1
11.3
12.6
14.0
15.4
16.9
18.5
20.1
21.8
23.6
28.4
33.6
39.2
45.3
51.8
58.7
66.0
73.8
82.0
90.7
109.3
129.6
151.6
175
201
228
257
288
1.338" lnside
Velocity
head
tt
.013
,020
,029
,040
,052
065
081
116
.I58
207
,262
,323
391
,465
,546
,634
727
,828
,934
1.05
1 17
1.29
1.43
1.57
1.71
1.86
2.02
2.45
2.91
3.41
3 96
4 55
5.17
5 84
6.55
7.29
8.08
9.78
11.6
13.7
dla
Heed
Ions
ti per
100 1
.404
,601
,832
1.10
1.35
1.67
2.03
2.84
3.78
4.85
6.04
7.36
8.81
10.4
12.1
13.9
15.9
18.0
20.2
22.5
25.0
27.6
30.3
33.1
36.1
39.2
42.4
51.0
60.4
70.6
81.5
93.2
106
119
133
148
164
197
234
274

INGERS0LLQ;IAND CAMERON HYDRAULIC DATA
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
2 lnch
Note No allowance has been made for age, d~fference In dlameter or any abnormal cond~t~on of ~nter~or
Surface Any factor of safety must be estlmated from the local condltlons and the requ~rements of each
partlcular installat~on It IS recommended that for most commercial deslgn purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
1 Friction of Water New Steel Pipe (Continued)
Flo~
US
gal
per
mln
5
6
7
8
9
10
12
14
16
18
20
22
24
28
28
30
35
40
45
50
55
60
65
70
75
80
85
90'
95
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
(Based on Darcy's Formula)
2% lnch
Note No allowance has been made for age, dlfference In d~ameter or any abnormal cond~t~on of lnterlor
surface Any factor af safety must be estlmated from the local cond~t~ons and the requirements of each
partlcular Installallon It IS recommended that for most commerc~al deslgn purposes a safety factor of 15 to
209b be added to the values In the tables-see page 3-5
Standard wt Steel-sch 40 Extra strong steel-sch 80
Veloclty
fi per
sec
478
574
.669
765
.860
.956
115
134
1.53
172
1.91
210
2.29
2.49
2.68
2 87
3 35
3.82
4 30
4.78
5 26
5 74
6.21
6.69
7.17
7 65
8.13
8.60
9.08
9.56
10.52
11.5
12.4
13.4
143
153
16.3
172
182
19.1
21.0
22 9
24.9
26.8
287
Veloc~ty
11 per
sec
54
65
76
87
98
1.09
1.30
1.52
1.74
1.96
2 17
2 39
2 61
2 83
3.04
3.26
3.80
4 35
4 89
5 43
j 598
6 52
7.06
7 61
8 15
8.69
9.03
9 78
10 3
10 9
12.0 13.0
14.1
15.2
16.3
17 4
18 5
19 6
20 6
21 7
239
26 9
283
304
326
Schedule 160-steel
Veloc~ty
ft per
sec
718
861
101
1 15
1 29
1 44
1.72
2 01
2.30
2.58
2 87
3
16
3.45
3.73
4.02
4.31
5.02
5.74
6.46
7.18
7.89
8.61
9.33
10.05
10 77
11.48
12 20
12.92
13.64
14.35
15.79
17.22
18 66
20.10
21 53
22.97
24.40
2584
27 27
28 71
2.067"tns~de
Veloclty
head
ft
004
005
007
009
012
014
021
028
036
046
,057
069
082
096
111
128
174
227
288
355
430
511
800
696
799
909
1 03
1 15
1 28
1.42
172
2.05
2 40
2 78
3.20
364
4
11
4 60
5 13
5.68
688
8 18
960
11 14
128
1.939'1nslde
Veloclty
head
ft
00
01
01
01
01
02
03
.04
05
06
07
.09
.I1
.12
14
.17
.22
29
37
48
56
.66
77
90
1 03
1.17
-
1.27
1.49
1 6
1 8
2.2 2.6
3.1
3 6
4.1
4 7
5 3
60
6.6
7 3
89
10.6
124
144
165
d~a
Head
loss
R per
loon
,074
,102
,134
-1 70
,209
.252
,349
461
,586
,725
,878
1.05
1.18
1.37
1.57
1.82
2.38
3.06
3.82
4.66
5.58
6.58
7.66
8.82
10.1
11.4
12.8
14.3
15.9
17.5
21.0
24.9
29.1
33.6
38.4
43.5
49.0
54.8
60.9
67.3
81.1
96.2
113
130
149
dla
Head
loss
fi per
100 ft
.I01
.I39
.I82
.231
.285
343
.476
.629
.800
,991
1.16
1.38
1.62
1.88
2.16
2.46
3.28
4.21
5.26
6.42
7.70
9.09
10.59
12.2
13.9
15.8
17.7
19.8
22.0
24.3
29.2
34.5
40.3
46.6
53.3
60.5
68.1
76.1
84.6
93.6
113
134
157
181
208
1.687
lns~de
Veloc~ty
head
ft
006
01 2
016
020
026
032
.046
,063
.062
.I04
128
,155
,184
216
,251
288
392
512
648
799
.967
1.15
135
1.57
180
2 05
2 31
2 59
2 89
3.20
3.87
4.61
5 40
6.27
7.20
8.19
9 24
1036
11 54
12.79
d~a
Head
loss
fi per
100 ft
,197
,271
,357
,452
,559
,675
,938
1.20
1.53
1.90
2.31
2.76
3.25
3.77
4.33
4.93
6.59
8.49
10.6
13.0
15.6
18.4
21.5
24.8
28.3
32.1
36.1
40.3
44.8
49.5
59.6
70.6
82.6
95.5
109
124
140
156
174
192

CAMERON HYDRAULIC DATA
FRICTION
Friction of Water Asphalt-dipped Cast lron and New Steel Pipe
(Based on Darcy's Formula) (Continued)
3 lnch
Flow
US
gal
per
min
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
110
120
130
140
150
160
180
200
220
240
260
Schedule 160-steel
Asphalt-d~pped
cast ~ron
280
300
320
340
360
380
400
420
440
460
480
500
550
600
650
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial
deslgn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5
Friction of Water Asphalt-dipped Cast lron and New Steel Pipe
(Based on Darcy's Formula) (Continued)
3% lnch
Flow
US
gal
per
mln
15
20
25
30
Std wt steel
sch
40
~
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
12.7
13.6
14.5
15.4
16.3
17.2
18.2
19.1
20.0
20.9
21.8
22.7
25.0
27.2
29.5
Extra strong steel
sch
80
3.0"
Ve-
loclty
ft per
sec
.454
.681
,908
1.13
1.36
1.59
1.82
2.04
2.27
2.50
2.72
2.95
3.18
3.40
3.63
3.86
4.08
4.31
4.54
4.99
5.45
5.90
6.35
6.81
7.26
8.17
9.08
9.98
10.9
1 11.8
-020 .I74 1.26 02 .225
.026 .221 1.44 .03
.033 .274 1.63 .04
.379 1.62 041 332 1.80 .05 .430
.535 1.95 ,059 .463 2.17 .07 .601
.717 2.27 080 -614 2 53 .lo .769
3.068"
Ve-
locity
ft per
sec
,434
,651
,868
1.09
1.30
1.52
1.74
1.95
2.17
2.39
2.60
2.82
3.04
3.25
347
3.69
3.91
4.12
4.34
4.77
5.21
5.64
6.08
6.51
6.94
7.81
8.68
9.55
10.4
1 11.3
2.51 2.88
3.28
3.70
4.15
4.62
5.12
5.65
6.20
6.77
7.38
8.00
9.68
11.5
13.5
Asphalt-dlpped cast iron
3.5" inside dia
lnside
Ve-
locity
head
ft
.OO
-01
.01
.02
.03
.04
.05
.06
.08
.10
.12
.14
.16
.18
.21
.23
.26
.29
.32
.39
.46
.54
.63
.72
.82
1.04
1.28
1.55
1.84
1 2.16
Velocity
ft per
sec
.500
,667
,834
1.000
ins~de
Ve-
locity
head
ft
,003
,007
,012
.018
.026
036
.047
-059
-073
,089
,105
,124
,143
.I65
.I87
,211
.237
.264
.293
-354
.421
,495
.574
.659
.749
-948
1.17
1.42
1.69
1 1.98
dla
Head
loss
R per
100 R
.042
.088
,149
-225
.316
.421
.541
.676
.825
.990
1.17
1.36
1.57
1.79
2.03
2.28
2.55
2.83
3.12
3.75
4.45
5.19
6.00
6.87
7.79
9.81
12.1
14.5
17.3
1 20.2
23.4
26.8
30.4
34.3
38.4
42.7
47.3
52.1
57.1
62.4
67.9
73.6
88.9
106
124
Std wt steel sch 40
3.548"
inside dia
dla
Head
loss
R per
100 H
.050
.I01
.I69
.253
.351
.464
.592
.734
360
1.03
1.21
1.40
1.61
1.83
2.07
2.31
2.58
2.86
3.15
3.77
4.45
5.19
5.98
6.82
7.72
9.68
11.86
14.26
16.88
119.71
2.900
Ve-
loclty
ft per
sec
.49
.73
.97
1.21
1.45
1.70
1.94
2.18
2.43
2.67
2.91
3.16
3.40
3.64
3.88
4.12
4.37
4.61
4.85
5.33
5.81
6.30
6.79
7.76
8.72
9.70
10.7
11.6
1 12.6
dla
Head
loss
R per
100 R
.038
.077
.I29
.I92
,267
.353
.449
.557
,676
.776
.912
1.06
1.22
1.38
1.56
1.75
1.95
2.16
2.37
2.84
3.35
3.90
4.50
5.13.'7.28
5.80
7.27
8.90
10.7
12.7
1 14.8
Veloclty
head
f t
,004
,007
,011
,016
Velocity
ft per
sec
.487
,649
,811
.974
Extra strong steel sch 80
3.364" ins~de dia
d~a
Head
IOSS
R per
100 tl
.080
.I64
.275
.411
.572
.757
.933
1.16
1.41
1.69
1.99
2.31
2.65
3.02
3.41
3.83
4.27
4.73
5.21
6.25
7.38
8.61
9.92
11.3
12.8
16.1
19.8
23.8
28.2
1 32.9
2.624
Ve-
locity
ft per
sec
,593
,890
1.19
1.48
1.78
2.08
2.37
2.67
2.97
3.26
3.56
3.86
4.15
4.45
4.75
5.04
5.34
5.63
5.93
6.53
7.12
7.71
8.31
8.90
9.49
10.68
11.87
13.05
14.24
115.43
inslde
Ve-
loc~ty
head
ft
.OO
.O1
.02
.02
.03
.04
.06
.07
.09
.ll
13
.15
.18
.21
.23
.26
.29
.33
.36
.44
.52
.62
.71
.82
.93
1.01
1.46
1.78
2.07
1 2.46
12.2
13.0
13.9
14.8
15.6
16.5
17.4
18.2
19.1
20.0
20.8
21.7
23.9
26.0
28.2
Head
loss
R per
100fl
,043
.070
.lo5
.I46
Velocity
ft per
sec
.54
72
-90
1.08
~nslde
Ve-
loclty
head
ft
,005
,012
.022
.034
.049
.067
-087
,111
,137
,165
-197
,231
,268
,307
,350
,395
.443
,493
,546
.661
.787
.923
1.07
1.23
1.40
1.77
2.19
2.64
3.15
1 3.69
Velocity
head
ft
-004
,007
,010
.015
2.29
2.63
3.00
3.38
3.79
4.23
4.68
5.16
5.67
6.19
6.74
7.32
8.85
10.5
12.4
Head
loss
ft per
100
ft
.038
,064
.095
.I32
Velocity
head
ft
.OO
.01
.01
-02
Head
loss
ft per
100 ft
.050
-083
1 23
.I71
17.1
19.5
22.1
24.9
27.8
30.9
34.2
37.6
41.2
44.9
48.8
52.9
63.8
75.7
88.6
13.6
14.5
15.5
16.5
17.5
18.4
19.4
20.4
21.4
22.3
23.3
24.2
26.7
29.1
31.6
2.88
3.26
3.77
4.22
473
5.27
5.81
6.43
7.13
7.75
8.37
9.15
11.1
13.1
15.5
22.77
26.04
29.53
33.24
37.16
41.31
45.67
50.25
55.05
60.06
65.30
70.75
85.33
101
119
16.61
17.80
18.99
20.17
21.36
22.55
23.73
24.92
26.11
27.29
28.48
29.66
32.63
35.60
38.56
4.28
4.92
5.59
6.32
7.08
7.89
8.74
9.64
10.58
11.56
12.59
13.66
16.53
19.67
23.08
38.0
43.5
49.4
55.6
62.2
69.2
76.5
84.2
92.2
101
109
119
143
170
199

CAMERON HYDRAULIC DATA
Friction of Water Asphalt-dipped Cast Iron and New Steel Pipe
(Based on Darcy's Formula)
4 Inch (Continued)
Friction of Water '~ew Steel Pipe (Continued)
(Based on Darcy's Formula)
Flow
US
gal
per
mln
20
30
70
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
550
600
650
700
750
800
850
900
950
1000
1100
Note
5
lnch
40 1.02 -016 128 1 1.01 016 .I20 1.12 02 153 1.38 030 .258
50 1 128 1 ::W: I
] 1.26 1 :025 I :lVi 1 1.40 1 I 1:;: 1 1.73 1 1::: 1 387 60 1.53 1.51 1 ,036 1.67 2.07 .540
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
1.79
2.04
2.30
2.55
2.81
3.06
3.32
3.57
3.83
4.08
4.34
4.60
4.85
5.11
5.62
6.13
6.64
7.15
7.66
8.17
8.68
9.19
9.70
10.2
10.7
11.2
11.7
12.3
12.8
14.0
15.3
16.6
17.9
191
20.4
21.7
23.0
24.3
25.5
28.1
No
Asphalt-dipped
cast iron
4.0" inside dia
Ve-
locity
ft per
sec
51 1
.766
Standard wt steel-sch 40
,050
,065
-082
.I01
.I23
-146
,171
.I99
,228
,259
,293
,328
,368
,406
.490
,583
,685
,794
.912
1.04
1.17
1.31
1.46
1.62
1.79
1.96
2.14
2.33
2.53
3.06
3.65
4.28
4.96
5.70
6.48
7.32
8.20
9.14
10.1
12.3
allowance has
Note: No allowance has been
made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Std wt steel
sch
40
4.026
inside dia
Ve-
locity
head
ft
,004
,009
Ve
locity
ft per
sec
,504
.756
Extra strong steel-sch 80
Flow
U S
gal
per
mln
30
40
50
60
70
80
90
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
550
600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1700
' Cast
365
.470
.588
.719
.862
1.02
1.19
1.37
1.57
1.77
1.99
2.23
2.47
2.73
3.29
3.90
4.55
5.26
6.02
6.84
7.70
8.61
9.58
10.6
11.6
12.8
13.9
15.2
16.4
19.8
23.6
27.6
32.0
36.6
41.6
46.9
52.6
58.5
64.8
78.3
been
Head
loss
ft per
100 ft
.038
.076
Extra strong steel
sch
80
3.826"
inside dia
Schedule 160-steel
inside
dia
Velocity
head
ft
-004
,006
,010
,014
,020
,026
,032
.040
,058
.078
102
,129
160
193
,230
,270
-313
.360
.409
.462
,518
.577
.639
,705
,774
,846
,921
,999
1.21
1.44
1.69
1.96
2.25
2.56
2.89
3.24
3.61
4.00
4.84
5.76
6.75
7.83
8.99
10.2
11.6
commercially
5.047"
Velocity
ft per
sec
.481
.641
,802
.962
1.12
1.28
1.44
1.60
1.92
2.25
2.57
2.89
3.21
3.53
3.85
4.17
4.49
4.81
5.13
5.45
5.77
6.09
6.41
6.74
7.06
7.38
7.70
8.02
8.82
9.62
10.4
11.2
12.0
12.8
13.6
14.4
15.2
16.0
17.6
19.2
20.8
22.5
24.1
25.7
27.3
iron not
Ve- locity
head
ft
,004
,009
Ve-
locity
ft per
sec
.56
.84
Schedule 160-steel
3.438"
inside dia dia
Head
loss
ft per
100 ft
.030
.051
.075
.lo5
.I38
.I76
.218
-265
370
-491
.607
.757
.922
1.10
1.30
1.51
1.74
1.99
2.25
2.52
2.81
3.12
3.44
3.78
4.13
4.50
4.88
5.28
6.35
7.51
8.77
10.1
11.6
13.1
14.8
16.5
18.4
20.3
24.5
29.0
34.0
39.3
45.0
51.1
57.6
4.813
Velocity
ft per
sec
53
.71
.
-88
1.06
1.23
1.41
1.59
1.76
2.11
2.47
2.82
3.17
3.52
3.88
4.23
4.58
4.94
5.29
5.64
5.99
6.35
6.70
7.05
7.40
7.76
8.1 1
8.46
8.82
9.70
10.6
11.5
12.3
13.2
14.1
15.0
15.9
16.7
17.6
19.4
21.1
22.9
24.7
26.4
28.2
30.0
in this size.
Head
loss
R per
l00ft
.024
.040
.060
.083
.I10
.I40
.I73
.210
-293
-389
.480
.598
.728
.870
1.03
1.19
1.37
1.56
1.77
1.98
2.21
2.45
2.71
2.97
3.25
3.54
3.84
4.15
4.99
5.90
6.89
7.95
9.09
10.3
11.6
13.0
14.4
15.9
19.2
22.7
26.6
30.7
35.2
40.0
45.1
available
1.76
2.02
2.27
2.52
2.77
3.02
3.28
3.53
3.78
4.03
4.28
4.54
4.79
5.04
5.54
6.05
6.55
7.06
7.56
8.06
8.57
9.07
9.58
10.1
10.6
11.1
11.6
12.1
12.6
13.9
15.1
16.4
17.6
18.9
20.2
21.4
22.7
2?.9
25.2
27.7
made for
Head
loss
ft per
100 ft
.035
.072
Ve
locity
ft per
sec
.691
1.04
dia
Head
loss
fl per
100 tt
.051
.OW
.I28
301
:::: 373 1
.453
.612
.81 6
1.05
1.31
1.60
1.91
2.25
2.63
3.02
3.45
3.91
4.39
4.90
5.43
6.00
6.59
7.21
7.85
8.53
9.23
11.1
13.1
15.4
17.8
20.3
23.0
25.9
29.0
32.3
36.7
43.0
51.0
59.8
69.2
79.2
90.0
101
Velocity
ft per
sec
,659
,878
1.10
1.32
1.54
1.76
1.98
2.20
2.64
3.07
3.51
3.95
4.39
4.83
5.27
5.71
6.15
6.59
7.03
7.47
7.91
8.35
8.78
9.22
9.66
10.10
10.54
10.98
12.08
13.18
14.27
15.37
16.47
17.57
18.67
19.76
20.86
21.96
24.16
26.35
28.55
30.74
32.94
35.14
37.33
inside
Velocity
head
ft
.OO
.O1
.01
.02
.02
.03
.04
.05
.07
.09
.12
-16
.19
.23
.28
.33
-38
.43
.49
.56
-63
.70
.77
.85
.94
1.02
1.11
1.21
1.46
1.7
2.1
2.4
2.7
3.1
3.5
3.9
4.3
4.8
5.8
6.9
8.2
9.5
10.8
12.4
14.0
Ve
locity
head
ft
.OO
.01
4.313 inside
Velocity
head
f t
,007
,012
,019
,027
,037
,048
,061
,075
108
147
192
.243
-299
.362
.431
.506
.587
-674
-766
.865
.970
1.08
1.20
1.32
1.45
1.58
1.73
1.87
2.26
2.70
3.16
3.67
4.21
4.79
5.41
6.06
6.76
7.49
9.06
10.78
12.65
14.67
16.84
19.16
21.63
,048
,063
,080
,099
,119
,142
,167
,193
-222
,253
.285
,320
,356
,395
,478
,569
,667
,774
,888
1.01
1.14
1.28
1.43
1.58
1.74
1.91
2.09
2.27
2.47
2.99
3.55
4.17
4.84
5.55
6.32
7.13
8.00
8.91
9.87
11.9
age,
Head
loss
ft per
10Oft
-
.W5
.092
Ve-
locity
head
ft
.007
,017
Head
loss
ft per 100ft
.074
.I54
-330
-422
.523
.613
.732
.861
1.00
1.15
1.31
1.48
1.66
1.85
2.05
2.25
2.70
3.19
3.72
4.28
4.89
5.53
6.22
6.94
7.71
8.51
9.35
10.2
11.2
12.1
13.1
15.8
18.7
21.7
25.3
28.9
32.8
37.0
41.4
46.0
50.9
61.4
difference
In
1.95
2.23
2.51
2.79
3.07
3.35
3.63
3.91
4.19
4.47
4.75
5.02
5.30
5.58
6.14
6.70
7.26
7.82
8.38
8.94
9.50
10.0
10.6
11.2
11.7
12.3
12.8
13.4
14.0
15.3
16.7
18.1
19.5
20.9
22.3
23.7
25.1
26.5
27.9
30.7
diameter,
.06
.08
.10
.12
.15
.17
.20
.24
.27
.31
.35
.39
.44
.48
.59
-70
.82
-95
1.09
1.24
1.40
1.6
1.7
1.9
2.1
2.3
2.5
2.8
3.0
3.6
4.3
5.1
5.9
6.8
7.7
8.7
9.8
10.9
12.1
146
or any
.424
.541
.649
.789
.943
1.11
1.29
1.48
1.69
1.91
2.14
2.38
2.64
2.91
3.49
4.13
4.81
5.54
6.33
7.17
8.06
9.00
9.99
11.0
12.1
13.3
14.5
15.7
17.0
20.5
24.3
28.4
32.8
37.6
42.7
48.1
53.8
59.8
66.2
79.8
abnormal
2.42
2.77
3.11
3.46
3.80
4.15
4.49
4.84
5.18
5.53
5.88
6.22 6.57
6.91
7.60
,091
,119
,150
,185
,224
,267
,313
,363
,417
,475
,536
.601
.669
.742
,897
.691
385
1.10
1.34
1.61
1.89
2.20
2.53
2.89
3.26
3.66
4.09
4.53
5.00
6.00
8.30
8.99
9.68
10.37
11.06
11.75
12.44
13.13
13.82
14.52
15.21
15.90
16.59
17.28
19.00
20.74
22.46
24.19
25.92
27.65
29.38
31.10
32.83
34.56
38.02
condition of interior
1.90
2.14
2.40
2.68
2.97
3.27
3.59
3.92
4.27
4.64
5.61
6.67
7.83
9.08
10.4
11.7
13.4
15.0
16.7
18.5
22.4
12.4
13.9
15.5
17.3
19.1
21.0
22.9
25.0
27.2
29.5
35.5
42.1
49.2
57.0
65.2
74.1
83.4
93.4
104
115
139

CAMERON HYDRAULIC DATA FRICTION
Friction of Water Asphalt-dipped Cast lron and New Steel Pipe
(Based on Darcy's Formula) (Continued)
6 lnch
Friction of Water Asphalt-dipped Cast lron and New Steel Pipe
(Based on Darcy's Formula) (Con tin ued)
8 lnch
steel
dla
Head
loss
ft per
100 A
Flow
US
gal
per
mln
50
60
70
80
90
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
450
500
550
600
650
700
750
800
850
900
950
1000
11M)
1200
1300
1400
1500
1600
1700
1800
1900
2000
2200
2400
Extra strong
sch
80
7.625
insld
#halt-dipped
zast iron
Asphalt-dipped
cast lron
" inside
Ve-
loclty
head
ft
,011
,012
,014
.016
,018
,021
.023
,025
.031
,037
.043
,050
.057
,077
,101
,128
.I58
,191
,228
,267
.310
,356
,405
.457
,513
,571
,633
,766
,911
1.07
1.24
1.42
1.62
2.05
2.53
3.06
3.65
4.28
4.96
5.70
7.70
10.1
12.8
15.8
19.1
Std
wt steel
sch
40
7.981"
Inside dla
Ve- Ve- Head
locity locity loss
ft per head tt per
sec ft 100 tt
.83 .Oll .036
.90 ,013 .042
.96 ,014 .047
1.03 .016 .053
1.09 ,018 .059
1.15 .021 .066
1.22 .023 .073
1.28 .026 .080
1.41 ,031 .095
1.54 ,037 .I11
Flow
US
gal
per
mln
130
140
150
160
170
180
190
200
220
240
6.0
Ve-
locity
ft per
sec
.57
.68
.79
.91
1.02
1.13
1.36
1.59
1.82
2.04
2.27
2.50
2.72
2.95
3.18
3.40
3.63
3.86
4.08
4.31
4.54
5.10
5.67
6.24
6.81
7.37
7.94
8.51
9.08
9.64
10.2
10.8
11.3
12.5
13.6
14.7
15.9
17.0
18.2
19.3
20.4
21.6
22.7
25.0
27.2
dia
Head
loss
ft per
100
ft
.037
.042
.048
.054
.060
.067
-074
.082
-098
.I15
.I34
.I54
.I75
.235
.303
.380
.465
.559
.661
.772
.891
1.02
1.16
1.30
1.45
1.61
1.78
2.15
2.55
2.98
3.45
3.95
4.48
5.65
6.96
8.40
9.98
11.7
13.5
15.5
21.1
27.4
34.7
42.7
51.7
ule 160-steel
A
8
ve-
locity
ft per
sec
.83
.89
.96
1.02
1.00
1.15
1.21
1.28
1.40.
1.53
Std wt steel
sch
40
6.8
Ve
locity
ft per
sec
inside
Ve-
loclty
head
ft
.005
.007
-010
,013
,016
.020
,029
,039
,051
,065
-080
,097
,115
.135
-157
.I80
,205
.231
,259
.289
.320
-403
.500
,605,
,720
.845
-980
1.12 1.28
1.44
1.62
1.80
2.00
2.42
2.88
3.38
3.92
4.50
5.12 5.78
6.48
7.22
8.00
968
11.5
6.065"
Ve-
locity
ft per
sec
.56
.67
.78
.89
1.00
1.11
1.33
1.55
1.78
2.00
2.22
2.44
2.66
2.89
3.11
3.33
3.55
3.78
4.00
4.22
4.44
5.00
5.55
6.11
6.66
7.22
7.77
8.33
8.88
9.44
9.99
10.5
11.1
12.2
13 3
14.4
15.5
16.7
17.8
18.9
20.0
21.1
22.2
24.4
26.6
3 inside dia dia
Head
loss
tt per
100
ft
.027
.038
,048
.062
.077
.094
.I32
.I76
.226
.283
-346
.415
.490
.571
.658
.752
.851
.957
1.07
1.19
1.31
1.65
2.02
2.44
2.89
3.38
3.90
4.47
5.07
5.72
6.40
7.11
7.87
9.50
11.3
13.2
15.3
17.5
19.9
22.4
25.1
28.0
31.0
37.4
44.5
Extra strong steel
sch
80
Ve- Head
loc1ty loss
head ftper
ft 100 ft
.020 .079
.024 .OW
,027 .lo2
,031 .I15
,035 .I28
,039 .I42
,043 .I57
,048 .I72
,058 .205
,069 .241
,081. .279
,094 .320
108 .350
147 .467
192 .601
inside
Ve-
locity
head
ft
.005
,007
,009
,012
,016
,019
,028
.038
-049
.062
,077.
.093
,110
,130
,150
.I72
-196
,222
,240
,277
,307
,388
,479
,580
,690
,810
.939
1.08
1.23
1.38
1.55
1.73
1.92
2 32
2 76
3.24
3.76
4 31
4 91
5.54
6 21
691
7.67
9.27
11.0
5.761"
Ve-
locity
ft per
sec
.62
.74
.86
.98
1.11
1.23
1.48
1.72
1.97
2.22
2.46
2.71
2.96
3.20
3.45
3.69
3.94
4.19
4.43
4.68
4.93
5.54
6.16
6.77
7.39
8.00
8.63
9.24
9.85
10.5
11.1
11.7
12.3
13.5
14.8
16.0
17.2
18.5
19.7
20.9
22.2
23.4
24.6
271
29.6
Schedule 160-steel
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
dia
Head
loss
ft per
100 ft
.025
.034
.045
.057
.071
.086
.I20
.I58
.202
.251
.304
.363
.411
.477
548
.624
,705
.790
.880
-975
1.07
1.34
1.64
1.97
2.33
2.71
3.13
3.57
4.04
4.55
5.08
5.64
6.23
7.49
8.87
10.4
12.0
13.7
15.6
17.5
19.6
21.8
24.1
29.1
34.5
5.187
Ve-
locity
ft per
sec
,759
,911
1.06
1.22
1.37
1.52
1.82
2.13
2.43
2.73
3.04
3.34
3.64
3.95
4.25
4.56
4.86
5.16
5.47
5.77
6.07
.
6.82
7.59
8.35
9.11
9.87
10.63
11.39
12.15
12.91
1367
14 42
15.18
16.71
18.22
19.74
21.26
22.78
24.29
25.81
27.33
28.85
30.37
33.40
36.44
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular
installation. It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
inside
Ve-
locity
head
ft
.01
.01
.01
.01
.02
.02
.03
.05
.06
.08
09
.ll
.14
.16
.19
.21
.24
.27
.31
.34
.38
.48
.59
.71
.85
.99
1.16
1.33
1.51
1.7
1.9
2.1
2.4
2.8
3.4
40 4.6
5.3
6.0
6.8
7.7
84 9.4
114
13.6
dia
Head
loss
ft per
100 ft
.032
.044
.058
.074
.091
.I10
.I54
,203
.260
.323
392
.451
.530
.616
.708
.807
.911
1.02 1.14 1.26
1.39
1.74
2.13
2.55
3.02
3.52
4.06
4.64
5.25
5.90
6.60
7.33
8.09
9.74
11.5
13.5
15.6
17.8
20.3
22.8
25.5
28.4
31.4
37.9
44.9
inside
Ve-
locity
head
ft
,009
,013
,018
,023
,029
,036
,052
.070
,092
.I16
.I43
-1 73
,206
.242
,281
,322
.366
,414
,464
,517
,572
,725
,894
1.08
1.29
1.51
1.75
2.01
2.29
2.59
2.90
3.23
3.58
4.33
5.15
6.05
7.01
8.05
9.16
10.34
11.59
12.92
14.31
17.32
20.61
dia
Head
loss
fl per
100 ft
.053
.073
,096
.I23
.I52
.I84
.256
.340
.435
.522
-635
.760
395
1.04
1.20
1.36
1.54
1.73
1.93
2.14
2.36
2.95
3.61
4.34
5.13
5.99
6.92
7.91
8.96
10.1
11.3
12.5
13.8
16.7
19.8
23.1
26.7
30.6
34.7
39.1
43.8
48.7
53.9
65.0
77.2

INGERSOLL-RAND CAMERON HYDRAULIC DATA
Friction of Water Asphalt-dipped Cast lron and New Steel Pipe
(Based on Darcy's Formula)
(Continued)
10 lnch
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It IS recommended that for most commercial deslgn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
FRICTION
Friction of Water Asphalt-dipped Cast lron and New Steel Pipe
(Based on Darcy's Formula)
12 Inch (Continued)
Schedule 160-steel
Flow
US
gal
per
min
180
200
220
240
260
280
300
350
400
450
500
550
600
650
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4500
5000
5500
6000
6500
7000
7500
Schedule 80 steel
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor Of
15 to
20% be added to the values in the tables-see page 3-5.
dia
Head
loss
ft per
100 R
.048
.059
.070
.082
.094
.I08
.I23
.I63
.208
.259
304
.364
.428
.498
.573
7.38
9.23
1.13
1.35
1.60
1.86
2.15
2.46
2.78
3.13
3.49
3.88
4.29
5.16
6.11
7.14
8.25
9.44
10.7
12.1
13.5
15.0
16.6
20.9
25.7
31.1
36.9
43.2
50.0
57.3
8.500
Ve-
locity
ft per
sec
1.02
1.13
1.24
1.36
1.47
1.58
1.70
1.98
2.26
2.54
2.83
3.11
3.39
3.68
3.96
4.52
5.09
5.65
6.22
6.79
7.35
7.92
8.48
9.05
9.61
10.18
10.74
11.31
12.44
13.57
14.70
15.83
16.96
18.09
19.22
20.35
21.49
22.62
25.44
28.27
31.10
33.92
36.75
39.58
42.41
Std wt steel
sch
40
Flow
U
S
gal
per
mln
200
250
300
350
400
450
500
550
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
2400
2600
2800
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10,000
11,000
12,000
13.000
14,000
15,000
dla
Head
loss
ft per
100 ft
,027
.033
.039
.046
.053
.061
.069
.092
.I17
,145
.I77
.211
.239
.277
.319
.410
.512
.625
,749
,884
1.03
1.19
1.35
1.53
1.72
1.92
2.13
2.36
2.83
3.35
3.92
4.52
5.17
5.87
6.60
7.38
8.21
9.07
11.4
14.1
17.0
20.1
23.6
27.3
31.2
lnslde
Ve
loclty
head
ft
,016
,020
024
,029
,034
,039
,045
,061
,079
,100
,124
-150
-179
.210
,243
.318
.402
,496
,600
,714
-839
.972
1.12
1.27
1.43
1.61
1.79
1.99
2.40
2.86
3.35
3.89
4.47
5.08
5.74
6.43
7.17
7.94
10.05
12 40
15.01
17.86
20.96
24.31
27.91
9.562
Ve-
loclty
ft per
sec
304
,894
,983
1.07
1.16
1.25
1.34
1 -56
1.79
2.01
234
2.46
2.68
2.90
3.13
3.57
4.02
4.47
4.92
5.36
5.81
6.26
6.70
7.15
760
8.04
8.49
8.94
9.83
10.72
11.62
12.51
13.40
14.30
15.19
16.08
16.98
17.87
20.11
22.34
24.57
26.81
29.04
31.28
33.51
Asphalt-dipped
cast iron
dia
Head
loss
ft per
100 ft
.022
,026
,031
,037
.042
.049
.055
.073
,093
,116
.I40
,167
.I97
.228
.253
.325
.405
.494
,592
.699
.814
.938
1.07
1.21
1.36
1.52
1.68
1.86
2.24
2.64
3.09
3.57
4.08
4.62
5.20
5.81
6.46
7.14
8.99
11.1
13.3
15.8
18.5
21.4
24.5
lnslde
Ve
locity
head
ft
,010
,012
,015
.018
,021
,024
,028
,038
,050
,063
,077
,094
,112
,131
.I52
.I98
.251
-310
,375
.446
,524
607
,697
.793
,895
1.00
1.12
1.24
1.50
1.79
2.09
2.43
2.79
3.17
3.58
4.02
4.47
4.96 6.27 7.75
9.37
11.15
13.09
15.18
17.43
10.020
Ve-
loclty
ft per
sec
.73
.81
.90
98
1.06
1 14
1 22
1.42
1.63
1.83
2.03
2.24
2.44
2.64
2.85
3.25
3.66
4.07
4.48
4.88
5.29
5.70
6.10
6.51
6.92
7.32
773
8.14
8.95
9.76
10.6
11.4
12.2
13.0
13.8
14.6
15.5
16.3
18.3
20.3
22.4
24.4
26.4
28.5
305
dla
Head
loss
ft per
100 ft .023
.028
.032
.038
.044
.051
.057
.077
.099
.I23
.I50
.I80
.213
.248
.286
370
.464
.569
.685
.811
,947
1.09
1.25
1.42
1.60
1.79
1.99
2.20
2.65
3.15
3.68
4.26
4.88
5.54
6.25
6.99
7.79
8.62
10.9
13.4
16.2
19.2
22.6
26.1
30.0
inslde
Ve-
locity
head
ft
,
008
,010
013
01 5
017
,020
023
-032
,041
.052
.064
,078
,093
.la9
126
,165
-208
.257
-311
.370
,435
,504
,579
,659
.743
834
,929
1.03
1.,25
1.48
1.74
2.02 2.32
2.63 2.97
3.33
3.71
4.12
5.21
6 43
7.78
9.26
10.9
12.6
14.5
10.0"
Ve
loclty
ft per
sec
74
.82
.90
.98
1.06
1.1 4
1.23
1.43
1.63
1.84
2.04
2.25
2.45
2.66
2.86
3.27
3.68
4.09
4.49
4.90
5.31
5.72
6.13
6.54
,6.94
7.35
7.76
8.17
8.99
9.80
10.6
114
12 3
13 1
13.9
14.7
15.5
16.3
18.4
20.4
22.5
24.5
26.6
28.6
30.6
Schedule 80 steel
~nslde
Ve-
loclty
head
ft
,008
010
.013
01 5
.018
,020
,023
,032 ,042
,053
,065 ,079
.093
,110
-127
-166
.210
.259
,314
373
,438
.508
,584
,664
.749
,840
.936
1.04
1.26
1.49
1.75
2.03
2.33
2.66
3.00
3.36
3.74
4.15
5.25
6.48
7.85
9.34
11.0
12.7
14.6
Schedule 160 steel
11.374
Ve-
locity
ft per
sec
,632
,789
,947
1.11
1.26
1.42
1.58
1.74
1.90
2.21
2.53
2.84
3.16
3.47
3.79
4.11
4.42
4.73
5.05
5.68
6.32
6.95
7.58
8.21
8.84
9.47
11.05
12.63
14.21
15.79
17.37
18.95
20.53
22.10
23.68
25.26
26.84
28.42
30.00
31.58
34.73
37.89
41.05
44.21
47.37
Asphalt-dipped
cast iron
Std wt steel
sch
40
12.0
Ve-
locity
ft per
sec
.57
.71
.85
.99
1.1 3
1.28
1.42
1.56
1.70
1.99
2.27
2.55
2.84
3.12
3.40
3.69
3.97
4.26
4.54
5.11
5.67
6.24
6.81
7.38
7.94
8.51
9.93
11.3
12.8
14.2
15.6
17.0
18.4
19.9
21.3
22.7
24.1
25.5
26.9
28.4
31.2
34.0
36.9
39.7
42.6
dia
Head
loss
R per
100R
.025
.038
.052
.069
.088
.I10
.I33
-1 59
.I87
.240
.308
.384
.469
.562
.663
.772
.889
1.02
1.15
1.44
1.76
2.12
2.51
2.93
3.38
3.86
5.22
6.77
8.52
10.5
12.6
15.0
17.5
20.3
23.3
26.4
29.8
33.3
37.1
41.0
49.6
58.7
69.0
79.9
91.6
10.126
Ve-
locity
ft per
sec
,797
,996
1.20
1.39
1.59
1.79
1.99
2.1 9
2.39
2.79
3.19
3.59
3.98
4.38
4.78
5.18
5.58
5.98
6.37
7.17
7.97
8.77
9.56
10.36
11.16
11.95
13.94
15.94
17.93
19.92
21.91
23.90
25.90
27.89
29.88
31.87
33.86
35.86
37.85
39.84
43.82
47.81
51.79
55.78
59.76
inside
Ve-
locity
head
ft
,006
.010
,014
,019
,025
,031
,039
.047
.056
.076
,099
,125
,155
.I87
.223
.262
.303
.348
,396
,501
.619
.749
.891
1.05 1.21
1.39
1.90
2.48
3.13
3.87
4.68
5.57
6.54
7.58
8.71
9.90
11.18
12.54
13.97
15.48
18.73
22.29
26.15
30.33
34.82
inside
Ve-
locity
head
ft
,010
,015
,022
,030
,039
,050
,062
.075
.089
,121
,158
,200
,246
,298
.355
,416
,483
,554
,631
,798
.985
1.19
1.42
1.67
1.93
2.22
3.02
3.94
4.99
6.16
7.45
8.87
10.41
12.07
13.86
15.77
17.80
19.95
22.23
24.64
29.81
35.47
41.63
48.28
55.43
dia
Head
loss
ft per
100R
.011
.017
.024
.031
.040
.049
460
.071
.083
.I11
.I42
.I76
.207
.247
.291
.339
.390
.444
.502
.629
.769
.923
1.09
1.27
1.47
1.68
2.26
2.92
3.68
4.52
5.44
6.45
7.54
8.72
9.98
11.3
12.8
14.3
15.9
17.6
21.2
25.2
29.5
34.2
39.2
dia
Head
loss
R per
100fl
.014
.021
.030
.039
.050
.062
.076
.090
.lo6
.I40
.I80
.216
.263
.315
.371
.432
.497
.566
.640
.802
.981
1.18
1.39
1.62
1.87
2.14
2.89
3.74
4.71
5.78
6.97
8.26
9.66
11.2
12.8
14.5
16.4
18.3
20.4
22.6
27.2
32.3
37.9
43.8
50.3
inside
Ve-
locity
head
ft
,005
.008
,011
.015
.020
.025
.031
.038
,045
.061
.080
.I01
.I25
.I51
,180
,211
,245
,281
.320
.405
.500
.605
.720
,845
,980
1.13
1.53
2.00
2.53
3.13
3.78
4.50
5.28
6.13
7.03
8.00
9.04
10.1
11.3
12.5
15.1
18.0
21.1
24.5
28.1
11.938"
Ve-
locity
ft per
sec
.57
.72
.86
1.00
1.1 5
1.29
1.43
1.58
1.72
2.01
2.29
2.58
2.87
3.15
3.44
3.73
4.01
4.30
4.59
5.16
5.73
6.31
6.88
7.45
8.03
8.60
10.0
11.5
12.9
14.3
15.8
17.2
18.6
20.1
21.5
22.9
24.4
25.8
27.2
28.7
31.5
34.4
37.3
40.1
43.0
dia
Head
loss
ft per
100fl
.011
.017
.024
.031
.040
.049
.060
.072
.085
-114
.I47
.I84
-225
.271
.320
.374
.431
.493
.558
.702
.862
1.04
1.23
1.44
1.67
1.91
2.58
3.36
4.24
5.21
6.30
7.48
8.76
10.1
1.
13.2
14.9
16.7
18.6
20.6
24.9
29.6
34.7
40.2
46.1
inside
Ve-
locity
head
ft
,005
,008
,012
,016
,020
.026
.032
,039
,046
.063
,082
,103 ,128 ,154 ,184
,216
,250
.287
,327
,414
' 511
.618
.735
,863
1.00
1.15
1.55
2.04
2.59
3.19
3.86
4.60
5.39
6.26
7.18
8.17
9.22
10.3
11.5
12.8
15.4
18.3
21.6
25.0
28.7

CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Asphalt-dipped cast iron and new steel pipe
14 lnch 16 lnch
Note: No allowance has been made for age, difference In d~ameter, or any abnormal condition of ~nterlor
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It IS recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Flow
US
gal
per
mln
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
9000
10,000
11,000
12,000
13.000
14.000
15,000
16,000
17,000
18,000
20,000
22,000
24.000
Friction of Water (Continued)
(Based on Darcy's Formula)
Asphalt-dipped cast iron and new steel pipe
18
Inch 20 Inch
Asphalt-dipped
cast iron
14.0"
Ve- locity
ft per
sec
.625
-834
1.04
1.25
1.46
1.67
1.88
2.08
2.29
2.50
2.71
2.92
3.13
3.34
3.54
3.75
3.96
4.17
5.21
6.25
7.30
8.34
9.38
10.42
12.51
14.6
16.7
18.8
20.8
22.9
25.0
27.1
29.2
31.3
33.3
35.4
37.5
41.7
45.9
50.0
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
Flow
U S
gal
per
mln
500
600
700
800
900
1000
1200
1400
1600
1800
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
9000
10.000
12,000
14,000
16,000
18,000
20,000
22,000
24,000
26.000
28.000
30.000
32,000
34.000
36.000
38.000
40.000
42,000
44.000
46,000
Flow
US
gal
per
min
500
600
700
800
900
1000
1200
1400
1600
1800
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
9000
10,000
11,000
12.000
13,000
14,000
15.000
16.000
17,000
18.000
20,000
22.000
24.000
26,000
28.000
30,000
32.000
34.000
36.000
38,000
lnside
Ve-
locity
head
ft
.006
-01 1
.017
,024
,033
-043
,055
,067
,082
,097
,114
.I32
.I52
,173
,195
,218
.243
.270
-421
.607
.826
1.08
1.37
1.69
2.43
3.30
4.32
5.47
6.75
8.17
9.71
11.4
13.2
15.2
17.3
19.5
21.8
27.0
32.7
38.8
New steel
schedule
40
dia
Head
loss
fl per
100 A
.011
.019
.028
-039
.053
.068
-085
.lo3
.I24
.I47
.I71
.I97
.225
.255
,286
.320
.355
.392
.605
.864
1.17
1.52
1.91
2.35
3.37
4.49
5.86
7.39
9.11
11.0
13.3
15.3
17.7
20.3
23.1
26.1
29.7
36.0
43.5
52.7
13.124"
Ve-
loclty
ft per
sec
,712
,949
1.19
1.42
1.66
1.90
2.14
2.37
2.61
2.85
3.08
3.32
3.56
3.80
4.03
4.27
4.51
4.74
5.93
7.12
8.30
9.49
10.67
11.86
14.23
16.60
18.97
21.35
23.72
26.09
28.46
30.83
33.20
35.58
37.95
40.32
42.69
47.43
52.18
56.92
Asphalt-dipped
cast iron
Asphalt-dipped
cast iron
16.0
Ve-
locity
ft per
sec
,798
.957
1.12
1.28
1.44
1.60
1.92
2.23
2.55
2.87
3.19
3.99
4.79
5.59
6.38
7 18
7.98
9.57
11.17
12.77
14.36
15.96
17.55
19.15
20.74
22.3
23.9
25.5
27.1
28.7
31.9
35.1
38.3
41.5
44.7
47.9
51.1
54.3
57.4
60.6
New steel
schedule
40
18.0" -
Ve-
locity
ft per
sec
,630
,756
.883
1.01
1.14
1.26
1.51
1.77
2.02
2.27
2.52
3.1 5
3.78
4.41
5.04
5.67
6.30
7.57
8.83
10.1
11.3
12.6
15.1
17.7
20.2
22.7
25.2
27.7
30.3
32.8
35.3
37.8
40.3
42.9
45.4
47.9
50.4
53.0
55.5
58.0
inside
Ve-
loclty
head
ft
,008
,014
,022
.031
,043
,056
.071
.087
.I06
,126
,148
,171
,196
,223
.252
,283
,315
,349
,546
,786
1.07 1.40
1.77
2.18
3.14
4.28
5.59
7.07
8.73
10.56
12.57
14.75
17.11
19.64
22.35
25.23
28.27
34.92
42.26
50.29
15.000"
Ve-
locity
ft per
sec
,908
1.09
1.27
1.45
1.63
1.82
2.1 8
2.54
2.91
3.27
3.63
4.54
5.45
6.35
7.26
8.17
9.08
10.89
12.71
14.52
16.34
18.16
19.97
21.79
23.60
25.42
27.23
29.05
30.86
32.68
36.31
38.94
45.57
47.20
50.84
54.47
58.10
61.73
65.36
68.99
New steel
schedule
40
dla
Head
loss
tt per
100 ft
.015
-025
.038
.052
.070
.089
.I11
.I34
.I60
-182
.212
.243
.277
.313
.351
-391
.434
.478
.732
1.04
1.40
1.81
2.27
2.79
3.98
5.37
6.98
8.79
10.8
13.0
15.5
18.1
21.0
24.0
27.3
30.8
34.5
42.9
51.3
61.0
inside
Ve-
locity
head
ft
,010
.014
-01 9
,025
,032
,040
,057
,077
.I01
,128
,158
,247
,356
,484
,632
,800
,988
1.42
1.94
2.53
3.20
3.95
4.78
5.69
6.68
7.75
8.89
10.1
11.4
12.8
15.8
19.1
22.8
26.7
31.0
35.6
40.5
45.7
51.2
57.1
Flow
U
S
gal
per
mln
800
1000
1200
1400
1600
1800
2000
2400
2800
3200
3600
4000
5000
6000
7000
8000
9000
10,000
12,000
14,000
15,000
16.000
18,000
20,000
22,000
24,000
26,000
28.000
30.000
32,000
34,000
36.000
38,000
40.000
45,000
50.000
55,000
60,000
65,000
70,000
inside
Ve-
locity
head
ft
,006
.009
-01 2
,016
.020
.025
.036
-048
-063
-080
.099
.I54
.222
,302
,395
,500
,617
,888
1.21
1.58
2.00
2.47
3.55
4.84
6.32
7.99
9.87
11.9
14.2
16.7
19.3
22.2
25.3
28.5
32.0
35.6
39.5
43.5
47.8
52.2
16.876"
Ve-
locity
ft per
sec
.717
,861
1 .OO
1.1 5
1.29
1.43
1.72
2.08
2.96
2.58
2.87
3.59
4.30
5.02
5.74
6.46
7.17
8.61
10.0
11.5
12.9
14.3
17.2
20.1
22.9
25.8
28.7
31.6
34.4
37.3
40.2
43.0
45.9
48.8
51.6
54.5
57.4
60.2
63.1
66.0
dia
Head
loss
R per
100 fl
.015
-020
-027
.035
.043
.053
.075
.lo0
.I30
.I62
-199
.306
.436
.589
.764
.962
1.18
1.69
2.29
2.98
3.77
4.64
5.60
6.65
7.98
9.03
10.4
11.8
13.3
14.9
18.3
22.2
26.4
30,9
35.8
41.1
46.7
52.7 59.1
65.8
inslde
Ve-
locity
head
ft
,013
,018
,025
-033
.041
,051
,074
.lo0
.I31
.I66
,205
,320
,460
,627
,819
1.04
1.28
1.84
2.51
3.27
4.14
5.12
6.19
7.37
8.65
10.03
11.51
13.10
14.79
16.58
20.46
24.76
29.47
34.58
40.11
46.04
52.39
59.14
66.30
73.88
dia
Head
loss
ft per
100 R
,008
,012
.016
,019
.024
.029
-041
.056
.072
.090
.I10
.I68
.239
.323
.418
.526
.647
,924
1.25
1.63
2.05
2.52
3.62
4.91
6.40
8.08
9.96
12.0
14.3
16.8
19.4
22.3
25.3
28.6
32.0
35.7
39.5
43.6
47.8
52.2
dla
Head
loss
A per
100
fl
.020
.027
.036
.046
.058
.070
.098
.I30
.I61
.201
.245
.374
.530
.712
.920
1.15
1.42
2.01
2.72
3.53
4.44
5.45
6.58
7.80
9.13
10.6
12.1
13.7
15.5
17.3
21.3
25.8
30.6
35.9
41.5
47.6
54.1
61.0
68.4
76.1
inside
Ve-
loclty
head
ft
.008
,011
,016
.020
,026
,032
,046
,063
,082
,103
,128
,200
,287
,391
,511
.647
.798
1.15
1.57
2.04
2.59
3.19
4.60
6.26
8.18
10.3
12.8
15.5
18.4
21.6
25.0
28.7
32.7
36.9
41.4
46.1
'
51.1
56.3
61.8
67.6
dia
tiead
loss
fl per
100 fl
.011
.015
.020
.026
.032
,039
.055
.073
.093
,116
.I37
,208
.294
,394
SO8
.637
-780
1.11
1.49
1.94
2.43
2.99
4.27
5.77
7.51
9.46
11.6
14.1
16.7
19.5
22.6
25.9
29.5
33.2
37.2
41.4
45.9
50.5
55.4
60.5
Asphalt-dipped
cast iron
20.0"
Ve-
loclty
ft per
sec
317
1.02
1.23
1.43
1.63
1.84
2.04
2.45
2.86 3.27
3.68
4.09
5.10
6.1 3
7.1
5
8.17
9.19
10.2
12.3
14.3
15.3
16.3
18.4
20.4
22.5
24.5
26.6
28.6
30.6
32.7
34.7
36.8
38.8
40.9
46.0
51.1
56.2
62.3
66.4
71.5
New steel
schedule
40
18.812"
Ve-
locity
ft per
sec
,923
1.15
1.39
1.62
1.85
2.08
2.31
2.77
3.23
3.69
4.16
4.62
5.77
6.93
8.08
9.23
10.4
11.5
13.9
16.2
17.3
18.5
20.8
23.1
25.4
inside
Ve-
loclty
head
ft
,010
,016
,023
.032
,041
.052
,065
,093
,127
,166
,210
,259
,405
,583
,793
1.04
1.31
1.62
2.33
3.17
3.64
4.14
5.25
6.48
7.84
9.32
10.9
12.7
14.6
16.6
18.7
21.0
23.4
25.9
32.8
40.5
49.0
58.3
68.4
79.3
dia
Head
loss
fl per
100 R
.012
.017
.025
-033
.042
.053
.065
.091
.I23
.I59
.I99
.245
.377
.539
.728
.946
1.19
1.47
2.10
2.85
3.27
3.71
4.68
5.77
6.97
8.29
9.71
11.3
12.9
14.7
16.6
18.5
20.7
22.9
28.9
35.7
43.1
51.3
60.2
69.8
inside
Ve-
locity
head
ft
.013
,021
,030
,041
,053
,067
,083
,119
,162
,212
,268
,331
,517
,744
1.01
1.32
1.68
2.07
2.98
4.05
4.65
5.29
6.70
8.27
10.0
dia
Head
loss
R per
100 fl
.015
.023
.032
.043
,055
,068
.083
.I12
.I50
.I93
.241
.295
.452
.641
.862
1.12
1.40
1.72
2.45
3.32
3.79
4.31
5.42
6.67
8.05
-
27.7
30.0
32.3
34.6
36.9
39.2
41.6
43.9
46.2
51.9
57.7
63.5
69.3
75.0
80.8
11.9
14.0
162
18.6
21.2
23.9
26.8
29.9
33.1
41.9
51.7
62.6
74.5
87.4
101
9.55
11.2
12.9
14.8
16.9
19.0
21.3
23.7
26.2
33.1
40.8
49.3
58.6
68.6
79.5

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Asphalt-dipped cast iron and new steel pipe
24 Inch 30 Inch
Friction of Water (Continued)
(Based on Darcy's Formula)
Flow
U S
gal
per
mln
800
1000
1200
1400
1600
1800
2000
2400
2800
3200
3600
4000
5000
6000
7000
26,000
28.000
30,000
34.000
38.000
42,000
46,000
50.000
60.000
70.000
80,000
90,000
100,000
110,000
120.000
Asphalt-dipped cast iron and new steel pipe
36
Inch 42 Inch
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
18.4
19.9
21.3
24.1
27.0
29.8
32.6
35.5
42.6
49.6
56.7
63.8
70.9
78.0
85.1
Asphalt-dlpped
cast ~ron
24.0" inslde dia
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It IS recommended that for most commerc~al design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
-
Ve-
loc~ty
fl per
sec
,567
,709
.851
,993
1.14
1.28
1.42
1.70
1.99
2.27
2.55
2.84
3.55
4.26
4.96
5.28
6.12
7.03
9.02
11.3
13.8
16.5
19.5
28.1
38.3
50.0
63.2
78.1
94.3
112
Flow
U S
gal
per
mln
1400
1600
1800
2000
2400
2800
3200
3600
4000
5000
6000
7000
8000
9000
10,000
12,000
14,000
16,000
18.000
20.000
25,000
30,000
35.000
40,000
50,000
60.000
70.000
80,000
90,000
100,000
110,000
120.000
130,000
140.000
150.000
160,000
170.000
180,000
190.000
200.000
New steel
schedule
40
22.624"
lnslde dla
Flow
U S
gal
per
mln
1000
1200
1400
1600
1800
2000
2400
2800
3200
3600
4000
5000
6000
7000
8000
Ve-
loclty
head
ft
,005
.008
.011
,015
,020
,025
,031
,045
.061
,080
.I01
.I25
.I95
,281
,383
Ve-
loclty
ft per
sec
.638
.798
,958
1.12
1.28
1.44
1.60
1.92
2.24
2.55
2.87
3.1 9
3.99
4.79
5.59
3.78
4.38
5.02
6.44
8.03
9.80
11.7
13.9
19.9
27.1
35.3
44.7
55.1
65.6
78.5
New steel
schedule
40
Asphalt-d~pped
cast ~ron
Head
loss
ft per
l00ft
,005
.007
.010
.013
,017
.021
.026
.037
-049
.063
.079
.097
.I49
.212
.287
Flow
U S
gal
per
mln
2000
3000
4000
5000
6000
7000
8000
9000
1 0,000
11,000
12,000
14,000
16,000
18,000
20,000
25,000
30,000
35.000
40,000
45.000
50.000
60.000
70,000
80,000
90,000
100,000
110,000
120.000
130.000
140.000
150.000
160.000
170.000
180.000
190.000
200,000
250,000
300.000
350.000
400.000
34.500"
Ve-
loclty
ft per
sec
,480
.549
,618
.686
.824
,961
1.10
1.24
1.37
1.72
2.06
2.40
2.75
3.09
3.43
4.12
4.81
5.49
6.18
6.86
8.58
10.30
12.0
13.7
17.2
20.6
24.0
27.5
30.9
34.3
37.7 41.2 44.6
48.0
51.5
54.9
58.3
61.8
65.2
68 6
36.0"
Ve-
locity
ft per
sec
,441
,504
,567
,630
-756
,883
1.01
1 .I 4
1.26
1.58
1.89
2.21
2.52
2.84
3.15
3.78
4.41
5.04
5.67
6.30
7.88
9.46
11.0
12.6
15.8
18.9
22.1
25.2
28.4
31.5
34.7
37.8
41.0
44.1
47.3
50.4
53.6
567
59.9
63.0
Ve-
locity
head
ft
.006
010
-01 4
,019 ,025
,032
,040
,057
078
,101
.I28
,158
,247
356
.484
20.8
22.3
23.9
27.1
30.3
33.5
36.7
39.9
47.9
55.9
63.8
71.8
79.8
87.8
95.8
-
Head
loss
ft per
l00R
.006
.009
.013
.017
.022
.028
.034
-047
.063
.080
.096
.I18
.I79
-254
.341
Asphalt-dlpped
cast iron
30.0" lnslde dla
42.0
Ve-
loclty
ft per
sec
,463
,695
,926
1.16
1 39
1.62
1.85
2.08
2.32
2.55
2.78
3.24
3.71
4.17
4.63
5.79
6.95
8.11
9.26
10.4
11.6
13.9
16.2
18.5
20.8
.
23.2
25.5 27.8
30.1
32.4
34.7
37.1
39.4
41 7
44.0
46.3
57.9
69.5
81.1
92 6
lnside
Ve-
locity
head
ft
,004 ,005
,006
,007
,011
,014
,019
,024
,029
.046
-066
.090
-117
-148
,183
.263
-358
,468
,592
,731
1.14
1.65
2.24
2.93
4.57
6.58
8.96
11.7
14.8
18.3
22.1
26.3
30.9
35.8
41.1
46.8
52.8 59.2
66.0
73.1
Inside
Ve-
loclty
head
ft
,003 ,004 ,005
.006
.009
,012
.016
,020
,025
,039
.056
,076
.099
,125
.I54
.222
302
,395
,500
-617
,962
1.39
1.89
2.47
3.86
5.55
7.56
9.87
12.5
15.4
18.7
22.2
26.1
30.2
34.7
39.5
44.6
50.0
55.7
61.7
New steel
schedule
30
28.750"
lnslde dla
6.68
7.75 8.90
11.4
14.3
17.4
20.9
24.7
35.6
48.4
63.3
80.1
98.9
110
142
dla
Head
loss
A per
100 ft
.002
.003
,004
,004
.006
.008
.010
.013
.015
.023
-033
.043
-054
.067
.082
.I15
.I55
.200
.250
307
.471
.671
.906
1.18
1.82
2.60
3.52
4.58
5.77
7.11
8.58
10.2
11.9
13.8
15.8
18.0
20.3
22.8
25.3
28.0
dla
Head
loss
ft per
100 R
.002
.002
.003
.004
.005
.007
.008
.010
.013
.019
.027
.037
.048
.060
.073
.lo4
.I40
,182
.228
.281
.433
.622
,843
1.10
1.70
2.45
3.32
4.33
5.47
6.74
8.15
9.69
11.4
13.2
15.1
17.2
19.4
21.7
24.2
26.8
Head
loss
ft per
l00fl
.002
.003
.005
.006
.007
.009
.012
.016
.021
.026
.032
,048
.069
.092
.I19
Ve-
loclty
ft per
sec
.494
.593
,692
,791
,890
,988
1.19
1.38
1.58
1.78
1.98
2.47
2.97
3.46
3.95
Ve-
loclty
ft per
sec
.454
,545
,635
,726
,817
,908
1.09
1.27
1.45
1.63
1.82
2.27
2.72
3.18
3.63
lnslde
Ve-
loclty
head
ft
003
007 ,013
,021
.030
.041
,053
.067
,083
,101
,120
,163
,213
,270
.333
,520
,749
1.02
1.33
1.69
2.08
3.00
4.08
15.33
6.74
8.32
10.1
12.0
14.1
16.3
18.7
21.3
24.1
27.0
30.0
33.3
52.0
74.9
102
133
Ve- loc:ty
head
ft
003 .005
,006
,008
,010
,013
,018
,025
-033
.041
,051
,080
,115
157
205
4.34
5.03
5.76
7.36
9.17
11.2
13.4
15.8
22.6
30.7
40.0
50.6
62.3
75.3
89.6
Ve-
loclty
head
ft
004
005
,007
,010
,012
,015
,022
,030
-039
.049
.061
,095
,136
.I86
.243
dla
Head
loss
ft per
l00ft
.003
.004
.005
.007
.009
.010
.015
.019
.025
.031
.037
.057
.077
.I03
-1 33
28.000
30,000
35.000
40,000
45,000
50.000
55.000
60.000
65,000
70.000
75,000
80,000
85.000
90,000
100,000
Cast
iron
asphalt
dlpped
New
steel
12.7
13.6
15.9
18.2
20.4
22.7
25.0
27.2
29.5
31.8
34.0 36.3 38.6
40.9
45.4
Head
tU100
.002
,004
.006
,009
.013
.017
.022
,027
.034
,040
.048
.064
.083
.lo4
.I28
.I98
.282
382
.497
.626
.771
1.11
1.50
1.95
2.47
3.04
3.67
4.37
5.12
5.93
6.80
7.73
8.73
9.78
10.9
12.1
18.8
27.1
36.8
48.0
2.51
2.88
3.92
5.12
6.48
7.99
9.67
11.5
13.5
15.7
18.0
20.5
23.1
25.9
32.0
loss
ft
.002
.003
.006
.009
.012
.017
.021
.026
.032
.037
.043
.058
,075
.094
.I14
.I75
.249
335
.434
.545
.669
.954
1.29
1.67
2.11
2.60
3.13
3.72
4.35
5.04
5.77
6.56
7.39
8.28
9.21
10.2
15.6
22.4
30.4
39.6
1.39
1.59
2.15 2.81
3.54
4.37
5.28
6.27
7.35
8.52
9.77
11.1
12.5
14.0
17.3
13.8
14.8
17.3
19.8
22.2
24.7
27.2
29.7
32.1
34.6
37.1
39.5
42.0
44.5
49.4
-
2.97
3.41
4.64
6.07
7.68
9.48
115
13.6
16.0
18.6
21.3
24.3
27.4
30.7 .
379
1.48
1.69
2.29
2.97
3.75
4.61
5.56
6.60
7.73
8.95
10.3
11.7
13.1
14.7
18.1

CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Asphalt-dipped cast iron and new steel pipe
48 lnch 54 lnch
Flow
U S
gal
per
rnln
2000
3000
4000
5000
6000
7000
8000
9000
10,000
12,000
14,000
16,000
18,000
20,000
25.000
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
60 lnch 72 lnch 84 lnch
54.0" Inside d~a
30.000 5.32 .439 .I43 .I30
35.000 6.21 .598 .I93 ,175
40.000 7.09 -779 .251 .225
45,000 7.98 .987 .316 .279
50,000 8.87 1.22 .389 .340
55,000 9.75 1.47 .469 .406
60,000 10.64 1.76 .556 .485
70,000 12.41 2.39 .754 .654
80.000 14.18 3.12 .982 .849
90,000 15.96 3.95 1.24 1.07
100,000 17.73 4.88 1.53 1.31
110,000 19.50 5.90 1.84 1.58
120,000 21.28 7.03 2.19 1.88
130,000 23.05 8.25 2.52 2.20
140.000 24.82 9.56 2.98 2.54
Veloc~ty
ft per
sec
.355
.532
.709
,887
1.06
1 24
1.42
1.60
1.77
2.13
2.48
2.84
3.1 9
3.55
4.43
Flow
U S
gal
per
rnin
10,000
12.000
14.000
16.000
18.000
20,000
22.000
24.000
26,000
28,000
30,000
35,000
40,000
45,000
50.000
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor
of safety must be estimated from the local conditions and the requirements of each
partlcular installat~on It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5.
Flow
U S
gal
per
mln
14.000
16,000
18,000
20,000 22,000
24,000
26.000
28.000
30.000
35,000
40.000
45.000
50,000
60.000
70,000
80.000
90,000
100,000
110,000
120.000
130,000
140,000
150.000
160,000
170.000
180,000
190,000
200.000
250.000
300.000
350.000
400.000
450.000
500,000
550.000
600,000
650.000
700.000
750.000
800.000
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
Veloc~ty
head
ft
,002
,004
,008
.012
.018
,024
.031
.040
,049
,070
,096
125
,158
.I95
.304
Veloc~ty
ft per
sec
1.40
1.68
1.96
2.24
2.52
2.80
3.08
3.36
3.64
3.92
4.20
4.90
5.60
6.30
7.00
Nom~nal slze
Cast
Iron
asphalt
dipped
Veloc~ty
head
ft
,030
,044
,060
.078
099
122
147
.I75
206
.239
.274
.373
.487
,617
,761
Flow
U S
gal
per
min
18,000
20.000
22.000
24,000
26,000
28,000
30,000
35.000
40,000
45.000
50,000
60,000
70,000
80.000
90,000
100,000
110,000
120,000
130,000
140,000
150,000
160,000
170,000
180.000
190,000
200,000
250.000
300.000
350,000
400,000
450,000
500.000
550,000
600,000
650.000
700,000
750,000
800,000
850,000
900,000
60.0
Ve-
loc~ty
ft per
sec
1.59
1.82
2.04
2.27
2.50
2.72
2.95
3.18
3.40
3.97
4.54
5.1 1
5.67
6.81
7.94
9.08
10.2
11.3
12.5
13.6
14.8
15.9
17.0
18.2
19.3
20.4
21.6
22.7
28.4
34.0
39.7
45.4
51.1
56.7
62.4
68.1
73.8
79.4
85.1
90.8
New
steel
Cast
Iron
asphalt
d~pped
inside
Ve-
loc~ty
head
ft
,039
-051
.065
,080
,097
,115
,135
-157
.I80
-245
.320
,405
,500
,719
,979
1.28
1.62
2.00
2.42
2.88
3.38
3.92
4.50
5.12
5.78
6.48
7.21
7.99
12.5
18.0
24.5
32.0
40.5
50.0
60.5
71.9
84.4
97.9
112
128
New
steel
head loss
ft1100 tt
dia
Head
loss
R per
100 R
.010
.013
.017
.020
.023
.027
.032
-037
.042
.056
.072
.091
.l 1 1
.I57
.212
.274
.345
.423
SO9
.603
.705
.815
.933
1.06
1.19
1.33
1.48
1.64
2.55
3.65
4.95
6.45
8.14
10.0
12.1
14.4
16.9
19.7
22.4
25.5
Nom~nal size
.DO1
.002
.003
.005
.007
.009
.011
.014
.017
.024
-033
.042
,053
.065
.I00
Flow
U S
gal
per
mln
24,000
26.000
28,000
30,000
35,000
40,000
45,000
50,000
55.000
60,000
70.000
80,000
90,000
100,000
11 0,000
120,000
130,000
140,000
150,000
160,000
170,000
180,000
190,000
200,000
250.000
300,000
350,000
400,000
450.000
500,000
550,000
600,000
650,000
700,000
750,000
800,000
850,000
900,000
950,000
1,000,000
72
Ve-
locity
ft per
sec
1.42
1.58
1.73
1.89
2.05
2.21
2.36
2.76
3.15
3.55
3.94
4.73
5.52
6.30
7.09
7.88
8.67
9.46
10.2
11.0
11.8
12.6
13.4
14.2
15.0
15.8
19.7
23.6
27.6
31.5
35.5
39.4
43.3
47.3
51.2
55.2
59.1
63.0
67.0
70.9
.oo:
.002
.003
.005
.006
.009
,010
,014
.017
.023
.031
.039
.048
.059
.092
head loss
ft per 100 ft
.010
.013
.018
.023
,029
.036
.043
.051
,059
.069
.079
.lo6
.I37
,173
,213
inside
Ve-
locity
head
ft
,031
,039
,047
,056
,065
,076
-087
,118
,154
,195
,241
,347
,472
.617
,781
,964
1.17
1.39
1.63
1.89
2.17
2.47
7.89
3.12
3.48
3.86
6.02
8.67
11.8
15.4
19.5
24.1
29.2
34.7
40.7
47.2
54.2
61.7
69.6
78.1
Nominal size
.009
,013
,017
,022
.027
,033
.039
.047
,054
.062
,071
.096
,123
.I54
.I89
dia
Head
loss
ft per
l00R
.007
.008
,010
.012
.013
.015
.018
.023
.029
.036
,045
,063
.085
.I10
.I37
.I68
.203
.240
.280
323
.370
.419
.472
.528
.587
.648
1.00
1.44
1.95
2.53
3.20
3.94
4.75
5.65
6.62
7.66
8.79
9.99
11.3
12.6
84.0
Ve-
locity
ft per
sec
1.39
1.51
1.62
1.74
2.03
2.32
2.61
2.90
3.18
3.47
4.05
4.63
5.21
5.79
6.37
6.95
7.53
8.11
8.64
9.26
9.84
10.4
11.0
11.6
14.5
17.4
20.3
23.2
26.1
28.9
31.8
34.7
37.6
40.5
43.4
46.3
49.2
52.1
55.0
57.9
inside
Ve-
locity
head
ft
,030
,035
.041
,047
,064
,083
,105
-130
,157
,187
,255
,333
,421
,520
,629
,749
,879
1.02
1.17
1.33
1.50
1.69
1.88
2.08
3.25
4.68
6.37
8.32
10.5
13.0
15.7
18.7
22.0
25.5
29.3
33.3
37.6
42.1
46.9
52.0
dia
Head
loss
R per
100 R
.005
.006
.007
.008
,011
.014
.017
.021
.025
.029
.039
.051
.063
.078
.093
.I10
.I29
.I49
.I70
.I92
.216
.242
.269
.297
.459
.655
.886
1.15
1.45
1.79
2.16
2.56
3.00
3.48
3.99
4.53
5.11
5.72
6.37
7.05

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
96 Inch 108 Inch 120 Inch
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
Friction of Water New Steel Pipe (Continued)
(Based on Darcy's Formula)
144 Inch 168 Inch 192 Inch
Flow
U S
gal
per
mln
20.000
30.000
40.000
50,000
60,000
70,000
80,000
90.000
100,000
110,000
120.000
130.000
140.000
150.000
160.000
170,000
180,000
190,000
200.000
250,000
300.000
350.000
400,000
450,000
500,000
600,000
700.000
800,000
900,000
1,000,000
1,100,000
1,200.000
1,300.000
1,400,000
1,500,000
1,600,000
1,700,000
1,800,000
1.900.000
2,000,000
Nominal size
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
Surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
Flow
U S
gal
per
mln
30,000
40.000
50,000
60,000
70,000
80,000
90,000
100,000
110,000
120,000
130,000
140,000
150.000
160,000
170.000
180,000
190,000
200,000
250,000
300.000
350,000
400,000
450,000
500,000
600,000
700.000
800,000
900.000
1,000.000
1,200,000
1,400,000
1,5M],000
1,600,000
1,800.000
2,000.000
2.200,OOO
2,400,000
2,500.000
2.600.000
2.800,OOO
Flow
U S
gal
per
mln
15:000
20,000
25.000
30,000
35,000
40,000
45 000
50,000
60.000
70,000
80.000
90.000
100,000
110,000
120,000
130,000
140,000
150,000
160,000
170,000
180.000
190,000
200,000
250,000
300,000
350,000
400,000
450.000
500.000
600,000
700.000
800.000
900.000
1,000,000
1,100,000
1,200,000
1,300.000
1,400,000
1,500,000
Flow
U S
gal
per
min
12.000
14,000
1 6,000
18.000
20.000
22,000
24,000
26.000
28,000
30,000
40,000
50,000
60,000
70.000
80,000
90,000
100,000
110,000
120,000
130,000
140,000
1 50,000
160,000
170,000
180,000
190,000
200,000
250.000
300,000
350.000
400.000
450.000
500.000
600,000
700,000
800,000
900.000
1,000,000
1,100,000
1,200,000
dia
Head
loss
ft per
l00n
.001
.001
.002
.004
.005
.007
.009
.011
.013
.016
.019
.022
.025
.028
.032
.036
.040
.045
-049
.076
.I08
.I45
.I88
.237
.291
.416
-562
.731
.922
1.14
1.37
1.63
1.91
2.21
2.53
2.87
3.24
3.63
4.04
4.47
120.0
Ve-
locity
ft per
sec
,567
,851
1.14
1.42
1.70
1.99
2.27
2.55
2.84
3.12
3.40
3.69
3.97
4.26
4.54
4.83
5.1 1
5.39
5.67
7.09
8.51
9.93
11.3 12.8
14.2
17.0
19.9
22.7
25.5
28.4
31.2
34.0
36.9
39.7
42.6
45.4
48.2
51.1
53.9
56.7
Nominal size
inside
Ve-
loclty
head
ft
,005
,011
.020
.031
.045
,061
,080
,101
.I25
,151
,180
,211
,245
,281
,320
,361
.405
.451
,500
,781
1.12
1.53
2.00
2.53
3.12
4.50
6.12
7.99
10.1
12.5
15.1
18.0
21.1
24.5
28.1
32.0
36.1
40.5
45.1
50.0
Nominal size
dia
Head
loss
ft per
l00ft
.OOl
,001
.002
.002
.003
,004
.005
.006
.009
.011
.015
.018
.022
.027
.031
.037
.042
.048
.054
.061
.068
.076
.084
.I29
.I83
.247
.321
.404
.497
.710
.962
1.25
1.58
1.94
2.35
2.79
3.27
3.78
4.34
108.0
Ve-
locity
ft per
sec
-525
.700
,876
1.05
1.23
1.40
1.58
1.75
2.10
2.45
2.80
3.15
3.50
3.85
4.20
4.55
4.90
5.25
5.60
5.95
6.30
6.65
7.00
8.76
12.3
14.0
15.8
17.5
21.0
24.5
28.0
31.5
35.0
38.5
42.0
45.5
49.0
52.5
Nominal size
Flow
U S
gal
pef
mln
50.000
60,000
70,000
80.000
90,000
100,000
120,000
140,000
150.000
160,000
180,000
200,000
220,000
240.000
250,000
260.000
280.000
300.000
350,000
400,000
450,000
500,000
600,000
700,000
800.000
900.000
1.000.000
1,200,000
1,400,000
1,600,000
1,800,000
2,000,000
2,200,000
2,400,000
2,600,000
2.800.000
3.000.000
3,200,000
3,400,000
3.600,OOO
144.W
Ve-
locity
ft per
sec
.591
.788
.985
1.18
1.38
1.58
1.77
1.97
2.17
2.36
2.56
2.76
2.96
3.15
3.35
3.55
3.74
3.94
4.93
5.91
6.90
7.88
8.87
9.85
11.8
13.8
15.8
17.7
19.7
23.6
27.6
29.6
31.5
35.5
39.4
43.3
47.3
49.3
51.2
55.2
inside
Ve-
locity
head
ft
.004
.008
,012
,017
,023
,030
.039
.048
.069
,093
,122
-154
,190
,230
,274
,322
,373
,428
,487
,550
,617
,687
,761
1.19
10.5'1.71
2.33
3.05
3.86
4.76
6.85
9.33
12.2
15.4
19.0
23.0
27.4
32.2
37.3
42.8
dia
Head
loss
ft per
l00R
.001
,001
.001
.002
.002
.002
.003
.003
.004
.004
.007
-011
.015
.020
.026
,033
.040
,048
.056
.066
,076
.087
.098
.llO
.I23
,137
.I51
.233
.333
.449
.584
.735
.905
1.30
1.76
2.29
2.88
3.55
4.29
5.10
96.0
Ve-
locity
ft per
sec
,532
.621
,709
,798
,887
,975
1.06
1.15
1.24
1.33
1.77
2.22
2.66
3.10
3.55
3.99
4.43
4.88
5.32
5.76
6.21
6.65
7.09
7.54
7.98
8.42
8.87
11.1
13.3
15.5
17.7
19.9
22.2
26.6
31.0
35.5
39.9
44.3
48.8
53.2
inside
Ve-
locity
head
ft
,005
,010
,015
.022
,030
.039
.049
.060
.073
,087
.I02
.I 18
.I36
.I54
,174
,195
.217
,241
,376
,542
,738
,964
1.22
1.51
2.17
2.95
3.86
4.88
6.02
8.67
11.8
13.6
15.4
19.5
24.1
29.2
34.7
37.6
40.7
47.2
inside
Ve-
locity
head
ft
,004
,006
,008
,010
,012
,015
,018
.021
,024
,027
.049
,076
.I10
,149
-1 95
,247
,305
,369
,439
,515
,598
,686
,781
,881
,988
1.10
1.22
1.91
2.74
3.74
4.88
6.18
7.62
11.0
14.9
19.5
24.7
30.5
36.9
43.9
dia
Head
loss
R per
100 R
.001
.001
.002
,002
.003
.004
.005
.DO6
.006
.008
.009
,010
.011
.013
.015
.016
.018
.020
.030
-043
.058
.075
.094
.I16
.I65
.223
.289
.364
.448
.641
.869
.995
1.13
1.43
1.76
2.12
2.52
2.73
2.95
3.42
Nominal
slze
Flow
U S
gal
per
min
60.000
80,000
100,000
120.000
140.000
150,000
160,000
180.000
200,000
220.000
240,000
250,000
260,000
280.000
300,000
350.000
400.000
450.000
500,000
600.000
700,000
800,000
900,000
1,000,000
1.200.000
1.400.000
1,600.000
1,800,000
2,000,000
2,200,000
2,400,000
2,600,000
2,800,000
3.000.000
3,200.000
3,400.000
3,600,000
3.800.000
4,000,000
4,500,000
168.0
Ve-
locity
ft per
sec
,724
,868
1.01
1.16
1.30
1.45
1.74
2.03
2.17
2.32
2.61
2.90
3.18
3.47
3.62
3.76
4.05
4.34
5.07
5.79
6.51
7.24
8.68
10.1
11.6
13.0
14.5
17.4
20.3
23.7
26.7
29.6
32.6
35.6
38.5
41.5
44.5
47.4
50.4
53.4
inside
Ve-
locity
head
ft
,008
,012
,016
,021
,026
.033
,047
,064
,073
,083
.I05
,130
,157
,187
,203
,220
.255
,293
,398
.520
,658
.813
1.17
1.59
2.08
2.63 3.25
4.68
6.37
8.73
11.1
13.6
16.5
19.6
23.1
26.7
307
34.9
39.4
44.2
Nominal size
dia
Head
loss
ft per
100 ft
.001
.001
.001
.002
.002
.003
.004
.005
.005
.006
.008
.009
.011
.013
.014
.015
.018
.020
.027
.035
.043
.053
.076
.lo2
.I33
.I67
.205
.293
.396
.547
.690
.850
1.03
1.22
1.43
1.65
1.89
2.15
2.43
2.72
192.0"
-
Ve-
locity
ft per
sec
,665
,887
1.11
1.33
1.55
1.66
1.77
2.00
2.22
2.44
2.66
2.77
2.88
3.10
3.32
3.88
4.43
5.00
5.54
6.65
7.76
8.87
9.97
11.1
13.3
15.5
17.7
19.9
22.2
24.4
26.6
28.8
31.0
33.2
35.5
37.7
39.9
42.1
44.3
49.9
inside
Ve-
loclty
head
ft
,007
-01 2
-019
.027
.037
,043
,049
,062
.076
,092
,110
,119
,129
,149
,172
,233
305
,386
,476
.686
,934
1.22
1.54
1.91
2.74
3.74
4.88
6.18
7.62
9.22
11.0
12.9
14.9
17.2
19.5
22.0
24.7 27.5 30.5
38.6
dia
Head
loss n per
100 ft
.001
.001
.001
.002
.003
.003
.003
.004
.005
.006
,007
.007
.008
.009
.010
.014
.018
.022
.027
.039
.052
.068
.085
.lo4
.I49
.201
.261
.329
.405
.488
.580
.679
.786
.900
1.02
1.15
1.29
1.44
1.59
2.01

CAMERON HYDRAULIC DATA
Friction Losses in Smooth Tubing and Pipe
Copper Tubing (Type K, L and M)- S. P. S. Copper and Brass Pipe, Plastic
and Glass Pipe.
Smooth copper tubing and pipe, brass pipe, plastic and glass pipe are
available in various sizes and types to meet individual requirements as
specified-sizes may be different than standard. To avoid the necessity of
interpolation and applying correction factors to the values for cast iron and steel
pipe, a special set of tables is included herewith on pages 3-34 to
3-48 figured on
the basis of commercially available copper tubing, and S.P.S. copper and brass
pipe.
These tables are calculated using the Darcy-Weisbach equation (see page 3-3)
and basis an absolute roughness parameter of 0.000005 (see page
3;5); since this
roughness parameter applies to very smooth pipe or tubing a safety factor
should' be applied in those cases to compensate for possible questionable
conditions; as discussed on page 3-5 it is suggested that for most commercial
design purposes a safety factor of
15 to 20% be added to the head loss values in
the tables.
It should be noted that the head loss data can apply to any fluid having
a kinematic viscosity
v = 0.000 012 16 ft2/sec (1.130 centistokes), which is
the viscosity for pure fresh water at
60°F. Greater viscosities (colder water)
will increase the friction; lower viscosities (warmer water) will decrease
the
friction.
Friction losses for tubing and pipe sizes between those listed in the tables may
be determined with reasonable accuracy using a ratio of the fifth powers of the
diameters; for example:
Desired friction loss pipe
B = known friction loss pipe A
Friction of Water
(Eased on Darcy's Formula)
Copper
Tubing-*S.P.S. Copper and Brass Pipe
34 lnch
Friction of Water (Continued)
(Eased on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
l/2 lnch
%I lnch
Flow
-
U S
gal
per
mln
'12
1
1112
2
21/2
3
3'/2
4
4%
5
6
7
8
9
10
Flow
-
Calculations on pages 3-34 to 3-48 are by lngersoll-Rand Co.
Note No allowance has been made for age, dlfference in diameter, or any abnormal condit~on of ~nter~or
surface Any factor of safety must be est~mated from the local cond~t~ons and the requirements of each
PartlC~lar lnstallatlon It IS recommended that for most commerc~al des~gn purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
Type K tublng
.527" ~ns~de d~a
049" wall thk
Type
K
tub~ng
,652" inside dia
,049" wall thk
Flow
-
U S
gal
per
mln
0 2
0 4
0
6
0 8
1
I l/2
2
2'2
3
3l2
4
4'2
5
Head
loss Velocity
niioo n I itisec 1
Flow
-
U S
gal
per
mln
I/
1
Ill2
2
2'12
3
3%
4
4th
5
6
7
8
9
10
Veloc~ty
ftisec
0.74
1 47
220
2.94
3 67
4.40
5.14
5.87
6.61
7.35
8.81
10.3
11.8
13.2
14.7
' Pipe
625" ~nside d~a
1075" wall thk
Flow
-
US
gal
per
min
02
04
06
08
1
ll/z
2
2'/2
3
3'12
4
4M
5
Note: No allowance has been made for age, d~fference In diameter, or any abnormal condition of Interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation. It is recommended that for most commerc~al design purposes a safety factor of 15 to
2O0/o be added to the values in the tables-see page 3-5.
Head
loss
ftI100ft
0.88
2.87
5.77
9.52
14.05
19.34
25.36
32.09
39.51
47.61
65.79
86.57
109.9
135.6
163.8
Type L
tub~ng
545" ~ns~de d~a
040 wall thk
Veloc~ty
ftisec
0.52
1.04
1.57
2.09
2.61
3.13
3.66
4.18
4.70
5.22
6.26
7.31
8.35
9.40
10.4
Pipe
494'
~ns~de dla
0905 wall thk
Velocity
ftisec
0.69
1.38
2.06
2.75
3.44
4.12
4.81
5.50
6.19
6.87
825
9.62
11 .O
124
13.8
Type M
tub~ng
,569" ~ns~de dia
,028'' wall thk
Head
loss
fV100n'
0.40
1.28
2.58
4.24
6.25
8.59
11.25
14.22
17.50
21.07
29.09
38.23
48.47
59.79
72.16
Type L tubing
.666" ins~de dia
,042 wall th k
Veloc~ty
ftlsec
0 34
0 67
1 00
1 34
1 68
2 51
335
4 19
5 02
5 86
6 70
7 53
8 36
Head
loss
fti100ft
0.75
2.45
4.93
8.11
11.98
16.48
21.61
27.33
33.65
40.52
56.02
73.69
93.50
115.4
139.4
Veloc~ty
ftlsec
0.63
1 26
1 90
253
3.16
3.79
4.42
5.05
5.68
6.31
7.59
8.84
10.1
11.4
12.6
'Pipe Type M tubing
,690" inside d~a
.030 wall thk
Head
loss
fUl00 fl
0.26
0.82
1.63
2.66
3.89
7.84
12.94
19 11
26 32
34 52
43.70
53.82
64.87
Type K
tub~ng
402 inside d~a
049 wall thk
Head
loss
fV100ft
0.62
2.00
4.02
6.61
9.76
13.42
17.59
22.25
27.39
32.99
45.57
59.93
76.03
93.82
113.3
Flow
-
.
Veloc~ty
ftisec
051
101
152
202
2 52
3 78
504
6 30
7 55
8 82 10 I
11 4
126
Head
loss W100 fl
0.66
2.15
4.29
7.02
10.32
20.86
34.48
51.03
70.38
92.44
117.1
144.4
174.3
Type L
tub~ng
430" ~ns~de d~a
035" wall th k
Veloclty
ftisec
0 44
0 88
1 33
1 77
2 20
3 30
440
5 50
6 60
7 70
8 80
9 90
110
Type M tublng
450 ~ns~de d~a
025 wall thk
Head
loss
tV100 ft
0.48
1.57
3.12
5.11
7.50
15.15
20.03
37.01
51.02
66.98
84.85
104.6
126.1
Veloc~ty
ftisec
0 40
0 81
1 21
1 61
201
3 02
402
5 03
6 04
7 04
8 05
9 05
10 05
Head
loss
N100 ft
0.39
1.27
2.52
4.12
6.05
12.21
20.16
29.80
41.07
53.90
68.26
84.1 1
101.4

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
1 l/4 lnch
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
Y4 lnch
I Type K tub~ng Flow
-
U S
gal
per
mln
5
6
7
8
9
10
12
15
20
25
30
35
40
45
50
60
70
80
90
100
Flow
-
U S
gal
per
mln
-
1
2
3
4
5
Type L
tub~ng
,785'' ~ns~de dia
045" wall thk
,745' ~ns~de d~a
,065'' wall thk
3.73
2 94 6.1 6
Pipe
1.368" inside d~a
Ielocity
ftisec
0 66
1.33
1.99
2.65
3.31
3.98
4.64
5.30
5.96
6.62
7.29
7.95
8.61
9 27
9.94
10.6
11.25
11.92
Flow
Flow
A
U S
g a1
per
mln
5
6
7
8
9
10
12
15
20
25
30
35
40
45
50
60
70
80
90
100
146"
wall
Velocity
ftlsec
1.09
1.31
1
53
1.75
1.96
2.18
2.62
3.27
4.36
5.46
6.55
7.65
8.74
9.83
10.9
13.1
15.3
17.5
19.6
21.8
Type M
tub~ng
1.291" Inside d~a
.042 wall th k
Head
loss
WlOO A
0.44
1.44
2.91
4.81
7.1 1
9.80
12.86
16.28
20.06
24.19
28.66
33.47
38.61
44.07
49.86
55.97
62.39
69.13
Type M
tub~ng
.811" ~ns~de d~a
.032" wall thk -
U S
gal
Per
min
thk
Head
loss
W100ft
0.51
0.70
0.91
1.15
1.42
1.71
2.35
3.49
5.81
8.65
11.98
15.79
20.06
24.80
29.98
41.66
55.07
70.16
86.91
105.3
Veloc~ty
ftisec
1.22
1.47
1.71
1.96
2.20
2.45
2.93
3.66
4.89
6.11
7.33
8.55
9.77
11.0
12.2
14.7
17.1
19.6
22.0
24.4
Type L
tub~ng
1.265" ins~de d~a
,055" wall thk
Veloc~ty
ftisec
0.62
1.24
1.86
2.48
3
10
3.72
4 34
4.96
5.59
6.20
6.82
7.44
8.06
8.68
9.30
9.92
10.55
11 17
Pipe
822 ~ns~de d~a
114" wall thk Head
loss
W100ft
0.67
0.92
1.20
1.52
1.87
2.25
3.10
4.60
7.67
11.42
15.82
20.86
26.51
32.77
39.63
55.10
72.86
92.85
115.1
139.4
Veloc~ty
ftlsec
1.28
1.53
1.79
2.04
2.30
2.55
3.06
3.83
5.10
6.38
7.65
8.94
10.2
11.5
12.8
15.3
17.9
20.4
23.0
25.5
Type K
tublng
1 245" Inside d~a
,065 wall thk
Head
loss
W100 ft
0.38
1.23
2.49
4.12
6.09
8.39
11.01
13.94
17.17
20.70
24.52
28.63
33.02
37.69
42.64
47.86
53.35
59.10
Velocity
ftisec
0.60
1.21
1.81
2.42
3.02
3.62
4.23
4.83
5.44
6.04
6.64
7.25
7.85
8 45
9 05
9.65
10.25
10.85
1 lnch
Head
loss
W100R
0.74
1.01
1.32
1.67
2.06
2.48
3.42
5.07
8.46
12.59
17.44
23.00
29.24
36.15
43.71
60.78
80.38
102.5
127.0
153.9
Velocity
ftisec
1.31
1.58
1.84
2.11
2.37
2.63
3.16
3.95
5.26
6.58
7.90
9.21
10.5
11.8
13.2
15.8
18.4
21.1
23.7
26.3
Head
loss
W100 ft
0.35
1.16
2.34
3.86
5.71
7.86
10.32
13.07
16.10
19.41
22.99
26.84
30.96
35.33
39.97
44.86
50.00
55.40
111'2 lnch
( Type K tub~ng I Type L tublng I Type M tub~np I 'Pipe I
Head
loss
W100ft
0.79
1.09
1.43
1.81
2.22
2.67
3.69
5.47
9.13
13.59
18.83
24.83
31.57
38.03
47.20
65.65
86.82
110.7
137.2
166.3
Flow
-
U S
gal
per
mln
8
9
10
12
15
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
- -
gal Head Head Head Head gal
per 1 veloc~ty 1 loss 1 veloc~ty / loss 1 eocit 1 loss 1 eoct 1 loss 1 ppr
mln ftlsec W100 ft ftlsec ft/100 ft ftisec W100 fl ftisec W100 ft mln
Note: No allowance has been made for age, difference in d~ameter, or any abnormal condition of ~nterior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It IS recommended that for most commerc~al design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Flow
-
U S
Note: No allowance has been made for age, difference In diameter, or any abnormal cond~t~on of ~nter~or
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Pipe
1.600" inside dia
,150" wall thk
Flow
-
U S
gal
per
mln
8
9
10
12
15
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
,995" ~ns~de d~a
,065'' wall thk
Veloclty
ftlsec
1.27
1 43
1.59
1.91
2.39
3.19
3.98
4.78
5.58
6.37
7.16
7.96
9 56
11.2
12.8
14 4
15
9
17 5
19.1
20.7
Type M tubing
1.527" Inside dia
Head
loss
W100fi
0.55
0.67
0.81
1.12
1.65
2.75
4.09
5.65
7.45
9.45
11.68
14.11
19.59
25.87
32.93
40.76
49.34
58.67
68.74
79.53
.049 wall
Velocity
ftlsec
1.40
1.57
1.75
210
2.63
3.50
4.38
5.25
6.13
7.00
7.88
8.76
10.5
12.3
14 0
15 8
17.5
19.3
21.0
22.8
Type L tubing
1.505"
ins~de dia
LJ S
1.025" inside dia
,050" wall thk
thk
Head
loss
tV100ft
0.68
0.84
1.01
1.39
2.07
3.44
5.1 1
7.07
9.31
11.83
14.61
17.66
24.53
32.40
41.25
51.07
61.84
73.55
86.18
99.73
,060" wall
Velocity
ftlsec
1.44
1.62
1.80
2.16
2.70
3.60
4.51
5.41
6.31
7.21
8.11
9.01
10.8
12.6
14.4
16 2
18.0
19.8
21.6
23.4
Type K tubing
1.481" inside dia
thk
Head
loss Wl00n
0.73
0.90
1.08
1.49
2.21
3.68
5.48
7.58
9.99
12.68
15.67
18.94
26.30
34.74
44.24
54.78
66.34
78.90
92.46
107.0
,072" wall
Velocity
ftlsec
1.49
1.67
1.86
2.23
2.79
3.72
4.65
5.58
6.51
7.44
837
9.30
11.2
13.0
14.9
16.7
18.6
20.5
22.3
24 2
1.055" ins~de d~a
,035" wall thk
thk
Head
loss
tVlOOtt
0.79
0.97
1.17
1.61
2.39
3.98
5.91
8.19
10.79
13.70
16.93
20.46
28.42
37.55
47.82
59.21
71.70
85.29
99.95
115.7
1.062"
ins~de d~a
1265 wall thk
Flow
-

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
2 lnch
Note: No allowance has been made for age, difference In diameter, or any abnormal cond~t~on of Interlor
surface. Any factor of safety must be est~rnated from the local cond~t~ons and the requirements of each
particular lnstallat~on. It is recommended that for most comrnerc~al des~gn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-'S.P.S. Copper and Brass Pipe
Flow
-
U S
gal
per
mln
10
12
14
16
18
20
25
30
35
40
45
50
60
70
80
90
100
110
120 130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
21/2 lnch
Flow
-
U S
gal
per
rnln
10
12
14
16
18
20
25
30
35
40
45
50
60
70
80
90
I00
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
Pipe
Note:
No allowance has been made for age, difference
In d~ameter, or any abnormal cond~t~on of Interior
surface. Any factor of safety must be est~mated from the local conditions and the requirements of each
particular installation. It IS recommended that for most cornrnerc~al des~gn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
2 062"
.1565'
Veloclty
ftssec
.96
1 15
1 34
1 53
1 72
1.92
2 39
2 87
3.35
3.83
4.30
4.80
5.75
6.70
7.65
861
9.57
10.5
11.5
12.5
13 4
14 4
15 3
16 3
17 2
18.2
19.2
20.1
21 .O
22 0
23 0
23.9
24
9
258
26 8
27
8
28 7
Inside d~a
wall thk
Head
loss
WlOO ft
0.24
0.33
0.44
0.55
0.68
0.82
1.22
1.68
2.21
2.80
3.46
4.17
5.79
7.63
9.70
12.00
14.51
17.24
20.18
23.33
26.69
30.25
34.01
37.98
42.15
46.51
51.07
55.83
60.78
65.93
71.26
76.79
82.51
88.42
94.52
100.8
107.3
Type
K
tub~ng
Flow
-
US
gal
per
mln
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
1 959"
083"
Veloc~ty
ftisec
1.07
1.28
149
170
1.92
2.13
2.66
3.19
3.73
4.26
4.79
5.32
6.39
7.45
8.52
958
10.65
11.71
12.78
13.85
14.9
16.0
17.0
18 1
192
20.2
21.3
22.4
23.4
24.5
25.6
26.6
27.7
28.8
29.8
30 9
32.0
Flow
-
US
gal
per
rnln
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
300
380
400
420
440
460
480
500
Type M tu
b~ng * Pipe
~ns~de d~a
wall thk
Head
loss
WlOO fl
0.31
0.43
0.56
0.71
0.87
1.05
1.55
2.15
2.82
3.58
4.42
5.34
7.40
9.76
12.4'
15.36
18.58
22.07
25.84
29.88
34.18
38.75
43.58
48.67
54.01
59.61
65.46
71.57
77.93
84.53
91.38
98.43
105.8
113.4
121.3
129.3
137.6
Type
L
tub~ng
2.495"
.065"
Veloc~ty
ftisec
1.31
1.64
1.97
2.30
2.62
2.95
3.28
3.93
4.59
525
5.90
6.55
7.21
7.86
8.52
9.18
9.83
10.5
11.1
11.8
12.5
13.1
14.4
15.7
17.1
18.4
19.7
21.0
22.3
23.6
24.9
26.2
27.5
28.8
30 2
31.5
32 8
2.500"
1875"
Veloc~ty ftlsec
1.31
1.63
1.96
2.29
2.61
2.94
3.26
3.92
4.57
5.22
5.88
6.53
7.19
7.84
8.49
9.14
9.79
10.45
11.1
11.8
12.4
13.1
14.4
15.7
17.0
18.3
19.6
20.9
22.2
23.5
24.8
26.1
27.4
28.7
30 0
31.4
32 6
1.985"
.070"
Veloc~ty
ft:sec
1 04
1.24
1.45
1.66
1.87
2.07
2.59
311
3 62
4.14
4.66
5.17
6.21
7.25
8.28
9.31
10.4
11.4
12.4
13 4
14.5
15.5
16.5
17.6
18.6
19.6
20.7
217
22 8
23 8
24 8
25.9
26.9
27.9
29.0
30.0
31 1
Type M
tub~ng
ins~de d~a
wall thk
Head
loss
W100 ft
0.33
0.49
0.68
0.89
1.13
1.39
1.68
2.32
3.06
3.88
4.80
5.80
6.89
8.05
9.31
10.64
12.06
13.55
15.12
16.78
18.51
20.31
24.16
28.31
32.75
37.50
42.53
47.86
53.48
59.38
65.57
72.04
78.80
85.83
93.15
100.7
108.6
~ns~de d~a
wall thk
Head
loss
f11100 A
0.33
0.49
0.67
0.88
1.12
1.38
1.66
2.30
3.03
3.85
4.75
5.74
6.82
7.98
9.22
10.54
11.94
13.42
14.98
16.61
18.33
20.12
23.93
28.03
32.44
37.13
42.12
47.40
52.96
58.81
64.94
71.35
78.04
85.00
92.24
99.76
107.5
Type
K
tub~ng
~ns~de d~a
wall thk
Head
loss
W100 fl
0.29
0.40
0.52
0.66
0.82
0.98
1.46
2.01
2.65
3.36
4.15
5.01
6.95
9.16
11.65
14.41
17.43
20.71
24.25
28.04
32.07
36.36
40.89
45.66
50.67
55.92
61.41
67.14
73.10
79.29
55.72
92.37
99.26
106.4
113.7
121.3
129.1
2.009'
058'
Veloc~ty
ft!sec
1.01
1.21
1 42
1.62
1.82
2.02
2.53
3.03
3 54
4.05
4 55
5 05
6 06
7.07
8.09
910
10.1
11 1
12
1
13 1
14.2
15 2
16.2
17.2
18.2
19.2
20 2
21.2
22.2
23 2
24.3
25.3
26.3
273
28.3
29.4
30.4
Type L tubing
2.435"
.095"
Veloc~ty
ftlsec
1.38
1.72
2.07
2.41
2.76
3.10
3.45
4.14
4.82
5.51
6.20
6.89
7.58
8.27
8.96
9.65
10.35
11.0
11.7
12.4
13.1
13.8
15.2
16.5
17.9
19.3
20.7
22.1
23.4
24.8
26.2
27.6
29.0
30.3
31.7
33.1
34.5
~ns~de d~a
wall thk
Head
loss
f11100 ft
0.27
0.38
0.50
0.63
0.77
0.93
1.38
1.90
2.50
3.17
3.92
4.73
6.56
8.65
11.00
13.60
16.45
19.55
22.88
26.45
30.26
34.30
38.58
43.08
47.81
52.76
57.94
63.34
68.96
74.80
80.86
87.14
93.63
100.3
107.3
114.4
121.8
2.465"
.080"
Veloc~ty
ftlsec
1.34
1.68
2.02
. 2.35
2.69
3.02
3.36
4.03
4.70
5.37
6.04
6.71
7.38
8 05
8.73
9.40
10.1
10.8
11.4
12.1
12 8
13.4
14.8
16.1
17.5
18.8
20.1
21.5
22.8
24.2
25.5
26.9
28 2
29 5
30.9
32 2
33 6
ins~de d~a
wall thk
Head
loss
ft/100 A
0.37
0.55
0.76
1.00
1.26
1.56
1.88
2.61
3.43
4.36
5.39
6.52
7.74
9.06
10.46
11.97
13.56
15.24
17.01
18.87
20.81
22.85
27.18
31.84
36.85
42.19
47.86
53.86
60.18
66.83
73.80
81.09
88.70
96.62
104.9
113.4
122.3
~ns~de d~a
wall thk
Head
loss
tt1100 A
0.35
0.52
0.72
0.94
1.19
1.47
1.77
2.46
3.24
4.12
5.08
6.15
7.30
8.54
9.87
11.28
12.78
14.36
16.03
17.79
19.62
21.54
25.61
30.01
34.73
39.76
45.10
50.75
56.71
62.97
69.54
76.41
83.57
91.04
98.80
106.8
115.2

CAMERON HYDRAULIC DATA FRICTION
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
3 lnch
Flow
-
U S
gal
per
mln
I Type K tub~ng 1 Type L tub~ng I Type M tublng 1 'Pipe I
2.907" ~ns~de d~a
109" wall thk 090" wall thk 072" wall thk
3.062" ~ns~de d~a
,219" wall thk
Vloclty 1 7:::
ftlsec ft/100 ft
Flow
-
U s
gal
Per
mln
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper
Tubing-*S.P.S. Copper and Brass Pipe
3% lnch
Note: No allowance has been made for age, difference In diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commerc~al design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Flow
US
gal
per
mln
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
Type K
tub~ng
3.385"
120
Veloc~ty
ttlsec
2.14
2.49
2.84
3.20
3.56
3.92
4.26
4.62
4.98
5.34
5.69
6.05
6.40
6.76
7.11
7.82
8.54
9.25
9.95
10.7
12.5
14.2
16.0
17.8
19.6
21.4
23.1
24.9
26.6
28.4
30.2
32.0
33.8
35.6
39.2
42.6
46.2
49.8
inside
d~a
wall thk
Head
loss
ftI100 R
0.54
0.71
0.90
1.11
1.34
1.59
1.86
2.15
2.45
2.78
3.12
3.48
3.86
4.25
4.67
5.54
6.49
7.50
8.58
9.73
12.87
16.42
20.36
24.68
29.39
34.47
39.92
45.75
51.94
58.49
65.40
72.68
80.31
88.29
105.3
123.7
143.5
164.7
Type L tubing
3.425
.loo"
Veloc~ty
ftlsec
2.09
2.44
2 78
3.13
3.48
3.82
4.18
4.52
4.87
5.21
5.56
5.91
6.26
6.60
6.95
7.65
8.35
9.05
9.74
10.4
12.2
13.9
15.6
17 4
19.1
20.9
22.6
24.4
26.1
27.8
29.6
31.3
33.0
34.8
38.2
41.8
45.2
48.7
ins~de d~a
wall thk
Head
loss
ill100
ft
0.51
0.67
0.85
1.05
1.27
1.50
1.76
2.03
2.32
2.62
2.95
3.29
3.64
4.02
4.41
5.24
6.13
7.09
8.11
9.19
12.16
15.51
19.23
23.32
27.76
32.56
37.71
43.21
49.05
55.24
61.77
68.63
75.84
83.37
99.45
116.8
135.5
155.5
Type M
tublng
3 459
,083
Velocity
ftlsec
2 05
2.39
2.73
3.07
3.41
'
3.76
4.10
4.45
4.79
5.12
5.46
5.80
6.16
6.49
6.82
7.51
8.19
8.87
9.55
10.2
11.9
13.7
15.4
17.1
18.8
20.5
22.2
23.9
25.6
27.3
29.0
30.7
32.4
34.1
37.6
41.0
44.5
47.9
Flow
-
U S
gal
per
mln
60
70
80
90
I00
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
ins~de d~a
wall th k
Head
loss
ill100
ft
0.49
0.64
0.81
1.00
1.21
1.43
1.68
1.93
2.21
2.50
2.81
3.14
3.48
3.83
4.20
4.99
5.85
6.76
7.73
8.76
11.60
14.79
18.33
22.23
26.46
31.04
35.94
41.18
46.75
52.65
58.87
65.41
72.27
79.46
94.77
111.3
129.1
148.2
Pipe
3.500
.250
Velocity
ftlsec
2.00
2.33
2.66
3.00
3.33
3.67
4.00
4.33
4.66
5.00
5.33
5.66
6.00
6.33
6.66
7.33
8.00
8.66
9.33
10.0
11.7
13.3
15.0
16.7
18.3
20.0
21.6
23.3
25.0
26.6
28.3
30.0
31.6
33.3
36.7
40.0
43.3
46.6
~ns~de dia
wall thk
Head
loss
ill100
R
0.46
0.60
0.77
0.95
1.14
1.35
1.58
1.83
2.09
2.36
2.66
2.96
3.28
3.62
3.97
4.72
5.52
6.39
7.30
8.28
10.95
13.97
17.32
20.99
24.99
29.31
33.95
38.89
44.15
49.72
55.59
61.77
68.24
75.02
89.47
105.1
121.9
139.9

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
4 lnch
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
5 lnch
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to 20% be added to the values in the tables-see page 3-5.
Flow
-
U s
gal
per
mln
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
350
400
450
500
550
600
650.
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
Note: No allowance has been made for age, difference in diameter, or any abnormal condit~on of Interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5
Flow
-
us
gal
per
mln
150
160
170
180
190
200
220
240
260
280
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
2400
2600
2800
3000
Flow
-
U S
gal
per
min
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
Pipe
4.000
,250''
Velocity
ftisec
2.55
2.81
3.06
3.31
3.57
3.83
4.08
4.33
4.58
4.84
5.10
5.61
6.12
6.63
7.14
7.65
8.92
10.2
11.5
12.8
14.1
15.3
16.6
17.9
19.1
20.4
21.7
23.0
24.2
25.5
28.1
30.6
33.1
35.7
38.3
40.8
45.8 51.0
56.1
ins~de dia
wall thk
Head
loss
W100 n
0.60
0.71
0.83
0.96
1.10
1.25
1.39
1.56
1.73
1.91
2.09
2.48
2.90
3.36
3.84
4.35
5.75
7.33
9.08
11.00
13.09
15.35
17.77
20.35
23.09
25.99
29.05
32.27
35.64
39.17
46.69
54.82
63.55
72.89
82.82
93.34
116.1
141.3
168.7
Type K tubing Type L
tub~ng
3.905" inside dia
110" wall thk
Type
K tubing
3.857"
134"
Velocity
ftlsec
2 74
302
3 29
3.57
3.84
4.11
4.39
4.66
4.94
5.21
5.49
6.04
6.59
7.14
7.69
8.24
9.60
11 0
12.4
13 7
15.1
16.5
17.9
19.2
20.6
22.0
23.3
24.7
26 1
27.4
30.2
32.9
35.7
38.4
41.1
43 9
49.4
54.9
60.4
Veloc~ty
ftisec
2.68
2.94
3.21
348
Type M tubing
4.805"
160"
.
Velocity
ftisec
2.64
2.82
3.00
3.17
3.35
3.53
3.88
4.24
4.59
4.94
5.29
6.17
7.05
7.94
8.81
9.70
10.6
11.5
12.4
13.2
14.1
15.0
15.9
16.8
17.6
19.4
21.2
22.9
24.7
26.4
28.2
31.8
35.3
38.8
42.4
45.9
49.4
52.9
Type L tubing
ins~de dia
wall thk
Head
loss
W100 fi
0.72
0.85
0.99
1.15
1.31
1.48
1.67
1.86
2.06
2.27
2.49
2.96
3.46
4.00
4.57
5.18
6.85
8.74
10.83
13.12
15.61
18.31
21.19
24.28
27.55
31.01
34.67
38.51
42.54
46.76
55.74
65.45
75.89
87.05
98.23
111.5
138.8
168.9
201.7
Head
loss fVlOO ft
0.68 0.80
0.94
1.08
3.935"
.095"
Velocity
ftlsec
2 64
2.90
3.16
3.42
3.69
3.95
4.21
4 48
4.74
5.00
5.27
5.80
6.32
6.85
7.38
7.90
9.22
10.5
11.9
13 2
14.5
15.8
17.1
18.4
19.8
21.1
22.4
23.7
25.0
26.4
29.0
31.6
34.2
36.9
39.5
42.1
47.4
52.7
580
inside dia
wall thk
Head
loss
fU1W ft
0.52
0.58
0.65
0.72
0.79
0.87
1.03
1.20
1.39
1.59
1.80
2.38
3.03
3.75
4.54
5.40
6.32
7.32
8.37
9.50
10.69
11.94
13.26
14.64
16.08
19.16
22.48
26.04
29.85
33.89
38.18
47.46
57.68
68.82
80.89
93.86
107.7
122.5
4.875
125
Velocity
ftisec
2.58
2.75
2.92
3 09
3.26
3 44
3 78
4.12
4.46
4.81
5.15
6.01
6.87
7 73
8.59
9.45
10.3
11.2
12.0
12.9
13.7
14.6
15.5
16.3
17.2
18.9
20.6
22.4
24.0
25.8
27.5
30.9
34.4
37.8
41.2
44.6
48.1
51.5
~ns~de dia
wall thk
Head
loss
Wl00 fi
0.65
0.77
0.90
1.04
1.19
1.35
1.51
1.69
1.87
2.06
2.26
2.68
3.14
3.63
4.15
4.70
6.22
7.93
9.83
11.91
14.17
16.61
19.23
22.03
25.00
28.14
31.46
34.94
38.60
42.42
50.56
59.37
68.83
78.95
89.71
101.1
125.8
153.1
182.8
inside dia
wall thk
Head
loss
fUlOO ft
0.48
0.54
0.60
0.67
0.74
0.81
0.96
1.12
1.30
1.48
1.68
2.22
2.82
3.49
4.23
5.03
5.90
6.82
7.81
8.86
9.97
11.13
12.36
13.67
14.99
17.86
20.95
24.27
27.82
31.59
35.59
44.23
53.75
64.13
75.37
87.45
100.4
114.1
Type M tubing
4.907" inside dia
1.23
:::: 1 1.40
109
Velocity
ftisec
2.53
2.70
2.87
3.04
3.21
3.38
3.72
4.05
4.39
4.73
5.07
5.91
6.75
7.60
8.45
9 29
10.1 11 .O
11.8
12.7
13.5
14.4
15.2
16.1
16.9
18.6
20.3
22.0
23.7
25.4
27.0
30.4
33.8
37 2
40 5
44 0
473
50.7
4.28
4 55
4 81
5.08
5.35
5 89
6.42
6.95
7.49
8.02
9.36
10.7
12.0
13.4
14.7
16.0
17.4
18.7
20.1
21.4
22.8
24.1
25.4
26.8
29.4
32.1
34.8
37.4
40.1
42.8
48.1
53 5
58.9
Flow
U S
gal
per
min
150
160
170
180
190
200
220
240
260
280
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
2400
2600
2800
3000
Pipe
wall thk
Head
loss
fU100 ft
0.47
0.52
0.58
0.65
0.71
0.78
0.93
1.09
1.26
1.43
1.63
2.15
2.73
3.39
4.10
4.88
5.71
6.61
7.57
8.58
9.65
10.79
11.98
13.22
14.52
17.30
20.30
23.51
26.95
30.60
34.47
42.85
52.06
62.12
73.00
84.70
97.21
110.5
1.57
1.75
1.94
2.14
2.35
2.79
3.26
3.77
4.31
4.88
6.46
8.23
10.20
12.36
14.71
17.24
19.96
22.86
25.95
29.21
32.65
36.27
40.06
44.03
52.48
61.62
71.45
81.95
93.13
105.0
130.6
158.9
189.8
5.063"
,250"
Velocity
ftisec
2.38
2.54
2.70
2.86
3.02
3.18
3.50
3.81
4.14
4.45
4.76
5.56
6.35
7.15
7 95
8.75
9.54
10.3
11.1
11 9
12.7
13.5
14.3
15.1
15.9
17.5
19.1
20.6
22.2
23.8
25.4
28.6
31.8
35.0
38.1
41.4
44.5
47.6
inside dia
wall thk
Head
loss
fU100 ft
0.40
0.45
0.50
0.56
0.61
0.67
0.80
0.94
1.08
1.23
1.40
1.85
2.35
2.91
3.53
4.19
4.91
5.68
6.50
7.38
8.30
9.27
10.29
11.36
12.48
14.86
17.44
20.20
23.15
26.28
29.60
36.79
44.70
53.32
62.65
72.69
83.42
94.84

INGERSOLL-RAND CAMERON HYDRAULIC DATA
Friction of Water (Continued)
(Based on Darcy's Formula)
Copper Tubing-*S.P.S. Copper and Brass Pipe
10 lnch
Note: No allowance has been made for age, dlfference In diameter, or any abnormal condltlon of Interlor
surface Any factor of safety must be estimated from the local condltlons and the requlrernents of each
particular ~nstallation. It IS recommended that for most commerc~al design purposes a safety factor of 15 to
20°h be added to the values In the tables-see page 3-5
Friction of Water (Continued)
(Based on Darcy's Formula)
Flow
-
U S
gal
per
mln
500
550
600
6 50
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
2400
2600
2800
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10,000
Copper Tubing-'S.P.S. Copper and Brass Pipe
Flow
-
U S
gal
per
mln
500
550
600
650
700
750
800
850
900
950-
1000
1100
1200
1300
1400
1500
1600
1800
2000
2200
2400
2600
2800
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10 000
12 lnch
Type M tub~ng ' P~pe Type K tublng
9 700
Velocity
ftlsec
2 17
2 39
2 61
2 82
3 04
3 26
3 47
3 69
3 91
413
4 34
4 78
5 21
5 64
608
6 51
6 95
7 82
8 68
9 55
10 4
11 3
12 2
13 0
15 2
17 4
19 5
21 7
23 9
26 1
28 2
30 4
32 6
34 7
36 9
39
1
41 2
43 4
Flow
-
U S
gal
per
mln
800
Type L tubrng
10 020
Veloc~ty
ftisec
2 03
2 24
2 44
2 65
2 85
3 05
3 26
3 46
3 66
387
4 07
4 32
4 71
5 10
550
589
6 28
7 32
8 14
8 95
9 77
10 6
11 4
12 2
14 2
16 3
18 3
20 3
22 4
24 4
26 4
28 5
30 5
32 6
34 6
36 6
38 7
40 7
-
9 449
Veloc~ty
ftisec
229
2 52
2 75
2 97
3 20
3 43
3 66
3 89
4 12
435
4 56
5 03
5 49
5 95
641
6 86
7 32
8 24
9 15
10 1
11 0
11 9
12 8
13 7
16 0
18 3
206
22 9
25 2
27
5
29 7
32 0
34 3
36 6
38 9
41 2
43 5
45 6
~nslde d~a
Head
loss
fU100 ft
0.15
0.18
0.21
0.25
0.28
0.32
0.36
0.40
0.45
0.49
0.54
0.64
0.75
0.87
1.00
1.13
1.27
1.57
1.91
2.27
2.66
3.08
3.53
4.01
5.32
6.80
8.45
10.26
12.24
14.38
16.68
19.13
21.75
24.52
27.44
30.52
33.75
37.14
Type K
tublng
11 31 5' ~ns~de d~a 9 625
Veloclty
ftisec
221
2 43
2 65
2 87
3 09
3 31
3 53
3 75
3 97
419
4 41
4 48
5 29
5 73
617
6 61
7 06
7 94
8 82
9 70
10 6
11 5
12 3
13 2
15 4
17 6
19 8
22 0
24 3
26 5
28
7
30 9
33 1
35 3
37
5
39 7
41 9
44
I
~nslde dla
Head
loss
it1100 tt
0.13
0.16
0.18
0.21
0.24
0.27
0.31
0.34
0.38
0.42
0.46
0.50
0.59
0.68
0.78
0.89
1.00
1.35
1.63
1.94
2.28
2.63
3.02
3.42
4.55
5.81
7.22
8.77
10.45
12.28
14.24
16.33
18.56
20.92
23.42
26.05
28.80
31.69
~nslde d~a
Head
loss
fU100 ft
0.18
0.21
0.24
0.28
0.32
0.36
0.41
0.46
0.51
0.56
0.61
0.73
0.85
0.99
1.13
1.28
1.44
1.79
2.17
2.58
3.02
3.50
4.01
4.55
6.04
7.72
9.60
11.66
13.91
16.34
18.95
21.74
24.71
27.86
31.19
34.69
38.37
42.22
1500
1600
1800
2000
2200
2400
2600
2800
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10,000
10,500
11,000
11,500
12,000
12,500
13,000
14,000
15.000
Type L
tublng
11 565 ~ns~de d~a lns~de d~a
Head
loss
tUlOO ft
0.16
0.19
0.22
0.26
0.29
p~
0.33
0.37
0.42
0.46
0.51
0.56
0.67
0.78
0.90
1.03
1.17
1.32
1.63
1.98
2.36
2.76
3.20
3.67
4.16
5.52
7.06
8.78
10.66
12.71
14.93
17.32
19.87
22.59
25.46
28.50
31.70
35.06
38.57
Type M
tublng
11 617 ~ns~de d~a
' P~pe
12 000 lnslde d~a
Velocity
ftisec
2.55
Note: No allowance has been made for age,
d~fference In diameter, or any abnormal condition of Interior
surface. Any factor of safety must be estimated from the local conditions and the requlrernents of each
part~cular installation. It is recommended that for most commercial des~gn purposes a safety factor of 15 to
2OoA be added to the values in the tables-see page 3-5.
4.79
5.11
5 74
6.38
7.02
7.66
8.30
8.93
9.57
11.2
12.8
14.4
16.0
17.5
19.1
20.7
22.3
23.9
25.5
271
28 7
303
31.9
33.5
35 1
36 7
38.3
39.9
41 5
44.7
47.9
Flow
-
Head
loss
fU100 ll
0.17
Veloc~ty
ftisec
2.44
0.54
0.60
0.75
0.91
1.08
1.26
1.46
1.68
1.90
2.52
3.22
4.00
4.86
5.79
6.80
7.88
9.04
10.27
11.57
12.95
14.39
15.91
17.50
19.17
20.90
22.70
24.57
26.51
28.52
32.75
37.25
- -
Head
loss
fU100 ft
0.16
Veloc~ty
ftlsec
242
4.58
4.89
5.50
6.11
6.72
7.33
7.94
8 55
9.16
10.7
12.2
13.7
15.3
16.8
18.3
19.9
21.4
22.9
24.4
26.0
27.5
29.0
30.5
32.1
33.6
35 1
36.7
38 2
39.7
42.8
45 8
Head
loss
ft1100 it
0.15
U s
gal
per
mln
800
Veloc~ty
ftisec
2.27
0.48
0.54
0.67
0.82
0.97
1.14
1.32
1.51
1.71
2.27
2.90
3.60
4.37
5.21
6.11
7.09
8.13
9.23
10.40
11.64
12.94
14.31
15.73
17.23
18.78
20.40
22.08
23.83
25.63
29.43
33.47
Head
loss ftilOO ft
0.13
4.54
4.84
5.45 6.05
6.66
7.27
7.87
8.48
9.08
10.6
12.1
13.6
15.1
16.6
18.2
19.7
21.2
22.7
24 2
25
7
27 2
28.8
30.7
31.8
33.3
34.8
36.3
37 8
39.4
42 4
45.4
0.47
0.53
0.66
0.80
0.95
1.11
1.29
1.48
1.67
2.22
2.84
3.52
4.27
5.10
5.98
6.93
7.95
9.03
10.18
11.39
12.66
14.00
15.39
16.85
18.38
19.96
21.60
23.31
25.08
28.79
32.75 426
4.54
5 11
5.67
6.24
6.81
7.38
7.94
8.51
9 93
11.3
12.8
14.2
15.6
17 0
18.4
19.6
21 3
22 7
24 1
25.5
270
28.4
29 8
31 2
32 6
34.0
35 5
36 9
39 7
42.6
0.40
0.45
0.56
0.68
0.81
0.95
1.10
1.26
1.43
1.90
2.42
3.01
3.65
4.35
5.11
5.92
6.79
7.71
8.69
9.72
10.81
11.95
13.14
14.39
15.69
17.04
18.44
19.89
21.40
24.57
27.94
1500
1600
1800
2000
2200
2400
2600
2800
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10,000
10,500
11.000
11,500
12.000
12,500
13.000
14.000
15.000

INGERSOLL-RAND CAMERON HYDRAULIC DATA
FRICTION
Friction Loss for Viscous Liquids
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
1 lnch (1.049" inside dia) Sch 40 New Steel Pipe
Calculations on pages 3-48 to 3-88 are by lngersoll-Rand CO.
For velocity data see page 3-14.
Note: No allowance has been made for age, d~fference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to
20°/0 be added to the values in the tables-see page 3-5.
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
1% lnch (1.610" inside dia) Sch 40 New Steel Pipe
Flow
-
I I 1 I I I
Kinematic viscosity-centistokes
Flow
-
26.4 32.0 43.2 65.0 108.4 162.3 216.5 325 435 650
U S Bbl
gal per Approx SSU viscosity
per hr
(42
.
min
gal) 125 1 150 1 200 1 300 1 500 1 750 1 1000 I 1500 I 2000 I 3000
Kinematic viscosity-centistokes
US
nal
For th~s pipe size: V = 0.1 576 x gpm; h, = 0.000385 gpm2.
Figures in shaded area are laminar (viscous) flow.
For velocity data see page 3-1 5.
Bbl
ner
Note: No allowance has been made for age, difference in diameter, or any abnormal cond~tion of interior
surface.
Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
206
Approx SSU viscosity
15.7 10.3 13.1 7.4 4.3 2.7 0.6 1.1 2.1

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
2 lnch (2.067" inside dia) Sch 40 New Steel Pipe
Friction Loss for. Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
2 lnch (2.067" inside dia) Sch 40 New Steel Pipe
Flow
2.1 2.7 4.3 7.4 10.3 13.1 15.7 20.6
. - -.
~al I per I Approx SSU viscosity
Flow
Loss In lb per sq in = ,433 (sp gr) (flgures from table).
Flgures in shaded area are laminar (VISCOUS) flow.
I For veloclty data see page 3-1 6.
Klnematlc vlscoslty-cent~stokes
US
gal
per
mln
For this pipe size: V = 0.0956 x gpm; h, = 0.000142 gpm2.
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-16.
26 4 Bbl
per
hr
(42
gal)
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the
requ~rements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
32.0
Approx
SSU viscosity
43 2
125
65.C
150 200 1 300 ( 500 1 750 1 1000 1 1500 1 2000 1 3000
108 4 162.3 216.5 325 435 650

CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
2% lnch (2.469" inside dia) Sch 40 New Steel Pipe
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
2% lnch (2.469 inside dia) Sch 40 New Steel Pipe
Kinematic viscosity-centistokes
Per Approx SSU viscosity
hr
(42
gal) 31.5 33 35 40 50 60 70 80 100
190 271 233 243 260 265 280 306
200 286 258 269 286 292 308 334
220 314 310 322 343 351 369 400
240 343 367 381 404 416 436 469
260 371 429 445 470 482 505 543
280 400 497 513 540 556 580 630
300 429 568 586 617 632 659 705
320 457 643 663 695 716 747 799
340 486 725 745 776 800 839 894
360 514 809 835 866 892 936 994
Forthis pipe size: V = 0.0670 x gpm; h, = 6.97 x x gpm2.
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-1 7.
U S
gal
per
mln
1
2
4
6
8
10
12
14
16
18
Loss in
lb per sq In = ,433 (sp gr) (figures in table).
Figures in shaded area are laminar (viscous) flow.
For velocity data see page 3-1 7.
K~nematlc v~scos~ty-centstokes
Flow
-
Bbl
per
hr
(42
gal)
1.4
29
57
86
114
14.3
17
1
200
22.8
257
Note: No allowance has been made for age, difference in diameter, or any abnormal
condition of interior
surface. Any factor of safety must be estimated from the local condit~ons and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to 20% be added to the values in the tables-see page 3-5.
20
25
30
35
41,
45
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
650 26.4 65 0
Approx SSU v~scos~ty
32 0
22.0
27.6
33,l
108.4 43 2
36.8
46.0
55.2
14.7
18.3 22*0
286
35 7
42.9
2000
7.38
14.8
29.5
44.3
.
73.8
BB.8
1500
6.52
17.0
22.1
33.1
44.1
110
138
1623
3000
11.0
22.0
44.1
66.2
88.2
110
132
125
.45
.90
1.79
2.W
3.58
25.6
29.3
55.0
88.8
82.5
50.0
57
1
8.96
11.2
13.4
216 5 325 435
154
176
$98
500
1.84
3.68
7.36
11.0
14.7
73.4
91.8
170
148
185
70.9
13.6
16-3
150
.54
1.09
2.17
3.28
4.34
64.3
71.4
85.7
100
114
220
276
15.7
17.9
38.6
44.2
18.4
750
2.75
5.50
11.0
16.5
22.0
15.4
17.6
19.8
11.0
73.2
6.27
7.16
8.06
4.48
5.38
96.3 116
386
r141
331
19.0
27.7
64.4
73.6
193
221
165
1000
3.67
7.35
14.7
22.0
29.4
200
.73
1.47
293
4.40
$87
5.43 7.33
6.51 8.80
25.7
a.4
XI.1
129
147
129
143
157
171
186
200
214
228
243
257
271
286
314
343
371
33.0
392
54.0
70 0
87.7
258
293
222
49.6
220
27.5
300
1.10
2.20
4.41
6.82
8.32
5f.4
58.8
66.1
38.5
44.0
49.5
7.60
8-68
Q.77
124
443
82.8
331
10.3
11.7
13.2
110
130
154
180
206
234
265
296
328
364
403
438
522
612
71
1
24.4
27,2
56.5
73 5
93.4
662
36.7
22.1
77.2
83,2
99.3
33.0
36.6
772
882
55.2
257
244
55.2
44.1 33.0
103
118
133
115
137
164
188
216
247
279
312
345
384
420
457
540
633
732
765
66.2
332 248
f&Q 92.0
44.0
51.3
3B6
441
496
383 276 138
110
129
147
66.2
77.2 517
591
551
165
193
220
125
148
497
552
101
885
738
88.3
812
686
960
176
205
232
330
367
248
275
99.3
110
267
305
338
373
412
454
493
586
682
782
1
184
305
330
197
226
403
447
202
221
299
333
374
415
461
514
550
658
760
867
#7
662
257
276
29rl
312
530
587
628
752
866
263
239
772
827
882
937
993
358 477
385
413
440
468
495
717
574
551
588
624
661
523
550
605
660
715
i
698
734
808
881
955

INGERSOLL-RAND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
3 lnch (3.068" inside dia) Sch 40 New Steel Pipe
For this pipe size: V = 0.0434 x gpm; h, = 2.923-' x gpm2
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-18.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
Flow
U S
gal
per
mln
8
10
15
20
25
30
35
40
50
60
70
80
90
100
120
140
160
180
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
3 lnch (3.068" inside dia) Sch 40 New Steel Pipe
K~nemat~c v~scos~ty-cent~stokes
-
-
Bbl
per
hr(42
gal)
11 4
14 3
21 4
28 6
35 7
42 9
50.0
57 1
714
857
100
114
129
143
171
200
228
257
286
322
357
393
429
464
500
536
571
607
643
679
714
750
786
822
857
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-1 8.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
206 157 131 74 43
80
.89
1.11
1.67
2.23
2.79
3.35
661
8 37
123
168
219
27.7
338
408
564
732
92
3
114
137
169
204
243
281
325
373
424
476
529
587
646
707
770
838
912
989
70
.?4
.93
1.40
1.86
2.33
4 83
6 35
7 93
117
160
209
264
324
390
53.4
700
87
9
109
131
164
195
233
273
316
361
407
458
511
568
625
684
748
814
886
960
103 27
100
1.18
1.47
2.20
2.93
3.66
4.40
5.13
5.87
132
180
236
298
363
436
600
786
98 2
122
146
180
218
258
298
345
396
448
498
550
619
681
750
821
890
962
60
.59
.73
1.10
1.46
3 29
4 50
5 89
7 46
109
15.0
196
246
304
364
505
66.0
83.8
104
125
155
188
226
260
300
344
388
436
488
543
599
658
720
783
852
919
21 6
vlscoslty
50
.42
.a
79
2 07
3 01
4 12
5 41
6 80
101
137
180
229
280
337
468
655
79 1
972
117
145
175
208
244
283
324
367
414
463
515
571
627
688
748
814
882
11
Approx SSU
40
.24
54
107
1 78
2 61
3 60
4 66
5 90
876
120
159
203
25.0
302
419
554
70 4
872
106
132
160
191
225
261
300
341
385
432
480
532
587
644
703
761
820
35
32
.47
94
1 57
2 31
3 22
4 21
5 29
793
110
145
184
228
275
386
509
65 4
816
994
124
151
180
212
247
283
322
363
407
455
504
555
609
665
723
783
33
29
43
89
1 47
2 23
2 99
3.97
5 02
750
104
138
175
218
263
369
494
63.3
787
957
120
147
175
204
238
275
314
354
397
443
493
544
597
651
708
767
22
32
70
1
12
1 69
2
36
3 13
4 03
610
857 115
147
184
224
31.8
424
54 8
690
847
107
131
158
187
218
253
288
328
368
410
457
504
555
606
663
721
315
25
37
76
1 27
1 93
2 64
3 48
4 42
6.70
932
124
159
199
242
341
456
58 0
727
889
112
137
164
193
225
260
298
339
381
427
473
524
574
627
685
742

INGERSOLL-RAND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
3% lnch (3.548" inside dia) Sch 40 New Steel Pipe
For this pipe size: V = 0.03245 x gpm; h, = 1.634 x gpm2.
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-19.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
3% lnch (3.548 inside dia) Sch 40 New Steel Pipe
Kinematic viscosity-centistokes
Flow
. 216.5 325 435
U S Bbl
gal per Approx SSU viscosity
per
hr (42
mln gal) 125 150
Loss in Ib per sq in = ,433 (sp gr) (figures in table).
Figures in shaded area are laminar (viscous) flow.
For velocity data see page 3-1
9.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation. It is recommended that tor most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.

INGERSOLL-RAND CAMERON HY DRAULlC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
4 lnch (4.026 inside dia) Sch 40 New Steel Pipe
For this pipe size: V = 0.0252 x gpm; h, = 9.858 x lo4 gpm2.
Figures in shaded area are lammar (viscous) flow.
For velocity data see page
3-20.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
4 lnch (4.026" inside dia) Sch 40 New Steel Pipe
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
US
gal
per
mln
15
20
30
40
50
60
70
80
90
100
120
140
160
180
200
220
240
260
280
300
325
350
375
400
450
500
550
600
650
700
750
800
850
900
950
Loss
Flgures In shaded area are lamlnar (VISCOUS) flow
For velocity data see page
3-20.
K~nemat~c v~scoslty-centtr okes
-
Flow
-
Bbl
per
hr
(42
gal)
21 4
28 6
429
57
1
71 4
85 7
100
114
129
143
171
200
228
257
286
314
343
371
400
429
464
500
536
571
643
714
786
857
929
1000
1070
1140
1215
1285
1360
in
Ib per
264 32.0
125
"95
1.27
1.90
2.54
3.17
3.80
4.44
881
108
12 9
17 6
22.9
29.0
35.5
426
50 3
58 5
67 2
76 4
85 8
98 5
112
127
143
178
213
252
296
338
386
---
437
490
544
603
666
sq in =
432
150
1.15
1.54
2.30
3.08
3.84
4.61
5.38
6.15
11.3
13 7
18 6
24 3
303
37 4
45.0
53 0
61 5
70.8
80 5
90.8
104
118
133
149
184
221
263
305
353
402
455
650
200
1.55
2.07
3.11
4.15
5.78
6.22
7.25
8.29
9.33
10.4
20.3
26.5
332
40 7
487
57
1
65 1
76.8
87.2
98.5
113
128
145
162
198
237
280
328
378
433
488
1084
Approx SSU
v~scoslty
510
570
629
696
1623
300
2.34
3.12
4.08
6.25
7.81
1
624
683
838
889
941
993
433 (sp gg) (f~gures from table).
546
608
674
743
2165
500
3.91
5.21
7.82
10.4
13.0
570
663
739
813
325
750
5.85
7.80
11.7
15.8
79.5
31.2
36.4
41.6
48.8
52.0
$2.4
72.8
23.4
27.3
31.2
35.1
39.0
48.8
54.6
9.37
10.9
125
14.1
15.6
18.8
21.9
687
763
844
927
435
1000
7.80
10.4
15.6
20.8
26.0
15.6
18.2
20.8
23,4
2&0
31,2
36.4
650
46.8
54.6
82.4
70.2
78,O
93.7
109
764
848
939
125
740
158
If2
187
35
218
234
254
273
293
372
351
330
429
488
507
548
----a
585
1500
11.7
15.6
23.4
31.2
39.0
25.0
45 7
548
64.7
74.7
85.7
973
110
125
143
161
180
222
265
313
364
419
474
830
920
62.7
73.2
83.6
91.1
705
125
146
41.7
4B.g
52.1
57-3
62.5
67.7
73.0
127
146
166
187
208
254
305
360
417
480
546
82.4
83.2
70.2 93.6
78.a I#
93.7
lO@
125
141
15%
187
218
$67
188
209
230
251
2032
292
313
2000
15.7
20.8
31.3
41.8
52.2
85.8
93.8
101
l@
117
127
t35
146
156
285
343
404
467 528
608
533
250
281
372
343
$3
408
437
488
3000
23.4
31.2
46.8
82.5
78.1
174
125
136
146
f58
t69
1SZ
195
208
234
280
286
507
583
663
616
340
386
932
478
470
523
575
gZ7
g80
732
784
508
567
585
' 826
703
781
860
937
685 745

INGERSOLLRAND CAMERON HYDRAULIC DATA
FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
6 lnch (6.065" inside dia) Sch 40 New Steel Pipe
For this pipe slze: V = 0.01 11 x gpm; h, = 1.914 x lo4 gpm2
Figures in shaded area are lamlnar (v~smus) flow.
For velocity data see page 3-22.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interlor
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commerc~al design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
6 lnch (6.065" inside dia) Sch 40 New Steel Pipe
Flow
-
Kinematic viscosity-centlslokes
US
nal
1
Bbl
ner
or velocity data see page 3-22.
Note. NO allowance has been made for age, difference in diameter, or any abnormal cond~t~on of interior
surface. Any factor of safety must be estimated from the local condtlions and the requirements of each
particular installation. It is recommended that for most commercial deslgn purposes a safety factor of 15 to
2046 be added to the values in the tables-see page 3-5
20.6
9
75
100
125
150
175
200
225
250
275
300
350
400
450
500
550
600
650
700
750
800
900
1000
1100
1200
2400
3000
3200
Loss
Flow
A~~rox SSU vlscosit~
15.7
Klnematfc v~scos~ty-cent~stokes
US
gal
per
mln
10.3 13.1
F~gures In shaded area are lam~nar (v~swusl flow
714
107
143
178
214
250
286
322
357
393
429
500
571
643
714
786
857
929
1000
1070
1140
1285
1430
1570
1715
14002000
16002285
18002570
2M102860
22003140
3403
26003710
28004000
4285
4570
In ib per
-
Bbl
Per
hr (42
gal)
2.1 2.7 4.3 7.4 .6
26.4
11
62
.92
1.23
2 75
375
4 90
610
743
891
106
123
159
20 1
24
7
300
356
415
47 7
54 1
608
68 0
839
101
120
140
184
234
292
350
417
487
564
645
734
827
sq
In =
162 3 32.0
Approx SSU v~scos~ty
.74
112
149
186
396
5 17
651
793
943
111
129
171
21 3
26 0
31 3
369
431
50 0
57 0
644
72 1
885
106
125
146
193
244
299
364
435
507
587
669
751
850
433 jsp gg)
216.5 43.2
125
IW
1.57
2.01
2.51
301
5 62
707
866
104
122
142
183
23 1
28 6
34 1
402
464
53
4
60 8
685
76 9
952
115
136
158
206
260
322
387
459
535
620
714
805
909
(hguros
325 65 0 108 4
1500 150
151
227
303
379
4%
530
608
882
757
137
159
208
26 2
31 9
28
0
446
517
59 6
68 6
768
85 7
105
126
148
173
230
288
350
425
510
585
677
773
667
982
In table)
435
2000
650
2W 3000
252
378
5.05
8.31
7.58
8.84
10.7
11.4
12.8
13.9
IS,Y
f77
20.2
36
9
44 2
521
591
69 4
78 8
88 5
97 8
120
I44
171
200
258
323
399
481
573
668
769
874
993
300
3.78
586
7.55
9.45
113
13.2
15.1
77.0
18.9
20.8
22.6
26.4
500
5.04
758
101
12.6
151
17.6
20.2
227
252
277
30.2
35.3
750
757
714
15 1
789
227
265
303 341
378
477
45.4
63.0
302
340
37.8
416
153
48 1
88 3
994
111
136
163
192
220
287
363
452
535
628
730
841
954
1000
806
882
757
833
909
9BS
$06
114
j2f
738
151
167
182
353
445
543
652
771
885
*03
55.3
50.4
554
60.5
65 5
M.6
75.6
60.6
148
177
208
242
316
393
480
576
683
799
913
101
152
203
25.3
30.4
35.5
405
45.6
567
$5.8
60.9
71.0
151
227
302
378
454
53.0
60.8
681
757
83.2
90.8
108
1
91.3
107
112
122
132
142
152
?62
163
203
223
243
284
324
591
707
833
968
121
136
151
166
182
tQ7
272
227
242
27'2
302
333
303
424
484
545
665
868
726
787

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
8 lnch (7.981" inside dia) Sch 40 New Steel Pipe
For thls plpe sue V = 000641 x gpm h = 6 383 x 10 * gpm
For veloclty data see page 3 23
Note No allowance has been made for age difference In diameter, or any abnormal condltlon of Interior
surface Any factor of safety must be estlmated from the local condlt~ons and the requ~rements of each
particular lnstallatlon It is recommended that for most commerclal deslgn purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
8 lnch (7.981" inside dia) Sch 40 New Steel Pipe
LOSS In Ib per sq In = 433 jsp gr) (figures ~n table).
Figures in shaded area are lamlnar (VISCOUS) flow.
For veloc~ty data see page 3-23.
Note. No allowance has been made for age, d~fference In d~ameter. or any abnormal cond~t~on of interior
surface. Any factor of safety must be estimated from the local condit~ons and the requ~rements of each
Rartlcular installation. It IS recommended that for most commercial design purposes a safety factor of 15 to
20% be added lo the values in the tables-see page 3-5
Flow
Kinernat~c vlscos~ly-centlstokes
US
gai
per
mln
26 4
Bbl
per
hr (42
gal)
Approx SSU viscosity
125 1 150 1 XX] 1 300 1 500 1 750 1 1000 1 1500 1 2000 1 3000
32 0 43 2 65 0 108 4 1623 216 5 325 435 650

INGERSOLLRAND CAMERON HYDRAULIC DATA
I
/ / FRICTION
I
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
10 lnch (10.02" inside dia) Sch 40 New Steel Pipe
Friction Loss for Viscous Liquids (Continued)
(Bared on Darcy's Formula)
2200
2400
2800
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
9000
10000
11000
Loss in Feet of Liquid per 1000 Feet of Pipe
10
lnch (10.02" inside dia) Sch 40 New Steel Pipe
Flow
Klnemallc viscosity-cent~stokes
216.5 325 435 650
U S Bbl
gal per Approx SSU viscos~ty
per
hr (42
mln gal) 125 1 150 I 200 I 300 1 500 I 750 1 IOW I 1500 I 2000 1 3000
Klnematlc v~scos~tycentlstokes
US
gal
per
rn~n
For th~s plpe size V = 0 00407 x gpm h, = 2 569 x 10 x gpm'
For veloclty data see page 3 24
Note No allowance has been made for age dlfference ~n d~ameter, or any abnorrral condlllon of lnterlor
surface Any factor of safety must be estlmated from the local condltlons and the requlrements of each
particular ~nstallatton It 15 recommended that for most cornmerc~al deslgn purposes a safety factor Of 15 to
20% be added to the values rn the tables-see page 3 5
3140
3430
26003710
4000
4285
5000
5715
6430
7145
7855
8570
9280
10000
10700
11400
850012100
12900
14300
15700
1200017150
Bbl
per
hr (42
aal)
Note No allowance has been made for age, dlfference In d~ameter, or any abnormal condltlon of Interlor
surface Any factor of safety must be estlmated from the local Condlt~ons and the requlrements of each
Pafllcular lnstallat~on It IS recommended that for most commercial desrgn purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
206
21 3
25 2
296
34 1
39 1
52 5
68 0
861
106
128
152
177
205
236
266
301
337
416
503
599
Approx SSU v~scos~ly
.
13151 33 135 140 150 160 170 180 (100
7000
8000
9000
103
-
6
22 2
26 3
306
35 3
40 2
54
4
70 5
886
109
131
154
180
208
239
272
307
341
422
511
603
Loss in
Ib per sq in = ,433 (sp gr) (ligures in table).
Figures in shaded area are laminar (viscous) flow.
For veloc~ty data $88 page 924.
305
347
389
482
582
131 157 27
10OOO
750010700
11400
12900
1000014300
11
23 7
28 0
325
37 4
42 7
57 4
73 9
923
113
136
161
187
217
248
282
318
354
434
522
617
326
369
414
512
619
296
335
377
469
567
43 21 74
24 6
28 9
335
38 4
43 5
58 9
75 9
948
116
139
164
191
220
251
286
321
359
441
533
630
355
402
452
557
666
26 1
30 7
356
40 8
46 6
62 3
79 9
992
122
145
172
201
231
262
296
334
372
453
544
643
396
447
505
624
743
28
6
33 4
387
44 5
50 7
66 4
85 8
107
130
156
183
212
243
277
314
352
392
478
574
679
436
492
550
679
817
303
35 5
410
47 1
53
2
70 6
90 2
112
136
162
191
221
255
291
329
367
407
492
593
701
468
529
594
729
872
32 1
37 3
429
49 0
55 7
73 6
94 2
117
142
169
197
228
263
298
337
378
422
511
611
719
522
589
659
809
964
31 8
38 9
448
51 0
57 7
76 2
97 1
120
146
173
204
236
369
303
345
387
429
524
626
737
566
638
710
869
350
41 0
473
54
1
61 3
80 8
102
127
153
182
213
246
282
321
360
403
447
542
649
763
637
766
797
976

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
12 lnch (11.938" inside dia) Sch 40 New Steel Pipe
Flow
U S I Bbl
gal
per
rnln
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
12 lnch (11.938" inside dia) Sch 40 New Steel Pipe
Klnematic vlscoslty-cent~stokes
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
9000
10000
11000
12000
13000
14000
15000
20000
per
hr (42
gal)
F~gures in shaded area are laminar (VISCOUS) flow
For velocity data see page
3-25.
20 6
For
thls plpe slze v - 0 00287 x gpm h, = 1 275 x 10 x gpmL
For velocity data see page 3-25
Note No allowance has been made for age, dtfference in d~ameter, or any abnormal cond~tjon of Interlor
surface Any factor of safety must be estimated from the local condlt~ons and the requ~rements of each
particular lnstallat~on It IS recommended that for most commercial des~gn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5
5000
5715
6430
7145
7855
8570
9280
10000
10700
11400
12850
14300
15700
17150
18550
20000
21400
1600022850
1800025700
28600
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of
safi?ty must be estimated from the local condlttons and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
US
gal
per
mln
100
200
300
400
500
600
700
800
900
1000
1200
1400
1600
1800
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
9000
10000
11000
12000
13000
1400020000
15000
16000
15.7
Approx SSU
vlscoslty
K~nemat~c vlscos~ty-cent~stokes
Flow
-
Bbl
per
hr
(42
gal)
143
286
429
571
714
857
1000
1140
1285
1430
1715
2000
2285
2570
2860
3570
4285
5000
5715
6430
7145
7855
8570
9280
10000
10700
11400
12850
14300
15700
17150
18550
21400
22850
21 8
283
35 7
44 0
53 1
63 0
738
854
979
111
141
173
209
249
291
338
387
440
557
687
26.4
4.3 13.1 7.4 2 7
I
80 70
22 6
292
368
45 2
54 4
64 5
754
872
998
113
143
176
212
252
295
342
392
445
561
692
32 0
10.3
2.1 0.6
100 60
1 13
125
.08
"16
49
81
1 22
166
215
270
3.31
3.97
543
710
8 96
110
132
196
27 2
36 2
434
576
69 8
828
968
112
128
145
163
202
204
290
341
394
452
513
578
50
23 8
307
38 5
47
I
566
66 9
781
901
103
117
147
180
217
258
301
348
399
453
571
703
43.2
40 31.5
150
.10
.?9
53
86
1 25
171
230 2.88
3.52
422
577
753
9 48
116
140
206
28 4
37 3
473
583
70 3
836
982
114
131
148
167
208
253
301
354
409
469
532
598
24 4
315
39 4
48 2
578
68 3
796
918
105
119
149
183
220
261
305
353
403
457
577
709
65.0
33
200
.13
27
.4?
94
137
1.87
2.43
3.05
3.74
448
633
824
10 4
127
15.2
224
30 8
40 3
510
628
75.6
895
104
120
137
155
174
215
260
309
361
417
477
541
608
35
26 0
333
41 6
50 7
60 7
71 6
833
959
109
124
155
190
228
269
314
363
414
469
590
725
108.4
300
.20
.40
62
.82
1.02
212
275
3.45
4.21
5.04
688
896
11.3
13.8
166
253
34 6
45 2
570
69.9
84
1
994
116
133
152
172
192
237
286
338
395
456
521
589
662
28 3
362
45 0
54 7
65 3
76 8
892
102
117
132
164
200
240
283
330
380
433
490
614
752
162 3
Approx SSU
vlscoslty
30 1
384
47 7
57 8
68
9
80 9
938
108
122
138
172
209
250
294
342
394
449
507
634
775
216 5
500
.34
.67
1.01
1.34
1.71
31 6
403
49 9
60
4
71 9
84 3
977
112
127
143
178
217
269
304
353
406
462
522
651
795
325
750
.51
1.00
1.51
2.02
2.50
32 9
418
51 7
62 6
74 4
87 2
101
116
131
148
183
223
266
312
363
416
473
534
666
812
435
1000
.68
1.37
2.00
2.88
3.37
1.97
2.37
2.63
4.93
589
801
104
13.1
16.0
191
280
38 4
50 2
632
776
93.3
110
128
148
174
196
220
270
325
384
448
516
588
664
745
34
9
443
54 8
66 2
78 7
92 1
106
122
138
155
192
233
278
326
373
434
493
556
692
842
650
4.05
4.88
5.36
6.05
6.84
7.89 $3.47
10.5
19.7
236
343
46 8
60 9
765
936
112
132
154
176
201
226
253
311
373
441
514
591
673
760
851
3.02
3.61
4.04
4.44
5.13
5.91
118
14.8
18.0
215
315
43 0
56 0
705
864
104
122
142
164
186
210
235
289
347
41
1
479
551
628
710
796
1500
1.00
2.05
3.06
3.98
5.01
6.03
7.05 8.99
9.30
10.0
12.1
14.6
16.2
17.7
20.5
257
53
1
68 8
863
105 126
148
2000
1.35
2.74
4.11
5.46
6.84
3000
2.00
4.01
6.16
8.21
10.3
7.99
9.36
70.7
12.1
13.5
16.2
18.9
12.3
13.9
15.9
18.0
20.0
24.f
28.2
212
243
275
310
345
422
505
594
689
790
898
172 '188
21.7
24.2
27.4
34.2
41.1
47.9
945
115
138
162
197
224
253
282
346
415
490
569
655
745
840
940
32.4
36.5
40.1
51.3
61.6
71.9
82.1
92.4
103
183
215
244
274
306
375
450
530
616
707
804
906

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 feet of Pipe
14 Inch (13.124 inside dia) Sch 40 New Steel Pipe
K~nematjc v~scos~ly-cent~stokes
Flow
27 43 74 103 131 157 206
US Bbl
gal per
Approx
SSU
vlscos~ty
per hr (42 .
1315 1 33 1 35 1 40 1 50 1 60 1 70 1 80 ( 100
For thls plpe slze v - 0 00237 x gpm h = 8 73 x 10 * n gpm'
For veloclty data see page 3-26
Note No allowance has been made for age d~fference In dlameter or any abnormal cond~t~on of lnterlor
surface Any factor of safety must be estlrnated from the local condltlons and the requlrements of each
particular bnstallatlon It IS recommended that for most commerc!al deslgn purposes a safety factor Of 15 to
20% be added to the values In the tables-see page 3 5
Friction Loss for Viscous Liquids (Continued)
(Bared on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
14 Inch (13.124" inside dia) Sch 40 New Steel Pipe
F~gures in shaded area are laminar (viscous) flow
For veloc~ty data see page 3-26.
Note: No allowance has been made for age, difference in dlarneter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local cond~t~ons and the requlrements of each
Particular installation. It is recommended that for most cornrnerclal design purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
Kinematic v~scoslty-cent~stokes
.
Approx SSU v~scosity
125 1 150 1 200 1 300 1 500 1 750 1 1000 1 1500 1 2000 1 3000
Flow
US
gal
per
min
Bbl
per
hr (42
gal)

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
16 lnch (15.000" inside dia) Sch 40 New Steel Pipe
Klnematlc v~scos~ly-cenl~slokes
Flow
U S Bbl
gal per Approx SSU viscos~ty
per hr (42
mln gal) 1315 1 33 1 35 1 40 1 50 1 60 1 70 1 80 1 100
I I I I I I I I I I I
For thls plpe slze v - 0 00182 K gpm h. 5 116 A 10 ' i gpm-
For veloclty data see page 3-26
Note No allowance has been made for age, difference In dlameler, or any abnormal condltlon of Interlor
surface Any factor of safely must be estimated from the local condltlons and the requlremenls of each
particular Installallon I1 IS recommended that for most commercial deslgn purposes a safety factor of 15 to
20% be added lo the values In the tables-see page 3-5
Friction Loss for Viscous Liquids (Continued)
(Baaed on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
16 lnch (15.000" inside dia) Sch 40 New Steel Pipe
K~nemat~c v~scos~ty-centlstokes
Flow
264 320 432 650 1084 1623 2165 325 435 650
US Bbl
gal per Approx SSU v~scos~ty
per hr (42
man gall 125 1 150 1 200 300 500 750 1000
Note: No allowance has been made for age, d~fference in diameter, or any abnormal cond~tion of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
palticular installation. it is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
20000
22000
Figures
In shaded area are iam~nar (VISCOUS) flow.
For velocity data
see page 3-26.
28600
31400
2409034300
2600037100
2800040000
285
340
399
462
530
296
352
413
478
548
301
358
420
487
559
329
390
456
527
602
371
439
512 591
674
396
486
566
652
743
424
502
565
674
768
469
554
645
742
846
506
597
694
798
909
564
664
772
886

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
18 lnch (16.876" inside dia) Sch 40 New Steel Pipe
GLr hFi42
mln gai) 31 5 33 35
For thls plpe slze v = 0 001434 x gprn. h, = 3 193 x 10 ' x gpm-
For veloclty data see page 3-27
Flow
Note No allowance has been made for age, dlfference In dlameter or any abnormal COndltlOn of Interlor
surface Any lactor of safely must be esttmaled from the local cond~l~ons and the requ~rements of each
particular lnstallat~on It IS recommended that for most commercial des~gn purposes a Safety factor Of 15 to
20% be added to the values In the tables-see page 3-5
K~nemat~c v~scos~ty-cent~stokes
US
ctal
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy'r Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
18 lnch (16.876 inside dia) Sch 40 New Steel Pipe
Bbl
npr
Figures in shaded area are laminar (v~saous) flow.
For velocity data
see page 3-27.
Note: NO allowance
has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation It is recommended that for most commercial design purposes a Safety factor of 15 to
20% be added to the values In the tables-see page 3-5.
Aonrox SSU v~scosltv
157 131 206 43 74 103 06 113 21 27

INGERSOLLUAND CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
20 lnch (18.812" inside dia) Sch 40 New Steel Pipe
For lhls plpe slze v - 0 001 154 x gpm h 2 068 r 10 ' # gpm'
For veloclly data see page 3-27
Note No allowance has been made for age, dlfference In dlameter or any abnormal cond~t~on of tnterlor
Surface Any factor of safety must be est~mated from the local condlllons and the requlrements of each
panlcular lnstallallon It IS recommended that for most commerc~al deslgn purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
20 lnch (18.812" inside dia) Sch 40 New Steel Pipe
K~nemat~c v~scos~ty-cent~slokes
Flow
264 32
0 43 2 650 108 4 162 3 216 5 325 435 650
US
Bbl
gal ~er
I I I I I 1 I I
Figures In shaded area are iam~nar (VISCOUS) flow
For velocity data see page
3-27.
Note: No allowance has been made for age. difference
In d~ameter, or any abnormal cond~t~on of Interlor
surface. Any factor of safety must be est~rnated from the local condtt~ons and the requlrements of each
paniCUlar Installation It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values In the tables-see page 3-5.

FRICTION INGERSOLL-RAND CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
24 lnch (22.624" inside dia) Sch 40 New Steel Pipe
Loss in Feet of Liquid per 1000 Feet of Pipe
24 lnch (22.624" inside dia) Sch 40 New Steel Pipe
tic viscosity-centistokes
108.4 162.3 216.5 325 435 650
,pprox SSU v~scosity
500 1 750 1 1000 1 1500 1 2000 1 3000
Flow
Flow
K~nemat~c viscos~ty-cent~stokes
U S
gal
per
mln
2000
3000
4000
5000
6000
ki'
-
Bbl
per
hr
(42
gal)
2860
4285
5715
7145
8670
7000
8000
9000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
32000
34000
36000
38000
40000
42000
44000
46000
48000
50000
55000
60000
65000
70000
80000
90000
For
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-28.
20.6
Note: No allowance has been made for age, difference in diameter, or any abnormal
condit~on of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes
a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
15
7
For velocity data see page 3-28.
10000
11400
12850
14300
17150
20000
22850
25700
28600
31400
34300
37100
40000
42850
45700
48600
51400
54300
57150
60000
62900
65700
68600
71450
78600
85710
92860
100000
114290
128570
this pipe
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
13.1
Approx SSU viscos~ty
3.24
4.21
5.29
6.50
9.29
12.6
16.3
20.6
25.4
30.6
36.4
42.6
49.3
56.6
64.3
72.5 81.2
90.4
100
110
121
132
144
156
188
224
263
304
397
502
size: v =
7.4 0.6
100
.59
1.21
2.07
3.07
4.25
10.3 2.7
3.41
4.40
5.52
6.76
9.62
13.0
16.8
21.2
26.0
31.3
37.1
43.5
50.3
57.6
65.4
73.6
82.4
91.7
101
112
122
134
145
158
190
226
265
307
400
506
7.98
x
10 '
4.3 1.13
70
.55
1.11
1.85
2.76
3.82
60
.51
1.05
1.75
2.61
3.62
2.1
80
.57
117
1.94
2.88
3.98
3.65
4.69
5.86
7.16
10.1
13.6
17.6
22.0
27.0
32.5
38.4
44.9
51.8
59.2
67.2
75.6
84.5
93.9
104
114
125
137
148
161
194
230
269
312
406
512
x gpm,
40
.41
.86
1.45
2.18
3.05
.31
.63
1.10
1.70
2.41
50
.47
.97
1.62
2.43
3.38
33
.37
-78
1.28
1.94
2.73
31.5
.34
.71
1.18
1.79
2.54
3.77
4.85
6.04
7.37
10.4
13.9
18.0
22.5
27.6
33.1
39.1
45.7
52.7
60.2
68.2
76.7
85.7
95.2
105
116
127
138
150
163
196
232
272
314
409
515
h, = 9.886
35
.39
.82
1.34
2.02
2.83
4.06
5.19
6.46
7.85
11.0
14.7
18.9
23.7
28.9
34.6
40.8
47.6
54.8
62.5
70.7
79.5
88.7
98.4
109
119
131
142
154
167
201
238
278
321
417
525
x
10.' x
4.47
5.71
7.08
8.59
12.0
16.0
20.4
25.5
31.0
37.0
43.6
50.6
58.2
66.3
74.9
84.0
93.6
104
114
125
137
149
162
175
210
248
289
333
431
541
gpmY.
4.78
6.09
7.54
9 13
12.7
26.9
21.6
26.8
32.6
38.9
45.7
53.0
60.9
69.2
78.1
87.5
97.4
108
119
130
142
155
168
181
217
256
298
343
443
555
5.03
6.40
7.92
9.58
13.3
17.7
22.5
28.0
33.9
40.4
47.5
55.0
63.1
71.8
80.9
90.6
101
11 1
123
134
147
159
173
186
223
263
306
352
454
568

INGERSOLLRAND CAMERON HYDRAULIC DATA
FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
30 lnch (28.750" inside dia) Sch 30 New Steel Pipe
For th~s pipe size: v = 4.942 x 10 ' x gpm; h, = 3.791 x 10 'I x gpmL
For velocity data see page
3-28.
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Flow
U
S
gal
per
mln
3200
3400
3600
3800
4000
5000
6000
7000
8000
9000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
35000
40000
45000
50000
55000
60000
65000
70000
90000
Loss in Feet of Liquid per 1000 Feet of Pipe
30
lnch (28.750 inside dia) Sch 30 New Steel Pipe
K~nemat~c viscosity-centistokes
-
Bbl
per
hr
(42
gal)
4570
4860
5140
5425
5715
7145
8570
10000
11400
12850
14300
17150
20000
22850
25700
28600
31400
34300
37100
40000
42850
50000
57150
62290
71450
78570
85710
92860
100000
75000107140
80000114290
85000121430
128570
95000135710
100000142860
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-28.
0.6
Note: No allowance has been made for age,
d~fference in diameter, or any abnormal condition of interlor Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local cond~tions and the requ~rements of each surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to I particular
~nstallation. It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5. 20% be added to the values in the tables-see page 3-5.
2.1 1.13
U S
gal
per
mln
3200
3400
3600
3800
4000
5000
6000
7000
8000
9000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
35000
40000
45000
50000
55000
60000
65000
70000
80000
85000
90000
95000
100000
Klnemat~c v~scos~ty-cent~stokes
Flow
-
Bbl
per
hr
(42
gal)
4570
4860
5140
5425
5715
7145
8570
10000
11400
12850
14300
17150
20000
22850
25700
28600
31400
34300
37100
40000
42850
50000
57150
62290
71450
78570
85710
92860104
100000
75000107140
114290
121430
128570
135710
142860
100
.43
.48
53
.59
.64
.97
1.35
1.77
2.25
2.77
3.34
4.63
6.10
7.75
9.57
11.6
13.8
16.1
18.6
21.3
241
32.0
40.8
50.7
61.5
73.3
86.0
99.8
114
130
147
164
183
202
222
-
-
.23
.25
.28
.31
.33
.51
-72
.97
1.25
1.57
1.92
2.74
3.70
4.80
6.05
7.44
8.97
10.6
12.5
14.4
16.5
22.4
29.1
36.8
45.3
54.8
65.1
76.3
88.4
101
115
130
146
162
180
2.7 10.3 26 4 435
31.5
.25
28
.31
.34
.37
.57
.77
1.03
1.33
1.66
2.03
2.87
3.86
5.00
6.27
7.69
9.26
11.0
12.8
14.8
16.9
22.9
29.7
37.5
46.1
55.6
66.0
77.3
89.5
103
117
131
147
164
181
4.3 650
Approx SSU
v~scosity
13.1 7.4 32.0 65 0 216.5 43.2
33
.27
-31
-34
-38
.41
.62
.86
1.12
1.43
1.79
2.18
3.07
4.11
5.29
6.62
8.09
9.71
11.5
13.4
15.4
17.6
23.7
30.7
38.6
47.4
57.1
67.7
79.1
91.5
105
119
134
150
167
184
15.7 325 108.4
Approx SSU
40
.30
.34
.38
.42
.56
.68
.95
1.26
1.61
2.00
2.43
3.40
4.52
5.80
7.22
8.80
10.5
12.4
14.4
16.6
18.9
25.3
32.6
40.8
50.0
60.0
70.9
82.7
95.4
109
124
139
155
172
190
35
.29
.32
.36
.39
.43
.65
.88
1.16
1.49
1.85
2.25
3.17
4.23
5.44
6.80
8.31
9.95
11.8
13.7
15.8
18.0
24.2
31.3
39.3
48.2
57.9
68.6
80.2
92.6
106
120
135
151
168
186
125
46
51
57
62
68
2000
1.28
1.36
1,44
1.53
1,62
20.6 162.3
3000
1.79
202
2.15
2-29
2.39
viscosity
50
.34
-38
-43
-47
.51
.77
1.06
1.40
1.79
2.21
2.68
3.73
4.95
6.33
7.86
9.55
11.4
13.4
15.5
17.8
20.3
27.0
34.7
43.3
52.9
63.3
74.7
87.0
100
114
129
145
162
180
198
1.00
1.38
181
2.32
2 89
351
4.89
6 44
8.17
10.1
12.2
14 5
16.9
19.6
22.4
253
33 5
42 7
52.9
642
764
89 6
119
135
152
170
189
209
230
150
.49
.54
.60
.66
72
300
.58
65
.72
79
86
1000
.fE5
.@
.73
.n
.81
200
.54
60
66
.72
.79
60
.37
.42
.46
.51
.55
.83
1.14
1.51
1.91
2.37
2.86
3.98
5.27
6.72
8.33
10.1
12.0
14.1
16.4
18.8
21.3
28.4
36.4
45.3
55.2
66.0
77.7
90.3
104
118
134
150
167
185
204
1500
,W
.$8
t.10
t.13
t.18
106
1 46
191
2.42
2.97
3.58
4.94
6.54
8.37
10.4
12.7
15.1
177
20.4
233
26.4
34 9
44 4
55 0
666
79.3
92.9
108
123
140
158
176
196
216
238
1.26
1.73
2.34
2.94
3 61
4.33
5.95
7 79
9.84
12.1
146
17 2
20.1
23.1
26.4
29.8
39 2
49.8
61.5
74.2
88.1
103
119
136
154
173
193
214
236
259
500
.68
.75
.83
.91
.99
179
2.44
3.17
3.98
4.86
582
796
10.4
13 1
160
19.2
22.7
26.4
304
346
390
51 1
64.6
79.5
95.8
113
132
152
174
196
220
245
281
309
339
116
1.59
2.08
2.62
3.22
3.87
533
6.99
8 85
10.9
13.2
15.6
18.2
21.0
24.0
27.1
35.7
45.6
56.7
68.9
82.2
96.5
112
128
146
164
184
204
226
248
750
.77
86
94
1.03
1.12
70
40
.44
49
.54
.59
.87
1.21
1.59
2.02
2.49
3.01
4.19
5.53
7.04
8.72
10.6
12.6
14.8
17.1
19.6
22.2
29.5
37.8
47.0
57.1
68.2
80.3
93.2
107
122
138
154
172
190
210
146
1 99
2.60
327
4.01
4.81
6.61
8.65
10.9
13.4
167
19.7
230
26.4
30.1
34.0
44.5
56 4
69 4
837
991
116
133
152
172
193
216
239
263
289
80
.42
.46
.51
.56
.62
.91
1.26
1.66
2.11
2.60
3.14
4.35
5.74
7.31
9.05
11.0
13.0
15.3
177
20.2
22.9
30.4
38.9
48.3
58.8
70.1
82.4
95.7
110
125
141
158
176
195
214
164
2 24
2.91
3.66
4.48
537
7.35
9.60
12 1
14.9
179
21 1
24.6
283
322
364
47.7
60 4
77 0
92.6
110
128
147
168
190
213
237
262
289
316
f.4S
1.a
3.60
4.50
5.49
6.57
8.95
11.7
14.6
179
21.5
25.3
29.4
33.8
38.4
43.3
56 6
71.5
87.8
106
125
145
167
191
216
242
269
297
327
359
243
2.T6
3.24~
6 02
7.19
9.78
12.7
15.9
19.5
233
27.5
31.9
36.6
41.6
46.9
61 2
77.1
94.6
114
134
156
180
205
231
259
288
319
350
384
3iBS
4.14
4.34
5.98
5.M
7.30
14.4
18.0
22.0
263
30.9
35.8
41.1
46.6
52.5
68.3
86 0
105
126
149
173
199
227
256
286
318
351
386
423

FRICTION
INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
36 lnch (34.500" inside dia) Sch 30 New Steel Pipe
US
gal
per
mln
6000
7000
8000
9000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
35000
40000
45000
50000
55000
60000
65000
70000
80000
90000
100000
110000
160000
170000
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
36
lnch (34.500" inside dia) Sch 30 New Steel Pipe
For this pipe
Kinematic viscosity-centistokes
Flow
Bbl
per
hr
(42
gal)
8670
10000
1
1400
1 2850
14300
17150
20000
22850
25700
28600
31400
34300
37100
40000
42850
50000
57150
62290
71450
78570
85710
92860
100000
114290
128570
142860
157140
120000171430
130000185710
140000200000
150000214290
228570
242860
180000257140
200000285710
slze. v = 3 432 x lo-' x gpm, h, = 1 828 x x gpm2
0.6
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
For veloclty data see page 3-29
I
Note No allowance has been made for age, difference In diameter, or any abnormal condltlon of Interlor
surface Any factor of safety must be estimated from the local condltlons and the requ~rements of each
particular lnstallat~on It IS recommended that for most commercial deslgn purposes a safety factor of 15 to
1
20% be added to the values In the tables-see page 3-5.
1.13
US
gal
per
mln
6000
7000
8000
9000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
35000
40000
45000
50000
55000
60000
65000
70000
80000
90000
100000
130000
140000
150000214290
160000
170000
180000
200000285710
Figures
For veloclty data see page 3-29.
Kinematic v~scos~ty-cent~stokes
Flow
-
Bbl
per
hr
(42
gal)
8670
10000
11400
12850
14300
17150
20000 22850
25700
28600
31400
34300
37100
40000
42850
50000
57150
62290
71450
78570
85710
92860
100000
114290
128570
142860
110000157140
120000171430
185710
200000
228570
242860
257140
In shaded
.29
.39
.50
.63
.77
1.09
1.47
1.90
2.39
2.94
3.54
4.20
4.91
5.67
6.50
8.80
11.4
14.4
17.8
21.5
25.5
29.9
34.6
45.0
56.9
70.1
84.8
101
118
137
157
179
201
226
278
2.1 26.4
31.5
.33
.43
.54
.67
.82
1.15
1.55
2.00
2.50
3.07
3.68
4.36
5.09
5.87
6.71
9.06
11.8
14.8
18.2
21.9
26.0
30.4
35.2
45.8
57.7
71.1
85.8
102
119
138
158
180
203
228
280
2.7 4.3 7.4 32.0 43 2
33
.36
.47
.60
.73
.89
1.25
1.66
2.14
2.67
3.26
3.90
4.60
5.36
6.18
7.05
9.47
12.2
15.4
18.8
22.7
26.8
31.3
36.2
46.9
59.1
72.6
87.5
104
122
141
161
183
206
231
284
125
.58
.76
.96
1 19
1.44
2.02
2.69
3.41
4.21
5.08
6.02
7.04
8.12
9.28
10.5
13.9
17.7
21.9
26.5
31.5
36.9
42.7
48.9
62.5
77.6
94.3
112
132
153
176
200
225
252
281
342
area are
10.3 65.0
35
.37
.50
.62
.76
.92
1.29
1.72
2.21
2.75
3.36
4.02
4.74
5.51
6.34
7.23
9.70
12.5
15.7
19.2
23.1
27.3
31.8
36.8
47.6
59.9
73.5
88.6
105
123
142
163
184
208
233
286
150
.61
.80
1.01
1.25
1.50
2.07
2.72
3.45
4.29
5.21
6.21
7.30
8.46
9.70
11.0
14.5
18.4
22.8
27.6
32.8
38.4
44.4
50.8
64.8
80.4
97.6
116
136
158
181
206
232
260
289
352
lamlnar
13.1 108 4
Approx SSU
40
.39
.52
.66
.82
1.00
1.39
1.85
2.37
2.95
3.58
4.28
5.03
5.85
6.72
7.65
10.2
13.2
16.4
20.1
24.1
28.4
33.1
38.1
49.3
61.8
75.7
91.1
108
126
145
166
189
212
237
291
200
.67
.88
1 10
1 35
1.63
224
2.93
3.71
4 57
5.50
6.51
7.60
8.76
9.99
113
14.9
18.9
23.4
28.4
33.9
39.8
46.1
52.9
67.7
84.2
102
122
143
166
191
217
244
273
303
369
(VISCOUS)
15.7 162.3 20.6
viscosity
50
.44
.58
.74
.92
1.11
1.54
2.04
2.61
3.23
3.92
4.67
5.48
6.35
7.29
8.28
11.0
14.1
17.6
21.4
25.6
30.2 35.1
40.4
52.0
65.0
79.5
95.3
113 131
151
173
196
220
245
301
300
.73
.95
1.24
1.52
1.83
2.51
3.28
4.13
5.08
6.11
7.22
8.42
9.69
11.1
12.5
16.4
20.8
25.6
30.9
36.7
42.9
49.5
56.5
71.8
88.8
107
128
150
173
198
224
252
282
313
380
flow.
216.5
60
.48
.63
.80
.98
1.19
1.65
2.18
2.78
3.44
4.17
4.96
5.81
6.73
7.71
8.75
11.6
14.9
18.5
22.5
26.9
31.6
36.7
42.1
54.1
67.6
82.4
98.7
116
136
156
178
201
226
252
309
Approx SSU
500
.84
1.10
1.38
1 69
2.03
2.78
3.64
4.59
5.64
6.78
8.02
9.66
11.1
12.6
14.3
18.7
23.6
29.1
35.0
41.4
48.3
55.7
63.6
80.6
99.5
120
142
167
192
220
249
280
312
346
419
325
70
.5 1
.66
.84
1.04
1.25
1.74
2.29
2.92
3.61
4.37
5.20
6.09
7.04
8.06
9.14
12.1
15.5
19.2
23.4
27.9
32.8
38.0
43.6
55.9
69.7
85.0
102
120
139
160
183
206
232
258
316
v~scos~ty
750
.95
1.23
1.55
1
.89
2.27
3.10
4.05
5.10
6.26
7.52
8.88
10.3
11.9
13.5
15.3
20.0
25.3
31.1
37.5
46.0
53.5
61.6
70.2
88.9
110
132
156
183
211
240
272
305
340
377
456
435 650
80
.53
-69
-88
1.08
1.31
1.81
2.39
3.03
3.75
4.54
5.39
6.31
7.30
8.35
9.46
12.5
16.0
19.9
24.1
28.7
33.7
39.1
44.9
57.5
71.5
87.1
104
123
142
164
186
211
236
263
322
1000
1.04
1.35
1.69
2.06
2 47
3.37
4.39
552
6 76
8.12
9 57
111
12.8
14.6
16.4
21.5
271
33.4
40.2
47.5
55.3
63.8
72.7
92.1
113
137
168
196
226
257
291
326
364
403
486
100
.56
.74
.94
1
.16
1.40
1.93
2.54
3.22
3.98
4.81
5.71
6.68
7.71
8.82
9.99
13.2
16.8
20.9
25.3
30.1
35.3
40.9
46.9
60.0
74.6
90.7
108
127
148
170
193
218
244
272
332
1500 2000 3000
,%@
1.m
1 92
2.34
2 79
3.80
4.94
6.20
7.58
9.08
10.7
12.4
14.3
162
18.3
23.9
30.1
36.9
44.4
52.5
61.1
70.3
80.1
101
125
150
178
207
239
272
308
345
385
426
514
4.161
5.40
6.77
8.26
9.89
11.6
13.5
15 5
17.6
19.8
25.8
32.5
39.9
47.9
56.5
65.8
75.6
86.1
109
134
161
190
222
255
291
329
369
411
454
548
3.45
4.m
7.68
9.36
11.2
13.1
15.2
17.4
19.8
22.2
28.9
36.4
44.5
53.4
62.9
73.1
84.0
95.5
120 148
178
210
244
281
320
362
405
451
499
600

INGERSOLLRAND CAMERON HYDRAULIC DATA
FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
42 lnch (42.0" inside dia) New Steel Pipe
For this pipe slze: v = 2.316 x lo-' x gpm: h, : 8.322 x 10 'Ox gpm'
For velocity data see page 3-29.
Note: No allowance has been made for age, difference In diameter, or any abnormal cond~tion of interlor
surface. Any factor of safety must be estimated from the local cond~t~ons and the requirements of each
particular ~nstallation. It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
42 lnch (42.0" inside dia) New Steel Pipe
Flow
U S
gal
per
mln
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
25000
30000
35000
40000
45000
50000
60000
80000
90000
100000
110000
120000
130000
140000
150000
160000
180000
250000
350000
K~nematic viscosity-centistokes
-
Bbl -
per
hr
(42
-
gal)
14300
15700
17150
18600
20000
21400
22850
24290
25700
27140
28600
35700
42850
50000
57150
62290
71450
85710
70000100000
114290
128570
142860
157140
171430
185710
200000
214290
228570
170000242860
257140
200000285710
357140
300000428570
500000
400000571430
Figures in shaded area are laminar (viscous) flow.
For velocity data see page
3-29.
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be
est~mated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page 3-5.
206
US
gal
per
mln
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
25000
30000
35000
40000
45000
50000
60000
90000
100000
110000
120000
130000
140000
150000
160000
170000
180000257140
190000
200000285710
250000
300000
350000
157
Kinematic viscosity-centistokes
Flow
-
Bbl
per
hr
(42
gal)
14300
15700
17150
18600
20000
21400
22850
24290
25700
27140
28600
35700
42850
50000
57150
62290
71450
85710 70000100000
80000114290
128570
142860
157140
171430
185710
200000
214290
228570
242860
271430
357140
428570
500000
13.1
26.4 10.3 7.4 32.0 43.2
80
.51
-60
.71
.81
.93
1.05
1.18
1.31
1.46
1.60
1.76
2.63
3.66
4.83
6.16
7.64
925
12.9
17.2
21.9
27.3
33.1
39.6
46.5
54.0
62.0
70.5
79.6
89.2
99.3
121
184
261
350
451
70
49
.58
.68
.78
.89
1.01
113
1.26
1.40
1.54
1.69
2.53
3.52
4.66
5.95
7.38
8.95
12.5
16.6
21.3
26.5
32.2
38.5
45.3
52.6
60.5
68.8
77.7
87.1
97.0
118
181
256
344
444
100
,551
.65
75
.87
.99
1.12
1.26
1.40
1.55
1.71
1.87
2.79
3.87
5.11
6.51
8.05
9.75
13 6
18.0
23.0
28.6
34.7
41.3
48.5
56.3
64.6
73.4
82.7
92.6
103
125
191
269
360
464
60
.46
.55
.64
.74
.85
.96
1.07
1.20
1.33
1.47
1.61
2 41
3.36
4.46
5.70
7.07
8.59
12.0
16.0
20.5
25.6
31.1
37.2
43.9
51.0
58.6
66.8
75.5
84.7
94.4
115
177
250
337
436
125
-56
.66
.78
.90
1.03
1.17
1.32
1.48
1.64
1.81
1.98
2.94
4.08
5.38
6.84
8.46
10.2
14.2
18.8
24.0
29.8
36.1
43.1
50.5
58.5
67.1
76.2
85.9
96.1
107
118
130
197
277
370
2.7
2.1 06 65.0 108.4
viscos~ty
50
.43
.51
.60
.69
.79
.89
1.00
1.12
124
1.37
1.51
2.27
3.17
4.21
5.38
6.70
8.14
11.4
15.3
19.6
24.5
29.8
35.7
42.1
49.1
56.5
64.4
72.9
81.8
91.3
112
171
244
329
427
4.3 1.13
Approx SSU
40
.38
.46
.54
.62
.71
.81
.91
1.01
1.13
1.24
1.37
2.07
2.90
3.87
4.96
6.19
7.55
10.7
14.3
18.4
23.0
28.2
33.8
40.0
46.6
53.8
61.5
69.6
78.3
87.5
107
166
237
320
416
150
.59
.70
.81
.93
1.06
1.20
1.34
1.50
1.66
1.82
2.00
3.02
4.24
5.63
7.15
8.83
10.7
14.8
19.6
25.0
31.0
37.5
44.7
52.4
60.6
69.5
78.9
88.8
99.3
110
122
134
203
285
380
162.3
.29
.34
.41
.47
.54
62
.70
.79
-88
-98
1.08
1.67
2.39
3.22
4.19
5.28
6.49
9.29
12.6
16.4
20.7
25.5
30.8
36.6
42.9
49.7
57.0
64.8
73.1
81.9
101 157
226
308
401
33
.35
42
.48
.55
.63
.72
.81
.91
1.01
1.12
1.23
1.87
2.64
3.54
4.56
5.72
7.00
9.93
13.4
17.3
21.8
26.7
32.2
38.1
44.6
51.5
59.0
66.9
75.4
84.3
104
161
231
313
408
31.5
.32
.37
.43
50
-58
.66
.75
.84
.94
1.04
1.14
1.75
2.49
3.35
4.34
5.45
6.69
9.54
12.9
16 7
21.1
260
31.3
37.2
43.5
50.4
57.7
65.6
73.9
82.8
102
159
228
310
404
200
.64
.76
.88
1.01
1.15
1.30
1.45
1.62
1.79
1.97
2.15
3.19
4.41
5.80
7.35
9.08
11.0
15.3
20.3
26.0
32.3
39.3
46.9
55.0
63.8
73.2
83.2
93.7
105
116
128
141
213
298
397
216.5
35
.37
.44
.50
.57
.66
.75
.84
.94
1.05
1
1.27
1.93
2.72
3.64
4.69
5.86 7.16
10.2
13.6
17.6
22.1
27.1
32.7
38.7
45.2
52.2
59.7
67.7
76.2
85.2
105
162
232
315
410
300
.72
.85
.99
1.13
1.29
1.45
1.63
1.81
2.00
2.19
2.40
3.54
4.88
6.41
8.12
10.0
12.1
16.7
22.0
27.9
34.5
41.6
49.4
57.8
66.8
76.4
86.6
97.3
109
121
133
146
220
307
407
325 435 650
Approx SSU
500
.80
.94
1.10
1.26
1.43
1.61
1.81
2.01
2.22
2.44
2.66
3.94
5.60
7.33
9.26
11.4
13.7
18.9
24.8
31.4
38.8
46.8
55.4
64.7
74.7
85.3
96.5
108
121
134
148
162
242
337
447
viscosity
750
.90
1.06
1.23
1.41
1.60
1.80
2.01
2.23
2.47
2.71
2.96
4.36
5.99
7.85
9.91
12.2
14.7
20.2
27.5
34.8
42.8
51.6
61.1
71.2
82.1
93.7
106
119
132
147
161
177
264
367
484
1000
.98
1.15
1.33
1.53
1.74
1.95
2.18
2.42
2.67
2.93
3.20
4.71
6.46
8.44
10.7
13.1
15.7
21.7
28.4
36.0
44.3
53.4
63.3
73.8
85.1
101
114
127
142
157
173
189
282
390
515
1500
1.11
1.30
1.51
1.73
1.96
2.20
2.46
2.72
3.00
3.29
3.59
5.27
7.21
9.40
11.9
14.5
17.5
24.0
31.4
39.7
48.8
58.7
69.5
81.0
93.3
106
120
135
150
166
183
200
298
413
565
2000
.90
.93
1.66
1.90
2.15
2.41
2.69
2.98
3.28
3.59
3.92
5.73
7.83
10.2
12.8
15.7
18.9
25.9
33.8
42.7
52.4
63.1
74.5
86.8
100
114
129
144
160
178
195
214
318
440
579
3000
127
1.42
1.57
f.72
1.67
2.02
2.05
3.39
3.73
4.08
4.45
6.47
8.82
11.5
14.4
17.6
21.1
28.8
37.6
47.4
58.2
69.9
82.5
96.0
110
126
142
159
177
195
215
235
348
481
632

INGERSOLL*AND CAMERON HYDRAULIC DATA FRICTION
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
48 lnch (48.0" inside dia) New Steel Pipe
For thls plpe size: v = 1.773 x lo-' x gpm; h, - 4.877 x 10 "'x gpm2.
For velocity data see page 3-30.
Note: No allowance has been made for age, d~fference in diameter, or any abnormal condit~on of interlor
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15
to
20% be added to the values in the tables-see page 3-5.
Flow
US
gal
per
mln
14000
16000
18000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
100000
110000
120000
130000
140000
160000
180000
200000
250000
350000
450000
500000
Friction Loss for Viscous Liquids (Continued)
(Based on Darcy's Formula)
K~nernat~c v~scos~ty-centistokes
-
Bbl
per
hr
(42
gal)
20000
22850
25700
28600
35700
42850
50000
57150
64290
71430
78570
85710
92860
100000
107140
114290
121430
128570
95000135710
142860
157140
171430
185710
200000
228570
257140
285710
357140
300000428570
500000
400000571430
642860
714290
550000785710
600000857140
Loss in Feet of Liquid per 1000 Feet of Pipe
48 lnch (48.0" inside dia) New Steel Pipe
K~nemat~c vtscos~ty-cent~stokes
)W
--
26 4 32 0 432 65 0 1084 162 3 216 5 325 435 650
Bbl
.
Per Approx SSU v~scos~ty
hr (42
gal) 125 150 200 300 500 750 1000 1500 2000 3000
20000 54 56 61 69 76 85 93 105 115
22850 69 71 77 86
96 1 07 1 16 1 31 1 44
25700 86 88 95 106 118 131 142 160 175
l.44
28600 104 1 05 1 14 1 27 1 41 1 57 1 70 1 92 2 09 1.S
35700 1 55 1 58 1 69 1 88 2 09 2 32 2 50 2 81 3 06 3 46
42850 215 221 233 259 287 318 343 384 417 471
50000 283 294 306 339 389 416 448 500 543 512
57150 360 376 388 429 491 525 565 630 683 767
64290 4 45 4 65 4 79 5 28 6 03 6 46 6 94 7 72 8 36 9 38
71430 538 562 577 637 726 777 834 927 100 112
78570 638 667 685 754 858 919 986 109 118 132
85710 747 780 800 880 100 107 115 127 137 154
92860 864 901 925 102 115 123 132 146 158 176
100000 988 103 106 116 131 141 151 167 180 200
107140 112 117 121 131 148 159 170 188 202 226
114290 126 131 136 147 166 184 190 21 0 227 252
121430 141 146 152 164 185 205 212 234 252 280
128570 156 162 167 181 205 227 234 259 278 309
135710 172 179 187 200 225 249 258 284 306 339
142860 189 197 205 219 247 273 282 311 334 371
157140 225 234 245 260 292 323 334 368 395 438
171430 264 274 287 304 341 377 390 429 460 509
185710 30 5 31 7 333 35
1 39 4 43 4 44 9 494 529 58 5
200000 350 36 3 382 40 1 449 49 5 51 3 56 3 603 666
214290 397 412 434 455 508 559 580 635 681 752
Figures in shaded area i
For velocity data see p
15.7 13.1
197
253
315
384
459
I laminar
e 3-30.
20.6
(viscous) flow.
2.7 2 1 0.6
100
.52
.66
.82
.99
1.47
2.04
2.69
3.42
4.23
5.11
6.08
7.12
8.23
9.42
10.7
12.0
13.4
14.9
16.5
18.1
21.5
25.3
29.3
33.6
43.0
53.5
65.1
98.7
139
186
239
298
364
437
516
Note: NO allowance has been made for age, difference in diameter, or any abnormal condition of interior
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of
15 to
20% be added to the values in the tables-see page
3-5.
1.13 4.3
60
.44
.57
70
.84
1.27
1.76
2.33
2.98
3.69
4.48
5.34
6.26
7.26
8.33
9.46
10.7
11 9
13.3
14.7
16.1
19.3
22.7
26.3
30.3
38.9
48.6,
59.3
90.6
128
172
223
279
342
411
487
viscosity
50
.41
.53
65
.79
1.19
1.65
2.19
2.81
3.49
4.23
5.05 5.94
6.89
7.91
8.99
10.2
11.4
12.7
14.0
15.4
18.4
21.7
25.3
29.1
37.3
46.6
56.7
87.7
125
168
217
273
335
403
478
7.4 10.3
Approx SSU
40
.37
.47
.59
.71
1.08
1.51
2.01
2.57
3.21
3.90
4.67
5.50
6.39
7.35
8.37
9.46
10.6
11.8
13.1
14.5
17.3
20.5
23.9
27.5
35.5
44.6
54.7
84.2
120
162
211
265
326
393
467
70
.47
.60
.74
.89
1.33
1.85
2.44
3.12
3.86
4.68
5.57
6.53
7.57
8.67
9.85
11.1
12.4
13.8
15.2
16.8
20.0
23.5
27.3
31.3
40.2
50.1
61.1
93.1
131
176
227
285
349
419
496
-
.28
.36
.45
.55
.85
1.21
1.64
2.12
2.67
3.28
3.96
4.70
5.50
6.36
7.28
8.27
9.32
10.4
11.6
12.9
15.5
18.4
21.6
25.0
32.6
41.2
50.7
79.1
114
154
202
255
314
380
452
80
.49
.62
77
.93
1.38
1.92
2.54
3.23
4.00
4.84
5.76
6.75
7.82
8.96
10.2
11.4
12.8
14.2
15.7
17.3
20.6
24.2
28.0
32.2
41.2
51.4
62.6
95.1
134
180
232
290
354
426
503
33
.34
.42
.52
.64
.97
1.36
1.82
2.35
2.93
3.59
4.30
5.08
5.92
6.83
7.80
8.83
9.93
11.1
12.3
13.6
16.4
19.4
22.6
26.1
33.9
42.7
52.5
81.3
116
158
205
259
319
386
458
31.5
.31
.39
.48
.59
-90
1.27
1.71
2.21
2.78
3.40
4.09
4.85
5.66
6.54
7.48
8.49
9.55
10.7
11.9 13.1
15.8
18.8
22.0
25.4
33.1
41.7
51.4
79.9
115
156
203
256
316
382
454
35
.35
-44
-54
.66
1.00
1.41
1.88
2.42
3.02
3.68
4.41
5.21
6.07
6.99
7.97
9.02
10.1
11.3
12.6
13.9
16.6
19.7
23.0
26.5
34.4
43.3
53.1
82.2
117
159
207
261
321
388
461

INGERSOLLflAND CAMERON HYDRAULIC DATA
Friction Loss for Viscous Liquids-4000 SSU to 20000 SSU
(Based on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
11/4" to 6" pipe sizes-Schedule 40
Laminar flow-figures suitable for any interior roughness
Note: No allowance has been made for age, difference in diameter, or any abnormal condition of interlor
surface. Any factor of safety must be estimated from the local cond~tlons and the requirements of each
particular installation. It is recommended that for most commercial design purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.
Friction Loss for Viscous Liquids-4000 SSU to 20000 SSU (cont.)
(~ased-on Darcy's Formula)
Loss in Feet of Liquid per 1000 Feet of Pipe
3" to 18" pipe sizes-Schedule 40
Laminar flow-Figures suitable for any interior roughness
Darcy formula for laminar (viscous) flow-hf - Lok
1587.6 d'
in which-h, = friction loss-ft of liquid; L = length of pipe-ft: gpm = flow-gal per min; k = kinematic
viscostty-centlstokes: d = ~nternal pipe d~a-~n Warnlng: This formula for lamlnar flow only, 1.e. for Reynolds
number less than
2000.
Note: No allowance has been made for age, difference in diameter, or any abnormal
condition of interlor
surface. Any factor of safety must be estimated from the local conditions and the requirements of each
Particular installation. It is recommended that for most commercial deslgn purposes a safety factor of 15 to
20% be added to the values in the tables-see page 3-5.

INGERSOLL-RAND CAMERON HYDRAULIC DATA FRICTION- PAPER STOCK
Friction losses - paper stock flow
Curves relating friction loss to stock flow in pipes are shown on
pages 3-91 to 3-101. These curves are based on the University of
Maine's correlation of the Brecht and Heller data*. That data cor-
relation produced a relationship between a pseudo-Reynolds Number
"Re" and a friction factor "f" as shown on the chart on page 3-90.
The following equations are applicable here:
x V x p
(1) pseudo-Reynolds Number "Re" = C1.157
(2)
3.97
**friction factor "f"
=
R61.636
(3)
Q x 0.321
average stock velocity "V" =
A
(4)
fxV2xLxK
friction loss "hff' =
D
where:
A
= Pipe flow cross-sectional area - square inches
C
= % stock consistency -oven dry
D = Inside diameter of pipe
-feet.
f = Friction factor**-see page 3-90
hf = Friction loss-feet of water
K
= Friction factor multiplier (see page 3-89)
L
= Length of pipe-feet
p = Stock density-lbs./ft3 (assumed to be 62.4)
Q = Volumetric flow rate - U. S.
gallons/minute
Re = Pseudo-Reynold's number
V = Average stock velocity in pipe-feetisecond
* Acknowledgements, with the permission of TAPPI
Brecht and Heller-TAPPI Vol. 33, No. 9
Durst, Chase and Jenness-TAPPI Vol. 35, No. 12
Durst and Jenness-TAPPI Vol. 37, No. 10
P. S. Riegel-TAPPI Vol. 49, No. 3
** Note: This friction factor "f" is not related in any way to the Darcy-Weisbach-
Colebrook friction factor previously discussed-(page 3-3).
Note: For pump performance corrections when handling stock see discussion on
page
4-49.
Given the pipe size, stock flow, and stock consistency, the stock
velocity and
Re number can be calculated using equations (3) and
(1). The friction factor "f" corresponding to the calculated Re number
can be taken from the chart on page 3-90 or calculated using equation
(2). By using the appropriate given and derived values in equation 1
(4), the stock line friction loss can be calculated. Friction loss values
shown on the accompanying curves were derived in the foregoing
manner for various diameters of schedule 40 steel pipe.
I For pipe diameters other than those shown, it is necessary to
calculate friction loss values as described above.
Although the R4 number was originally derived on an OD stock
consistency basis, the friction loss curves shown here were calculated
on the
AD consistency basis, resulting in somewhat larger loss
I
values and, therefore, more conservative results.
Stock temperatures between 18°C and
35°C (65°F and 95°F) will
not appreciably affect friction loss; higher temperatures should give
somewhat lower friction losses.
For stock consistencies below 2.0%, use water friction values.
Stock velocity should not exceed 10 feetlsec. for stock consistencies
of 3.0% or lower; for consistencies higher than 3.0%, maximum stock
velocity should be 8 feetlsec.
The friction loss curves are based on unbleached, unrefined soft-
wood sulfite pulp; for other types of pulp, the following multiplier
1
values (K) may be applied:
Friction Factor
Type
of Pulp
*CSF -ml Multiplier (K)
Unbl. Sulfite- SW 640 1.00
B1. sulfite-SW 560 0.90
Unbl. kraft - SW 730 0.90
i
Soda-HW - 0.90**
Reclaimed fiber - 0.90""
Pre-steamed groundwood - SW 200 1.00
Stone groundwood- SW 70 1.42
* Canadian Standard Freeness
** Courtesy of Goulds Pumps, Inc.
Note: This friction factor multiplier
(K) is not related in any way to the resistance
coefficient
K in the tables on pages 3-110 to 3-121.

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction Factors for Stock Flow in Pipes
Friction Factor-"f"
"f" FACTOR
gw8 $ 0" m 8
994904 8 8 9
0000 00 0000 0 0 g g
Pq"?drn cu- OQ)b(O V) w
9999 9 9 9 9
' f " FACTOR
FRICTION- PAPER STOCK
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
3 Inch
I./I , I. I /II I1 1111
50 100 FLOW-US 150 GPM ZOO 250

INGERSOLL-RAND CAMERON HYDRAULIC DATA
I
I FRICTION- PAPER STOCK
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
4
lnch
I 1 1 I 1 I I.., I I
bO DO 150 200 250 300 360 400
FLOW-US GPM
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
6
lnch

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION- PAPER STOCK
Friction of Paper Stock
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
8
lnch
I 1 I. 1 I
I I 1
1000 1500
FLOW-US GPM
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
10
lnch
u 460 do I jZm 1200 2400 2d00 ~QOO
FLOW-US GPM

INGERSOLL-RAND CAMERON HYDRAULIC DATA FRICTION- PAPER STOCK
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
12
lnch
0
FLOW - US GPM
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached
sulphite pulp-air dry
14
lnch
I m 1 , .I, I I ,, I,
0 1000 2000 3000 4000 5000
FLOW-US GPM

INGERSOLL-RAND CAMERON HYDRAULIC DATA FRICTION- PAPER STOCK
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
Friction of Paper Stock (Continued)
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
18
lnch
16 lnch
I I I1 8 I# I I ., L.. I
0' 4000 so00 6000
'OoO ?eO~oOfS OPM
. .- --
1000 2000 30
ii
00 4000 5000 6000 7000
FLOW -US GPM

INGERSOLLRAND CAMERON HYDRAULIC DATA FRICTION- PAPER STOCK
Friction of Paper Stock (Continued)
Friction loss in fittings- (paper stock)
To determine frictional resistance of paper stock flowing in elbows
and tees use the chart on page
3-102; these curves are drawn for 90"
short radius elbows. To determine the frictional resistance for either
90" long radius elbows or
45" elbows, multiply the results obtained
from the chart by a
0.8 factor. To determine the frictional resistance
of a standard tee, multiply the results obtained from the chart by a
1.7 factor. The following example demonstrates how to use the chart.
Loss in feet of water per 100 ft of pipe
Basis unbleached sulphite pulp-air dry
20
Inch
Find the frictional resistance in an 8 in. schedule 40, short radius
90" steel elbow for 900 gallons per minute of 3% air dry consistency
unbleached sulphite paper stock. Entering the chart with
900 gallons
per minute, move horizontally to the intersection of the
8 in. curve.
Proceeding vertically to the intersection of the
3% air dry consistency
curve results in a frictional resistance value of
1 foot.
For fittings with internal diameters different from schedule
40 steel
fittings, it is necessary to determine the'flow velocity. The chart can
then be entered on the velocity scale and projected upward to the
intersection with the consistency curves. The frictional resistance can
now be read as before. For the various types of paper stock, the
K values from the table on page 3-89 should be used as multipliers of
the frictional resistance.
See Page
3-103 for general information on Pulp
& Paper Industry.
0 I000 2000 3000 4000 5000 6000 X)OO 8000 9000
FLOW- US GPM

INGERSOLL-RAND CAMERON HYDRAULIC DATA I PAPER STOCK DATA
Friction of Paper Stock (Continued)
Through 90" Elbows
% AIR DRY CONSISTENCY
6% 5% 4k%
Courtesy Goulds Pumps, Inc.
3-102
General Information -Pulp and Paper Industry*
Dejnitions of Corn rnonl y Used Terms.
Fiber(s): Cellulosic cell structures derived from the origi-
nal plantlife source or from previously manufac-
tured paper products; normally considered as water
insoluble.
Pulp:
Stock:
A composite mixture of cellulosic fibers constituting
the basic material used for paper making.
A designation of pulp (fibers) in process flow. In this
Section, the terms "stock" or "paper stock" denote
pulp (fibers) and water mixtures or suspensions. This
usage excludes the presence of non-cellulosic materials
such as fillers or dissolved solids.
Consistency: Equivalent to the terms "suspended solids" or "in-
soluble solids." In this Section, "consistency" is
defined as the fiber or pulp content expressed as
a
weight percentage of a paper stock, pulp slurry, or
pulp cake (fiber-water mixtures).
Oven Dry: Abbreviated as OD and signifying a moisture-free
condition of pulp (fibers).
Air Dry: Abbreviated as AD and denoting an assumed
moisture content of
lo%, on a wet weight basis, for
a pulp (fibers).
AD value
= 1.11
x OD value
OD value
= 0.90
x AD value
Tons Per Day: Pulp
mill production rate, generally expressed as
tons
of OD or AD pulp per day or 24 hours. The pro-
duction rate can be calculated as follows:
Short Tons of Pulp per Day
= (Stock Flow in US GPM)
(C) (0.06)
Where: C
= stock consistency expressed as a
percentage
0.06
= derived constant
* Courtesy of IMPCO Division, Ingersoll-Rand Company, Nashua, N.H. 03060.
3- 103

PAPER STOCK DATA
Notes: (1) Use OD consistency value to obtain OD
pulp production rate.
Use
AD consistency value to obtain AD
pulp production rate.
(2) The equation constant, C, was derived by
use of water density value of 8.34
1blU.S.
gallon, the density value at 55°F; therefore,
the equation is accurate only at stock
consistencies of 0.1% or less, and at a
stock temperature of 55°F.
Solutions of the production rate equation for a normal
range of stock flow and consistencies are shown on
the chart on page 3-109.
Example: What is the flow in
US GPM of 5.0% OD
consistency stock equivalent to a produc-
tion rate of 100 short tons of OD pulp per
day?
Solution: Locate 100 TPD value on Y-axis and follow
horizontal line until it intersects the 5.0%
consistency line. Follow vertical line from
the point of intersection to the X-axis and
read 333 US GPM as the stock flow
equivalent.
Note: Chart can be used for either OD or
AD
values but not for mixed values.
Weight and
Volu~ne Relatiov~ships for Cellulose
Fiber-Water Susperzsions
The accompanying Tables (1, 2, 3 and 4) indicate weight and volume
relationships for cellulose fiber-water suspensions.
The appropriate values given in Tables 2, 3 and 4 were calculated
to reflect stock density change with change in pulp (fiber) content
of the stock. An equation, shown below, was derived to enable calcu-
lation of stock density at any given stock consistency.
Stock Density (lblgal) = (8.34) + (3.33 x % cons.)
Where:
8.34 = lb water in US Gal.
@ 55°F
3.33 = rate of change factor
% Cons. = % OD Stock .consistency, expressed as a decimal.
Commonly required weight-volume relationships are listed in
Tables
1, 2, 3 and 4 along with values calculated using the equations
shown in Table
1. Constants used are:
2000
lblshort ton
(1) 1.388
=
1440
minutestday
(2) 7.48 = *U.S. GallonslCubic Foot
(3) 8.34
=
**lb/U.S. Gallon of water @ 55°F
(corresponding to 62.39 lb per
cu ft.)
In using the equations in Table
1 the values for Column E should be
determined first, then proceed alphabetically starting with Column
B.
Table 1.
Explanation of Equations Used
A =
% O.D. consistency
1.388
B=-
E
C = E x 7.48
1 1
D==-
E x 7.48 C
A
E=-XL
100
1 1
F==-
LXL E
100
1.388 - 1.388
G=---
E x 7.48 C
1 388
x L
H ='
E
100
I=-1
A
1 00 1 I
J= --I x-=-
1 A 1 8.34 8.34
K= --I x=-
2000 2000
1 1 8.34 8.34
L = 8.34 + 3.33 x - 1 100
A
C
D
E
F
I
J
K
L
Lb of O.D. fiber in 100 lbs of stock.
% O.D. cons.
Gal of stock per min per ton of O.D.
fiber per 24 hours
Lb of O.D. fiber in 1 cu
ft of stock
Cu
ft of stock having 1 lb of O.D. fiber
Lb of
O.D. fiber in 1 gal of stock
Gal of stock having 1
lb of O.D. fiber
Cu ft of stock per min per ton of
O.D. fiber per 24 hours
Lb of stock per rnin per ton of
O.D. fiber per 24 hours
Lb of water per lb of O.D. fiber
Gal of water per Ib of O.D. fiber
Gal of water per ton of 0.D fiber
Lb total wt per gal of stock

$0
Table 2-Weight and Volume Relationships for Cellulose Fiber-water Suspensions
w
0 Q, Based on oven dry (OD) f~ber Range 0 000% to 1 60%
* Basis U.S. Gallons.
" Basis temperature of approximately 55'F
% Cons
Lb of OD
f~ber In 100
Ib of stock
,000
0.05
0 10
0 20
0.30
0 40
50
55
60
65
.70
75
.80
85
90
.95
1 .OO 1 10
1 20
1 30
1 40
1.50
Table 3-Weight and Volume Relationships for Cellulose Fiber-water Suspensions
Based on oven dry (OD)
f~ber Range 1 60% to 5.00%
Gal of stock
per mln per
ton of OD
f~ber per 24
hours
330.5
173.5
83
1
55.5
41 6
33 2
30 2
27 7
25.6
23.7
22
1
20.7
19 5
18 4
17.5
16 6
15
1
13 8
12.8
11 8
11 0
Lb of OD
f~ber In 1 cu
ft of stock
0 0314
0.0598
0 127
0 187
0.247
0 313
0.344
0 375
0 406
0.438
0 469
0.500
0 532
0.563
0.595
0.626
0.689
0.751
0.814
0.877
0.941
"O Cons
Lb of OD
f~ber In 100
Ib of stock
1 60
1 70
1 80
1 90
2 00
2 20
2 40
2 60
2 80
3 00
3 25
3 50
3 75
4 00
4 25
4 50
4 75
5 00
Cu ft of
stock hav~ng
1 Ib of OD
fiber
31.9
16.9
7.87
5 35
4 05
3 20
2.91
2 67
2 46
2.29
2 13
2 00
1.88
1.78
1 68
1.60
1.45
1 33
1.23
114
1.06
Y
C-L
0 -1
Gal of stock
per mln per
ton of OD
f~ber per 24
hours
10 3
9 73
Lbs of OD
f~ber In 1
gal of stock
004?
-008
,017
.025
,033
,042
,046
,050
054
,058
,0627
,067
,071 I
,0753
0795
,0837
,0922
1006
,109
,117
,126
Lbs ot OD
ftber In 1 cu
ft of stock
1 0038
1 0666
Gal of stock hav~ng 1 Ib
of OD fiber
238
125
58.8
40.0
30.3
23.9
21.8
19.9
18.4
17.1
16.0
15.0
14.1
13.3
12.6
12.0
10.9
9.95
9.18
8.53
7.95
Cu ft of
stock hav~ng
1 Ib of OD
f~ber
0 996
0 938
9 19
1 130
870 1193
0 885
0 838
0 796
0 723
0 662
0 611
0 567
0 528
0 487
0 452
0 422
0 395
0 371
0 350
0 332
0315
8 26
7 51
6 88
6 34
5 88
5 49
5 06
4 69
4 38
4 10
3 85
3 64
3
44
3 27
Cu ft of stock
per rnln per
ton of OD
f~ber per 24
hours
44 2
23.2
10.9
7.42
5 62
4 44
4.04
3 70
3.42
3.17
3.00
2 77
2.61
2.47
2 34
2 22
2 01
1.85
1.70
1.58
1.48
Lbs ot OD
f~ber In 1
gal of stock
134
143
1 256
1 383
1510
1 637
1 765
1 892
2 05
2 21
2 37
2 53
2 69
2 85
3 02
3 18
151
160
168
185
202
21 9
236
253
274
296
31 7
339
360
382
403
42 5
Lbs of stock
per
mln per
ton of OD
f~ber per 24
hours
2757
1447
682
464
351
278
253
231
21 4
198
185
174
163
154
146
139
126
116
107
99.2
92.5
Gal of stock
hav~ng 1 Ib
of OD f~ber
7 45
7 01
6 62
6 27
5 95
5 41
4 95
4 57
4 24
3 95
3 65
3 38
3 15
2 95
2 78
2 62
2 48
2 35
Lbs of water
per
Ib of OD
f~ber
1999
999
499
332
249
199
181
166
153
142
132
124
117
110
104
99
90
82 3
75 9
70 4
65.7
Cu ft of stock
per
mln per
ton of OD
f~ber per 24
hours
1 38
1 30
1 23
1 16
1 10
1 00
0 919
0 848
0 787
0 733
0 676
0 628
0 585
0 548
0 515
0 486
0 460
0 437
Gal of water
per
Ib of OD
ftber
240
120
59.8
39.8
29.9
23 9
21 7
19.9
18.3
17.1
15.9
14.9
14.0
13 2
12 5
11 9
10 8
9.87
9.10
8.45
7.87
Lb of stock
per
mln per
ton of OD
f~bar per 24
hours
86 7
81 7
77
1
73 1
69 4
63 2
57 9
53 4
49 6
46 3
42
7
39 7
37 0
34 7
32 7
30 9
29 2
27 8
Gal of water
per ton of
OD f~ber
479377
239568
11 9664
7961 7
59713
47722
43406
39808
36691
34053
31 655
29736
28058
26379
24940
23741
21 583
19736
18202
16883
15756
Lb of water
per
Ib of OD
f~ber
61 5
57 8
Lb total wt
per gal of
stock
8.34
8 34
8 35
8 35
8 35
8.36
8.36
8 36
8.36
8.36
8.36
8 37
8.37
8.37
8.37
8.37
8 38
8.38
8.38
8 38
8.39
54 6
51 6
49 0
44 5
40 7
37 5
34 7
32 3
29 8
27 6
25 7
24 0
22 5
21 2
20
1
19 0
Gal of water
per
Ib of OD
f~ber
7 37
6 93
6 54
6 19
5 88
5 33
4 88
4 49
4 16
3 88
3 57
3 31
3 08
2 88
2 70
2 54
2 40
2 28
Gal of water
per ton of
OD
f~ber
14748
13861
Lb total wt
per gal of
stock
8 39
8 39
13094
12374
11751
10672
9760
8993
832
1
7746
7146
6619
6163
5755
5396
5084
4820
4556
8 40
8 40
8 40
8 41
8 42
8 42
8 43
8 44
8 44
8 45
8 46
8 47
8 48
8 48
8 49
8 50

INGERSOLL-RAND CAMERON HYDRAULIC DATA PAPER STOCK DATA
Weight-Volume Relationshies
CDmNr
b r-cowm mme-: cnwmom cnm*o* or-m- o-mmm n~oh- 3
0.2 m-me momcu mmccm mcu-om mcmm U~N-O ommr-I- CAY
"Ebz qqmo mqoqo qqqqq q??q- ---- ----.-
~0000 0
0000 00000 00000 00000 0000 00000 00000 0 C L
a-=
5&? &
2.-e - m*v* or-omr- tmomh cn~mom
mtr-9 ttr-' momu~m m
0 -,0 oe-q.pcqqkrq NNNN rrrr- qqqqq ----- cq--q --ttt $$&cq oooo $?%;? 00000 $2TF$ 00000 3 o
m m-
a= 0
cn c O
$OL ~mto -mar-: *
mm(~m ---cum mw-om cum*r-o mmr-cn -vwmm omom
.,,, xg;~ gw;~; KG;:? ;:?no y:o ?%$as ~ssss S
"0- 0000 00000 00000 00000 0000 00000 00000
0
,0 -
V)
a =': 0-0 moor- nmwcum m-mom -owma oomm cu
-cz -m?rq cqm-qq wqq-7 m-~cq- mmme qamocq qoqo? -
zaq
"""" """U "om" ""'" cnEZ>F CLnZzz & ccmm
Jg- ...
o woX
EaoGz mF-Nz 0.7-6JN
gEza3 en -OOON n@m~o mmowm mmwz mh-UY cmmr-m
1 1 :;''': 1 :::;: 1 2zzzz 1 llrL szz2z 1 Eidzx / 1
Pulp and Paper Data
Relationship of Pulp Production Rate to Stock Flow
At Various Stock Consistencies
(Tons of Pulp per
24 Hours Versus U.S. G.P.M.)
Note: Use OD
70 Consistency with Tons of OD Pulp.
Use AD 'fi Consistency with Tons of AD Pulp.

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction of Water
Head Losses Through Valves and Fittings
Head losses
(hf) through valves, fittings, sudden contractions and efilarge-
ments, entrance and exit losss can be expressed in terms of the velocity
head (V2/2g) by using the applicable resistance coefficient (K) in the equations:
Select applicable (K) from tables on pages 3-111 to 3-117; select (V) for
average velocity in pipe of diameter required to accommodate fitting; see
examples on page 3-1 19.
A second method of expressing head losses
(hf) through valves and fittings
etc. is in terms of the equivalent length of straight pipe that will produce
the same loss as calculated by the Darcy-Weisbach equation for straight pipe.
(See table on page 3-120).
The applicable equations are:
Friction of Water (Continued)
Friction Loss in Pipe Fittings .
29.9 x d2 894 x d4
C, = --------
a
and K =
-
(CJ2
The tables on pages 3-11 1 to 3-119 list K values for schedule 40 pipe in sizes up
to and including 24" and are based on flows for complete turbulence.
Since the
K values between pipe sizes are close, it is reasonable to inter-
polate between sizes if they do not correspond to schedule 40 diameters.
For
K values for pipes larger than 24" it is suggested that the 24" value be
used.
The above text and tables on pages 3-1
11 to 3-120 are based on material in
Crane Co. Technical Paper No.
410*. Reference to this paper is suggested for
more complete review of this subject.
* It should be noted that there is considerable variation in published values of re-
sistance coefficient
K for different valves and fittings.
FRICTION - WATER-PIPE FITTINGS
where
d
= pipe diameter-inches
D = pipe diameter in feet
f
= friction factor (from chart, Page 3-11) for zone of complete turbulence.
g = gravitational constant -32.174 ft/sec2
hf = head loss in feet of liquid
K
= resistance coefficient (from tables on pages 3-111 to 3-120) is based on
test data, or extrapolated from test data; and depends on design, size
and type of fitting.
L =friction loss in pipe fittings in terms of equivalent length in feet of
straight pipe (See table page 3-120).
V = average velocity in pipe of diameter required to accommodate
fitting-
ftlsec.
From the above one can solve for (L) and LID ratio using the value of K
from the tables and selecting f for the zone of complete turbulence.
A third method of expressing head losses, particularly for control valves,
is in terms of a flow coefficient C,. This is defined as the flow of liquid at
60°F in gallons per minute at a
pressure drop of one pound per square inch
across the valve. The relationship of C, and
K is shown by the following
formulas.
Resistance coefficient K use in formula
h, = K -
" i 29

INGERSOLLRAND CAMERON HYDRAULIC MA
FRICTION - WATER-PIPE FITTINGS
Friction of Water (Continued)
Friction Losses in Pipe Fittings
Resistance coefficient K use in formula h, = K - i
Friction of Water (Continued)
Friction Losses in Pipe Fittings
Resistance coefficient K use in formula h, = K -
Q)
r 0
-
2
N
2
P
2
I-
2
m
2
0
2
2
"
LD
2
I-
2
0
2
.g
Q)'
m
C
z
,rr
z
-
7
-
$
A
-
w
-
e
-
lnm
3
&Nm
gCU
-
S
7-
-
3
f
-
.-
-
rp*
-
13
12
2
'
.
a
0
2
u,
v
g
0;
Q
2
I-
7
2
Yw
2
rn
X
ZJ-~
z"
e1.X
i rf
IN
2
m
2
In
2
t-
2
F
0
0
CU
2
*
2
w
2
0
X
.-
e
0
In
0
7
2
e
a
2
=
f . .4
,q;rl
01
E
0 -m m
2 '?X 2
0
0 -
C
i
5 w.
;
" U
- w rn a
-
n
a
2
Q,
0
N
X
In
0
7
2
*
2
I-
0
m
0
W
0
Q,
'9
0
u,
0
(00)
22
m-
2:
CUN
2:
0
gz ?
In a
e+i~
0
0 -
-
L
I qii!l w rn E u
h
m
F
r. -
v-
W
F
In
7
m
.-
N
7
.-
r.
7
0,
7-
Q
.-
I-
z
In
CU
U7P
22
v-r.
zz
POI
2:
I-0
22
00
$3
Wv)
$2
OIL
$2
In0
2;

INGERSOLL-RAND CAMERON HYDRAULIC DATA FRICTION - WATER-PIPE FITTINGS

INGERSOLL-RAND CAMERON HYDRAUUC DATA i FRICTION - WATER-PIPE FITTINGS
Friction of Water (Continued)
Friction Loss in Pipe Fittings
Resistance coefficient use in formula h, = K -
i
Pipe exit I - - projecting
.- *
- I
sharp edged
11 rounded
Fitting Description
Pipeentrance
I
All pipe sizes
K value
Pipe entrance flush sharp edged
inward
projecting
0.5
rld = 0.02
rld = 0.04
0.78
0.28
0.24
1
From Crane Co. Technical Paper 410.
rld = 0.06
rld =0.10
Friction of Water (Continued)
0.15
0.09

INGERSOLLRAND CAMERON HYDRAULIC DATA
--
Friction of Water (Continued)
Formulas for Calculating "K" Factors
for Sudden and Gradual Contractions and Enlargements
(K values are for velocity in the small pipe)
Gradual Contraction (Based
on velocity in small pipe)
-I a? ~d, il d, I' a, I
Gradual Enlargement (Based on velocity in small pipe)
dl2
K= 2.6 sin 2 1 - d?)
v2
Substitute above values of K in formula h, = K - If desired,
2g
areas can be used instead of diameters in which case substitute
a, dl2
- for -
a2 dZ2
dl
and (:]2f~r(--)
FRICTION- WATER-PIPE FITTINGS
Friction of Water
Friction
toss in Pipe Fittings
Resistance coefficient K use in formula
h, = K -
The K factors in the table below are given for use in making estimates of friction
loss for fittings not covered in the preceding pages.
Example: Determine L (Friction loss in pipe fittings in terms of
equivalent length in feet of straight pipe). Assume a
6" angle
valve-
Schedule 40 pipe size. Select K from table on page 3-111; select D
and f for schedule 40 pipe from table below where D is pipe diameter
in feet.
Type of fitting
Disk or wobble meter
Rotary meter (star or cog-wheel piston)
Reciprocating piston meter
Turbine wheel (double-flow) meter
Bends having corrugated inner radius K value
3.4 to 10
10
15
5 to 7.5
1.3 to 1.6 times value
for smooth bend
Based on 1" thick wall
Solution: For angle valve in 6" pipe
K from page 3-1 11 = 2.25; D = 0.5054; f = 0.015
KD 2.25 x 0.5054
- L= -- = 75.8 ft.-equivalent length of straight
f
0.015
Pipe
size
inches
sch.
40
Y2
%
1
4
1%
2
pipe. (this is shown in the table on page 3-120)
D
Feet
0.0518
0.0687
0.0874
0.115
0.1342
0.1723
For an example not covered in the table on page 3-120, take a 4"
plug valve with flow through branch (From page 3-112; K = 1.53)
= 30.2 ft. -equivalent length of straight pipe.
Pipe
size
inches
sch.
40
10
12
14
16
18
20
f
0.027
0.025
0.023
0.022
0.021
0.019
D
Feet
0.2058
0.2557
0.3355
0.4206
0.5054
0.6651
Pipe
size
inches
sch.
40
2%
3
4
5
6
8
f
0.018
0.018
0.017
0.016
0.015
0.014
D
Feet
0.835
0.9948
1.0937
1.250
1.4063
1.5678
D
Feet
1.8857
2.3333
2.8333
3.3333
3.8333
f
0.012
0.011
0.011
0.010
0.010
f
0.014
0.013
0.013
0.013
0.012
0.012
Pipe
size
inches
24
30*
36.
42'
48'

INGERSOLLflAND CAMERON HYDRAULIC DATA FRICTION- WATER-PIPE FITTINGS
u b
c m
D
0
L
maurn- mm
"0=?0? '?=?"=?" w-""
ammmw bmwww m-mwm
--- FNNNO 2gZ tC
Friction of Water (Continued)
m
L
ZZ m 0
Resistance of Valves and Fittings to Flow
of Fluids in Equivalent Length of Pipe
8 11
mCU---
2 0
m w
YN'Cy? k=?N?? ON?-
t-m-mrn N~~UW -mat.
-7- NNN~~ mmm*
-NNPYU mhw-U bNmOb Nbmt
0
- -(UNO~ ee.mw
m
Sm -c
~5 12% ~~~~~ ---N z%$zz (~mmmw $zmmu ~~(UWW momm
<., ~~2%
0
7-7 '2
#fz o,, ga$ac Nmwmw G,,,? moNw.- mmq~b - NOWP$ Nb~
0
7--N (U~PP~ f~bbrn- uwm
i5 Po 7 F T
-NUlOln
u US T-:No!0 ?**-N C!O!T'?* 0"-
tj~lkg
~3~mw-m ON~O~T, 00,01r,lo meem0
---w(~ mmmmw bmm-u F84
0
n -- -(Urn
no 23 sfieee sy=cF -??,? q77~~
6.2 mdlgg ---NN mwlocom 0mwm- 7-7-N ma-b NNOm% mCDh 0
OY
?
0
-NNNO meemh mo- - 7
- --NN~ umwbm
Z5'ZZZ EX%
m
c L
g.&
kKjS:& ?$5'2b$ $22" 22"""E z!2P
00000 00000 00000 00000 000
LL
zmwln NUUJOO bO,COrDb- W- WQa
(UNOm- WWUJNP WmNOz Ob-N
3 wwqqq qFqqq qqq? qqqq
0
3
g .a N
0 Q*
N
II
??
'
-- A>.
4
Example: The dotted line shows
that the resistance of a 6-inch
Standard Elbow is equivalent to
;, - approximately 16 feet of 6-inch
Standard Pipe.
Note: For sudden enlargements or
sudden contractions, use the
Globc Valvc. Open _
,-- I/? CIoscLi
,
- - - Closed
hhr-mm
oyooo
NNOU~
Angle Valve, Open I 1 / ,Standard Tcr
Swing Check Valve,
Fully Open
Borda Entrance
t-m
ocnom-
wr-0-rn
7--
Close Return Be
Standard Tce
Through Side Ou
tong Sweep Elbow or 2
run of Standard Tcc
o~mw
mmm~m
.---cum
From Crane Co. Technical Paper No. 409. Data based on the above chart are satisfactory for most applications; for
more detailed data and information refer to pages 3-1 10 to page 3-1 20 which are based on crane Co. ~echnical Paper
NO. 410.
3-121
wow
mu*
7
CU -

INGERSOLLRAND CAMERON HYDRAULIC DATA
Friction Losses-Valves and
Fittings -Viscous Liquids
Very little reliable test data on losses through Valves and Fittings
for viscous liquids is available. In the absence of meaningful data
some engineers assume the flow is turbulent and use the equivalent
length method;
i.e. where friction losses through valves and fittings
are expressed in terms of equivalent length of straight pipe (see
pages 3-120 and 3-121). Calculations made on the basis of turbulent
flow will give safe results since friction losses for turbulent flow are
higher than for laminar (viscous)
flow.
Miscellaneous Formulas
Discharge of fluid through valves and fittings
I
gal per min = 19.65 d2
This equation may be used for determining the flow in a system
if
K is the sum of all the resistances in the system including entrance
and exit losses.
Where: d
= pipe diameter-inches
hL = friction loss in feet of liquid
K = sum of all resistance in the system
including entrance and exit losses.
0.4085 gpm
Velocity (fps) =
d2(in.)

SECTION IV
PROPERTIES OF

INGERSOLL-RAND CAMERON HYDRAULIC DATA
CONTENTS OF SECTION 4
Properties of Liquids
Page
.............................. Density information 4-3
............................... Properties of water 4-4
Density-specific gravity data
API scales ............................................. 4-6
Properties of sodium and calcium chloride ................. 4-10
............................... Properties of caustic soda 4-11
.......................................... Baume scales. 4-12
.............................. Densities of sugar solutions 4-13
Specific gravity of petroleum vs. temperature ............. 4-14
......................... Specific gravity of hydrocarbons. 4-15
Specific gravity of miscellaneous liquids ................... 4-16
.................... Specific gravities of aqueous solutions. 4-17
.................... Specific kravities of refrigerant liquids 4-18
Vapor pressure information
.............................. Vapor pressure of gasolines 4-19
......................... Vapor pressure of hydrocarbons. 4-20
........................ Vapor pressure of various liquids. 4-21
..................... Vapor pressure of refrigerant liquids 4-22
.................................. Viscosity information. .4-23
........................... Viscosity conversions .4-25 to 4-28
............................... Viscosity of crankcase oils 4-28
................................. Viscosity of turbine oils 4-29
.................................... Viscosity of fuel oils 4-30
............... Viscosity of petroleum oils vs. temperature 4-31
......................... Viscosity of miscellaneous liquids 4-32
........................... Viscosity of refrigerant liquids 4-33
Viscosity of sucrose solutions ............................ 4-34
Viscosity blending chart ................................. 4-35
Petroleum temperature volume relations .................. 4-36
Viscosities and specific gravities of misc. liquids ... .4-37 to 4-45
Pump performance with viscous liquids ................... 4-45
............ Pump performance corrections charts. 4-47 and 4-48
Pump performance on paper stock ........................ 4-49
.............................. Slurry information .4-50 to 4-56
4- 2
PROPERTIES OF LIQUIDS
Density Information
The DENSITY of a liquid is the amount of mass of that liquid (lb,
kg, g) contained in a unit of volume (ft", gal., m3, cm" etc.). Thus,
the units of density are lb/ft< lblgal., kg/m3, glcm" etc.
Because gravity exerts a force called "weight" on a given mass,
the terms "weight density" or gravity of a liquid are often used.*
I The SPECIFIC GRAVITY of a liquid is its density relative to that
I
I
of water; i.e., its density divided by that of water. The water tem-
perature for this purpose is usually 60°F (15.6"C) where its density
is 0.9991 g/cm3 (Page 4-4).
For some purposes a water temperature of 39.2"F (4°C) is used
as a base of reference which is its point of maximum density, namely
1.000 g/cm3; for other purposes a water temperature of 68°F (20°C)
may be selected as a base of reference. The base temperature of 60°F
(15.6"C) is often specified together with that of the liquid whose specific ,
gravity is involved. Thus, 140°F water with a density of 0.9832 glcm3
has a specific gravity at 140°/60"F of 0.9841 (= 0.983210.9991).
It can be seen that the specified gravity of a liquid is about numeri-
1 cally equal to its density in g/cm3. Measuring methods have led to
I
other density units, such as degrees API or degrees Baume, which
are related to specific gravity through the formulas and tables on
I the following pages.
SPECIFIC WEIGHT as used in various equations in this data
book is the weight in lb per cu ft. The specific weight of water at 60°F (15.6%) is 62.3714 lb/ft3; and at 68°F (20°C) it is 62.3208 lblft? For
other temperatures proper specific weight values should be used (see
page 4-4); also for further discussion refer back to page 2-3.
* The density definition involves strictly mass. Weight and mass are numerically
equal at earth sea level in the usual English system of units (where lb is properly
distinguished as
lb,,,, or lb,,,,,.,.). Systems that derive either the mass or force unit in
terms of the other via Newton's second law of motion-expressed as F = ma-(such
as the International (SI) System) do not have this numerical equality, but also do
not need the gravitational constant go = 32.174 (lb,,l,,/lbf,,,,,) ft/sec2 in calculations
involving fluid motion. If the lb,,,s,-lbf,,,,.c, system is used, F = ma must be replaced by
1
F = - ma. Because of this, the factor mlg, (= 0.0311 x m in lb,,,,) per unit volume
go
is sometimes called mass density, even though the unit of density expressed as lb,,,,,
Per unit volume is also a "mass density". See pp. 8-3 to 8-7.
Note: g,, is gravitational constant at sea level-32.174 ftisec'.

CAMERON HYDRAULIC DATA
Properties of Water at Various Temperatures
Properties
of Water at Various Temperatures (Continued)
Pressure
of Density
saturated Specific volume specific wt. Conversion Kinematic Temperature
Temp
vapor * factor viscosity
F lWln2 abs ft3!lb gal/lb Ib/ft3 'gi~m.~ ftllb!inY centistokes "F "C
200 11.526 0.016637 0.1245 60.1 1 0.9628 2.396 0.31 200 93.3
21 0 14.123 0.016705 0.1 250 59.86 0.9589 2.406 0.29 210 98.9
212 14.696 0.01 671 9 0.1 251 59.81 0.9580 212 100.0
ZT(I j7.186 0.016775 0.1255 59.61 0.9549 2.416 220 104.4
230 20.779 0.016849 0.1260 59.35 0.9507 2.426 230 110
240 24.968 0.016926 0.1 266 59.08 0.9464 2.437 240 115.6-
250 29.825 0.017006 0.1272 58.80 0.9420 2.449 0.24 250 121.1
260 35.427 0.01 7089 0.1 278 58.52 0.9374 2.461 260 126.7
270 41.856 0.017175 0.1285 58.22 0.9327 2.473 270 132.2
280 49.200 0.01 7264 0.1 291 57.92 0.9279 2.486 280 137.8
290 57.550 0.01736 0.1299 57.60 0.9228 2.500 290 143.3
' Approximately numerlcally equal to speclflc grav~ty basls temperature reference of 39.2"F (4°C)
Calculated from data in ASME Steam Tables
Note: For complete Steam Tables see pages 5-7 through 5-24.
' Approximately numerically equal to speciftc gravity basis temperature reference of 39.2"F (4°C)
Calculated from data in ASME Steam Tables.
Temp
F
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
62
64
66
68
70
75
80
85
90
95
100
110
120
130
140
150
160
170
180
190
Pressure
of saturated
vapor
lbiln2 abs
008859
009223
009600
0 09991
0 10395
010815
011249 011698
012163
012645
013143
013659
014192
014744
015314
0 15904
016514
017144
017796
018469
019165
019883
0 20625
021392
022183
0 23000
023843
024713
0 25611
0 27494
029497
031626
0 33889
036292
042964
050683
059583
069813
081534
094924
12750
16927
2 2230
28892
37184
4 7414
5 9926
7 5110
9 340
Convers~on
factor
ft Ib In-
2307
2307
2307
2 307
2 307
2307
2307
2307
2307
2307
2307
2307
2307
2307
2307
2 307
2307
2307
2307
2307
2307
2308
2 308
2308
2308
2 308
2308
2309
2
509
2 309
2310
2310
2 311
2311
2313
2314
2316
2318
2320
2323
2328
2333
2 340
2346
2353
2 361
2 369
2 377
2 386
Speclf~c
ft' Ib
0016022
0016021
0016021
0 016020
0 016020
0016020
0016019
0016019
0016019
0016019
0016019
0016019
0016019
0016020
0016020
0 016021
0016021
0016022
0016023
0016023
0016024
0016025
0 016026
0016027
0016028
0 016029
0016031
0016032
0 016033
0 016036
0016039
0016043
0 016046
0016050
0016060
0016072
0016085
0016099
0016114
0016130
e016165
0016204
0016247
0016293
0016343
0016395
0016451
0016510
0 016572
volume
gal
Ib
01199
01198
01198
0 1198
0 1198
01198
01198 01198
01198
01198
01198
01198
01198
01198
01198
0 1198
01198
01198
01199
01199
01199
01199
0
1199
01199
01199
0 1199
01199
01199
0 1199
0 1200
01200
01200
0 1200
01201
01201
01202
01203
01204
01205
01207
0 1209
01212
0 1215
01219
01223
0 1226
0 1231
0 1235
0 1240
speclftc
Ib ft'
62414
62418
62418
62 420
62 420
62420
62425
62425
62425
62426
62426
62426
62426
6242
6242
62 42
6242
6241
6241
6241
6241
6240
62 40
6239
6239
62 39
6238
6238
62 37
62 36
6235
6233
62 32
6231
6227
6222
6217
6212
6206
6200
61 98
6171
61 56
6138
6119
6099
60 79
60 57
60 34
K~nematlc
v~scostty
cent~stokes
1 79
1 75
1 72
1 68
1 66
1 63
1 60
1 56
1 54
1 52
1 49
1 47
1 44
1 42
1 39
1 37
1 35
1 33
1 31
1 28
1 26
1 24
1 22
1 20
1 19
1 17
116
1 14
112
1 09
1 06
1 03
1 00
0 98
0 90
0 85
0 81
0 76
0 72
0 69
0 61
0 57
0 51
0 47
0 44
0 41
0 38
036
033
Density
wt
'glcm
09998
09999
09999
0 9999
0 9999
09999
10000
10000
10000
10000
10000
10000
10000
09999
09999
0 9999
09999
09998
09998
09998
09997
09996
0 9996
09995
09994
0 9994
09993
09992
0 9991
0 9989
09988
09985
0 9983
09981
09974
09967
09959
09950
09941
09931
09910
09886
09860
09832
09802
09771
09737
0 9703
0 9666
Tempera
lure
F
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
62
64
66
68
70
75
80
85
90
95
100
110
120
130
140
150
160
170
180
190
C
0
0 6
1 1
1 7
2 2
2 8
3
3
3 9
4
4
5
5 6
6 1
6 7
7 2
7 8
8 3
8 9
9 4
10
106
111
117
122
128
133
139
144
15
156
167
178
189
20
211
23 9
26 7
29 4
32 2
35
37 8
433
48 9
54 4
60
65 6
71 1
76 7
822
878

CAMERON HYDRAULIC DATA
PROPERTIES OF LIQUIDS
Pounds per gallon and specific gravities corresponding
to degrees
API at
60°F
---I-- Tenths of Deqrees
API 2 3 4 5 6 7 8 9
Pounds per gallon and specific gravities corresponding
to degrees
API at 60°F (Continued)
Deg
API
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
7o
71
72
73
74
0
6.790
.8155
6.752
,8109
6.713
,8063
6.675
,8017
6.637
,7972
6.600
-7927
6.563
,7883
6.526
,7839
6.490
,7796
6.455
,7753
6.420
,7711
6.385
,7669
6.350
,7628
6.316
.7587
6.283
,7547
6.249
.7507
6.216
,7467
6.184
,7428
6.151
-7389
6.119
,7351
6.087
,7313
6.056
,7275
6.025
.7238
5.994
,7201
5.964
-7165
5.934
7128
5.904
,7093
5.874
,7057
5.845
.TO22
5.817
,6988
5.788
,6952
5.759
.6919
5.731
,6886
1
6.786
.8151
6.748
.8 1 04
6.709
,8058
6.671
,801 2
6.633
.7967
6.596
,7923
6.560
,7879
6.523
,7835
6.487
,7792
6.451
.7749
6.416
,7707
6.381
,7665
6.347
,7624
6.313
,7583
6.280
,7543
6.246
-7503
6.213
,7463
6.180
,7424
6.148
,7385
6.116
.7347
6.084
,7309
6.053
,7271
6.022
,7234
5.991
,7197
5.961
-7161
5.931
.7125
5.901
,7089
5.871
,7054
5.842
,701 9
5.814
,6984
5.785
.6950
5.757
,6916
5.728
6882
Tenths of
4
6.775
,8137
6.736
,8090
6.697
,8044
6.660
,7999
6.622
-7954
6.585
-7909
6.548
.7865
6.512
,7822
6.476
.7779
6.441
,7736
6.406
,7694
6.371
.7653
6.337
-761 2
6.303
,7571
6.270
,7531
6.236
,7491
6.203
.7451
6.170
,741 2
6.138
,7374
6.106
,7335
6.075
,7298
6.044
,7260
6.013
,7223
5.982
,7186
5.952
-7150
5.922
,7114
5.892
7079
5.863
,7043
5.833
-7008
5.805
-6974
5.776
.6940
5.748
,6906
5.720
,6872
2
6.782
,8146
6.744
.8 1 00
6.705
,8054
6.667
,8008
6.630
,7963
6.592
,7918
6.556
,7874
6.520
,7831
6.484
,7788
6.448
-7745
6.413
,7703
6.378
,7661
6.344
,7620
6.310
,7579
6.276
-7539
6.243
,7499
6.209
,7459
6.177
,7420
6.144
.7381
6.113
,7343
6.081
.7305
6.050
.7268
6.019
,7230
5.988
-7194
5.958
.7157
5.928
7121
5.898
,7086
5.868
.7050
5.839
,701 5
5.811
,6981
5.782
,6946
5.754
.6913
5.726
,6879
3
6.779
,8142
6.740
,8095
6.701
,8049
6.663
,8003
6.626
-7958
6.589
.7914
6.552
,7870
6.516
,7826
6.480
,7783
6.445
.7741
6.410
-7699
6.375
.7657
6.340
.7616
6.306
,7575
6.273
.7535
6.240
,7495
6.206
,7455
6.174
,741 6
6.141
-7377
6.109
,7339
6.078
,7301
6.047
,7264
6.016
7227
5.985
,7190
5.955
,7154
5.925
,7118
5.895
.7082
5 866
.7047
5836
,701 2
5.808
,6977
5779
.6943
5.751
.6909
5.723
,6876
7
6.763
.a123
6.724
.a076
6.686
,803 1
6.648
,7985
6.611
-7941
6.574
,7896
6.537
,7852
6.501
,7809
6.466
-7766
6.430
,7724
6.396
,7682
6.360
.7640
6.326
.7599
6293
.7559
6.259
,7519
6.226
,7479
6.193
.7440
6.161
.7401
6.129
,7362
6.097
,7324
6.065
,7286
6.034
,7249
6.004
,7212
5973
.7175
5.943
7139
5.913
-7013
5.883
,7068
5.854
.TO33
5.825
,6998
5.796
,6964
5.768
,6929
5.740
,6896
5.712
.6862
8
6.759
,8118
6.720
,8072
6.682
,8026
6.645
,7981
6.607
.7936
6.571
-7892
6.534
.7848
6.498
7805
6.462
.7762
6.427
,7720
6.392
,7678
6.357
,7636
6.323
,7595
6.290
,7555
6.256
,7515
6.223
,7475
6.190
,7436
6.158
.7397
6.125
,7358
6.094
.7320
6.062
,7283
6.031
,7245
6.000
,7208
5.970
,7172
5.940
,7136
5.910
,7100
5.880
.7064
5.851
,7029
5.823
,6995
5.793
,6960
5.765
,6926
5.737
,6892
5.709
,6859
Degrees
5
6.771
,8132
6.732
,8086
6.694
,8040
6.656
,7994
6.618
-7949
6.582
,7905
6.545
,7861
6.509
-7818
6.473
.7775
6.437
,7732
6.402
,7690
6.368
,7649
6.334
,7608
6.300
,7567
6.266
.7527
6.233
.7487
6.199
.7447
6.167
,7408
6.135
,7370
6.103
,7332
6.072
,7294
6.040
7256
6.010
,7219
5.979
-7183
5949
,7146
5.919
-7111
5.889
,7075
5.860
,7040
5.831
,7005
5.802
,6970
5.773
,6936
5.745
,6902
5.718
.6869
I
9
6.756
,8114
6.716
,8067
6.679
.a022
6.641
,7976
6.604
,7932
6.567
-7887
6.530
-7844
6.494
,7800
6.459
,7758
6.423
,771 5
6.389
,7674
6.354
,7632
6.320
,7591
6.287
,7551
6.253
-7511
6.219
.7471
6.187
,7432
6.154
,7393
6.122
-7354
6.090
-731 6
6.059
-7279
6.028
-7242
5.997
.7205
5.967
7168
5.937
,7132
5.907
,7096
5.877
-7061
5 848
.7026
5.820
,6991
5791
,6957
5.762
6923
5734
.6889
5.706
6856
6
6.767
,8128
6.728
,808 1
6.690
,8035
6.652
.7990
6.615
,7945
6.578
,7901
6.541
,7857
6.505
,7813
6.469
,7770
6.434
.7728
6399
7686
6.365
,7645
6.330
,7603
6.296
,7563
6.263
7523
6.229
,7483
6.196
,7443
6.164
,7405
6.132
.7366
6.100
.7328
6.068
7290
6.037
,7253
6.007
.7216
5.976
,7179
5.946
,7143
5.916
,7107
5886
,7071
5 857
7036
5.828
,7001
5.799
,6967
5.771
,6933
5.743
.6899
5.715
,6866

INGERSOLL-RAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Pounds per gallon and specific gravities corresponding
to degrees API
at 60°F (Continued)
Pounds per gallon and specific gravities corresponding
to degrees
API at 60°F (Continued)
'27
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
103
104
105
106
107
Deg
API
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
I35
136
I37
138
I39
Values
Values
0
5.703
,6852
5.676
.6819
5.649
-6787
5.622
,6754
5.595
.6722
5.568
,6690
5.542
.6659
5.516
.6628
5.491
,6597
5.465
,6566
5.440
,6536
5.415
,6506
5.390
,6476
5.365
.6446
5.341
,641 7
5.316
,6388
5.293
-6360
5.269
,6331
5.245
,6303
5.222
,6275
5.199
,6247
5.176
,6220
5.154
,6193
5.131
-6166
5.109
,6139
5.086
,6112
1015.07
,6086
1025.05
,6060
5.02
,6034
5.00
,6008
4.98
,5983
4.96
-5958
4.94
,5933
1
5.701
,6849
5.673
,681 6
5.646
,6783
5.619
-6751
5.592
.6719
5.566
,6687
5.540
,6656
5.514
,6625
5.489
.6594
5.462
.6563
5.437
,6533
5.412
,6503
5.387
,6473
5.363
,6444
5.338
,641 4
5.314
,6385
5.291
,6357
5.266
,6328
5.243
.6300
5.220
,6272
5.196
,6244
5.174
,6217
5.151
,6190
5.129
,6163
5.107
,6136
5.09
,6110
5.07
,6083
5.04
,6058
5.02
,6032
5.00
,6006
4.98
,5981
4.96
,5955
4.94
,5930
0
4.92
,5908
4.90
,5884
4.88
-5859
4.86
.5835
4.84
.5811
4.82
,5787
4.80
,5764
4.78
,5740
4.76
,571 7
4.74
.5694
4.72
5671
4.70
,5649
4.69
,5626
4.67
,5604
4.65
.5582
4.63
,5560
4.61
,5538
4.59
,551 7
4.58
5495
4.56
,5474
4.54
,5453
4.52
,5432
4.51
,541 1
4.49
,5390
4.47
,5370
4.46
,5350
4.44
,5330
4.42
,5310
4.41
,5290
4.39
,5270
4.37
5250
4.36
,5231
from
above
2
5.698
.6846
5.671
,6813
5.643
,6780
5.617
,6748
5.590
,6716
5.563
,6684
5.537
,6653
5.511
,6621
5.486
,6591
5.460
.6560
5.435
.6530
5.410
,6500
5.385
,6470
5.361
,6441
5.336
.64
1
1
5.312
,6382
5.288
,6354
5.264
,6325
5.241
,6297
5.217
-6269
5.194
,6242
5.172
,6214
5.149
,6187
5.126
,6160
5.104
,6134
5.09
,6107
5.06
,6081
5.04
.6055
5.02
6029
5.00
,6003
4.98
,5978
4.96
,5953
4.94
.5928
1
4.92
,5906
4.90
.5881
4.88
,5857
4.86
,5833
4.84
,5909
4.82
,5785
4.80
.5761
4.78
.5738
4.76
,571 5
4.74
-5692
4.72
,5669
4.70
,5646
4.68
,5624
4.67
,5602
4.65
,5580
4.63
,5558
4.61
,5536
4.59
,551 4
4.57
,5493
4.56
,5472
4.54
,5451
4.52
,5430
4.50
,5409
4.49
,5388
4.47
,5368
4.45
-5348
4.44
5328
4.42
5308
4.40
-5288
4.39
5268
4.37
.5249
4.35
,5229
10.0
to
100.0
100.0 API
2
4.92
,5903
4.90
,5879
4.87
,5854
4.85
,5830
4.83
5806
4.82
,5783
4.80
-5759
4.78
,5736
4.76
,571 3
4.74
.5690
4.72
.5667
4.70
,5644
4.68
,5622
4.66
,5600
4.64
,5577
4.63
,5556
4.61
,5534
4.59
,551 2
4.57
,5491
4.56
,5470
4.54
,5449
4.52
,5428
4.50
,5407
4.49
,5386
4.47
,5366
4.45
.5346
444
-5326
4.42
.5306
4.40
,5286
4.39
,5266
4.37
,5247
4.35
-5227
API from
calculated
3
5.695 .6842
5.668
,6809
5.641
,6777
5.614
,6745
5.587
,6713
5.561
,6681
5.534
,6649
5.508
,6618
5.483
,6588
5.458
,6557
5.432
.6527
5.407
,6497
5.382
,6467
5.358
,6438
5.334
,6409
5.310
.6380
5.286
,6351
5.262
.6323
5.238
,6294
5.215
,6267
5.192
,6239
5.170
,6212
5.146
,6184
5.124
,6158
5.102
,6131
5.08
,6104
5.06
.6078
5.04
,6052
5.02
,6026
5.00
,6001
4.98
5976
4.95
,5950
4.93
.5925
3
4.91
,5901
4.89
,5876
4.87
,5852
4.85
,5828
4.83
5804
4.81
,5780
4.79
,5757
4.77
,5733
4.76
,571 0
4.74
,5687
4.72
.5665
4.70
5642
4.68
,5620
4.66
,5597
4.64
,5575
4.62
,5553
4.61
,5532
4.59
,551 0
4.57
.5489
4.55
,5468
4.54
,5446
4.52
,5426
4.50
.5405
4.48
,5384
4.47
,5364
4.45
.5344
443
.5324
4.42
5304
4.40
,5284
4.38
,5264
4.37
,5245
4.35
5225
tables
by lngersoll-Rand
Tenths
of
4
5.693
,6839
5.665
.6806
5.638
,6774
5.611
,6741
5.584
,6709
5.558
.6678
5.532
,6646
5.506
,6615
5.480
-6584
5.455
,6554
5.430
,6524
5.405
,6494
5.380
,6464
5.356
.6435
5.331
,6406
5.307
,6377
5.283
,6348
5.260
,6320
5.236
.6292
5.213
,6264
5.190
,6236
5.167
,6209
5.144
,6182
5.122
,6155
5.100
.6128
5.08
.6102
5.06
,6076
5.04
,6050
5.02
,6024
4.99
,5998
4.97
,5973
4.95
5948
4.93
,5923
Tenths of
4
4.91
,5898
4.89
,5874
4.87
,5850
4.85
.5825
4.83
,5802
4.81
,5778
4.79
,5754
4.77
,5731
4.75
,5708
4.73
,5685
4.72
.5662
470
.5640
4.68
,561 7
4.66
,5595
4.64
,5573
4.62
,5551
4.61
,5530
4.59
-5508
4.57
,5487
4.55
,5465
4.53
.5444
4.52
.5424
4.50
,5403
4.48
.5382
4.47
,5362
4.45
,5342
4.43
5322
4.42
5302
4.40
.5282
4.38
,5262
4.37
-5243
4.35
5223
publ~shed by
Co.
Degrees
5
5.690
,6836
5.662
.6803
5.635
.6770
5.608
,6738
5.582
.6706
5.556
.6675
5.529
.6643
5.503
,6612
5.477
,6581
5.453
,6551
5.427
,6521
5.402
,6491
5.377
.6461
5.353
.6432
5.329
,6403
5.305
,6374
5.281
,6345
5.257
,631 7
5.234
,9289
5.211
.6261
5.187
,6233
5.164
,6206
5.142
.6179
5.120
,6152
5.098
,6126
5.08
,6099
5.06
.6073
5.04
,6047
5.01
,6021
4.99
,5996
4.97
.5970
4.95
,5945
4.93
-5921
Degrees
5
491
.5896
4.89
5871
4.87
-5847
4.85
,5823
4.83
,5799
4.81
-5776
4.79
,5752
4.77
,5729
4.75
.5706
4.73
,5683
4.71
,5660
4.69
,5637
4.68
,561 5
4.66
,5593
4.64
,5571
4.62
,5549
4.60
.5527
4.59
,5506
4.57
,5484
4.55
,5463
4.53
,5442
4.51
-5421
4.50
,5401
4.48
.5380
4.46
,5360
4.45
,5340
4.43
,5320
4.41
.5300
440
.5280
4.38
-5260
436
5241
4.35
,5221
Amerlcan
8
5.682
.6826
5.654
-6793
5.627
.6761
5.600
,6728
5.574
,6697
5.548
.6665
5.522
,6634
5.496
,6603
5.470
6572
5.445
,6542
5.420
,651 2
5.395
,6482
5.370
,6452
5.346
,6423
5.321
,6394
5.297
,6365
5.274
,6337
5.250
,6309
5.227
,6281
5.204
,6253
5.180
.6225
5.158
,6198
5.136
,6171
5.113
,6144
5.091
.6118
5.07
.6091
5.05
,6065
5.03
,6039
5.01
.6014
4.99
,5988
4.97
,5963
4.94
,5938
4.92
,5913
7
4.91
,5891
4.89
,5867
4.86
,5842
4.84
,581 8
4.82
.5794
481
5771
4.79
,5747
4.77
.5724
4.75
.5701
4.73
.5678
4.71
.5655
4.69
,5633
4.67
,561 1
4.65
,5588
4.64
,5566
4.62
.5545
4.60
.5523
4.58
,5502
4.56
,5480
4.55
,5459
4.53
,5438
4.51
,541 7
4.49
.5397
4.48
-5376
4.46
,5356
4.44
,5336
443
,5316
4.41
5296
4.39
.5276
4.38
.5256
4.36
,5237
4.35
,5218
Institute.
6
4.91
,5893
4.89
,5869
4.87
,5845
4.85
,5821
4.83
,5797
4.81
,5773
4.79
.5750
4.77
,5726
4.75
-5703
4.73
,5680
4.71
,5658
4.69
,5635
4.67
,561 3
4.66
.5591
4.64
,5569
4.62
,5547
4.60
.5525
4.58
,5504
4.57
,5482
4.55
.5461
4.53
,5440
4.51
.5419
4.50
,5399
4.48
,5378
446
5358
445
,5338
4.43
,5318
4.41
,5298
4.40
,5278
4.38
,5258
4.36
.5239
4.35
,5219
Petroleum
6
5.687 ,6832
5.660
,6800
5.632
,6767
5.606
,6735
5.579
-6703
5.553
,6671
5.526
,6640
5.501
-6609
5.475
,6578
5.450
.6548
5.425
.6518
5.400
,6488
5.375
,6458
5.351
,6429
5.326
.6400
5.302
,6371
5.278
-6342
5.254
.6314
5.232
,6286
5.208
,6258
5.185
.6231
5.162
,6203
5.140
.6176
5.118
-6150
5.096
.6123
5.08
,6097
5.05
,6070
5.03
,6044
5.01
.6019
4.99
,5993
4.97
,5968
4.95
,5943
4.93
,5918
1
9
5.679
6823
5.652
,6790
5.624
,6757
5.598
,6725
5.571
.6693
5545
,6662
5.519
6631
5.493
.6600
5.467
,6569
5.443
,6539
5.417
-6509
5.392
,6479
5.367
.6449
5.343
,6420
5.319
,6391
5.295
,6362
5.271
,6334
5.248
,6306
5.225
.6278
5.201
,6250
5.179
,6223
5.156
,6195
5.133
,6168
5.111
.6141
5.089
.6115
5.07
6089
5.05
,6063
5.03
,6037
5.01
,6011
4.98
.5986
4.96
,5960
4.94
-5935
4.92
,591 1
7
5.685
-6829
5.657
,6796
5.630
,6764
5.603
,6732
5.577
,6700
5.550
.6668
5.524
,6637
5.498
,6606
5.472
,6575
5.448
,6545
5.422
,651 5
5.397
,6485
5.372
.6455
5.348
.6426
5.324
,6397
5.300
,6368
5.276
,6340
5.252
,631 1
5.229
.6283
5.206
,6256
5.183
,6228
5.160
,6201
5.138
,6174
5.116
,6147
5.093
,6120
5.07
,6094
5.05
,6068
5.03
,6042
5.01
,6016
4.99
,5991
4.97
,5965
4.95
,5940
4.93
,5916
8
4.90
,5888
4.88
5864
4.86
.5840
4.84
.5816
4.82
,5792
4.80
,5768
4.78
,5745
4.76
-5722
4.75
,5699
4.73
.5676
4.71
.5653
4.69
,5631
4.67
,5608
4.65
,5586
4.63
.5564
462
5542
4.60
.5521
4.58
.5499
4.56
,5478
4.54
,5457
4.53
.5436
4.51
-541 5
4.49
,5395
4.48
,5374
4.46
5354
4.44
5334
4.43
,5314
4.41
.5294
4.39
5274
4.38
-5254
4.36
,5235
4.34
.5216
9
4.90
,5886
4.88
,5862
4.86
,5837
4.84
,581 3
4.82
,5790
:4.80
.5766
4.78
,5743
4.76
,571 9
4.74
,5696
4.73
,5674
4.71
,5651
4.69
.5628
4.67
,5606
4.65
,5584
4.63
,5562
4.61
,5540
4.60
,551 9
4.58
,5497
4.56
-5476
4.54
-5455
4.53
,5434
4.51
,541 3
4.49
,5393
4.47
,5372
4.46
,5352
4.44
.5332
4.42
,5312
4.41
5292
4.39
5272
4.37
.5252
4.36
.5233
4 34
,5214

INGERSOLL-RAND CAMERON HYDRAULIC DATA
United States Standard Baume Scales
Relations between Baume degrees and specific gravity
Liquids heavier than water
Liquids lighter than water
Formula-sp gr
=
145
145 .
" Baume
Formula
130 +
" Baume
Sp Gr
60'-60'F
1.70588
1.72619
1.74699
1.76829
1. 79012
1. 81250
1.83544
1.85897
1 88312
. 1 90789
1.93333
1.95946
1.98630
2.01389
2.04225
2.07143
2.10145
2.13235
2.16418
2.19697
-- --
Specific Gravities of Sugar Solutions
Baume
degrees
60 ...
... 61
62
.....
63 .....
64 .....
..... 65
66 .....
..... 67
68 .....
.... 69
70 .....
71 ....
72 ....
..... 73
..... 74
75 .....
..... 76
... 77
... 78 79
....
Per cent sugar (degrees Balling's or Brix) with corresponding specific
gravity and degrees Baume
. Temperature
60°F
Baurne
degrees
20
.....
..... 21
22 .....
23 .....
24 ....
..... 25
26 .....
..... 27
28 .....
..... 29
30 .....
31 .....
32 .....
.... 33
..... 34
35 .....
..... 36
..... 37
..... 38
39 .....
Baume
degrees
0
.....
1 ....
2 .....
3 .....
4 .....
5 ....
6 .....
7 ....
8 ....
9 .....
10 .....
11 ....
12 .....
13 .....
14 .....
15 .....
16 ....
17 ....
18 .....
19 .....
From Circular No . 59 Bureau of Standards .
Per cent
sugar
Balling's
or Brix
60°F-
15.56"C
0
1
2
3
4
5
6
7
8
9
Sp Gr
60"-60F
1 38095
1.39423
1. 40777
1.42157
1.43564
1. 45000
1.46465
1.47959
1.49485
1.51042
1.52632
1.54255
1.55914
1.57609
1.59341
1.61111
1.62921
1.64773
1.66667
1.68605
Sp Gr
60"-60°F
1.16000
1.16935
1.17886
1
. 18852
1.19835
1.20833
1.21849
1.22881
1.23932
1.25000
1. 26087
1.27193
1.28319
1.29464
1. 30631
1.31818
1. 33028
1.34259
1.35514
1.36792
Sp Gr
60"-60°F
1.00000
1. 00694
1. 01399
1. 021 13
1. 02837
1. 03571
1. 04317
1.05072
1 05839
1. 06618
1. 07407
1. 08209
1. 09023
1. 09848
1.10687
1. 11538
1 12403
1. 13281
1.14173
1
. 15079
15
16
17
18
19
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
Baume
degrees
40 ...
..... 41
42 .....
43 .....
44 .....
..... 45
46 .....
..... 47 48
....
.... 49
50 .....
51 ....
52 ...
..... 53
..... 54
55 .....
..... 56
.... 57
.... 58
59 .....
Specific
gravity
6O"16O0F
1.0000
1.0039
1.0078
1.0118
1.0157
1.0197
1.0238
1.0278
1.0319
1.0360
The above table is from the
determ~nations of Dr . F . Plato. and has been adopted as standard by the United
States Bureau of Standards .
1.0613
1.0657
1.0700
1.0744
1.0788
1.0833
1.0878
1.0923
1.0968
1.1014
1.1060
1.1107
1.1154
1.1201
1.1248
1.1296
1.1345
1.1393
1.1442
Degrees
Baume
60°F
0.00
0.56
1.13
1.68
2.24
2.80
3.37
3.93
4.49
5.04
8.38
8.94
9.49
10.04
10.59
11.15
11.70
12.25
12.80
13.35
13.90
14.45
.
15.00
15.54
16.19
16.63
17.19
17.73
18.28
Per cent
sugar
Balling's
or Brix
60°F-
15.56"C
34
35
36
37
38
39
40
41
42
43
49
50
51
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
Specific
gravity
60"160°F
1.1491
1.1541
1.1591
1.1641
1.1692
1.1743
1.1794
1.1846
1.1898
1.1950
1.2273
1.2328
1.2384
1.2439
1.2496
1.2552
1.2609
1.2667
1.2724
1.2782
1.2841
1.2900
1.2959
1.3019
1.3079
1.3139
1.3200
1.3261
1.3323
Degrees
Baurne 60°F
18.81
19.36
19.90
20.44
20.98
21.52
22.06
22.60
23.13
23.66
26.86
27.38
27.91
28.43
28.96
29.48
30.00
30.53
31.05
31.56
32.08
32.60
33.1 1
33.63
34.13
34.64
35.15
35.66
36.16
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Degrees
Baume
60°F
36.67
37.1 7
37.66
38.17
38.66
39.16
39.65
40.15
40.64
41.12
Per cent
sugar
Balling's
or
Br~x
60°F-
15.6"C
68
69
70
71
72
73
74
75
76
77
Specific
gravity
60"/60"F
1.3384
1.3447
1.3509
1.3573
1.3636
1.3700
1.3764
1.3829
1.3894
1.3959
1.4359
1.4427
1.4495
1.4564
1.4633
1.4702
1.4772
1.4842
1.4913
1.4984
1.5055
1.5126
1.5198
1.5270
1.5343
1.5416
1.5489
1.5563
44.02
44.49
44.96
45.44
45.91
46.37
46.84
47.31
47.77
48.23
48.69
49.14
49.59
50.04
59.49
50.94
51.39
51.93

INGERSOLLi3AND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Specific Gravity and Temperature Relations
of Petroleum (Approximate)
Specific Gravity of Hydrocarbons
Specific Gravity-Referred to water at
60°F.
Example: oil with sp. gr. of 0.82 at 60°F will have sp. gr. of 0.64 at 500°F.
Courtesy of Hydraulic Institute.
Drawn by IngersoU Rand based on data from Gas Processors & Supphera Assn.
A.

Drawn by Ingersoll-Rand based on data from various chemical handbooks.
4-16
PROPERTIES OF LIQUIDS
Specific Gravity at 60°F of Aqueous Solutions
""0 I0 20 30 40 50 60 70 80 90 100
% by WEIGHT
bawn by Ingersoll-Rand based on data from various chemical handbooks.

INGERSOLLRAND CAMERON HYDRAULIC DATA
PROPERTIES OF LIQUIDS
Specific Gravity of Refrigerant Liquids
"G
Drawn by Ingersoll-Rand based on data from various refrigerant handbooks.
4-18
Vapor Pressure of Gasolines
I 40 m m r s a n I afm ~m la IU lm rn
Courtesy Ch~cago Bridge & Iron Company
To determine the gage working presaure of a vessel to store any natural gasoline:
1. Determine the maximum liquid surface temperature reached or likely to be reached by the liquid during the
period of storage.
2. The vertical temperature line interseeta the Reid vapor pressure line for the liquid being considered at a definite
point.
3. from the me determine the initial vapor pressure in pounds absolute at the IeR hand side horizontally from
the intersection mentioned in "2."
4. From the initial vapor pressure in pounds absolute subtract 14.7. The result is the gage working pressure of
the vessel required to store that Liquid, without evaporation loas.

INGERSOLLRAND CAMERON HYDRAULIC DATA
Vapor Pressure of Hydrocarbons
TEMPERATURE CELSIUS 'C
0 50 100 150 200 250 300 400 500
TEMPERATURE OF
PROPERTIES OF LIQUIDS
Vapor Pressure of Various Liquids
Drawn by Ingemoll-Rand based on data from various sources
4-20
Drawn b) Ingersoll-Rand baqed on data from ranous sources
A

INGERSOLLflAND CAMERON HYDRAULIC DATA
Vapor Pressure of Refrigerant Liquids
-
VAPOR PRESSURE PSlA
Draun bj Ingenoll-Rand bard urr data from banuua refngrrant handbooks
4-22
PROPERTIES OF LIQUIDS
Viscosity-General Information
The viscosity of a fluid (liquid or gas) is that property which offers
resistance to flow due to the existence of internal friction within the
fluid. This resistance to flow, expressed as a coefficient of dynamic
(or absolute) viscosity is the force required to move a unit area a unit
distance.
There are two basic viscosity parameters; i.e. (1) dynamic (or abso-
lute) viscosity; and (2) kinematic viscosity. These two parameters are
related since the kinematic viscosity may be obtained by dividing the
dynamic viscosity by the mass density. (See note on page
4-3 for
definition of mass density.)
(1) The unit of dynamic (or absolute) viscosity in the English
system is measured in pound seconds per square foot which is nu-
merically identical with the slug per foot second. The unit of dynamic
viscosity in metric measure is the dyne-second per square centimeter
called the poise, which is numerically identical with the gram per
centimeter-second. It is usually more convenient to express numerical
values in centipoises such that
100 centipoises equal one poise.
time
The dimensions of dynamic (or absolute) viscosity are: force
-
length2
(2) Since the Darcy-Weisbach and Colebrook relationships (see page
3-3) are based on using a Reynolds number which varies inversely with
the kinematic viscosity and which is obtained by dividing the dynamic
(absolute) viscosity by the mass density, it is usual practice to use
units of kinematic viscosity which have the dimensions of
length2
time
The unit of kinematic viscosity in English measure is the square
foot per second. The unit of kinematic viscosity in metric measure
is the square centimeter per second called the stoke. It is usually
more convenient to express numerical values in centistokes such that
100 centistokes equal one stoke.

INGERSOLLflAND CAMERON HYDRAULIC DATA
When English system units are used in converting from dynamic
W
to kinematic viscosity the density - C7 (or mass density), rather than
6
the specific gravity must be used where w is the weight in lb/ft3 and
g is the acceleration of gravity
(32.174
ft/sec2).
When the metric system terms centipoises and centistokes are
used the density is numerically equal to the specific gravity.
The relationship between the dynamic and kinematic viscosity units
with their proper dimensions must be carefully considered so that
the correct parameters will be used as required in friction loss and
other calculations.
Various types of instruments are available to determine viscosity,
the one most widely used being the Saybolt viscometer which measures
the time in seconds required for a liquid to flow from a filled container
of specified dimensions through one of two orifices in the bottom of
the container.
PROPERTIES OF LIQUIDS
Approximate Viscosity Conversions
The term SSU (Seconds
Saybolt Universal) refers to the time
required for the smaller of the two orifices, and the term SSF (Seconds
Saybolt Furol) the time required for the larger orifice. The smaller
orifice (SSU) being used for the lighter oils and the larger orifice
(SSF) for the heavy oils. The efflux time in seconds is converted
empirically to kinematic viscosity in other units.
The various viscosity relationships and conversions are given on
the following pages.

INGERSOLLRAND CAMERON HYDRAULIC DATA
Approximate Viscosity Conversions (Continued)
Viscosity relationships
absolute viscosity (centipoises)
Kinematic viscosity (centistokes)
=
density (g/crn3)'
ft2/sec
= centistokes x 1.07639 x
10-j
Degrees
Barbey
23 9
20 5
180
156
14 4
115
9 6
8 21
718
6 39
5 75
4 78
4 11
3 59
319
2 87
1 92
144
Degrees
Engler
35 1
409
467
526
584
730
87 6
102
117
131
146
175
204
234
263
292
438
584
centistokes = ft2!sec x 92903.4
K~ne
rnattc
cent,
stokes
259 0
302 3
3453
3885
431 7
5394
647 3
755 2
8631
970 9
1078 8
1294
6
1510 3
1726
1
19419
2157 6
3236 5
43153
Approximate viscosity conversions
Seconds
Red-
wood
1
Stand
ard
1016
1185
1354
1524
1693
2115
2538
2961
3385
3607
4230
5077
5922
6769
761 5
8461
12692
16923
Seconds
Saybolt
Furol
SSF
122
143
163
183
204
254
305
356
408
458
509
61 0
71 2
814
91 6
1018
1526
2035
Seconds
Saybolt
Un~versal
SSU
1200
1400
1600
1800
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
9000
10000
15000
20000
ft2!sec (50-100 SSU) = SSU x 2.433 x -
.00210!SSU
ft2/sec (100-350 SSU) = SSU x 2.368 x lo-" .00145/SSU
ft2!sec (over 350 SSU) = SSU (taken at 100°F) x 2.3210 x
centistokes (50-100 SSU) = SSU x 0.226 - 205.3lSSU
centistokes (100-350 SSU) = SSU x 0.220 - 147.7iSSU
centistokes (over 350 SSU) = SSU (taken at 100°F or 37.8%) x 0.21576
centistokes (over 350 SSU)
= SSU (taken at 210°F or
98.9%) x 0.21426
centistokes (over 500 SSF)
= SSF (taken at 122°F or 50°C) x 2.120
centistokes (over 300 Redwood #1)
= Redwood
#1 (Standard) x 0.255
centistokes (over 50 Redwood #2)
= Redwood
#2 (Admiralty) x 2.3392
centistokes (over 18 Engler)
=
Engler x 7.389
centistokes (over 20 Storrner)
= Stormer x 2.802
centistokes (over 1.0 Demler
#lo) = Demler #I0 x 31.506
centistokes (over 1.3 Demler #1) = Demler #1 x 3.151
centistokes (over 14 Parlin #20) = Parlin Cup #20 x 61.652
centistokes (over 230 Ford #4) = Ford Cup #4 x 3.753
centistokes
= 6200
Barbey
Seconds
Red
wood 2
Ad
rnlralty
111
129
148
166
185
23 1
277
323
369
41 5
461
553
646
738
830
922
' Usually same as specific gravity
K~nernat~c v~scoslty
PROPERTIES OF LIQUIDS
Viscosity-Unit Conversions
centlstokes
259 0
302 3
345 3
388 5
431 7
539 4
647 3
755 2
863 1
970 9
10788
1294 6
15103
1726 1
1941 9
21576
3236 5
4315 3
Kinematic Viscosity
I
ft2sec
0 002788
0003254
0003717
0004182
0 004647
0 005806
0 006967
0008129
0 009290
0 01045
001161
0 01393
001626
001858
002092
002322
0 03483
004645
ftY!sec
ft2!sec
sq metersisec
sq metersisec
centistokes
centistokes
Multiply
centistokes
sq rnetersisec
ftZ/sec
centistokes
sq metersisec
ft?/sec
I I
. ---
See previous page for conversions in SSU, Redwood, etc.
I
by
Absolute or Dynamic Viscosity
to obta~n
Ibf-sec/ft2
Ibf-sec!ftZ
centipoises centipoises
centipoises
Pascal-sec
Pascal-sec
centipoises
Pascal-sec
kg-secisq meter
Ibf-seclsq ft'
Pascal-sec
Ibf-secisq ft
centi~oises
I I
' Sometimes absolute viscosity is given in terms of pounds mass. In this case-
centipoises x 0.000672 = Ibrnlft sec.
Kinematic to Absolute Viscosity
sq meterslsec 0.10197 x density (kg/m3)
ft2!sec 0.03108 x density (Ib!ft3)
ftZ/sec 1488.16 x density (Iblft")
centistokes 0.001 x density (g/cm3)
sq meters!sec
Absolute to Kinematic Viscosity
centipoises
kg-secisq meter
Ibf-sec/ft2
centipoises
Pascal-sec
Pascal-sec
centipoises
centipoises
Ibf-sec/ft2
kg-sec!rn2
Pascal-sec
lldensity (gicm3)
0.00067197/density (Ib/ftJ)
32.174ldensity (IbIftR)
9.80665idensity (kg/rn3)
1000/density (g!crn3)
centistokes
ftZ/sec
ft2/sec
sq rnetersisec
centistokes

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Viscosity of Fuel Oils
VISCOSITY SSU
0
Y) N
C) "7
""a" a 3 T "
000 0 0 ooni -
003 w-
N - KINEMATIC VISCOSITY. CENTISTOKES
Drawn by Ingersoll-Rand based on data from Texaco, Inc
4-30
0 V) Law
n
"
3;
Viscosity-Temperature Relations of Petroleum Oils
VISCOSITY
This chart may be used to determine the viscosity of an oil at any temperature prov~ded its viscosity at two
is known.
The lines on this chart show \.~srositles of representatit? oils.
Note: This chart is slrmiar to ASTM tentative standard D341-32T vhlch has a somewhat uider viscosity and
range.
Courtesy of Texaco.
Inc.

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Viscosity of Miscellaneous Liquids Viscosity of Refrigerant Liquids
TEMPERATURE CELSIUS
"C
-30 -20 -10 0 I0 20 30 40 50 60 70
TEMPERATURE, DEGREES FAHRENHEIT
Drawn by lngrrsollbRand based oara from ianoue refrigerant nandboilhs.

INGERSOLLRAND CAMERON HYDRAULIC DATA
PROPERTIES OF LIQUIDS
Viscosity of Sucrose Solutions
Draun by Ingeraoll-Hand baed an data frum various sugar handbooks.
Viscosity Blending Chart
Many liquids designated by such names as asphalt, molasses, oil,
varnish, etc., are actually blends or cut-backs and have lower vis-
cosities than the unblended liquids of the same name. On Fig below,
let oil, A, have the higher viscosity and oil,
B, the lower viscosity.
Mark the viscosity of A and
B on the right and left hand scales,
respectively, and draw a straight line connecting the two as shown.
The viscosity of any blend of
A and B will be shown by the intersection
of the vertical line representing the percentage composition and the
line thus drawn. Viscosities of oils
A
& B must be plotted at the same
temperature.
OIL B 100 90 80 70 60 40 30 20 10 0
PERCENTAGE OF COMPONENT OILS
comes^ of Hydraulic lnstltute

INGERSOLL-RAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Petroleum Temperature-volume Relations
Specific Gravity and Viscosity of Liquids
PERCENT INCREASE IN VOLUME ABOVE 60 F.
Courtesy of Hydraulic Institute.
4-36
Acetlc acld-5%
= vlnegar CH,COOH 59 15 1.W6
Liqu~d
Acetaldehyde CH,CHO
10%
50%
.... .
80%. . 59 2.85 35 Conc.-glacial 1.34 31 7
118C
Acetlc ac~d anhydr~de
0 88
Boiling
point
at
atm
press
69F
208C
Acetone CH,COCH,
Alcohol
ally1 . . . . . .
butyl-n ......
Speclfic gravlty
133F
50 5C
207F
97.2C
methyl (wood)
CH,OH . . .
Vlscoslly
243F
117C
Asphalt emuls~ons
Fed #1
Fed #2 v VI
based
on water
= 1 at
60'F
0788
0 762
Temp
68
68
151F
64.7C
"F
61
68
Temp
68
158
Based on materai from the Hydraulic lnstlture with add~t~ons by ~ngerso~l- and
60
60
centlstokes
0305
0 295
'C
16 1
20
.
'F
61
68
20
20
68
SSU
36
'C
16 1
20
20
70
156
156
0 792
0.855
20
0.81
0.78
10-
10-
68
77
68
104
0 79
68
158
77
100
77
100
20
25
20
40
59
32
20
70
25
378
25
378
0 41
1.60
0.90 cp
15
0
31 8
3.64
1.17
0 74
1.04
215-1510
75-367
33-216
19-75
38
31 5
1M-7M
350-1700
155-1000
90-350

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Specific Gravity and Viscosity of Liquids (Continued)
-
SAE lOW
SAE 20W
SAE 20
SAE 30
SAE 40
Automot~ve gear 011s
SAE 75W SAE
80W
SAE 85W
SAE 90
SAE I40
25-0
Specific Gravity and Viscosity of Liquids (Continued)
Carbon tetrachlor~de
CCI,
Carbon dlsulphide
CS
Carbol~c ac~d (phenol)
Il
24 Baume
L~qu~d
Castor oil
360F
182 2C
65
40" API
35 6 API
32 6 API
Bo~lng
point
at
atm
press
170F
76 7C
115F
46 2C
Specttc gravlty
68
104
18 3
VISCOSlly
68
32
68
Salt Creek
Decane-n
D~ethylene glycol
Ethyl acetate
CH,COOC,H,
Dowtherm 494 3' 25'12 1 8%" 1 056 1; 1 8" 1
based
on watet
- 1 at 60'F
Temp
20
40
1 08
5D
SSU F
20
0
20
343F
173C
centistokes C
Temp
0 96 0 95
65
194
60
F
1 594
1293
1 263
60
130
68
60
C
100
130
183
90
15 6
68
100
32
68
156
544
20
156
378
54
4
1183
126cp
82- 95
20
376
0
20
0843
082
0 73
112
65
0 612
0 53
0 33
0 298
259-325
98-130
122
160
1200-1500
450-600
60
130
0
100
70
50
711
156
54 4
178
378
211
866 rnax
352max
77
6 1
2 36
1 001
32
400 max
165max
45 6
34
3 1
1497

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Specific Gravity and Viscosity of Liquids (Continued)
Liquid
Ethyl bromide
C H Br
V~scos~ty
Ethylene bromlde
Ethylene chlor~de
Ethylene glycol
Bo~l~ng
pont
at
atm
press
lOlF
77 2C
80"o
Conc
SSU
269F
131 7C
183F
837C
Freon
-11
-12
- 21
Furfurol
cent~stokes
Spec~fic gravty
Temp
59
68
60
Fuel 011s
1
2
Glycer~ne
1 oooo
50'0 water 113 5 29
Glucose
Heptane-n
F
68
68
60
161 7C
6
Gas 011s
- --
Specific Gravity and Viscosity of Liquids (Continued)
based
on water
- 1 at 60 F C
Temp
15
20
156
60
60
F
20
20
156
70
70
70
68
60
60
C
1 45
1 186
1221
156
156
SSU at 100°F
2 18
1 246
1125
21 1
21 1
21 1
20
156
156
Lard
Lard
011
Linseed 011
Mercury
68
68
68
77
82- 95
82- 95
68
68
70
149
133
137
1159
82- 95
089
6751F
356 9C
20
20
20
25
70
100
70
100
0 27
20
20
211
70
70
70
68
77
122
160
70
100
60
60
60
60
14
1 48
157cp
21 1
378
21 1
37 8
0 787
0 668
178
31 7
31
7
21 1
21 1
21 1
20
25
50
71 1
211
37 8
156
156
156
156
88 4
239-4 28
-2 69
3 0-74
2
11-4 28
0 21
0 27
145
145
149cp
34-40
32-35
36-50
33-40
97 4-660
37 5-172
139
7 4
096
91-93
92-94
1357
31 7
31 7
450-3M
175-780
73
50
100
130
109
130
100
130
70
100
378
544
378
544
378
544
211
378
621
343
41-475
234-271
305
1894
0 118
0 11
287
160
190-220 112 128
143
93

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Specific Gravity and Viscosity of Liquids (Continued)
Specific Gravity and Viscosity of Liquids (Continued)
A
flrst
B second
NltroDenzene
Prop~onc ac d
Propylene glycol
Quenching 311
(~YPIC~I
0 99
1 038
86- 89
286F 32
68
70
68
68
60
0
20
21 1
20
20
156
1 52cp
113
52
100-120
31 5
24 1
20 5-25

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Specific Gravity and Viscosity of Liquids (Continued)
74
Brx
76 Brx
RT-2
RT-4
RT-6
RT-8
RT-10
1231F 1 0866 E? 4168 Toluene
1106C 0 38cp
Trlelhylene glycol 1 125 21 1 185 7
Turpent~ne 320F 60 156 86- 87 100 37 8 866-95 2 400-440
130 54 4
39 9-443
185-205
Varn~sh spar 60 156 09 20 313 1425
100 378 143 650
Specific Gravity and Viscosity of Liquids (Continued)
fresh
Centrifugal pump performance with viscous liquids
Since pump performance characteristic curves are basis water, cor-
rections (per charts in *Fig 4-2 and 4-3) must be applied when han-
dling viscous liquids. The following two examples will illustrate the
use of these charts.
Example A-performance correction:
Given: Characteristic curve (Fig 4-1) page 4-46 for pump
handling
water at normal temperature (see page 4-46,4-47 and 4-48).
Problem
: Determine the approximate performance curve for oil having
a specific gravity of 0.90 and viscosity of
1000 SSU (216 centistokes).
From water curve in Fig 4-1 note that capacity at best efficiency point
(1.0
x
Q,) is 750 gpm. Tabulate gpm for 0.6 x Q,, 0.8 x Q,, 1.0 x Q,
and
1.20 x Q, for water as in table following Fig 4-1; read heads and
efficiencies from the water curve at these values of gpm and tabulate
as shown. Entering the chart (Fig 4-3) at 750 gpm go vertically to
the head in feet (100') and horizontally to
1000 SSU and vertically
to the correction factors, reading one value for Cg and C, and four
values for C, and tabulate as shown. Multiplying the tabulated water
values by these factors will
give the corrected values for operation with the viscous liquid. Corrected head and efficiency curves may be
plotted using these points; approximate brake horsepower and curve
*NOTE: Figures 4-1 to 4-3 appear on pages 4-46 to 4-48.

INGERSOLLRAND CAMERON HYDRAULIC DATA
can be determined by use of the formula:
capacity (viscous)
x head (viscous) sp
gr
Estimated bhp (viscous) =
3960 x Efficiency (viscous)
CAPACITY-GPM
Fig. 4-1 Sample performance chart
Courtesy of Hydraulic Inst~tutr.
Sample Calculations
PROPERTIES OF LIQUIDS
Viscosity Corrections for Small Pumps (Continued)
Between 10 to 100 GPM
Fig. 4-2 Performance correction chart.
(Correction factors apply to Best Efficiency Point only)
of Hydraulic Institute.

INGERSOLLRAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Viscosity Corrections for Large Pumps (Continued)
Above 100 GPM
Fig. 4-3 Performance correction chart
Courtesy of Hydraulic Institute.
Example B -selecting a pump:
Selecting a pump for viscous liquids is the reverse of correcting
for water performance; i.e. take the desired design conditions and
divide by the applicable correction factors to obtain the equivalent
design conditions on water. For example: select a pump to deliver
750
gprn at 100 ft when handling a liquid having a viscosity of
1000
SSU and specific gravity of 0.90 at pumping temperature. Enter chart
at 750 gpm and follow the same procedure
as in Example A except
for this calculation use
C, from curve marked 1.0 x Q, (capacity at
best efficiency point-bep)
Equivalent water conditions obtained by dividing the viscous con-
ditions by the above correction factors will be 790 gpm and 108.7 ft.
If the pump selected for these equivalent water conditions has a
water efficiency of 81% the viscous efficiency will be 0.64
x 0.81 or
about 52%.
Estimated bhp
=
750 x 100 x 0.90
= 32.8
3960
x 0.52
Note: Correction charts are approximate and apply only to Centrifugal pumps of con-
ventional design with open or closed impellers and adequate suction head to force liquid
into
impeIler; not good for axial or mixed flow pumps or non-uniform liquids.
Correction factors for flows
100 gprn and below (Fig. 4-2) are basis
(bep).
For a more detailed discussion of these correction factors reference should be made to
the Hydraulic Institute Standards.
Pump performance on stock (for friction loss see page 3-88)
Since pump performance curves are based on tests with water at
normal temperatures
(60°F to
70"F), there will be a reduction in head,
r
capacity and efficiency when handling stock, and corrections (depending
on consistency) must be applied to the water performance. These
corrections (applied to the head and capacity at the best efficiency point
(bep) will be approximately 0.725 for 6% stock; 0.825 for 5.5%; 0.90 for
5.0%; 0.94 for 4.5%; 0.98 for 4.0%; and 1.0 for 3.5% and less.
The brake horsepower (bhp) of a pump delivering stock at the cor-
rected head and capacity will be approximately the same
as if it were
delivering water at the bep. Therefore, the approximate efficiency of the
pump on stock can be
det,ermined by calculating its hydraulic horse-
power at the corrected head and capacity and dividing by the bhp.
Pumps handling stock with entrained air must be given special
consideration (consult with manufacturer).

CAMERON HYDRAULIC DATA
PROPERTIES OF LIQUIDS
Slurry Information
The abrasive nature of some slurries is clearly a consideration in
selecting and designing slurry pumps. Excessive wear of wetted pump
parts due to abrasion has limited operational life in some instances to
two weeks. Abrasive wear is inconclusive and difficult to predict even
though many studies on wear testers have been performed. Abrasive
considerations are the abrading mineral itself, abrasive hardness,
particle velocity, density, directions, sharpness, shape, size and
corrosiveness.
Pump components exposed to abrasion,
i.e. impellers, casings and
suction covers, are made from abrasion resistant materials such as
Ni-hard and rubber.
Experience has shown that for abrasive handling pumps, the pump
RPM should be kept as low as possible.
A guideline in showing
the effect of RPM on wear is the relation that wear will vary
approximately as the cube of the RPM-wear
CY RPM3. Hence
since RPM is related to pump developed pressure, high head ap-
plications will wear much more rapidly than lower heads. Also, it can
generally be seen that pump part hardness is inversely proportional
to abrasive wear-wear
a
l/BHN;* and wear also varies directly with
particle concentration- wear
a
C, .
Both synthetic and natural rubbers are used in slurry pumps for
their superior abrasion and corrosion resistance. Their abrasion re-
sistance exceeds Ni-hard or other metals when the particles are small
and round. Sharp and hard solids with high energy are unsuitable
for rubber application because they can cut the rubber material. The
dampening effect of rubber is low for impact angles greater than
20".
Also, rubber is generally unsuitable for applications with heads over
150' and where particle size exceeds
?4 inch. Wear resistant metals
such as Ni-hard are used on more coarse and harder slurries.
MetalIRubber Slurry Pump Selection Criteria
Use Metal-lined Plc~np: Use Rxbber-lined P~o~tp:
Solids greater than '/4 in. Solids less than ?4 in.
PH greater than
4.5 PH less than 6.0
Abrasive service above 100 Abrasive service below 100
ft head ft head
Temperatures to 250°F Non-abrasive service below
Hydrocarbon based slurries 100
ftlsec-impeller
peripheral speed
* Bnnell hardness number Temperatures below 150°F
4-50
Sediment Terminology
-.
Scale of Particle Sizes
U.S.
Tyler screen standard
mesh per mesh per
inch inch Inches Microns Class
Very Coarse Gravel
Coarse Gravel
Medium Gravel
Fine Gravel
Very Fine Gravel
Very Coarse Sand
Coarse Sand
Medium Sand
Fine Sand
Very Fine Sand
Coarse Silt
Medium Silt
~ine silt
Very Fine Silt
Coarse Clay
Medium Clay
Fine Clay
Mohs Scale of Hardness, Modified
(Trans. Am. Electrochem Society, 1933)
Mineral or
Mater~al Mohs Hardness
Talc 1 Soft to Medium
Gypsum, Kaolin Clay, Anthracite
2
Calc Spar, Gray Cast
Iron 3
Fluor Spar 4
Apatite
5
Orthoclase or Periclase 6 Medium to Hard
Vitreous Pure Silica
7
Quartz, Stellite 8
Topaz 9
Garnet 10 Hard to Very Hard
Fused Zirconia, Tantalum Carbide 11
Fused Alumina, Tungsten Carbide 12
Silicon Carbide 13
Boron Carbide 14
Diamond 15
Hardness of Common Minerals
Soft Medium Hard Very Hard
Asbestos Rock Limestone Granite
Iron Ore (taconite)
Gypsum Rock Dolomite Quartzite Granite
Slate Sandstone Iron Ore Granite Gravel
Talc Coal Trap Rock
Soft Limestone Gravel

PROPERTIES OF LIQUIDS
SIurry rheology, viscosity
Terms:
Rheology-study of deformation and flow of substances.
Fluid-a substance which undergoes continuous deformation when
subjected to shear stress.
Consistency (apparent viscosity)-a slurry's resistance to deformation
when subjected to shear stress. This term is applied to differentiate
from absolute viscosity which is used in conjunction with Newtonian
fluids.
Kinematic viscosity-absolute viscosity (consistency) divided by the
mass density* of the fluid.
Fluidity -inverse of viscosity.
Plasticity-property of a fluid which requires a definite yield stress
to produce a continuous flow.
Rigidity-consistency of a plastic fluid in terms of stress beyond the
yield.
Newtonian fluid-a fluid whose viscosity is constant and is independent
of shear rate, and where shear rate is linearly proportional to
shear stress. (water, oil, etc).
Non-Newtonian (complex) fluid-a fluid whose consistency is a func-
tion of shear stress, and the shear rate-shear stress relationship
is non-linear.
For either Newtonian or Non-Newtonian fluids, viscosity (or con-
sistency is the rate of shear (flow) per unit shearing stress (force
causing flow).
T = p dvldy
T = Tangential Shearing Stress (force)
= Viscosity (consistency)
dvldy = Shear rate (velocity gradient)
Types of Non-Newtonian fluids:
Bingham-plastic fluids-a fluid where no flow occurs until a definite
yield point is reached. This yield stress is necessary to overcome
static friction of the fluid particles. Most slurry mixtures used in
pipeline transportation exhibit Bingham plastic characteristics.
Pseudo-plastic fluids-substances with no definite yield stress which
exhibit a decrease in consistency with increasing shear rate.
Dilatant (inverted plastic) fluids-a fluid which exhibits an increase
in consistency with increasing shear rate. These fluids h a ve the
property of increasing their volume when stirred. Examples are
starch in water, quicksands and beach sands.
Thixotropic fluids-a fluid which exhibits a decrease in consistency
with time to a minimum value at any shear rate. It will break down
when stirred but rebuild itself after a given time. Examples are
drilling muds, gypsum in water, paint.
Typical flow diagrams (rheogram) for various fluids:
NOTE: Shear stress is proportional to pressure or total head; shear
rate is proportional to velocity or flow.
Useful formulas for solids and slurries:
S, = Specific gravity of liquid
S, = Specific gravity of solids
S, = Specific gravity of slurry mixture
C, = Percent solid concentration by volume
C, = Percent solid concentration by weight
* mass density = weight - acceleration of gravity

INGERSOLL-RAND CAMERON HYDRAULIC DATA PROPERTIES OF LIQUIDS
Percentage by Volume or by Weight C, or C,
From Centrifugal Pumps by A. J. Stepanoff uith permission of John Wiley & Sons.
Critical Carrying Velocity of Slurries in Pipes
As a slurry is conveyed by turbulent flow in a pipe, particles have
a tendency to settle. The critical velocity of a slurry flow in a pipe is
that velocity below which particles start forming a sliding bed on the
bottom of the pipe which will cause the flow to become unstable and
the pipe will eventually clog. General slurry pipeline practice is to
design the pipe velocity to exceed the critical velocity by at least
30 percent.
This velocity will depend upon pipe diameter, solids concentration
and the properties of the fluid and solid particles.
Extended studies have been done on critical speeds of slurry mix-
tures. One typical study done by Durand with sand-water suspensions
gives the relationship:
V, = F,[SgD(S, -
Where D = inside pipe diameter-ft
S, = specific gravity of solids
V, = critical carrying velocity-ftlsec
g = acceleration of gravity-ftlsec2
F, = an experimental coefficient dependent upon grain size and
concentration and approximate equals
1.34 above .05 in.
particle size. NOTE: That this coefficient is for sand-water
mixtures to
15 percent concentration by weight.
In general slurry pipeline practice, to prevent settlement in the
pipeline, hydraulic conditions should ensure turbulent flow.
As a very approximate guide for slurries with particle sizes under
50 microns, a minimum velocity in the range of 4 to 7 ft. per second
second is required, provided this velocity gives turbulent conditions.
For larger particle size slurries (over
150 microns) and volume con-
centrations up to
15 percent, a rough guide for minimum velocity is
14 times the square root of pipe diameter
(ft.), (Durand's equation).
There is no general method or formula to determine the critical
velocity of all slurry combinations, therefore, if a precise critical
velocity is required, results should be obtained by experimentation.
Slurry Head Correction-Pipe Friction Loss
For a given solid throughput and pipe diameter, the lowest
pressure loss is obtained at the transition between laminar and turbu-
lent flow. Although this minimum pressure loss is also the most
economical running point (power per pound of solids), the operating
velocity must be kept above this critical carrying velocity.
As with critical carrying velocities, many extensive studies have
been done with pressure gradients of solid mixtures. Again, a general
purpose formula for all slurries is impractical to predict. However,
certain guidelines can be followed.
When the slurry contains particles under
150 microns and the
concentration of these particles is low, and the fluid velocity is high
enough to ensure uniform particle distribution in the pipe-under
these circumstances, the slurry behaves
as a "Newtonian liquid and
Velocity
Pressure
Loss
* For Newton~an Liquid definition
Critical
Carrying
I
eee page 1-5

the pressure loss is the same as the water friction loss which can be
calculated from the friction loss charts in
a previous section. (Pages
3-3
to 3-48)
Friction loss is also dependent on pipe roughness. In slurry pipeline
design, a rough pipe design will yield a higher pressure loss capability.
Using a "C"* factor pipe of 100 will result in a pressure loss capability
about 100% greater than design with a clean-steel pipe, however
"C"* values of 140 are not uncommon with certain types of slurries.
Although slurry-pipe friction can be higher than water or New-
tonian fluids, many slurries have negligible head correction and can be
treated with a correction very nearly the same as clear water. Avoid
large corrections, unless tested, since overcapacity can cause pump
problems.
In calculating and/or estimating pipe friction losses for slurries, it
has been common practice, for many years, to use the Hazen and
Williams empirical formula discussed on pages
3-7 and 3-8. This
formula is convenient to use and experience has shown, that with
the selection of the proper friction factor
"C" will produce reliable
results.
Both the Darcy and Hazen-Williams formulas can be used for
slurry pumping with appropriate experience correction factors. The
Hazen-Williams formula is more convenient in
that
"C" values can
be associated with given slurries and extrapolated from the friction
factor tables, using corrections for various "C" factors shown on
page
3-8.
With reference to pump performance, most slurries have little
affect on performance except for density; allowance, however, should
be made for pump wear to maintain plant production.
* Friction factor in Hazen and Williams formula.
"C" of 140 is for new steel pipe.
4-56

SECTION V
STEAM DATA
5- 1

INGERSOLLRAND CAMERON HYDRAULIC DATA q$
2.2
STEAM DATA
Steam Data Notes
CONTENTS OF SECTION 5
Steam Data
Page
................................... Notes on Steam 5-3
..................... Enthalpy and Entropy-Definition 5-4
.................................. Mollier Diagram 5-5
............................ Pressure-enthalpy chart 5-6
Steam Tables:
Temperature Data (to 705.47"F) ........................... 5-7
............................... Pressure Data (in Hg Abs) 5-14
.............................. Pressure Data (mm Hg Abs) 5-17
............................ Pressure Data (to 3208.2 psia) 5-19
................................. Superheated Steam Data 5-21
Theoretical Steam Rates for Steam Turbines ................. 5-25
........................... Approximate Turbine Efficiencies 5-30
...................................... Vapor Flow Formulas 5-32
Pressure Drop in Steam Piping ............................. 5-34
Low Pressure Steam Flow ................................. 5-38
Pressure Drop in Steam Fittings ............................ 5-39
....................................... Psychometric Chart. 5-40
Boiler Feed Flow Data ..................................... 3-42
Steam is the term usually applied to the vapor-phase of water when
this phase is reached by boiling water. The term vapor describes the
gaseous state of any substance, below its critical condition, from
which it can be reduced to a liquid by compression. But water vapor is
usually thought of only in a mixture with air, while the word steam
has a much broader meaning. In a certain range of (low) pressures,
1 the terms steam and water vapor are used interchangeably.
I
"Boiling point" is the temperature at which a liquid boils-that is,
changes rapidly and violently into vapor, (or steam, if the liquid is
water), through the application of heat. When the pressure exerted
upon the liquid is 760 mm Hg or 14.696 lb per sq in abs., the boiling
point of water is 212°F or 100°C. The temperature at which water
boils varies, however, with the pressure; water may actually boil at
freezing temperature (32°F) provided the pressure is held down to
.0885 lb per sq in; on the other hand its maximum boiling temperature
(the critical temperature), is approximately 705"F, under a pressure
of some 3200 lb per sq in.
Steam, or water vapor, is invisible. Only through partial conden-
sation does it appear as a mist. Steam may exist either in saturated
form, while in contact with water, or as superheated steam, after
separation from the water from which it was generated and further
heating. Saturated steam may be dry or wet; in the latter case it
carries free moisture and the amount of moisture determines the
"quality" of the steam. The exhaust from a steam turbine or engine
is usually wet steam. The temperature of dry-or wet saturated
steam at a given pressure is the same and is determined entirely by
the absolute pressure. If the pressure is maintained, the temperature
will remain constant as condensation proceeds. Removal of heat
produces condensation.
Superheated steam behaves like a gas; when compressed, its tem-
perature rises; when heated at constant pressure its volume increases,
when heated at constant volume its pressure rises, etc. Its condition
is usually indicated by the "degrees of superheat" above the saturation
temperature, and by its pressure.
1 cu ft of water, evaporated at 212°F and 14.696 lb per sq in absolute
Pressure, becomes 1606 cu ft of dry-saturated steam.
1 cu ft of steam weighs 0.03731 lb, and 1 lb of steam occupies
26.80 cu ft, at a pressure of 14.696 lb per sq in absolute and a tem-
perature of
212°F.
5- 3

INGERSOLLRAND CAMERON HYDRAULIC DATA
1 cu ft of dry air weighs 0.08073 lb, and 1 lb of dry air occupies
12.387 cu ft at pressure of 14.696 lb per sq in absolute and a temper-
ature of 32°F
The amount of heat required to transform a liquid into its vapor,
the temperature remaining constant, is called the latent heat of
vaporization. The value of the latent heat varies with the pressure
under which the liquid is caused to vaporize.
The latent heat of vaporization of water to steam is 970.3 Btu per
lb at atmospheric pressure.
The Btu (British thermal unit) is equivalent to 778.0 ft-lb, which
is the heat energy required to raise the temperature of 1 lb of water
1°F in the range from 32 to 212°F. In the metric system use is made
of the term calorie (cal) or gram-calorie which is the heat required
to raise the temperature of 1 gram of water 1°C within the range
0 to 100°C. The lulogram-calorie or large calorie is 1000 gram-
calories. In modern practice the Joule is used as a measure of energy.
It is equivalent to 0.7376 ft-lb.
The output of a steam generating plant is often expressed in
pounds of steam delivered per hour. Since the steam output may vary
in temperature and pressure, the boiler capacity is more completely
expressed as the heat transferred in Btu per hour. Boiler capacity
is usually expressed as kilo Btu (kB)/hour which is 1000 Btu/hour,
or mega Btu (mB)ihour which is 1,000,000 Btulhour.
An older expression of boiler capacity is boiler horsepower. It is
equivalent to 34.5 lb of water evaporated per hr at standard atmos-
pheric pressure and 212°F. It is equivalent to 33,475 Btulhr.
*ENTHALPY-(Heat Content) is the sum of the internal and external energies of a substance.
*ENTROPY-is a measure of the unavailability of energy in a substance.
*For more details reference to MARKS Handbook is suggested.
8;
STEAM DATA
Mollier Diagram for Steam

INGERSOLLUAND CAMERON HYDRAULIC DATA STEAM DATA
Pressure-enthalpy Chart for Steam
I
Properties of Saturated Steam-Temperature Table
Vacuum
Btullb
Absolute Pressure
Courtesy
of
Bakk Wilmx.
5-6
75
76
77
78
79
Tables on pages
5-7 to 5-10 reproduced by permlsslon from ASME Steam Tables' 1967 by Amer~can
Soclety of Mechanical EnL~neers All rlghls reserved
Absolute pressures In ~nches Hg rn~ll~meters Hg and vacuum In ~nches Hg calculated by Ingersoll-Rand
0875
0 904
0935
0 966
0 999
22 22
22
97
23 75
24 54
25 37
0 42964
0 44420
045919
047461
0 49049
29 047
29 017
28 986
28 955
28 923
740 3
7174
695
2
673 9
653 2
43 045
44 043
45 042
46 040
47 038
1051 2
1050 7
1050 1
1049 5
1049
0
1094 3
10947
1095 1
1095 6
1096 0

INGERSOLLRAND CAMERON HYDRAULIC DATA STEAM DATA
Tables on pages 5-7 to 5-10 reproduced by permlsslon from ASME Steam TablesG 1967 by Amer~can
Soc~ety of Mechan~cal Eng~neers All r~ghts resewed
Absolute pressures In lnches Hg, m~ll~meters Hg, and vacuum In lnches Hg calculated by Ingersoll-Rand
Properties of Saturated Steam-Temperature Table (cont.)
Properties of Saturated Steam -Temperature Table (cont.)
Tables on pages 5-7 to 5-10 reproduced by permlsslon from ASME Steam Tables' 1967 by Amer~can
Society of Mechan~cal Eng~neers All r~ghts reserved
Absolute pressures In lnches Hg mllllmeters Hg and vacuum In lnches Hg calculated by Ingersoll-Rand
Temp
F
Total heat or enthalpy
Btuilb
Vacuum
in
Hg
ref to
29.921
~n
bar, at
32F
water
h,
Spec~f~c
volume
sat vap
ft3/lbm
v,
Absolute Pressure
evap
ha ~n Hg
steam
h, mm Hg Ib/ln2

INGERSOLLRAND CAMERON HYDRAULIC DATA
STEAM DATA
Tables on pages
5-7 to 5 10 reproduced by permlsslon from ASME Steam Tables' 1967 by Amer~can
SOClely 01 Mechanical Engineers All rlghts reserved
Absolute pressures In Inches Hg m~lllmeters hg and vacuum in inches Hg calculated by Ingersoll-Rand
Properties of Saturated Steam-Temperature Table (cont.)
Properties of Saturated Steam-Temperature Table (cont.)
Temp
F
Tables on pages 5-11 to 5-13 reproduced by
perrnlsslon from ASME Steam Tables' 1967 by The Amer~can
Society of Mechan~cal Eng~neers All rlghts reserved
Absolute Pressure
Vacuum
In Hg
ref to
29.921 tn
bar. at
32F ~n Hg
Speclflc
volume
sat vap
ft3/lbm
v,
mrn Hg Ib/ln2
Total heat or enthalpy
Btullb
water
hf
evap
h k
steam
h,

INGERSOLLRAND CAMERON HYDRAULIC DATA
- --
Properties of Saturated Steam-Temperature Table (cont.)
Tables on pages 5-11 to 5-13 reproduced by permission from ASME Steam Tables ' 1967 by The Amer~can
S0~1ety of Mechan~cal Englneers All rlghts reserved
5-12
STEAM DATA
Properties of Saturated Steam-Temperature Table (cont.)
Tables on pages 5-1 1 to 5-13 reproduced by permlsslon from ASME Steam Tables' 1967 hy The Amer~can
Socely of Mechanlca Englneers all rlghts reserved
Any pressure may be expresqed In a number of d~fferent units by uslng the following conversion
formulas
1 standard atmosphere = 14 696 lblsq In absolute
1 slandard atmosphere 29 9213 Inches Hg (at 32 F-0 Ci
1 standard atmosphere - 34 00 it water (at 75 F-23 9 C)
1 standard atmosphere 76 cm or 760 mm Hg (at 0 C-32 F
1 pound per sauare lnch 2 036 ~nches Hg (a1 32 F-0 Ci
1 pound per square nch 27 763 nches water (at 75 F-23 9 C)
1 ~nch Hg (at 32 F) 491 pounds per square nch
1 ~nch Hg 25 4 m (meters Hg
1 kq cm 14 223 1b sq In
1 pound per sq In = 6 895 k~lopascals

INGERSOLLUAND CAMERON HYDRAULIC DATA STEAM DATA
Properties of Saturated Steam-Pressure; In Hg Abs
Sp VOI for temp below 32 F are apDrox!mate
Absolute
pressure
~n Hg
05
06
07
08
09
10
11
12
13
14
15
16
17
18
1803
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
Values from 05 to 18
In Hg reproduced by permission from Chemlcal Englneers Handbook by John H
Perry publlshed by McGraw-HIII Book Co Inc
Values from 1803 to 29 92 In Ha calculated araDhlcallv bv Inaersoll-Rand Co bv Dermlsslon of the authors
and publlsher from data In "~herriod~nam~c ~Yoiertles bl team" by Keenan and~eyes.
Temp
F
543
9 03
12 11
14 83
17 24
19 44
21 42
23 25
24 94
26 53
28 00
2939
3072
31 96
32 00
3328
34 56
35 78
36 96
38 09
39 18
40 23
41 23
42 22
43
17
44 08
44 96
45 83
4667
47 48
48 28
49 05
4980
50 53
51 25
51 96
52 64
5331
5398
54 62
55 25
5588
56 48
57 08
57 66
58 24
Properties of Saturated Steam-Pressure; In Hg Abs
(Continued)
Sp vol
cu fl Ib
11200
9400
8300
7250
6500
5860
5320
4960
4520
4210
3950
3730
3500
3310
3306
3147
2997
2861
2736
2624
2520
2424
2336
2253
2177
2106
2039
19768
19179
1863 0
18109
1761 6
17153
1671 1
1629 9
15900
1553 0
15170
14820
1449 9
14185
1388 4
1360 0
1332 3
1306 2
1280 9
1 92 114 11
1 93 2 93 11423 2368
2 94 11435 2360
2 95 11446 2353
2 46 2 96 11458 2345
2 47 2 97 11470 2338
2 48 2 98 11482 2330
2 49 2 99 11494 2322
Values from 05 to 18
In Hg reproduced by permlsslon from Chemlcal Englneers Handbook by John H
Perry publlshed by McGraw-HIII Book Co Inc
Values from 1803 to 29 92 In Hg calculated graphically by Ingersoll-Rand Co by permlsslon of the authors
and publlsher from data In Thermodynam~c Properties of Steam by Keenan and Keyes
Absolute
pressure
~n Hg
50
5 1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Absolute
pressure
~n Hg
Temp
F
58 80
59 35
59 90
60 43
6096
6148
6200
6249
62 99
63 47
63 96
64 43
64 90
65 35
65 81
66 26
66 70
67
13
67 56
67 99
6840
68 82
69 23
69 63
70 03
70 43
70 81
71 20
71 58
7196
72 33
72 70
73 06
73 42
73 78
74 13
74 48
74 83
75 17
75 51
75 85
76 18
76 51
76 83
7715
77 47
77 79
78
11
78 42
78 73
Temp
F
Sp
vol
cu it Ib
1256 5
1233 6
12109
1189 5
11683
11484
11286
11102
1091 9
1074 6
1057 3
1041 0
1024 9
1009 7
994 7
980 3
966 3
952 5
939 4
926 3
9140
901 7
889 9
8784
867 1
856 1
845 5
835 1
825 0
8151
805 6
796 2
786 9
778 0
7692
760 7
752 4
744 1
736 2
728 4
720 7
713 2
705 9
698 7
6917
684 8
678 1
671 4
6650
658 7
Sp vol
cu It lb
Absolute
pressure
~n Hg
1 00
1 01
1 02
1 03
1 04
1 05
1 06
1 07
1 08
1 09
110
111
112
113
114
115
116
117
1 18
119
1 20
1 21
1 22
1 23
1 24
1 25
1 26
1 27
1 28
129
1 30
1 31
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
1 40
141
142
1 43
1 44
1 45
1 46
1 47
1 48
1 49
Absolute
pressure
~n Hg
Temp
F
79 03
79 33
79 64
79 94
8023
80 52
80 81
8110
81 39
81 67
81 95
82 23
82 51
82 78
83 06
83 33
83 60
83 87
84 13
84 39
84 65
84 91
8517
85 43
85 68
85 93
86 18
86 43
8668
8692
87 17
87 41
87 65
87 89
88 12
88 36
88 59
88 83
8906
89 28
89 51
89 74
89 97
9019
9041
90 63
90 85
91 07
91 29
91 50
Temp
F
Sp vol
cu fl lb
652 3
646 4
640 4
634 4
628 7
623 1
617 5
6120
606 7
601 4
596 2
591 2
586 2
581 3
576 5
571 8
567 1
562 5
558 1
553 7
549 3
544 9
5407
536 6
532 5
528 4
524 5
520 6
5167
5129
509 2
505 6
502 0
498 4
494 9
491 5
488 1
484 7
4813
478 1
474 9
471 7
468 5
4654
4624
459 4
456 4
453 5
450 6
447 8
Sp vol
cu It Ib
Absolute
pressure
n Hg
Temp F
Sp
vol
cu ft Ib

INGERSOLLRAND CAMERON HYDRAULIC DATA STEAM DATA
Properties of Saturated Steam-Pressure; In Hg Abs
(Continued)
Absolute
pressure
~n Hg
Properties of Saturated Steam-Pressure; mm Hg Abs
400
4 10
Temp
F
Sp vol for temp below 32'F are approximate.
Values from 1.5 to 4.579 mm Hg calculated from data n Chemlcal Engineers Handbook by John H Perry. published
by McGraw-Hill Book Co., Inc.
Values lrom 4 579 to 760 mm Hg calculated graph~cally by Ingersoll-Rand Co. by permlssion of the authors and
publisher from data In 'Thermodynamic Properties of Steam by Keenan and Keyes
Absolute
pressure
mm Hg
15
2 0
2 5
3 0
3 5
4 0
4 5
4 579
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5
10
0
10 5
11 0
11 5
120
12 5
13 0
13 5
140
14 5
15 0
15 5
16 0
16 5
170
17 5
18 0
18 5
190
19 5
20 0
20 5
21 0
21 5
22 0
22 5
23 0
23 5
24 0
24 5
Values from 05 to
0 1803 In Hg reproduced by permlssion from Chem~cal Eng~neers Handbook by John H Perry,
published by McGraw-HIII Book Co , Inc
Values from 0 1803 to 29 92 In Hg calculated graph~cally by lngersoll Rand Co by permlsslon of the authors and
publ~sher from data In Thermodynam~c Properties of Steam by Keenan and Keyes
For correction of observed vacuum and barometer to standard condition see pages 7-5 to 7-1 0
12542
12633
SP vol
cu ntlb
Temp
F
8 73
14 50
1909
22 91
26 19
29 05
31 62
32 00
34 17
36 55
38 77
40 82
42 75
44 55
46 25
47 86
49 37
50 83
52 21
53 55
54 82
5605
57 22
58 36
59 45
6051
6154
6254
63 50
64 44
65 35
66 24
6710
67 94
68 76
69 56
70 34
7111
71 85
72 59
73 31
7401
74 69
75 36
76 03
76 67
77 31
77 94
1767
1726
Absolute
pressure
~n Hg
Sp vo
cu fl Ib
9700
7300
5920
4950
4250
3780
3380
3306
3042
2779
2558
2372
2211
2070 4
1946 8
1838 0
1741 8
1654 4
1576 1
1504 7
1439 8
1380 1
1326 0
1275 8
1229 5
1186
2
11461
11086
1073 6
1040 7
1009 8
980 8
9535
927 7
903 3
880 4
858 5
8375
817 8
798 9
780 9
7636
747 3
731 7
716 4
702 1
688 3
674 9
1100
1150
Temp
F
Absolute
pressure
mm
Hg
25 0
25 5
26 0
26 5
27 0
27 5
28 0
28 5
29 0
29 5
30 0
30 5
31 0
31 5
32 0
32 5
33 0
33 5
34 0
34 5
35 0
35 5
36 0
36 5
37 0
37 5
38 0
38 5
39 0
39 5
40 0
40 5
41 0
41 5
42 0
42 5
43 0
43 5
44 0
44 5
45 0
45 5
46 0
46 5
47 0
47 5
48
0
46 5
49 0
49 5
1655
1674
Sp vol
cuftllb
Temp
F
78 55
79 15
79 74
80 33
8090
81 46
82 02
82 56
8310
83 63
84 16
8467
85 19
85 68
86 18
86 66
8715
87 62
80 09
88 55
89 01
89 46
89 91
90 34
90 78
91 21
91 63
92 05
92 47
92 88
93 29
93 69
94 09
9448
94 87
95 26
95 64
9611
96 39
96 76
97 13
97 49
97 85
98 21
98 56
9891
99 26
99 60
99 94
10028
68 4
65 6
Absolute
pressure
~nHg
Sp vol
cu ft Ib
662 3
6500
638 2
626 8
6158
605 3
594 9
585 2
5756
566 5
557 5
5490
540 5
532 4
524 6
516 9
5095
502 4
495 4
4886
482 0
475 6
469 3
463 3
4574
451 7
446 1
440 6
4353
430 0
425 0
420 0
415 1
4104
4058
401 4
397 0
3927
388 4
384 2
380 3
376 4
3726
3688
365 1
3614
357 9
354 4
351 0
3477
2900
2992 Temp
'F
Absolute
pressure
mm
Hg
50 0
50 5
51 0
51 5
52 0
52 5
53 0
53 5
54 0
54 5
55 0
55 5
56 0
56 5
57 0
57 5
58 0
58 5
59 0
59 5
60 0
60 5
61 0
61 5
62 0
62 5
63 0
63 5
64 0
64 5
65 0
65 5
66 0
66 5
67 0
67 5
68 0
68 5
69 0
69 5
70 0
70 5
71 0
71 5
72 0
72 5
73 0
73 5
74 0
74 5
Sp
vol
cuft/lb
2104
2120
276
268
Temp
F
10061
100 94
101 27
10160
101 92
102 24
102 56
10288
10319
10350
10381
104 12
10441
104 72
105 02
10531
10561
105 90
10619
106 47
106 76
107 05
107 33
10761
107 88
10816
108 43
10871
108 98
109 24
109 51
109 77
11004
11030
11056
110 82
11107
11 1 33
11158
11183
11208
11233
11258
11282
11306
11331
11355
11379
11403
1'4 26
Sp vol
cu ft lb
3444
341 2
338 0
3349
331 9
328 9
326 0
323 1
3202
3175
3148
312 1
3095
306 9
304 4
301 9
299 5
297 1
2947
292 4
290 1
2878
2856
2834
281 2
2791
277 0
2749
272 9
270 9
269 0
267 1
2652
2633
2614
2596
2578
256 0
2543
2526
2509
2492
2475
2459
2443
2427
2411
2396
2381
236 6

INGERSOLLRAND CAMERON HYDRAULIC DATA STEAM DATA
Properties of Saturated Steam-Pressure Table Properties of Saturated Steam-Pressure; mm Hg Abs (cont.)
Values from 1 5 lo 4 579 mm Hg calculated from data In Chemlcal Eng~neers Handbook by John H Perry published
by McGraw-HIII Book Co , Inc
Values from 4 579 to 760 mm Hg calculated graph~cally by Ingersoll-Rand Co by permlsslon of the authors and
publisher from data In Thermodynam~c properties of Steam by Keenan and Keyes
Abs
press
Ib ~n
Sp vol
cu ftllb
I I I I I I I I
Tables on pages 5-19 to 5-20 reproduced by permlsslon from ASME Steam Tables 1967 by The
Amer~can Soclety of Mechanical Engineers All rlghts reserved
Temp
F
Absolute
pressure
mm
Hg
Absolute
pressure
mm Hg
Temp 'F
Sp vol
cuftllb
T:mp
F
Absolute
pressure
mmHg
Spec~flc volume
11 Ibm
Water
V,
Temp
F
Steam
V.
Enthaipy
btullbm Sp vol
cu ftllb
Water
h,
Abs
press
lb ~n
Steam
h,
Entropy
btu Ibm x F
Water
5
Steam
5,

INGERSOLLRAND CAMERON HYDRAULIC DATA STEAM DATA
Properties of Saturated Steam-Pressure Table (cont.)
Tables on pages 5-19 to 5-20 reproduced by permission from ASME Steam Tables 1967 by The
Amerlcan Soclely of Mechan~cal Eng~neers All rlghfs reserved
Properties of Superheated Steam
Tables on pages 5.21 to 524 reproduced from ASME Steam Tables' 1967 by The Amerlcan Soc~ety of
Mechan~cal Engineers All rlghts reserved
+Sh = superheat v = speclflc volume ~n ff3'lb, h = total heat In Btuilb, s = entropy In 6tui"FIlb

INGERSOLLRAND CAMERON HYDRAULIC DATA STEAM DATA
Properties of Superheated Steam (cont.)
Tables on pages 521 to 524 reproduced from
ASME Steam Tables ' 1967 by The Amerlcan Soclety of
Mechan~cal Eng~neers All rlghts reserved
'sh = Superheat v = spec~flc volume In ft3/lb h = total heat In Btullb s = entropy In BtuPFllb
Properties of Superheated Steam (cont.)
Abs
press
b ln-
(sat
temp-F)
4000
Sat
water
Tables on pages 5-21 to 524 reproduced from ASME Steam Tablesc 1967 by The Amer~can Soc~ety of
Mechan~cal Eng~neers All rlghts Reserved
'sh = superheat v = spec~f~c volume In ft311b, h = total heat In Btujlb, s = entropy In BluPFllb
v
h
s
Sat
steam
0 1052
11743
12754
Temperature-degrees Fahrenheit
700
0 1463
13116
13807
0 1752
14036
14461
I
1200 800 1 900
02210
15522
15417
1000 1400
02601
16857
16177
1500
02783
17506
16516

INGERSOLLRAND CAMERON HYDRAULIC DATA
Properties of Superheated Steam (cont.)
Tables on pages 5-21 to 5-24 reproduced from ASME Steam Tables 1967 by The Amer~can Soclety of
Mechancal Engneers All r~ghts reserved
'sh = superheat v = spec~f~c volume In ft311b h = total heat In Btuilb s = entropy In Btu1"Filb
STEAM DATA
Theoretical Steam Rates, Condensing for Engines and Turbines
Ib per hp-hr
Exhaust pressure-in Hg abs
7.67 7.45 '2: ": ".
7.42 7.22 6.98 6.72 6.38
7.18 6.98
6.95 6.76 6.55 6.31 6.00
6.72 6.53 6.34 6.1 1 5.82
200
I b gage
387.8"F saturated steam
ln~tial
temp
"F
I I I I I
I
300 I b gage
421.7"F saturated steam
421.7 1 7.39 1 7.21 1 7.01 1 6.76 1 6.47
750 5.94 5.81 5.66 5.48 5.25
800 5.76 5.63 5.49 5.31 5.09
850 5.57 5.45 5.32 5.15 4.94
600 Ib gage
488.8"F saturated steam
3.0
- --
goo 5.02 4.93 4.82 4.69 4.52
950 1 4.86 1 4.78 1 4.67 1 4.55 / 4.39
250 Ib gage
406°F saturated steam
2.5
1 I I I
400 Ib gage
448.1°F saturated steam
150 Ib gage
365.8"F saturated steam
I I I I
800 Ib gage
520.3"F saturated steam
2.0
175 Ib gage
377.4"F saturated steam
1.5 1.0 3.0 2.5 2.0 1.5 1.0

INGERSOLLRAND CAMERON HYDRAULIC DATA
STEAM DATA
Theoretical Steam Rates, Condensing for Engines and Turbines
Ib per hp-hr
Theoretical Steam Rates, Non-Condensing
lnitial
temp
"F
700
750
800
850
900
950
1000
Ib per hp-hr
100 Ib gage, 337.9"F saturated steam
lnitial temperature, "F
Exhaust pressure-ln Hg abs
Exhaust
press
l blsq in
gage
Theoretical Steam Rates, Non-Condensing
for Engines and Turbines-lb per hp-hr
150
Ib gage, 3653°F saturated steam
2.0 3.0
lnitial superheat, "F
1.5 2.5
200 Ib gage, 387.8"F saturated steam
Exhaust
press
lblsq In
Sage
0
5
10 15
20 25
30
35
40
45
50
60
70
80
90
3.0 1.0
1000 Ib gage
546.4"F saturated steam
-
1200 Ib gage
568.8"F saturated steam
5.51
5.31
5.14
4.97
4.81
4.67
4.52
362
2.5
lnitial temperature, "F
Exhaust
press
lblsq in
gage
0
5
10
15
20
25
30
35
40
50
60
70
80
90
100
110
412 0
365.8
5.41
5.21
5.04
4.88
4.73
4.59
4.45
....
5.27
5.08
4.91
4.76
4.61
5.47
212
2.0
....
4.94
4.77
4.61
4.47
4.33
4.21
lnitial temperature,
"F
400
....
4.77
4.62
5.46
4.33
4.20
4.08
5.28
5.10
4.93
4.78
4.63
4.49
4.36
....
5.17
4.99
4.83
4.67
4.53
4.39
387.8
262 12.1
1.5
Initial superheat, F
....
5.07
4.89
4.73
4.58
4.44
4.31
312 112 62.1
1.0 450
0
14.4
16.2
17.9
19.6
21.3
23.2
25.0
27.1
29.3
31.7
34.3
40.2
47.3
....
....
5.15
4.97
4.81
4.65
4.52
4.38
4.26
400
162
4.97
4.80
4.65
4.50
4.37
4.24
4.12
Initial superheat,
OF
500
34.2
14.1
15.7
17.4
19.1
20.8
22.6
24.4
26.4
28.5
30.8
33.3
39.0
45.8
....
....
450
0
13.1
14.4
15.7
17.0
18.3
19.6
20.9
22.3
23.8
26.8
30.1
34.0
38.3
43.5
49.6
....
550
84.2
13.6
15.1
16.7
18.3
19.9
21.6
23.3
25.2
27.1
29.3
31.6
36.8
43.2
51.2
....
12.2
13.0
14.3
15.6
16.9
18.1
19.4
20.8
22.1
23.6
26.5
29.9
33.8
38.0
43.1
49.2
....
62.2
12.5
13.7
15.0
16.2
17.4
18.6
19.9
22.1
22.5
25.3
28.5
32.0
36.1
40.9
46.5
....
500
600
134
13.1
14.6
16.0
17.5
19.0
20.5
22.1
23.8
25.6
27.7
29.7
34.6
40.5
48.1
....
550 600
112
12.0
13.2
14.3
15.5
16.6
17.8
19.0
20.2
21.4
24.1
27.0
30.2
33.9
38.3
43.3
49.4
650
184
12.5
13.9
15.3
16.6
18.0
19.4
20.9
22.5
24.2
26.0
28.0
32.6
38.2
45.3
....
650
162
11.5 12.7
13.8
14.9
15.9
17.0
18.0
19.1
20.3
22.7
25.4
28.4
31.9
35.9
40.7
46.5
700
234
12.0
13.3
14.6
15.8
17.1
18.4
19.2
21.3
23.0
24.7
26.5
30.9
36.2
42.9
51.7
700
212
11.1
12.1
13.2
14.1
15.1
16.1
17.1
18.1
19.2
21.4
24.1
26.9
30.2
34.0
38.5
44.1
750
284
11.5
12.7
13.8
15.0
16.2
17.5
18.8
20.2
21.8
23.5
25.2
29.3
34.3
40.8
49.2
750
262
10.6
11.6
12.5
13.5
14.4
15.3
16.2
17.2
18.2
20.4
22.8
25.5
28.6
32.3
36.6
41.8
800
800
334
11.0
12.1
13.2
14.3
15.5
16.7
18.0
19.3
20.8
22.3
24.0
28.0
32.8
38.8
47.0
312
10.2
11.1
12.0
12.8
13.7
14.6
15.4
16.3
17.3
19.4
21.7
24.3
27.3
30.7
34.8
39.8
384
10.5
11.5
12.6
13.7
14.8
15.9
17.2
18.5
19.9
21.4
22.9
26.8
31.4
37.2
44.9
262
9.7
10.6
11.4
12.2
13.1
13.9
14.7
15.6
16.5
18.5
20.7
23.2
26.0
29.3
33.3
38.0
434
10.0
11.0
12.1
13.1
14.1
15.3
16.4
17.7
19.0
20.5
22.0
25.6
30.1
35.6
43.0
412
9.3
10.1
10.9
11.7
12.5
13.3
14.1
15.0
15.8
17.7
19.8
22.2
24.9
28.1
31.8
36.5

CAMERON HYDRAULIC DATA STEAM DATA
Theoretical Steam Rates, Non-Condensing
for Engines and Turbines
250
Ib gage, 406.0°F saturated steam
lnitial temperature, "F
300 Ib gage, 421.PF saturated steam
Exhaust
press
lblsq in
gage
0
5
10
15
Theoretical Steam Rates, Non-Condensing (Continued)
for Engines and Turbines
400
Ib gage, 448.1°F saturated steam
406
Exhaust
press
l blsq in
gage
0
5
10
15
20
30
40
50
60
80
100
120
140
160
180
600
Ib gage, 488.8"F saturated steam
lnitial temperature, "F
Exhaust
press
lblsq in
gage
0
5
10
20
30
40
50
60
80
100
120
140
160
180
200
450
lnitial temperature,
"F
Initial superheat, "F
421.7
press
Iblsq in
gage
lnitial temperature. "F
500
o
12.1
13.3
14.4
15.4
Exhaust
lnitial superheat,
"F
448.1
450
Pages 5-25 to 5-29 calculated from "Theoretical Steam Rate Tables" by J. H.
Keenan and F. G. Keyes, published by American Society of Mechanical Engineers.
550
44
11.7
12.8
13.9
14.9
575
Initial superheat,
"F
500
500
0
11.5
12.5
13.5
14.4
15.3
17.0
18.7
20.5
22.4
26.5
31.2
36.6
43.5
52.3
....
600
94
11.3
12.3
13.3
14.3
Initial superheat,
"F
600
550
0
10.6
11.5
12.2
13.7
15.0
16.3
17.6
18.9
21.7
24.7
27.9
31.6
35.8
40.7
46.6
550
650
144
10.9
11.8
12.8
13.7
650
28.3
11.2
12.2
13.2
14.0
14.9
16.5
18.3
20.0
21.8
25.7
30.2
35.6
42.2
50.4
....
600
51.9
10.2
11.0
11.7
13.0
14.3
15.6
16.8
18.0
20.6
23.4
26.5
29.9
33.8
38.4
43.7
600
128
10.4
11.3
12.1
12.9
13.7
15.1
16.6
18.1
19.7
23.1
27.0
31.5
37.1
44.1
....
78.3
10.8
11.7
12.6
13.4
14.3
15.8
17.4
19.1
20.7
24.5
28.7
33.5
39.7
47.2
....
700
194
10.4 11.4 12.3
13.1
700
650
102
9.8
10.5
11.2
12.5
13.7
14.8
16.0
17.2
19.6
22.2
25.0
28.1
31.7
35.8
40.6
650
750
244
10.0
10.9
11.7
12.5
750
178
10.0
10.8
11.6
12.3
13.1
14.4
15.8
17.3
18.7
21.8
25.4
29.7
35.0
41.6
50.5
700
152
9.4
10.1
10.8
11.9
13.1
14.1
15.2
16.3
18.5
20.9
23.5
26.4
29.7
33.5
38.1
700
278
9.2
10.0
10.6
11.3
11.9
13.1
14.3
15.5
16.8
19.6
22.8
26.8
31.4
37.3
45.3
228
9.6
10.4
11.1
11.8
12.5
13.7
15.0
16.3
17.7
20.6
24.1
28.1
33.1
39.4
47.7
800
294
9.6
10.4
11.2
11.9
800
750 850
202
9.0
9.7
10.3
11.4
12.5
13.5
14.5
15.5
17.5
19.7
22.2
24.9
28.0
31.7
36.0
750
328
8.9
9.6
10.2
10.8
11.3
12.5
13.6
14.8
16.0
18.7
21.8
25.5
30.1
35.6
43.1
344
9.2
10.0
10.7
11.4
850
800
800
378
8.5
9.1
9.7
10.3
10.8
11.9
13.0
14.1
15.3
17.9
20.8
24.4
28.7
34.2
41.3
394
8.8
9.6
10.2
10.9
252
8.7
9.3
9.9
10.9
11.9
12.8
13.8
14.7
16.6
18.7
21.0
23.6
26.5
30.0
34.1
850 900
428
8.2
8.8
9.3
9.9
10.4
11.4
12.4
13.5
14.6
17.1
19.9
23.3
27.4
32.6
39.6
-
850
444
8.5
9.2
9.8
10.4
352
8.0
8.6
9.1
10.0
10.8
11.7
12.5
13.3
15.1
17.0
19.1
21.4
24.1
27.2
30.9
302
8.4
8.9
9.5
10.4
11.4
12.2
13.1
14.0
15.8
17.8
20.0
22.4
25.2
28.5
32.4
900
950
402
7.7
8.2
8.7
9.6
10.4
11.2
11.9
12.8
14.4
16.2
18.2
20.5
23.0
26.0
29.6
1000
452
7.4
7.9
8.4
9.2
9.9
10.7
11.4
12.2
13.8
15.6
17.5
19.6
22.1
25.0
28.4

INGERSOLL-RAND CAMERON HYDRAULIC DATA STEAM DATA
Approximate Turbine Efficiency*-Rankine Cycle
3600 rprn
I0 psigl /Y 1 FOR APPROXIMATIONS ONLY
1 I/ I I
100 200 300 400 600 800 1000 1500 2000 3000 4000 5000
TURBINE HORSEPOWER
D-1344
W
g
Y
Theoretical Steam Rate Formulas
2545
TSR = -
AH
5 40,
3600 RPM
Ill I I I I
a 200 300 400 600 800 I000 1500 2000 3000 4000 5000
TURBINE HORSEPOWER D-1343
- 600 psir
Steam flou (Ibihrl =
TSR x hp
corrected efhc~encg
CONDENSING
2" Hg Abs, Exhaust - loo0 F Superheat
-
TSR = theoret~cal steam rate-lblhp-hr
AH = difference ~n enthalpy between inlet and exhaust steam (~entrops)
* Corrections for superheat and speed on next page.
- - -
Corrections to Rankine Cycle Efficiency Curves
Superheat Corrections
Speed Correction Multiplier for Speeds Other Than
3600 rpm Multi-stage Turbines Only
Type of turbine
Correction method
Superheat
0°F
100°F
200°F
300°F
EFFICIENCY
Single-stage
-
Non-condensing
Add or subtract
to or from RCE
add
0.6
-
Subtract 0.6
Subtract 1.2
RPM
BHP
500
1000
2000
3000
5000
Page 5-30 gives approximate
Rankine cycle efficiencies (RCE) for single-stage
I
and multi-stage turbines at various ratings and steam pressures. These data
may be used only for rough estimating. There is considerable variance between
manufacturers for a given rating and condition, some offering a higher
efficiency, some lower, depending upon how the conditions match a particular
size or design.
Although very large turbines are used for certain types of drives, a limit of
5000 hp has been chosen for these data since it was felt this encompassed the
majority of drives where such data would be used. It is to be expected that
I larger units would have higher efficiencies. For example, a 25,000 hp, 3600 rpm
turbine at 600 psig, 750°F and
5" Hg abs. exhaust, would have an efficiency of
about 82%.
I
"Single-stage turbines often operate at some back pressure. The curves
are based on 5 psig back pressure. For back pressures to 50 psig multiply
'
RCE from the curves by a correction factor equal to:
Multi-stage
0-25 (backhressure - 5)
corr. Factor = 1 +
100
Non-condensing
Multiply
0.963
1.000
1.012
1.015
Non-condensing
-.
where the back pressure is in psig."
Condensing
Multiply
0.977
1.000
1.018
1.034
3000
1.000
1.000
1.000
1.000
1.000
Condensing
Condensing turbines show a small increase in RCE for higher absolute
I 8 exhaust pressure (lower vacuums), but it is not slgmficant for the purpose of
3600
1.000
1.000
1.000
1.000
1.000
- . .
these curves.
5000
1.030
1.013
1.001
0.997
0.994
5000
1.000
1.000
1.000
1.000
1.000
7500
1.036
1.006
0.980
0.968
0.959
10,000
1.018
0.982
0.940
0.920
0.902
7500
1.000
1.000
1.000
0.984
0.955
10,000
1.000
1.000
0.957
0.929
0.895

CAMERON HYDRAULIC DATA
Gas or Vapor Flow
For flow problenls involving gas or vapor the Darcy formulae are:
dV - 6.32 W - 2273.5 Qp 378.9 qp
Dvp =----
-
-
R =
32.174 u 12 v (l z (1 z
dz
Symbols
D = internal pipe dia-ft
d = internal pipe dia-in
f
=
frlction factor (page 3-11)
g = acceleration due to gravity
-32,174 ftlsecL
h, = pressure drop
-inches of water
h, = pressure drop-psi
L - length of pipe-ft
p = density at temp and press
of flow conditions-lb/fti
q
= flow-cfm-ftilmin
Q
= flow-cfs-ft3/sec
R = Reynolds number
s, = specific gravity of gas (air = 1)
u = absolute viscosity = Ibf-sec/ft2
V = velocity of flow-(ftlsec)
v = kinematic viscosity (ftL!sec)
W = flow-lb!hr
w = specific volume-ft </lb
z = absolute viscosity-centipoises
STEAM DATA
The Darcy formula can not be applied indiscriminately to vapor or
gas flow because it does not take into account the affect compressibility
has on velocity and density.
1. When h,, is less than 10% of upstream pressure, reasonable
accuracy is obtained. Base
p and V on either upstream or down-
stream conditions.
2. When h, is between 10 and
409 of upstream pressure, reasonable
accuracy is obtained
by using p and V based on an average of
upstream and downstream conditions.
3. When
h, is over 404 of upstream pressure divide the total length
into shorter sections and add the pressure drops for each section.
FRICTION OF STEAM IN PIPES
Use of tables and charts, pages 5-34 to 5-37 and 5-39
Erarrtple -
Given a flow of 30,000 lbihr of steam at 125 lblinL page and 100°F of
superheat through
955 feet of 8-inch pipe
with two ~"~lbows and one
gate valve. What is the friction loss?
Solrltio~~ -
Steam at 125 lb/in2 gage pressure will be approximately 125 + 15
atmospheric pressure = 140 lb!in2 absolute pressure.
From the table on page 5-19, the temperature of 140 Ib/in2 steam
without superheat is 353°F.
The total temperature with superheat is 353 + 100 = 453°F.
From the table on page 5-39, the length of pipe equivalent to the
friction loss through two
90" elbows is 2 x 20 = 40 ft and the
equivalent length for a gate valve is
5.32 ft. The total equivalent
length of pipe is
955 + 40 + 5.32 =
1000 ft.
Enter the table on page 5-34 at 125 1b/in2 gage pressure and 450°F
total heat, finding a correction factor of 2.641.
a Divide the steam flow of 30,000 lblhr by 2.641 which gives an
equivalent flow of
11,359
lblhr for use in the chart.
Now enter the chart on page 5-37 at 11,359 lbkr. Run vertically
to the line for 8-inch pipe and then horizontally to the right, reading
a friction loss or pressure drop of
0.005
lbiin' per ft. For 1000
equivalent feet of pipe the friction loss is 1000 x 0.005 = 5 lb/in2.

INGERSOLL-RAND CAMERON HYDRAULIC DATA STEAM DATA
I
Friction Loss for Steam
Based on '12 Ib gage pressure. See page 5-34
to convert to other pressures
0 0 300 0 0
N m 3mla m_3
FLOW POUNDS/ HOUR
N m
I
Friction Loss of Steam (Continued)
Based on '/2 Ib gage pressure. See page 5-34
to convert to other pressures

INGERSOLLnAND CAMERON HYDRAULIC DATA
I
I STEAM DATA
m
b
-
-
z2
cue8 ggn
am* N~F 0-7
2mm zkg
NN
mnn tmm tam or-
-Nf LOOW
P w
2 -- RZ6 586 %8E SZX %%
~NN OUV) am
0 0 zzz z:z p?? g?: $ZZ $5; g$z ;?
m
-N "OP
ahz "gg r.8~
om
0
"1 ss gge 5%; NNb mfN a: 2%
SF,? E NO* m-m -D
7 7
o 02h mmr- we0 -NO ~m- omm mom WN
N zm$ mmw maw mwn oto moh hwo nt
w-m wwn mmo
2;g gk~ ?? 2
7- Neb
N
"9 NN,,
am, 5%:
-r- D n
e-W NO0 000 0 0 000 000 00
&= ;a2 sag sen ??Z a% sez eze zg
F,
-NO
<,
ooo oo R2iq ?%'& B2X 8ER k52 NW
m - -NN t~m
2~:
nr-
a
N N
mmo
-NV
"2
mz"$k
mom
owm
f-0
WE
own
--N
I
000
kg:
aga
VOW
o*e
bCh
waw
OW-
N~N ewm
- - 7
ED:
~r-r.
www
mWh
mnm
an-
tmW
mom
moz
hr.~
NWO
NNm
000
r-mh
mmz
gTg N
zg2
--n
r-hn
nnr-
-an
mm-hw
omomm
OW~OW
mm mmmme
hmc-rz
hm
omom-
a-O-m
7-7
-Oham
omam-
----N
hm~mn
~mmem
NNNOO
agaze
-NNOm
mm
mmmmf
hm~ea
7-7
mnmhC
on-me
U7Of-m
momr-r-
mo-m*
wneem
nm-r-w
gggzg
-mr-mm
onam-
7---N
m owumm
mOmmh
7-7-
No-mm
momm~
-NNNO
82%%?
emmhm
00000
o
a
2
N -
0 e
0
-
2 I, 2 I,
s 1:
o m
2
o
N
w
r
o n
m
nmm-N
owmom
---NN
mmfm-
momom
wmoma
?.P.P.nm
owooo
mwmem
m,---
b-rkf
mdmwm
m w r-ma-m
hm-~m ---
worn
ZE~;?
mmwn-
momom
~mmma
Nwmw-
-omom
-NN-f
Zmmmo
momw-
---N
mmm-N
n-law
0KZG
numam
wmmr-n
~NOO~
NmfmW
^Es-w
ow-02
498%X
--NNO
00000
u
c
a, a
2
=
m
m-m
::'$
00-
::$
F*W
hZ%
am?
who
ZRZ
of-
mefoo
hmmr"
r -
m-mo
cu~usg
omma
mwm~m
---wN
Or*hh
mrn-c~
NNmOW
ONN-
-mmh
0m09
ZE~G
femW
momo
m-nm
-NNN
mnfm
wome
Whhm
mmem
NO~*E
ar.ha-
of-
rgp~
0-er-r-
mm-r-w
NNmhW
om-NO
0NmOh
NNNOO
,,ow
h~h-0
neemr-
oam-r-
oa~mm -----
00000
9
1
1
0
rn
s
N
m*n
~r-w
NNO
43%
nvm
C7gg
*Oh
m~*
28%
ON
gz
"N
$5 -
;:
NW
7 7
-P
2%
.??En
<5!
mmm
whe
~lnm
%%$
wm~
gU7k
m-w --
whm
"8
--N
I wmPCZ I P9%K8 R2S
~fmo~
22.34~
---
amr.-a
E:z::
m hn-m-
homho
---N
rngza*
mwm-n
7-
a-r-m-
menr-r-
mm-tmcn
-NmOm
--N~o
mfmwm
S6?4%
---NN
zoqz?
---N
282sa
-NNO~
GZE86
-
00000
h~m
new
zz'&
8U2
~gg
LOO-
2::
NOD
mr-o
"2
OfW
50.
3:
0 -
u
hmmw-
83828
NN~~W
5 >? - - -
3-
m
-
zz=k
g?z2
%?=:
cmza
*,
m x
c:?==
3rrnZg
V) 0 >
%uu
E<g
L
$5:; -
a
~~23
~0252
3
22 a,
z
gz m
2?=&
m- me
888ZW86Z2
wr-c=o
wem
mwmcvm
---Ncv
vow
me*

I
INGERSOLLRAND CAMERON HYDRAULIC DATA STEAM DATA
Psychrometric Chart
Examples showing use of chart on
page 5-40
CONDITIONS: 95" dry-bulb
and 75" wet-bulb
Relative humidity:
At intersection of 75" wet-bulb and
95" dry-bulb
the relative humidity is read directly on the curved lines as 40 per
cent.
Dew
poiyzt: At intersection of 75" wet-bulb and 95" dry-bulb lines,
the dew point is read directly on horizontal temperature lines as
67".
Vapor pressure: At intersection of
75" wet-bulb and 95" dry-bulb
lines, pass in horizontal direction to left of chart and on scale read
the vapor pressure as 0.33 lb per sq in abs.
Vapor pressure in inches,
Hg (at
32°F) = 2.036 x lblsq in abs.
Vapor pressure in millimeters,
Hg (at 32°F) = 51.71 x
lblsq in abs.
Total heat above 0" in mixture per lb of dry air: From where wet-
bulb line joins saturation line, follow 75" wet-bulb line upward to its
intersection with slanting scale at left of chart read
38.5 Btu per lb
of dry air saturated with moisture. The use of this scale to obtain
total heat in the mixture at any wet-bulb temperature is a great con-
venience, as the number of Btu required to heat the mixture and
humidify, as well as the refrigeration required to cool and dehumidify
the mixture, can be obtained by taking the difference in total heat
before and after treatment of the mixture.
Grains of moisture per
lb of dry air: From intersection of 95"
dry-bulb and 75" wet-bulb temperature lines follow horizontal line to
right and read directly 99 grains of moisture per lb.
Cu.ft of wlixture per lb of dry air: At intersection of 75" wet-bulb
and
95" dry-bulb lines read directly on diagonal lines 14.29 cu ft per
lb, which is the specific volume.
Copgr~ght by General Electrlc Cornpan). Reproduced bq perrnlsalon.
Copyright by General Electric Company Kel~roduced by perrniss~on
5-40

Requirements in U.S. gpm for Boiler Feeding
Note: (a) gpm is given to the nearest whole number.
(b) The above water quantities are based on
34.5
Ib of water evaporated
per hour from and at
212 deg F. The weight of one gallon of water
is taken as being equal to
8.34 Ib at 60 deg F. Intermediate water
quan.
tities in gal per min are obtainable by multiplying the boiler hp by .069.
Boiler hp
50
75
100
1 50
175
200
225
250
275
300
350
400
500
750
1,000
1,500
2,000
(c) In selecting boiler feed pumps, the fact that boilers are often run two
or three hundred percent of rating should be taken into consideration.
The above figures are of the actual boiler horsepower developed.
Ib per hr
1,725
2,587.
3,450
5,175
6,037
6,900
7,762
8,625
9,487
10,350
12,075
13,800
17,250
25,875
34,500
51,750
69,000
QPm
4
5
7
10
12
14
16
17
19
21
24
28
34
53
69
1 04
138
(d) Boiler feed pumps should have pressure in excess of the boiler rated
pressure in order to compensate for frictional losses, entrance losses,
regulating valve losses, and normal static head. These should be
specified for
a particular installation. However, for estimating purposes,
the following are fair values:
Boiler Pressure
Boiler hp
2,500
3,000
3,500
4,000
4,500
5,000
10,000
15,000
20,000
25,000
35,000
40,000
45,000
50,000
60,000
80,000
1 00,000
Boiler Feed Pump
Discharge Pressure
g Pm
172
207
242
276
31 0
345
689
1,034
1,387
1,723
2,413
2,759
3,102
3,447
4,136
5,515
6,894
Ib per hr
86,250
103,500
120,750
138,000
155,250
1 72,500
345,000
517,500
690,000
862,500
1,207,500
1,380,000
1,550,000
1,725,000
2,070,000
2,760,000
3,450,000

I
rl
/
SECTION VI
ELECTRICAL
DATA

INGERSOLLRAND CAMERON HYDRAULIC DATA ELECTRICAL DATA
CONTENTS OF SECTION 6
Electrical Data
Page
Summary of Electrical Formulas ........................ 6-3
Motor Selections .................................... 6-4
Motor Efficiencies ................................... 6-5
Motor Characteristics ................................ 6-6
Full Load Currents of Motors .......................... 6-8
...................................... Motor Wiring 6-9
....................... Motor Branch Circuit Protection 6-1 1
............................. Properties of Conductors 6-12
Carrying Capacity of Insulated Wire .................... 6-14
Effect of Voltage and Frequency Variation ............... 6-15
Allowable Voltage and Frequency Variations .............. 6-16
Full Load Speeds of Synchronous Motors ................ 6-17
NEMA Motor Frame Dimensions (T/TS) ............ 6-18 & 6-19
Bedplate Pad and Motor Dimensions
........ for NEMA Motor Frames
H.1.-NEMA Type C Face-Mounted Motors
Standard Dimensions ................
Electrical Data
Volt (E) is the unit of electric pressure or electromotive force. It
is the potential which will produce a current of 1 ampere through a
resistance of
1 ohm.
Ampere (I) is the unit of electrical current (coulombs per
sec)
Ohm (R) is the unit of electrical resistance-volts/ampere.
Watts (W) and Kilowatts (KW) are units of electric power.
Kilovolt-amperes (KVA) is a measurement of apparent electric power.
Kilowatt hour (Kwhr) is a unit of electrical energy or work performed.
Joule (J) metric unit of energy = watt per sec.
1 Kwhr = 2,655,000ft-lb = 1.341 hp-hr = 3413 Btu = 3,600,000joules
Ohm Law Relationships (direct current)
E = IR = WII = v'mi W = 12R = E2/R = EI
I = EIR = W/E = VWE R = El1 = W/12 = E2/W
Electrical Formulas Symbols as above; plus
eff
= efficiency (expressed as a decimal)
pf
= power factor (expressed as a decimal)
hp = horsepower output
Kva
Required
6-20 thru 6-23 Kilowatts
Direct
current
............ Dimensions (Type C, JM and JP Motor Shafts) 6-25
H.I.
-NEMA Type HP and HPH Vertical Solid Shaft
Motor Standard Dimension ........................... 6-26
Alternating current
Dimensions (HP-HPH) .............................. 6-27
Single-phase
Standard Dimensions for NEMA Vertical Inline
............ Motor Shaft Extensions (P-Base Construction) 6-28
3-phase*
Horsepower (output)
IE(eff)
/
1.73 lE(eff)(pf)
746
Joules
Amperes (kva known)
Amperes (hp known)
Amperes (kw known)
' For 3-phase systems E IS measured l~ne to llne and I IS phase current.
6- 3
I E -
sec
746(h~)
E(eff)
1000 kw
E
IE(eff)(~f)
sec
1.73 IE (eff) (pf)
sec
746(h~)
E(eff)(pf)
1000 kw
E(pf)
746(h~)
1 .73 E(eff)(pf)
1000 kw
1.73 E(pf)

INGERSOLL-RAND CAMERON HYDRAULIC DATA
g
ELECTRICAL DATA
Motor selection
Motors operate successfully where voltage variation does not
exceed 10 percent above or below normal or where frequency vari-
ation does not exceed 5% above or below normal. The sum of the
voltage and frequency variation should not exceed 10%.
It should be noted that such variations will affect the operating
characteristics, such
as full load and starting current, starting and
breakdown torque, efficiency and power factor.
Standard motors are available to meet a wide variety of conditions.
In addition, special motors may be built to meet unusual conditions.*
It is wise to go to the motor manufacturer with the conditions of
operation.
Information required will include:
Voltage and frequency of current (including probable variations
in frequency and voltage).
Horsepower requirement of the driven machine.
Whether the load is continuous, intermittent or varying.
The operating speed or speeds.
Method of starting the motor.
Type of motor enclosure-such as drip-proof, splash-proof, totally
enclosed, weather protection, explosion proof, dust-ignition proof
or other enclosure.
The ambient or surrounding temperature.
Altitude of operation.
Any special conditions of heat, moisture, explosive, dust laden,
or chemical laden atmosphere.
Type of connection to driven machine. (direct, belted, geared,
etc.)
Transmitted bearing load to the motor. (overhung load, thrust,
etc.)
Torque
Torque is the turning effort caused by a force acting normal to
a
radius at a set distance from the axis of rotation. It can be expressed
in
lb-ft (lb at a radius of 1 ft). The full-load torque of a motor is:
5250
x hp
Full-load torque
=
rpm
The locked rotor or starting torques are given in the tables on page
6-6 and 6-7. Above 250 hp the locked rotor torques are normally
* See page 6-11.
6- 4
70% of full load torque for 3600 rpm motors and 80% for 1800 rpm
motors.
It is important to check the starting and accelerating torque
requirements of the driven machine in order that a motor may be
selected with adequate torque.
Manufacturers can build motors with special torque characteristics
'
if required.
Motor speeds
The synchronous speed of AC motors is determined by the number
of poles and frequency.
120 x f
Synchronous speed
=
- where
P
f = frequency in Hertz (Hz)-(cycles)
p
= number of poles
Induction motors will have full-load speeds
2% to 5% below the
synchronous speed.
D-C motors have full-load base speeds when hot of 500, 850, 1150,
1750,
2500 and 3500 rpm. In general the % slip decreases as motor
horsepower increases.
See speed chart on page
6-16
Typical Efficiencies of Low Voltage (2301460) Three-Phase Motors
3600 and 1800 rpm
Horse-
power
1-2
3-5
10-25
25-50
75- 100
125-200 201-500
501 -1500
--
Synchronous motors-unity pf
Full load
87
89.5
87
93-95.3
95-96.2
Induction motors
Full load
76
80
85
87
90.5
91.5
92-93.4
93-94.8
% load
83
88.5
80
92.7-95
95-95.9
% load
75
84
80.5
91-93.2
93-95.2
% load
75
80
85
87
91
92
91.8-93.4
93-94.8
1/2 load
7 1
77
82
86
90.5
91
90-91.5
91 -93

INGERSOLLRAND CAMERON HYDRAULIC DATA ELECTRICAL DATA
Typical Motor Characteristics
Three-phase-60 Hertz (NEMA design 0)
Singlephase-60 Hertz
Typical Motor Characteristics (Continued)
Horse
power
Approx NEMA (Starting)
Typ~cal Locked Breakdown
or 1 1 I 1 1 1 Full I rotor I full-load
power speed load max letter load (mln) Imlnl
Three-phase-60 Hertz (NEMA des~gn 8)
Approx torque-lb-ft
From General Electr~c and Nat~onal Electrical Code
Amperes-460 volt
Approx
full
load
rpm
Approx torque
lb-fl
Breakdown
full-load
(min)
Full
load
Locked
rotor
(min)
NEMA
code
letter
Amperes-230 volt
Typical
full
load
NEMA
locked
rotor
(max)

INGERSOLLRAND CAMERON HYDRAULIC DATA ELECTRICAL DATA
Approx Full Load Current of Electric Motors
!
From 1975 Nat~onal Electr~cal Code-Tables 430-147. 148. 150 For motors runntng at normal speeds wlth
J
normal torque character~st~cs Motors bullt for low speed or hlgh torque may requlre more current
For synchronous motors wtth 0 90 or 0 80 power factor multtply current shown by 1 1 and 1 25 respecttvely
Motor Wiring
Not more than 3 conductors in raceway, cable or direct burial
Based on ambient temperature of 30C (86F)
115 volt-Singlephase lnduction Motors
Horse-
power
230 volt-Single-phase lnduction Motors
230 volt-Threephase Squirrel-Cage lnduction Motors
Approx full-load
current, amps
Table from General
Electr~c, based on section 430-22 and Table 430-147 from
. - National Electric Code.
P
Column ent~tled x1.25 multiplies full load current by 1.25 to a~d In selecting
motor branch circuit conductors.
Wire size based on conductors hav~ng 75C ~nsulat~on. 6-9
x1.0
1
1 '/2
2
3
5
7%
10
15
20
25
30 40
50
60
x1.25
Minimum wire
size, type THW
or RHW AWG
Cu
3.6
5.2 6.8
9.6
15.2
22
28
42
54
68
80
104
130
154
Horse
power
Al
Branch circuit
protection
average setting-
amps
Fuse
4.5
6.5
8.5
12
19
27.5
35
52.5
67.5
85
100
130
162.5
192.5
Breaker
14
14
14
14
12
10
8
6
4
4
3
1
210
310
12
12
12
12
10
8
8
4
3
2
1
210
410
250 MCM
1
1 1/2
2
3
5
7
'/2
10
15
20
25
30
40
50
60
15
15
20
30
45
60
80
125
150
200
225
300
350
400
15
15
15
15
30
30
50
50
1 00
1 00
100
150
150
225

INGERSOLLRAND CAMERON HYDRAULIC DATA
Motor Wiring (Continued)
Not more than 3 conductors in a conduit, cable or raceway
Based on ambient temperature of
30C
(86F)
460 volts-Three-phase Squirrel Cage Motors
Horse-
power
Table from General Electric, based on section 430-22 and Table 430-147 from
National Electric Code.
Column entitled x1.25 multiplies full load current by 1.25 to aid in selecting
motor branch circuit conductors.
Wire size based on conductors having 75C insulation.
ELECTRICAL DATA
Motor Branch Circuit Protection Devices
Maximum rating or setting
From National Electric Code-1975.
'Synchronous motors of the low-torque, low-speed type (usually
450 rpm or lower) which start unloaded
do not require a fuse rating or circuit-breaker setting in excess of
200 percent of full-load current. Such
motors are often used to drive reciprocating compressors. pumps, etc.
Approx full-load
current, amps
Wet and Canned Type Motors
xl
.O
Motors are available, or can be designed and built, of either the
"canned" type or "wet" motor type when seal-less or wet motor gland-
less type pump and motor assemblies may be required due to difficult
stuffing box packing problems.
Toxic liquids at high pressures and temperatures may require a
hermetically sealed "canned" type pump and motor assembly.
For water at high pressure and temperatures such as on boiler
circulating service it may be desirable to use a "wet" motor glandless
type pump and motor assembly.
In all cases where unusual or difficult pump problems may be involved
the pump manufacturer should be consulted.
XI .25
Minimum
wire size
type THW or
RHW AWG
Cu
Horse-
power Al
Branch circuit
protection
average setting-
amps
Fuse Breaker

INGERSOLLUAND CAMERON HYDRAULIC DATA
Properties of Conductors
The resistance values glven In the last three columns are applicable only to d~rect current. When conductors
larger than No.
410 are used
wlth alternat~ng current the mult~ply~ng factors on page 6-13 should be.
used to compensate for sk~n effect.
ELECTRICAL DATA
Multiplying Factors for Converting Resistance to
60-Hertz AC Resistance
These apply to table on page 6-12
Multiplying factor
For nonmetallic For metallic sheathed
sheathed cables in air or cables or all cables
nonmetallic conduit in metallic raceways
~ --
Size I Copper I Aluminum 1 Copper I Aluminum
Up to
3 AWG 1. 1. 1. 1.
2
I 1 1: 1 1: 1 1::; 1 1:::
250 MCM 1.005 1.002 1.06 1.02
300
MCM 1.006 1.003 1.07 1.02
350
MCM 1.009 1.004 1.08 1.03
400
MCM
1.011 1.005 1.10 1.04
500
MCM 1.018 1.007 1.13 1.06
600
MCM 1.025 1.010 1.16 1.08
700
MCM 1.034 1.013 1.19 1.11
750
MCM 1.039 1.015 1.21 1.12
800
MCM 1.044 1.017 1.22 1.14
1000
MCM 1.067 1.026 1.30 1.19
1250
MCM 1.102 1.040 1.41 1.27
1500
MCM 1.142 1.058 1.53 1.36
1750
MCM 1.185 1.079 1.67 1.46
2000
MCM 1.233 1.100 1.82 1.56

Allowable Current-carrying Capacities (Amperes) of
Insulated Copper Conductors
Not more than three conductors in raceway cable or direct burial
(Based on ambient temprature
of 30C
(86F)
Temperature rating of conductor
Size AWG
or MCM
I Types of insulation
RUW
T
T W
UF
R H
RHW
RUH
THW
THWN
XHHW
USE
id I
v
AVB
TA, SA
TBS
RHH
THHN
XHHW
AVA
AVL
A l
AIA
Condensed from National Electrical Code-Tables
310-16 and 310-13
6-14
1000
1250
1500
1750
2000
ELECTRICAL DATA
General Effect of Voltage and Frequency Variation on
Induction Motor Characteristics*
Correction factors for room temperatures over 30°C
455
495
520
545
560
*The reference point for voltage variation and frequency variation of the power
supply is understood
to be the rated voltage and frequency as given on the
motor nameplate.
I
This data
show-s general effect which will vary somewhat for specific ratings.
545
590
625
650
665
585
645
700
735
775
680
. , . .
785
....
840
730
....
....
....
....
...
....
....
....
....

INGERSOLLRAND CAMERON HYDRAULIC DATA
Allowable Variations from Rated
Voltage
and Frequency
Motors will operate successfully under the following conditions of
voltage and frequency variations, but not necessarily in accordance
with the standards established for operation at normal rating.
Where the variation in voltage does not exceed 10 percent above or
below normal (6 percent for small power universal motors).
Where the frequency variation does not exceed 5 percent above or
below normal.
Where the sum of the voltage and frequency variation does not
exceed 10 percent (provided the variation in frequency does not ex-
ceed
5 percent) above or below normal ratings as stamped on motor
nameplate.
The charts show the approximate effects of variations in voltage
and frequency on motor characteristics. These values should in no
way be considered as guarantees.
Motor Speeds
AC-Motors.
The synchronous speed of a-c motors is determined by
the number of poles and frequency.
Synchronous speed
=
P
where
f
= frequency in Hertz (Hz) (cycles)
p = number of poles of the motor
ELECTRICAL DATA
--
Full-Load Speeds of Synchronous Motors
Induction motors will have full-load speeds of from 2 to 6% less
than the above, average
4% less.
No. of
poles
2
4
6
8
10
12
14
16
18
20
D-C Motors will have standard full-load speeds, when hot, of: 575,
850, 1150, 1750, and 3500 rev per min
(rpm)
At normal temperature, rated load and voltage the variation above
or below the above full-load motor speeds may not exceed 7%% in
Full-Load Speeds of Synchronous Motors
Hertz
(Hz)
motors up to
7% hp at 1150 rpm, and 5% in motors larger than 7% hp
at 1150 rpm.
25
1500
750
500
375
300
250
214.3
187.5
166.6
150
50
3000
1500
1000
750
600
500
428.6
375
333.3
300
30
1800
900
600
450
360
300
257
225
200
180
60
3600
1800
1200
900
720
600
514.2
450
400
360
100 ....
3000
2000
1500
1200
1000
853.2
750
666.4
600
40
2400
1200
800
600
480
400
343
300
266.6
240
45
2700
1350
900
675
540
450
386
337.5
300
270

NEMA Motor Frame Dimensions (T/TS)
A 0 x x J K E F 4 c 1 ~~GHT~NW"' u 1 s 1 ES
(NEMA) (MAXI (MAXI IMIN) (MAXI IMAXI IMAXI (NEMA) 1NEMAI 1NEMAI IIMIN MAXI (MAXI IAVb) (NCMAI (NEMAI (NEMA) (NEMA)
- ---- - - -
FRAME Fl TO C L WIDTH LtNGTH SHAFl TO SHAFT TO FOOT FOOT LL MTR TO DlS BETN BOLT FOOT TOTAL bHA'l SHAFT KEY KEY
INEMA) HEIGHT FTTOFl FlTOFl FROFFl BKOFFl WIDTH LENGTHBOLT-WDTH BOLT LGTH HOLEDIA TKNESS LtNbTH LBS EXTN UIA WIDTH 11 FNGTH
'NOTES
11 All dlmenslons are for motors not motor wdeslals 21 All d~mensdons are NEMA canlralled except J K G 8 C These four dtmenslans are complied from vendor dkmens~on sheets 31 Nob
that x and xi b are calculated from NEMA domenslons 4) The 447T8TS and 449TBTS are not dlmensloned !n NEMA Spec The dnrnensnans for these frames are compnled from vendor
dlmenslan sheets Always ventyd~mens~onsforthese frames 51 In four cases length of foal for celtaln manufacturer s motorsare greater than above 2137-8 8 0 2547 8-1 1 3 444T 8
44475 8-18 6 But all fool lengths are lessthan B (MAX) + 1 whlch asthe mcnlmum length of a motor pedestal spad Alsothe bolt hole lacal#on 2F alwaysequals above NEMAd~mens~ans

U
KEYWAY
-- +
I
I1
HOLES)

INGERSOLLRAND CAMERON HYDRAULIC DATA ELECTRICAL DATA

INGERSOLLRAND CAMERON HYDRAULIC DATA
H.I. - NEMA Type C Face-Mounted
Motors Standard Dimensions
The following dimensions were developed jointly by NEMA and the
the Hydraulic Institute and are the same as those given in NEMA
Standard
MG1-18.615.
ELECTRICAL DATA
Dimensions (Type C, JM and JP Motor Shafts)
I I - I
NO' NO NO NO NO NO NO
q-8' ;8%-H$~]88 :P8
I
I ' I
1
I

OPEN DRIP PROOF
FRAME SELECTIONS
- - -
/ 3fi00 1800 ;It
IIP RPM HPM
I,,, ,/,,", ,,,, ,, ,,.,,,,.,, ,,,lll,ll,,li ,,, 8,. ,,,,,,,,,,1,
ll,,lY ,,,, 1 1,1 ,,,, ,,, , I ,,,,II, ,, ,,,, l , ,,,,,,,,,,,,
,,1/,1,,1, I,,,,
1/32 R. MAX.
L 4-BF HOLES
90 " APART
(addit~onal data on following page)
Dimensions (HP-HPH)
All d~mens~ons In ~nches The above are Integral-horsepower A-C Squirrel-cage lnduct~on Motors for Process and In-llne Pump Applications
'These frames have the follow~na alternate dimensions
182HPand 184HP
364HP and 365HP
4
4
1650
1650
025
025
069
069
13505
13500
13505
13 500
404HPand405HP'
444HPand445HP
14750
14750
16250
1 6245
21250
2 1240
450
450
4562
4 438
4562
4 438
2250
2250
1250
1245
1750
1 745
1416 1 401
1845-1 830
303
303
0377 0375
0502-0500
975
1350
1250
1700

INGERSOLLRAND CAMERON HYDRAULIC DATA
BF-4 HOLES
90" APART 7
TOLERANCES
+.oooo
-.0005 UP TO 1.625 DIA
+ OVER 1.625 DIA
+ LESS THAN 12 000
A
+ 005 000
12 000 AND LARGER
MAXIMUM FACE RUNOUT 004 1 'I
MAXIMUM LCCLNTRlCiTI OF MOllNTlYG IABBLT 004 I I II
MAXIMUM S~,~~RUNUUT 001 TIP
Standard Dimensions For NEMA Vertical lnline
Motor Shaft Extensions (P-Base Construction)
NOTES
1. Motor shall be vertical P-Base construction specifically designed for in-line pump application.
2. Shaft axial end play of shaft is 2 mills max under 50 pounds reversing static load with motor in a horizontal
position at ambient temp.
3. Total Axial Shaft movement to be
-C5 mils when subjected to rated thrust load.
4. Motor balance as defined by
NEMA shall be 1.0 mil (Peak to Peak).
5. Nameplates shall
be stainless steel (300 series stainless).
6. Radial displacement at end
of motor shaft is
,001 in. max at ambient temperature with zero axial load and a 25
pound force applied at the pump end of motor shaft.
284LPH-286LPH
324LP-326LP
364LP-365LP
404LP-405LP
444LP-445LP
Special Drivers
2.1 25
2.625
4.00
4.50
1.750
2.250
4.500
5.000
2.250
2.750
14.75
14.75
13.500
13.500
.25
.25
16.50
2204%
.69
.69
3.75
4.00
.50 .62
1.845
2.275

1
7
-
/
SECTION VII
CAST IRON AND
STEEL PIPE FLANGES
AND FLANGE FllTlNGS
-
-
-
1
LLRAND-

INGERSOLLRAND CAMERON HYDRAULIC DATA
CONTENTS OF SECTION 7
Cast Iron and
Steel Pipe Flanges
and Flange Fittings
Page
Weights of Flanged Cast-Iron Pipe
. . . . . . . . . . . . . . . . . . . . . . 7-3
Weights of Flanged Cast-Iron Fittings
. . . . . . . . . . . . . . . . . . . 7-4
Dimensions of Cast-Iron Flanges
. . . . . . . . . . . . . . . . . . . . . . . 7-5
Pressure-Temperature Ratings
. . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Dimensions of Cast-Iron Flanged Fittings
. . . . . . . . . . . . . . . . 7-7
Dimensions and Weights of Steel Pipe
. . . . . . . . . . . . 7-8 thru 7-12
Dimensions of Steel Pipe Flanges
. . . . . . . . . . . . . . . 7-13 thru 7-15
Flange Ratings- 150 lb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16
Flange Ratings-300 lb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17
Flange Ratings- 400 lb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18
Flange Ratings- 600 lb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
Flange Ratings
- 900
1b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20
Flange Ratings- 1500 lb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
Flange Ratings- 2500 lb.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22
CAST IRON AND STEEL
PIPE
FLANGES AND FLANGE FITTINGS
Approx. Weights-Cast Iron Flanged Pipe

INGERSOLLRAND CAMERON HYDRAULIC DATA
Approximate Weights 125 Ib Standard
Cast lron Flanged Fittings
All weights given in pounds
CAST IRON AND STEEL PIPE
FLANGES AND FLANGE FITTINGS
Dimensions of Cast lron Pipe Flanges
American National Standard
dimensions in inches
25
b flanges have 45 ps~ non-shock pressure ratlng in 4 to 36 slzes and 25 Ib In 42-96 szes up to 150 F
6 125 Ib flanges (Class BI have non-shock work~ng pressure rating o: 200 ps In 1 to 12 slzes 150 psi n 14
to 48 sues up to 150 F
From Amercan Natonal Standard-ANSI B 16 1 - 1975

Dimensions of Cast lron Pipe Flanges (Continued)
American National Standard
dimensions in inches
250
b flanges (Class BI have non-shock pressure ratlng of 500 ps~ n 1 to 12 slzes 300 ps~ n 14 to 48
sizes up to 150 F
800 Ib flanges have non-shock hydraulc pressure ratng (not steam) of 800 ps up to 150 F
Amer~can Natonal Standard-ANSI B 16 1-1975
Pressure-Temperature Ratings
All pressure ratlngs gven n PSlG Allowable pressures may be nterpolated between temperatures
' 353 F (Max) to reflect tPe temperature of saturated steam at 125 psg
406 F (Max] to reflect the temperature of saturated steam at 250 pslg
Llmltations:
25 Ib: When 25 Ib cast iron flanges and flanged ftlngs are used for gaseous servce the maxlmum pressure
shall be l~m~ted to 25 pslg Tabulated pressure-temperature ratngs above 25 pslg for 25 ib cast lron flanges
and flanged filt~ngs are applcable for non-shock hydraulic service only
250 Ib: When used for liquid servlce the tabulated pressure-temperature ratngs ~n slzes 14 In and large'
are applcable lo 250 lb flanges only and not to 250 Ib ftt~ngs
800 Ib: The tabulated rat~ng IS nor a steam raring and applles to non-shock nydraulc pressure only
From ANSI B 16 1
800Ib
ASTM A126
Class B
Slzes
2-12
800
Tempera-
tureof
20 to 150
200
225
250
275
300
325
350
375
400-
CAST IRON AND STEEL PIPE
FLANGES AND FLANGE FITTINGS
Dimensions of Cast lron Flanged Fittings
25 Ib and 125 Ib American National Standard
dimensions in inches
25
lb
-
ASTM A126
Class A
45" Lateralst
Sfzes
4-36
45
40
35
30
25
I I
1 I I I I
' No 25 Ib fitt~ngs 1" to 3t/2".-54, 60 and 72 f~ttings are 25 Ib only.
t No lateral fittings are listed in 25 Ib standard American Nat~onal Standard-
ANSI B 16.1 -1975.
$ Typical-not l~sted in ANSI standards.
125 Ib
ASTM A126
Sizes
42-96
25
25
25
25
25
250 lb
-
ASTM A126
Class A
S~zes
1-12
175
165
155
150
145
140
130
125
Class A
S~zes
1-12
400
370
355
340
325
310
295
280
265
250
Class B
-
Class B
S~zes
14-24
150
135
130
125
120
110
105
100
Sizes
14-24
300
280
270
260
250
240
230
220
210
200
S~zes
30-48
150
115
100
85
65
50
Slzes
30-48
300
250
225
200
175
150
125
100

-1 Welded and Seamless Wrought Steel Pipe
m
Selected from ANSl B 36 10 1975 5t.t rwti 5 page 7 19
Welded and Seamless Wrought Steel Pipe
Length of plpe per
sq 11 of surface area Welghl Allowable
Dlameler Circumference Transverse area per workng
Thtck~ External Internal 11 of pressure
Sched- Extprnal Internal ness External Internal External Internal surface surface length at100F' Water
ule hammer
S~ze no lnches lnches lnches ~nches lnches sq in sq ~n feet feet Ibs lblsq ~n tactor
;J
Selected from ANSI B 36 10 - 1975 See notes page 7~19
w

INGERSOLLRAND CAMERON HYDRAULIC DATA
Welded and Seamless Wrought Steel Pipe (Continued)
CAST IRON AND STEEL PIPE
FLANGES AND FLANGE FITTINGS
bE;
zEz m m
.z -
Welded and Seamless Wrought Steel Pipe (Continued)
a$zagagzs
NNNNNNNoO
3 -
O : '5 hP.hhhhhhhh mmmmmmmmmmmm 0000000000
" NNNNNNNNNN mmmmmmmmmmmm mmmmmmmmmm 1 - 1 1 qqqZq XsXXslXiiXiX 2z222g2ggg I lm
- - n'.DI.C-l-..c
- qZzS - ,. -nr?.r3=~0 1 z;i 12' g?'"">Jii:
-----.l
I 'I!! I I
~yyz~~;;~
mmr.r.hmmo-~o
ooc-
$40;
.z
F'zzs
-
I~~;~~~~~~~
ommeeemmhmo
:
42
2
-
2 -
5
$7
c
,
C.,Tcn?., mCSC
cnc- vw-n-nn
"?";Z&jl?i
- -C.O
Lm
%$
a,
83'
2
5-
P:
3g
FC--O+.C. >.
hw--ax-73-
:??~~PB$~zD
---&hi. 7
mu
&<
g2
5:
:5
W"
aasezaaz
---NNOO
eemem~mne
:::;::;::
~oemw~.mo=
oh-,,,-h,
$:RZ$Z%T$
ooooooooo
mmmmmmmmm
RggRRg4Rg
00o00oo00
&mow-oomm
mm9mm-m-h
::1z,2z:s
mwmmwmmmm
P.+P.~~P.~-C
ggOOo~000
mmmmmam
;
,
?
5
:
-
O
1m 2 o~ooemeom OD~W~N~WOON o~mmowom~ow
'?? 5
RXSZ%;fX"ZRSZXg%$% %::6Z2?28XS
5
ooooooo-- oooooooo--- oooooooo---
-
m n O~~ONNNOO ~OO~O~*NOOW OCDO~ONO~OO~
2 2"esSX:Z zgga?g:g2q: Z:%:~z~~~q2
- z~zmmmm~m NNN-----000 o0000~h~---
;
K ----------- -----------
-
E .
4 - 0
;
no 0
0 "7
;=- h s
z ;z N - 2
N
:z$gza$~~
N--OOmmha
00700NNNN
P.hP.hhP.hhh
hchh,wc--
nn?oonn?o
no?oonolo
%
m
u
E
?
m
c
m
+
:xzxe~zza=a
----NNO?
~CWNN~ON~P.P.
:;:::;:::::
~v+mw~-mo~ow
-7--
z&;zz%44RX$
ooooooooooo
mmmmmmmmmmm
ggERRRgR:Rg
00000o00000
woorn~m--wm~
mm-me-m-hmo
"s"zgg&gggg -------
mmmmmnmmmmm
wwwwm~mmwmw
hhhhhhhhhP.C
NNNNNYNNNNN -----------
I
-
m
s
5
-
; _
$
W
-
*
-
-
5
2
:zzsgq~gg~g
--wqmm~mm--
;::;::;g::;
oemwhmoomcm -----
,,m-emmmNN-
~R~RRE~z~Z~
ooooooooooo
NNNNNNrrNClNN
k-kkkkkkkkk
o0000000000
e~mm~~~mhh-
-mmNhmhfhmO
2o:gzznzoas ----------
evweeeeveee
mmmmmmmmmmm
00000000000
mmm-mmmmmmm -----------
:gnqzgce:g;
mhhP.wwmemN-
ooo0m~00000
8888888XX88
ooooooooooo
eweaeeeeeew
;
U
5
2 , u
;gggzg:g;c?
NN--OOmmP.wm
.,eevw900000
8g588888%8%
oooooononoo
eeqeeeweewv
LLI

Welded and Seamless Wrought Steel Pipe
I 1 I I I I Lenqth ol pfpe per / 1 I 5
sq 11 ot surface area Weignt / Allowable 'y
C~rcurnlerence Transverse area ~er m
External Internal 11 of ~rrcsrire (P I ~ct~ed 1-1 'tk: 1 ~xternal 1 1ea leal Internal 1 surface 1 surtace 1 100~ I ~d1.r P
~lle hammer
Size I no t lnches 1 ~nches 1 rnches / nches I lnches 1 SO ~n 30 in I feel 1 feet 1 Ibs 1 b sa ~n
5elecled from ANSI B 36 10 1975
S Standard
X Extra strong XX Double extra strong
Allowable
worklnq pressures based on Grade B pipe lens~le strength 60 000 psl 35000 psl ybeld polnt
Allowable work~ng pressures at 400 F are 86 3"" of those at 100 F
Allowable worklng pressures of Grade A ptpe al 100 F are 80"~ of Grade B plpe at 100 F
Water hammer factors should be used lo reduce allowablp work~ng pressure by the amount of flow n gal prr
N 2
IN- IN-
mmwmPw- mmam+w- WmamPW-
000000m 000000m 000000"
0000000 0000000 OOOOOOC
WNN----
-mmmmm-
NOONNON
NNNA---
UNNPPWO
mmmPP-0
NNN----
UNNPPWO
mmmPP-0
---A--O
mwwooom ~mrnooohl
WNNNNNN
-UUNNNO
Nmmmmmm
NNNNNN-
mwwooom
mmmmmmm

INGERSOLLRAND CAMERON HYDRAULIC DATA
Nom- s~de thlcc- Threaded
~nal
pipe
size 1 1 la 1 f) 1 zr 1 welding 1 Lapped I Weld~ng neck
Steel Pipe Flanges American National Standard (cont.)
From ANSl 8 16 5
Sltp-on weldtng not n 2500 Ib ratlng and only n 1'4 to 2'12 slzes for 1500 Ib rallng and 11/2 to 3 In sues
for 150 Ib rat~na
Out-
CAST IRON AND STEEL PIPE
FLANGES AND FLANGE FITTINGS
Steel Pipe Flanges American National Standard (cont.)
Flanae
Length thru hub In
From ANSl B 16 5
Sllp-on weld~ng not In 2500 Ib ratlng and only In 1% to 2'4 slzes for 1500 b ratlng and 1% to 3 In sues
for 150 lb ratlng
Socket weld~na not n 400 900 and 2500 Ib ratlnqs and only In '12 to 2II2 ssles for 1500 lb ratlng and 'h to 3
slzes In 300 Ib riting
Threaded In 1500 Ib rat~ng from 1,2 to 12 In slzes only
D~arneter
bolt
c~rcle
-
Nom-
~nal
PIP^
sue
Socket weld~Gg not In 400 900 and 2500 Ib ratlngs and only ~n 'I2 to 2'12 slzes for 1500 Ib rat~ng and 12 to 3
slzes In 300 Ib rat~ng
Threaded In 1500 b rat~ng from 'I2 to 12 In slzes only
Out-
s~de
flanage
d~a
~n
Flange
ratlng
DSI
Flange
thck
ness
(mln)
~n
Length thru hub In
Threaded
sl~p-on
socket
weldlna Lapped
Weld~ng
neck

Flange Ratings-150 Ib.
Table G-150 PN20 Pressure-Temperature Ratings
Gage pressures
in bar
1 Bar 14 5 p s I (pressure)
c o 5556 ( F-32) (temperature)
Flange Ratings-300 Ib.
Table G-300 PN50 Pressure-Temperature Ratings
Gage pressures
in bar
_~$~~~IINtc-~ Allays Fe Cr Mo kel Temper
400 Alloy Alloy Alloy At ature
405 600 800 I32 loys
414497 497 517 38
403487488 517 50
36 1 46 1 454 51 5 100
336440430 SO2 150
Carbon
Temp C
UIL
1The9~ ratlng? are at 540 'C max service temperature
NOTES'
1 Ratings shown apply la other malerlal groups where column dlv~d~ng lhnes have been omltt~d
2 Provls!ons of Sectlo" 2 apply to all ratings
3 Srr Temperature Notes far all Mater~al Groups
1 Bar 14 5 p s l (pressure)
C 0 5556 1 F 32) (temperature1

Flange Ratings-400 Ib.
Table G-400 PN68 Pressure-Temperature Ratings
Gage pressures in bar
.
-
1 Rat~ngs shown aclf,lyla other materlal qroups where column dlvldlng llnesare ornlned
2 Prons~ons of Sectlo" 2 apply to all rallngs
3 See Temperature Notes fur 111 Malertal Groups
1 Bar 14 5 p s 8 lprrssurcl
C 0 5556 ( F 32) (ternperntrlrr!
Ternpcr
ature
C
38
50
100
150
200
250
300
350
375
400
425
450
475
500
595
550
575
600
625
650
675
700
725
750
775
800
---
Marl Grorrp
Mat~r~a~s
NOTES
Flange Ratings-600 Ib. -
37
NI
Mo
Alloy
82
TableG-600 PNlOO Pressure-Temperature Ratings
Gage pressures
in bar
38
Nlc
kel
A1
loys
35
N,
Cr
Fe
Alloy
600
552662662
537649650
614
567
549
51 7
437509514
Carbon
690
690
687
669
650
61 8
566
53 6
517
48 8
46
8
36
NI
Fe
Cr
Alloy
800
605
573
553
53 5
532529
52 2
32
Nickel
Alloy
200
331
331
331
331
331
33 1
731
Type lype lype lype 341 lype Typ~
304 316 316L 321 348 309 310
993 993 827 993 993
957 963 799 960 968
818 844 690 830 869
72 7 77 0 62
5 75 0 81 0
655 713 574 687 768
611 668 534 641 724
581 633 505 611 689 669
561 608 481 587 658 639
43 0
42 2
34-
NI
Cu
Alloys
400
405
481
447587
440
43 7
437
27-31
Type
310
NOTES:
1 Halln~s shown apply 10 other maler~al groups wherecolumn dtvbdlng hnes are omllted
2 Provlslon~ of Scctlon 2 apply lo all ratings
3 See Temperature Notes for all Matertal Groups
1 Bar 14 5 p i l (p!?ssnr~.l
C 0 5556 I'F 32) (temperature)
43 7
Cr
Fe
Mo
Cu
Cb
20Cb
25
1
Types
347
348
: Nk : 1
Alloy 400 Alloy Alloy
20Cb 200 405 600 800
82 8 49 7 82 8 993 99 3
814 497 806 974 976
76 2 49 7 72 1 92 1 90 7
721 497 671 880 860
552
543
508
480
26
Type
309
424
420
22
Type
316
21
Type
304
N, Nlc
MO kel Temper
Alloy A1 ature 1 B2 !lays 1 "C
103 4 38
1034 50
1031 100
1004 1SU
410
400
410
i??
333
321
286
237
154
115
90
70
54
42
35
439
429
388
382
366
362
450
475
426
418
580
512
483
459
406
396
23
Type
304L
Type
316L
374
370
110
2'dCr
1Mo
19
1
1'1Cr
hMo
48 8
468 460 468
400
425
419
618
604
552
522
493
468
446
662662551
563
476
445
422
24
Type
321
309
303
545
484
437
407
387
53 6
51 7
324 3~~49~~~~
350
J75
Ell~ror -- -
Malerl~ls
Temp C
451 358 374 297 376 392
z;:
382
380
321
315
113
5Cr
IiMn
I5
C
'2Mo
11 112 117 114
Carbon
26
1
344344338344
291
248
194
152
107
93
75
58
45
34
26
391
386
638642533640645
460
513416500540
383
356
337
654
598
590
114
9Cr
1Ma
638690690690
650
599669618622
606
593
17
2Cr-
'nMo
NlCr
Ma
500
525
550
18 1
26
4 267
460460
383
315
293
258
222
188
151
116
82
58
42
29
662662
553
458
427
407
690
690
687
669
650
618
11 7
6 9
43t
291038
50
100 150
200
250
26 1
432
36
4 383
493536
48 6
201 251270292206301
143t
186 170 218 156
621
589
574
575
600
625
650
675
700
725
750
775
800
-
tThe~e rallngs
300
404
34 4
480
47 1 51 1
:;:
318344
226 291 333 333
556635690682683
687
650
618
560
412
41 2
56 6
681690
668690
618687
601669
584
556618
166 113 156 117
78 102 87
45 88 60
638
631
601
586503
569
541
650
516
150 268 321 304
96 223 286 264
66 174 747 211
166
567
515
488
463
503 566 431
103
80
62
49
37
27
arc at 540 C
max servlce temperature
168
133
103
78
61
47
131
102
83
64
50
40

Flange Ratings-900 Ib.
Table G-900 W150 Pressure-Temperature Ratings
Gage pressures in bar
NOTES
1
Rat~ngs shown apply to other mater~al groups where column dlvidlng llnes are omlned
2 Prov~s~ons of Sectton 2 apply lo all rallngs
3 See Temperature Notes for all Material Groups
1 Bar 14 5 p s I (pressure)
C 0 5556 ( F 321 (temperature1
Flange Ratings-1500 Ib.
Table G-1500 PN250 PressureTernperature Ratings
Gage pressures in bar
NOTES
I Ratings shown apply to other mater~al groups where column dlvldlnq lhnesare omlned
2 Provrs~ons of Sect~on 2 apply to all ratings
3 See Trmp~rature Nates for all Material Groups
1 Bar 14 5 p s I (pressure)
C 0 5556 1 F 321 ltemperaturel

. 1
/
A
9
SECTION Vlll -
MISCELLANEOUS
-
DATA

INGERSOLLRAND CAMERON HYDRAULIC DATA
CONTENTS OF SECTION 8
Miscellaneous Data
Page
Decimal and Millimeter Equivalents ..................... 8-3
Arithmetical and Geometrical Formulas .................. 8-3
Approximate Altitude and Barometer Reading ............. 8-4
Barometer Reading Corrections ..................... 8-5 to 8-9
Weight and Dimensions of Copper Tubing and Pipe ......... 8-10
Volume in Partially Filled Horizontal Tanks .............. 8-11
Capacities of Cylinders and Tanks ...................... 8-12
Displacement Per Stroke of Plungers ................... 8-13
Areas of Circles .................................... 8-14
Hardness Conversion nble ........................... 8-15
Use of Gages and U Tubes ....................... 8-16 to 8-20
Pump Data Sheet for Material Selection ................. 8-21
Pump Materials ............................. 8-22 thru 8-28
MISCELLANEOUS
Decimal and Millimeter Equivalents
1 1 q;::. 11
Dec~mal of trac- 1 Dec~mal 1 of e?qi:L- trac-
equlva- tional equlva tlonal
Fract~on lent inches Fract~on lent lnches
Arithmetical and Geometrical
Formulas
:
Circumference of Circle = 3.1416 x dia = 6.2832 x radius
Area of Circle
=
,7854 x (dial2 = 3.1416 x (radiusI2
Area of Sphere = 3.1416 x (dial2
Volume of Sphere
= 0.5236 x
(dial3
Area of triangle = 0.5 x base x height
Area of a trapezoid
= 0.5 x sum of the two parallel sides x height
Area of a square, a rectangle or parallelogram
= base x height
Volume of a pyramid
= area of base x 1.3 height
Volume of a cone
= 0.2618 x (dia of
baseI2 x height
Volume of a cylinder
= 0.7854 x height x dia2

INGERSOLLRAND CAMERON HYDRAULIC DATA
Approximate Atmospheric Pressures and Barometer
Readings at Different Altitudes
MISCELLANEOUS
Barometer Corrections
Miscellaneous
Boiling point
of water
Alt~tude Other barometer corrections include those for latitude, altitude and
difference in elevation between barometer and datum plane. These
are given on the following page.
Table I, 111. IV and V apply to mercurial barometers.
Table V applies to aneroid barometers.
Table I1 applies to small-bore, single-tube mercury columns.
U-tubes and manometers, in which both legs have approximately
the same bore, and lal-ge-bore, single-tube columns do not require
capillarity correction. The temperature correction from Table I applies
to any mercury colunin when brass scales calibrated in inches at 62°F
and a density factor for mercury based on 32°F are used.
Tables I11 and IV apply to all mercury columns in which a density
factor based on 45" latitude and sea level altitude is used. The cor-
rections are small and are usually ignored or taken into account by
uslng a density factor based on the latitude and altitude of the datum
point.
In general, aneroid barometers are not satisfactory for accurate
testing. If one is used, it should be compensated for temperature and
frequently calibrated against a standard mercurial barometer, as a
violent knock or shaking may introduce a substantial error.
"F
213.8
212.9
212.0
211.1
210.2
Feet
-1000
-500
0
500
1000
Example of use of Tables
111, IV and V.
Assume a barometer reading of 20.013"
Hg at
70°F'. 1000 ft alti-
tude, 45" latitude and 30 ft above the datum plane for which a read-
ing is desired.
Barometer
"C
101.0
100.5
100.0 i
99.5
99.0
Meters
-304.8
-152.4
0
152.4
304.8
...................................... Barometer reading 29.013"
........................... Latitude correction
(Table 111) - .048"
............................ Altitude correction (Table IV) - .002"
Elevation correction (Table V) (.3 x .102) ................. + .031"
......................... Temperature correction (Table I) - ,019"
Corrected barometer (to 3TF, 970 ft altitude,
...................................... and 45" latitude) 28.885"
Atmospheric
pressure
Ibiin2
15.2
15.0
14.7
14.4
14.2
Inches of
mercury
31.02
30.47
29.921
29.38
28.86
Equivalent
head of
water
(75'F)
Feet
35.2
34.7
34.0
33.4
32.8
Mm of
mercury
787.9
773.9
760.0
746.3
733.1

INGERSOLLUAND CAMERON HYDRAULIC DATA
Correction for Relative Expansion of Mercury and
Brass Scale to
32°F Standard
Condensed frorr c
rcular F U S Weatier B~,eau
Table I
MISCELLANEOUS
Temp
hg
co1
Correction of Small Bore Single-tube Mercury
Columns for Capillarity
FI Correcton to be subtracted from oaserved readlng
Observed iead~ng of the barometer In lnches
-
(From Smithson~an Physlcal Tables-1933)
Explanation of Correction Tables
for Mercurial Barometers
Table I-Examples of use
........................... Reading of barometer at
75°F 29.964"
........................ Temperature correction (Table I) -. 126"
Table II
25
............................ Barometer corrected to 32°F 29.838"
I D
tube
lnches
...................... Reading of Mercury column at 97°F 28.120"
........................ Temperature correction (Table I) -. 173"
25 5
.............................. Vacuum corrected to 32°F. 27.947"
...................... Absolute pressure (29.838 - 27.947) 1.891"
Table 11-Example of ITse
Suppose above mercury column had a single tube of 51:32' bore and
the estimated height of meniscus was .03"
Correction for capillarlty (Table 11) ...................... 1 .102"
Helght of men~scus-~nches
........... Vacuum corrected for capillarity (27.947 + ,102) 28.049"
...................... Absolute pressure (29.838 - 28.049) 1 .73Y1'
NOTE:-Xl\vays read the top of the meniscus and arid the capillarity
correction to this vacuum column reading. There is no correction on
double tube mercury columns or manometer?.
8- 7
26
.08
26 5
Correction to be added to hg column read~ng-lnches
07 04 03 .01
27
.02
27 5 28
.05 .06
28 5 29 29 5 30 1 30 5 31 0

INGERSOLLRAND CAMERON HYDRAULIC DATA
Correction of Mercurial Barometer for Latitude in
Inches
Hg to Reduce to 45' Latitude
To be added to barometer reading for latitudes above 45. To be subtracted
from barometer reading for latitudes below
45
Table
Ill
Readng of tile barometer n ncnes
MISCELLANEOUS
Correction of Mercurial Barometer for Altitude
Inches Hg to be subtracted from barometer reading
Table IV
Elevation Correction for Barometer
Alt~tude
ft
In inches Hg per 100 ft difference in elevation. To be added to barometer reading
when barometer is above datum plane. To be subtracted from
barometer reading when barometer is below datum plane.
Read~ng of barometer, ~nches
Table V
Alt~tude
ft
30 3 1
1
28 27
.
25
Temperature. "F
,
29 26
90 80 60 0 70 30 10 40 20 50

INGERSOLLRAND CAMERON HYDRAULIC DATA
Weights and Dimensions of Copper and Brass Pipe and Tubes
MISCELLANEOUS
Nom
~nal
slze
n
'6
'r
48
'z
'8
1
4
1'2
2
2'2
3
3'2
4
4' 2
5
6
7
8
Volume of Horizontal Tanks in Gallons per Foot of Length
-D- . H
Volume
ln tank (gals)' - 7 4805 - - &(st" "1 (0 5 - portlon rllled)' lengln $1" 8, 1 cos+#
720 2 i'
Cos H = 2(0 5 - portlon flled) D - tank da (fll vol of full tank (gals) - 7 4805& ' length
Out
slde
d~am
in
250
375
500
625
750
875
1 125
1375
1625
2125
2625
3 125
3625
4125
5 125
6125
8 125
' Applies to tanks up to 50". illled When tank IS over 50'0 fllled calculate porton rot Illled and subtract
from full tank
Copper and brass plpe Regular fit
Out
side
dlarn
In
405 540
675
840
1050
1315
1660
1900
2375
2875
3 500
4000
4500
5000
Type
In
slde
diam
in
186
311
402
527
652
745
995
1245
1481
1959
2 435
2 907
3385
3857
4 805
5741
7 583
In
side
dam
in
281
375
494
625
822
1062
1368
1600
2062
2 500
3 062
3500
4000
4500
K
Wt
per
ft
Ib
085
134
269
344
418
641
839
104
136
206
292
4 00
512
651
967
1387
2590
Welghf per It Ib
Copper tub~ng
67'0
Cop
per
246 437
612
91 1
124
174
2 56
304
402
5 83
8 31
1085
1229
1374
Type
In
Side
dlarn
in
200
315
430
545
666
785
1 025
1 265
1505
1985
2 465
2 945
3425
3905
4 875
5845
7 725
Type
In
side
dlarn
in
20
325
450
569
690
811
1055
1291
1571
2009
2 495
2 981
3459
3935
4 907
5881
7 785
5 563 5 063 15 40
6625 1 6125 I 1844
L
Wt
per
ft
Ib
068
126
198
284
362
454
653
882
114
175
2 48
3 33
429
538
7 61
1020
19 29
M
Wt
per
11
lb
068
106
144
203
263
328
464
681
940
146
2 03
2 68
358
466
6 66
891
16 46
85".
Cop-
per
253
450
630
938
127
1 79
2 63
313
414
6 00
8 56 111-
1266
1415
15 85
1399
24 63
3095
7 625
8625
100°c
Cop-
per
259
460
643
957
130
183
2 69
320
423
6 14
8 75
1141
1294
1446
16 21
1941
25 17
31 63
7 062
8
000
23 92
3005

INGERSOLLRAND CAMERON HYDRAULIC DATA
Capacities-Cylinders and Tanks
iZ -Nnem wcmmo -Nmom wcmmo -Novm wr-mmo N~W
1 " 1 I
.- 1 ----- ---- N 1 "NNNN 1 "NNN" 1 om" 1
ewe
ammmo wowm~ ma
z ON~OW ON-NO mn0mh
am-m- mewam ~w~mm mwa -- ~ovmw r.m-~e wm-nw m-eho vr--om wme --- --NNN ~mnoq vemmm wr-m
o o m N
weemo ooowo om
$ 0~mmm ~0mm- ehe0m
wr-m-m or-eon vwoeo mmN - NOO~W ~~ONO mhm~u hm~mm -~mrm NOO
-7- ---NN NNOO- fefmm aP-S
weww
ON--O WOUN~ NOW
z ON~~Z O~WWW m~r-~m ~mmmm N~NO~ WW~OU
a00
NN~~O
wmm=~ p~mga R&$RR g;$zz gg:
OOWN
~WW~N b000m N~NOO
0-0-0 oowno mmmow em~bn omwmm wr-one m~m - me emwmm 0-now am-om ~~NWW -r-N ----- -7NNN NNnDO
NLONVW
ON~N- momew om~ow N-
m o-~mm -WOWN mwmg0 ouwmo emornu -~W--J V~N
--NND nomar-
mmozo qzcz~ ~$2
mmwme
N-mm- -ON-U W0W0e mW.3
b o-mvr- owmom e-mwu N-N~U wm-om nmeor- moo
---NN neemw bmmo- ~nmwr- mo~em mor- _- ----- -NNNN NO-
1 RPIRI 1 ~o~me 1 wewoo / ooomw 1 oo / I I
00-nm r-oowo em-ow ~mwo- ommmm mmo-o mwo
---N NNO*~ mmwbm mmo-N nvwr-m oow
-7- 7-7-7 NNN
MISCELLANEOUS
-
Displacement per Stroke-In U.S. Gallons
For Various Diameter Plungers
Stroke lengths in inches
oar-ON
0-ow0
OOOO-
-mom
0000
0000 Dlsplacemenl Plunger area . stroke
23 1
r-0--m
eoa-o
-NNO~
~h~me
--NNF
00000
E' -,,em wbmmo -,,em acmmo -,,em wr-mmo Nqw
I 1
- / ----- / ----" 1 ""NN" 1 """No 1 onn /
5
01120
01305
01495
0170
01915
0215
02395
0266
02930
0322
03513
0383
04150
0450
04841
0521
05585
0598
06380
0680
07230
0768
08135
0860
09090
0958
1063
1173
1287
1405
1530
1660
1795
1936
2083
2235
2390
2555
2710
2890
3070
3254
3444
3636
3836
4040
4250
4685
5143
5621
6121
6641
7183
7746
8333
8935
9562
10212
1 0880
1 2283
1 3-70
Plunger
diam in
lnches
8125
875
9375
1000
1 0625
1 125
11875
1250
13125
1 375
14375
1 500
15625
1625
16875
1750
18125
1875
10375
2000
20625
2 125
21875
2250
2 3125
2375
2 500
2 625
2 750
2875
3 000
3125
3 250
3375
3500
3625
3 750
3875
4000
4125
4250
4375
4 500
4 625
4 750
4 875
5000
5 250
5 500
5790
6 000
6 250
6500
6750
7000
7 250
7500
7750
8 000
8 500
9 000
1
00224
00261
00299
00340
00383
0043
004'9
00532
00586
00643
00703
00765
00830
00898
00968
01041
01117
01196
01276
01360
01446
01536
01627
01720
01818
01917
02125
02347
02573
0281C
0306C
03320
03590
03872
04165
04470
04780
05110
0542
0578
0614
06508
06885
07273
07672
0808
0850
09371
10286
11242
12241
13282
14366
15492
16660
17872
19125
20423
21760
24566
2745C
I
6
01345
01565
01795
0204
02298
0258
G2874
0319
03516
0386
04216
0458
04980
0538
05809
0624
06702
0718
07656
0817
08676
0922
09762
1033
10908
1148
1274
1409
1544
1686
1836
1992
2154
2323
2499
2682
2868
3066
3252
3468
3684
3905
4131
4364
4603
4848
5100
5622
6171
6745
7345
7969
8620
9295
9998
10723
11475
12254
13056
1 4738
1 6525
1
00336
00392
00448
00510
00574
00645
00718
00797
00879
00965
01054
01 148
01245
01348
01452
01561
01675
01794
01914
0241
02169
0230
02440
0258
02727
0287
0319
0352
0386
0421
0459
0498
0538
0581
0624
0670
0717
0766
0813
0867
0921
0976
1033
1091
1151
1212
1275
1405
13.2
1666
1836
1992
2155
232A
2499
2681
2867
3063
3264
3685
4131
omwnm
mm-1m
--NNN
O~OWN
mwmm
----N
em002
mmmo
omam-
-mr-r-h
vvmwr.
OOOOC
2'2
00560
00652
00748
00850
00959
01076
01196
0133
01465
0161
01756
0191
02075
0225
02420
02610
02792
0299
03190
0340
03615
0384
04067
0430
04545
0478
0532
0587
0643
0702
0765
0830
0897
0968
1042
1117
1195
1277
1'360
1445
1535
1627
1722
1818
1918
2020
2125
2343
2571
2810
3061
3321
3593
3873
4'66
4468
4i81
5106
5440
6 41
6885
2
00448
00522
00598
00680
00770
0086
00957
0106
01172
0129
01405
0153
01660
01798
01936
02082
02234
0239
02552
0272
02892
0307
03254
0344
03646
0383
0425
0469
0514
0562
0612
0664
0718
0714
0833
0894
0956
1022
1084
1156
1228
1302
1378
1454
1534
1616
1700
1871
2057
2248
2448
2656
2873
3098
3333
3576
3825
4084
4352
-913
5508
vm~r-n
O-O~W
---7-
hmonm
mm-cv~
00-7-
7
01570
01830
02093
0238
02681
0301
03353
0372
04102
0451
04920
0536
05810
0628
06777
0728
07819
0837
08932
0953
10122
1075
11389
1205
12726
1340
1468
1643
1802
1967
2142
2324
2513
2710
2916
3129
3346
3577
3794
4046
4298
4556
4820
5091
5370
5656
5950
6560
7200
7869
8569
9297
10056
10845
11662
1 2510
13387
1 4297
1 5232
1 7196
1 9278
sr-on+
bm~ow
NNOOO
ombaw
nvwmo
NNNNO
8
01792
02090
02329
0272
03064
0344
03832
0425
04688
0514
05621
0612
06640
0718
07745
0832
08936
0957
10208
1088
11568
1228
13016
1376
14528
1532
1700
1878
2058
2248
2448
2656
2872
3097
3332
3576
3824
4088
4336
4624
4912
5207
5508
5818
6138
6464
680C
7497
8228
8993
9793
1 0625
11493
12393
13328
1 4297
15300
16337
1 7408
19653
2 2033
3
00672
00783
00897
01020
01151
0129
01435
0159
01758
0193
02108
02295
02490
0270
02904
0312
03351
0359
03828
0408
04338
0461
04881
0516
05454
0575
0637
0704
0772
0843
0918
0996
1077
1162
1249
1341
1434
1533
1626
1734
1842
1952
2066
2182
2302
2424
2550
2811
3086
3372
3672
3984
4310
4647
4996
5361
5737
6127
6538
'370
8262
mmm
-+N
P-m
mn- em-
DO-
32
00785
00914
01046
01190
01343
01506
01674
0186
02051
0225
02459
0268
02905
0314
03389
0364
03909
0418
04466
0477
05061
0537
05694
0602
06363
0671
0744
0822
0900
0983
1071
1162
1256
1355
1458
1565
1673
1788
1897
2023
2149
2278
2410
2543
2685
2828
2975
3279
3600
3934
4284
4645
5028
5422
5631
6255
6694
7145
7616
8598
9639
4
00896
01044
01196
01360
01535
01721
01916
0213
02344
0257
02810
0306
03320
0360
03873
0417
04468
0478
05104
0544
0578C
0614
06508
0688
07272
0767
0850
0939
1029
1124
1224
1328
1436
1549
1666
1768
1912
2044
2168
2312
2456
2603
2755
2909
3069
3232
3400
3748
4114
4496
4896
5313
5746
6197
6666
7148
7650
a169
a704
9826
1 1016

INGERSOLLRAND CAMERON HYDRAULIC DATA
Areas of Circles
Diameters in Inches and Areas in Square Inches*
-
Dia Area Dia Area I Dia / Area Dia Area Dia *ih
_- Ii-I
173 782
176 715
179 673,
182 655
185 hbl
188 692
191 748
194 Q28
197 933
201 062
204 216
207 395
210 59s
213.825
217 077
2?0 354
223 655
226 981
230 331
233 i06
237 105 240 529
243
97;
247 45
250 94E
251 47
258 016
?bl 5s;
265 153
"6s 803
?i? 44s
?ib I17
2i9 El1
?\3 52'3
237 272
291 04
494 832
29'; 613
30'2 45'1
:306 355
310 445
114 16
3?? ObJ
330 064
336 164
346 361
354 657
303.051
371 543
380 134
351 S22
397 609
406 494
415 47i
424 555
433 737
443 015
452 3'4
401 Sb4
471 436
481 107
490 875
500 742
510 i06
520 769
530 93
541 19
551 547
562 003
572 557
563 209
593 959
604 807
615 754
6?6 798
637 941
649 182
660 521
671 959
683 494
$95 128
106 86
718 69
730 618
742 645
754 i69
ib6 992
ii9 313
i91 712
hO4 25
blb 865
629 579
842 391
655 301
b63 709
bbl 415
694 62
907 922
921 '323
934 E??
445 42
9h? 115
975 909
9b9 9
1003 79
1017 678
1032 065
1046 349
1060 i??
1075 ?I3
I089 i92
1104 409
1119 244
1134 I18
1149 oas
1164 159
1179 327
1194 593
Standard Hardness Conversion Tables for Steel
Rockwell
D~amond Cone Penetrator
* Also appller to any cnns!strn? <?.;tern, I e ft-.;q ft, yd-s,j yd. meters-sq meters, etc
I I I 1
Data from ASTM E 140.
Convers~on of hardness values must be cons~dered as somewhat approxlrnate
Br~nell
10 mrn
Standard
1
V~ckers
Ball
3000 kg
load
-
-
-
-
-
C Scale
150 kg load
68
67
66
65
64
Diamond
Pyrarn~d
940
900
865
832
800
D Scale
100 kg load
76 9
76
1
75.4
74 5
73.8
A Scale
60 kg load
85.6
85 0
84 5
83.9
83 4

INGERSOLLRAND CAMERON HYDRAULIC DATA
MEASUREMENT OF HEAD WITH VARIOUS
TYPES OF GAGES"
Symbols
(The following symbols apply to Figs. X to H)
h,,, = Discharge gage reading in feet of water
h,, = Suction gage reading in feet of \vatel.
Z,, = Elevation of discharge gage zero above datum elevation in feet
Z, = Elevation of suction gage zero above datum elevation in feet
(Z,, and Z, are negative if the gage zero is below the datum
elevation)
Y,, = Elevation of discharge gage connection to discharge pipe
above datum elevation in feet
Y, = Elevation of suction gage connection to suction pipe above
datum elevation in feet
(Y,, and Y, are negative if the gage connection to the pipe
lies below the datum elevation)
V,, = Average water velocity in discharge pipe at discharge gage
connection in ftlsec
V, = Average water velocity in suction pipe at suction gage con-
nection in ftisec
h,/ = Total discharge head in feet above atmospheric pressure at
datum elevation
h,
= Suction or discharge gage reading in feet of mercury
h, = Total suction head in feet above atmospheric pressure at
datum elevation
H = Total pump head in feet
H
= h,, - h,,
(h,, and h, are negative if the corresponding pressures at the
datum elevation are below the atmospheric pressure)
W,,, = Specific weight of mercury, lbsicu ft = 848.699 lblft:' at 0°C
(32°F) or 845.622 Ibift:' at 20°C (68°F)
11. = Specific iveight of liquid pumped, lbslcu ft
h, Z and I' without subscripts apply equally to suction and
discharge head measurements.
Datum elevation is at the centerline of ho1,izontal pumps and
at the entrance eye of the suction impeller on vertical shaft
pumps.
Note:--The \vord "Water" is used in the following test to represent
the liquid being pumped. The provisions are applicable to the pumping
of other liquids, such as oil, the gages escept mercuy gages, con-
taining the same liquid as that being pumped.
Pages 7-2E to 7-33 reprinted from Standards of the Hydraulic Institute.
8-16
MISCELLANEOUS
Connecting pipe air-filled, to be drained before reading. Water
cannot be used in C tube if either h,,,, or h,,, exceeds height of rising
loop.
In particular installations, either h,, or h, may be measured by
various types of gages. Figs.
D to H illustrate various examples,
h,, representing generally the gage reading, applicable to either the
discharge gage reading
h,,,, or the suction head~ng h,,.
Measurement of Head by Means of Water Gages
If the pressure at the gage connection "a" is above the atmospheric
pressure use arrangement shown in Fig. A with line between dis-
charge or suction pipe and the corresponding gage filled completely
with water.
In this case
If pressure at gage connection "a" is below atmospheric pressure
use arrangement shown in Fig. B showing suction gage.
In this case
v
,'
h, = h," - Z, + -
2g
The negative sign of Z, indicates that the gage zero is located below
the datum.
If the pressure at the gage connection "a" is below the atmospheric
pressure, use arrangement shown in Fig.
C with line between the
discharge or suction pipe and the corresponding gage filled completely
with air.

INGERSOLL-RAND CAMERON HYDRAULIC DATA
In this case
Lh
Po, B:
5,~ <
Signs of Y ,, and Y, apply to positions shown in Fig. C.
Measurement of Head by Means of Mercury Gages
The gage pressure is above the atmospheric pressure and the
connection line is filled with liquid pumped. Arm)cgejr?e)lt per Fig. D
In this case GOU~. connecton 'don( VOI..
When the gage pressure is below the atmospheric pressure, and
the connecting line is completely filled with air, ~ith a rising loop to
prevent water from passing to mercury column. A)*),ar?gct))e)?t pc)
Fig. E.
n
In this case CO.~~C+ ng
"a -
U',,!
V"
h= - h,i Y+-
9
-- *- -
\v - 0
L
Pot
Mercury
11,. i.
MISCELLANEOUS
Measurement of Total Pump Head by Means of
Differential Mercury Gage
In this case
kg-Reading of differential mercury gage in feet of mercury.
Connecting lines are completely filled with water.
Besides the differential gage, use a separate suction gage as shown
in Figs. B and
E.
Measurement of Head by Means of Calibrated
Bourdon Gages
The relation between the pressure expressed in pounds per square
inch (psi) and that expressed in feet of head is:
P,, = Gage reading, psi
ur = Specific weight of the liquid in lbsicu ft
Z is measured to the center of the gage and is negative if the center
of the gage lies below the datum line.
Gage pressure above the atmospheric pressure and the connecting
line completely filled with water.
7"
In this case
(Cont~nued, next page)

INGERSOLLRAND CAMERON HYDRAULIC DATA MISCELLANEOUS
Measurement of Head on Vertical Suction Pumps
in Sumps and Channels
In installations of vertical shaft pumps drawing water from large
open sumps and having short inlet passages of a length not exceeding
about three diameters of the inlet opening, such inlet pieces having
been furnished as part of the pump, the total head shall be the
reading of the discharge gauge in feet, plus the velocity head at the
gauge connection in feet, plus the vertical distance from the gauge
center to the free
water level in the sump in ft. (Z,. - Z,).
1 \IMPELLER EYE = DATUM
Data Required by Pump Manufacturers For
Proper Selection of Material
1
SOLLTIOh TO 13E PIMPED [Gi~e common name \$here 1msiible .uch d. \jlinning bath
"black liquor," "spent p~ckle." etc I ......................................
2 PRINCIPAL CORROSIVES (H.SO,. HC'I, etc I .................. .. ..(
by we~ght (In cases of rnxturea. state definite percentages by welght. For example: mixture
contains 2'~ acid. in tenns of 96.5'~ H,SO,
3, pH (if aqueous solution). ............. at .................................... .F
1 IMPL'RITIES OK OTHER CONSTITL'ENTS NOT GIVES IS "T iL~st amounts of any
metallic salts. sucn
as
chlorides, sulphates, aulph~des, chromates, and any organic materialb
which may be present, e\en though in percentages as low as .Ol'i. Indicate, where practical.
................. whether they act as accelerators or ~nh~bitors on the pump matenal.)
......................................................................
j. SPE('IF1r GRAVITY c*olution ~~umljed) ... at . F
6. TEMPERATL'RE OF SOLVTION. hlaximum.. ............................. .F.
Minimum ........ .F, Normal.. ...... F
..................... 7. VAPOR PRESSI.RES AT ABOVE TEMPERATLRES: Max~mum
Minimum ........ Normal ........ .t Indicate units used, such as ~~ounds gauge. Inches
water, millimetrrs merri~ry 1
6. VISCOSITY ........ .SSL', or ....... .centlstokes. at .................... F
........................ 9 .AERATION: Air-Free ...... .Partial ..... .Saturated
Does liquid have tendency to foam? ..........................................
10. OTHER GASES IN SOLI'TION ........ .ppm, or ......... .cc per liter .................
.................................................................................
11. SOLIDS IN SVSPENSION: (state types) .....................................
......................................................
Specific grabity (if solids .................................................. .. ..
................................................. Quant~ty of solids ."+ by weight
Partlcle slze ..... .mesh ........................................... .'+ by ure~ght
......... mesh ....................................... .....' ; by weight
...... .mesh ........................................ .'i hy weight
Ctlardcterofho11ds. I'ulpy ...... Gntty ........ Hard ........ Soft ...................
12. CONTINUOITS OR INTERMITTENT SERVICE ......................................
W1I1 pump be used for circulation closed system or transfer? ..............................
W1l1 pump be operated at times aganst closed discharge? ..................................
If intermittent, how often IS pump started?. ........ times per ...........................
Will pump be flushed and dra~ned when not In senlee? ................................
13. TYPE OF M-ATERIAL IS PIPE LINES TO BE CONNECTED TO PCMP .............
If desirable, are insulated jo~nts pract~cal? .............................................
If so, what percentage of element (Fe, Ni, Cu, etc.) IS objectionable? ......................
11. IS METAL CONT.4MISATION I'NDESIRABLE? ...................................
.......................... 15. PREVIOIIS EXPERIENCE: Have you pumped this solution?
If io, of u hat matenal or matenals was pump made?
.................................................................................
............. .................... Service life In month.;?
In case of trouble.
u hat
part.; were affected: ...........................................
Was trouble 17r1manly due to corrosion?. ...... .erosion?. ....... .galvanic act~on? ........
stray current: ..................................................................
Was attack nn~fonn?. ....... .If local~zed, what parti were ~nvol\eti? .....................
................................................................
If gal anlc action, name matenals in\.ol ed ............................................
..................................................................................
If p~tted, descnbe size. shape and location (A sketch ud1 be helpful in an analysis of problem
.................................................................................
16. WHAT 15 CONSIDERED AN ECOSOMIC LIFE" .................................
(If replacement does not become too frequent, the use of inexpensive pump materials may be
the mo..t ecor.om1ca1. 1

INGERSOLL-RAND CAMERON HYDRAULIC DATA MISCELLANEOUS
Pump Materials
Materials of Construction For Pumping Various Liquids
Pump Materials
The accompanjing tabks are printed as a guide to pump users,
indicating the matenals commonly used in the manufacture of pumps
for the liquid senices listed. It must be recognized, however, that
temperature, abrasive qualities of the I~quid, concentration, purity,
and structural design problems are factors that will seriously affect
selection of the materials for a pump.
The letter symbols and numerical selections as used in Column
5
"Material Selection" are summarized below.
A -designates an all bronze pump
B -designates a bronze fitted pump
C -designates an all iron pump
Summary of Material Selections and ASTM
'
Standards Designations
Co umn 1
I Column 2
Remarks
Gray Iron-SIX Grades
Duct~le Cast Iron-SIX Grades
Tin Bronze 8 Leaded Tin Bronze-seven alloys
Carbon Steel
5% Chrom~um Steel
1290 Chrom~um Steel
20% Chrorn~um Steel
2E0to Chrom~um Steel
19-9 Austen~t~c Steel
19-10 Molybdenum Austen~t~c Steel
20-29 Chromtum N~ckel Austen~t~c Steel wlth
Copper 8 Molybdenum
A serles of n~ckel-base alloys
Corros~on Res~stant H~gh-s~l~con cast Iron
Austen~t~c cast iron-2 types
Correspond~ng Nat~onal Soclety
Column 3 Column 4 Column 5
Chern cal Specif~c Mater~al
symbol grav~ty selection
ABC891011
C H 0 8 9 10 11 12
CHO 8 9 10 11 12
13(a) 1 A439 I Duct~le Austenit~c Cast Iron
14 N~ckel-Copper alloy
15 1
N~ckel
'ASTM-denotes Arner~can Soclety for Test~ng Mater~als
Tables repr~nted from the Standards of the Hydraul~c Institute Copyr~ght by the Hydraul~c lnstllute
Matertal
Select~on
1
Acetaldehyde
Acetate Solvents
Acetone
Acet~c Anhydride
Acid Acerlc
Standards Des~gnat~on
ASTM'
A48 Classes 20 25 30
35
40
& 50
Conc Cold
Acid Acet~c
Acid Acet~c
Acd Acetic
Acld Arsenc Ortho
Ac~d Benzo c
1 (a) A536 & A395
2
3 ~ Y&v;E 4
5 A743-CAI 5
6 A743-CB30
7 A743-CC50
DII Cold
Conc Bo,l#ng
Dl Botl~ng
8
9
10
11
Acld Bor~c
Acid Butyric
Acd Carbol~c
Acd Carbo~c
Acld Carbonic
A743-CF-8
A743-CF-8M
A743-CN-7M
I Aqueous Sol
12 A51
8
13 A436
(See
Phenol1
Aqueous Sol
I
CO H 0
CrO ti0 89 10 11 12
C H.0 H O A 8 9 10 11 12
A 8 9 10 11
Acid Chromc
Acld C~tr~c
Acds Fattv lOlec
Aqueous Sol
Aqueous Sol
Palmtlc 'Stearc
etc )
Acid Formc
I
CHO 122 191011
Acld Fru t
Ac~d Hydrochlor~c
Acld. Hydrochloric
Acd Hydrochlorc
Ac~d Hydrocyanic
HCI
HCN
HF nxcx
Coml Conc
DI Cold
Dl Hot
Anhydrous wlth Hydro
Carbon
Aqueous Sol Acd Hvdrofluorlc
~cld. ~;drot~uosic~c
Acid Lactc
Ac~d Mne Water
Acid Mlxed
Ac~d Mur~atic
Acld Naphfhen c
Acld Nltrc
Sulfdrc-N~trlc
(SeeAcid Hydrocilorcl
Conc Bo111ng HNO
Acld N~trc
Acd Oxalc
Acld Oxal~c
Acld Ortho-Phos
phorlc
Acd Pctrc
Dilute
Cold
Hot
CHO, 2HO
CHO, 2HO
H PO
Acd Pyrogallc
Acld Pyrollgneous
Acd Sulfur~c
Acld Sulfur~c
Acid Sulfur~c
Acld Sulfuric
Acld Sulfuric
Acid Sull~r~c H SO SO
; so
YHO
iOleuml
Acd Sulfurous
Acid Tannc
\V.ARNISG
Some of the liquids covered in the following tables are extremely corrosive, toxic or
\olatile, and can be hazardous if mishandled or misused. Improper handling or
usage could result in se\ere damage to equipment or property andlor serious
personal injury or death.
Acd Tartartc
Alcohols
Alum
Aqueobs Sol / C H,O. H O
See Aumnum Sulplate
and Dotash Albmi
Aqueous Sol A 1SOi 1 NOH
Aldmlnum Sulpnate
Arnmon~um Aqda
1 1 I
' Courtesy ot Hydraulic lnstltute
I
8-23

INGERSOLLRAND CAMERON HYDRAULIC DATA MISCELLANEOUS
Materials of Construction For Pumping Various Liquids (cont.) 'Materials of Construction For Pumping Various Liquids (cont.)
Column 1 Column 1
L~qb~d
Column 3
C H CI
CHCI
CrKISO,! 12H 0
CuCl
Column 4 Column 2
Cond~ton
of qud
Column 5
Condtlon
(See Calc~um Hvpo-
chortel
(Depend~ng on conc 1
Column 3
Cnemcal
symbol Liqud
Chlor~de ot Lme Ammonum Blear-
bonate
Ammonum Chlor~de
Ammonum N~trate
Ammon~um Phos-
phate D~basc
Alum~num Sulfate
Column
4
Spec~+~c
qravitv
Aqueous Sol
Column
5
Mater~al
selecton
Aqueous Sol
Aqueous Sol
Aqueous Sol
NH,CI
NH,NO
INH,) HPO
Chlorobenzene
Chlorotorm
Chrome Alum
Condensate
Copperas Green
Aqueous Sol
(See Water D1st1Iled1
(See Ferrous Sulfate
Aqueous Sol I (NH,! SO,
Ammonium Sulfate
An~l~ne
Anl~ne Hydro-
chorlde
Asphalt
Bar~um Chloride
Wlth sullurc aca
Aqueous Sol
Copper Ammonium
Acetate
Copper Chlorlde
(Cuprlc)
Copper Nitrate
Copper Sulfate Blue
Vtrol
Creosote
I Aqueous Sol
Hot
Aqueous Sol
/ Aqueous Sol Barum Nitrate
Beer
Beer Wort
Beet Ju~ce
Beet Pup
Aqueous Sol
(See 011 Creosote)
(See Sod~um Cyande
and Potassum
Cyandej
In Water
Cresol Meta
Cyanlde
C H.0
(CNI Gas
C,H C.H
C H,CI
Cyanogen
Dlphenyl
Enamel
Benzene
Benz~ne
Benzol
Bichlor~de of Mercury
Black L~quor
Ethanol Ethylene
Chlorde
(dl-chor~del
Ferrtc Chlorlde
Ferric Sulphate Ferrous Chloride
(See Petroleum ether)
(See Benzene!
(See Mercur~c Ctilor~de)
[See Llquor Pulp Mill
Bleach Solut~ons
Blood
Bolled Feedwater
Br~ne Calcium
Chlorlde
Brne Calcum
Chlor~de
(See Acohols~ 1 Cold
Aqueous Sol Aqueous Sol
Cold Aqueous
C,H
(See type]
!See Water Boer Feed!
PH 8
pH 8
Ferrous Suphate
(Green Copperas)
Formaldehyde
Fru~t Ju~ces
Furfural
I FeSO.
0 88
CaCl
B C
A B
C
A 10 11 13 14
Gasol~ne
Glaubers Salt
Glucose
Glue
Glue Szng
Brne Cacum &
Magnes~um
Chor~des
Brlne Calcium &
Sodum Chorlde
Br~ne Sod~um
Chlorlde
(See Sodum Sufatel
Hot
(See Llquor Pulp MllI
Aqueous Sol Aqueous Sol
Aqueous Sol
Aqueous Sol
Under
3'0 Salt Cold
Glycerol (Glycer~n~
Green L~quor
Heptane
Hydrogei Peroxde
Hydrogen Sulf~de
Br~ne Sodum
Chloride
~rne sodturn
Chlorlde
ABC
NaCl
Br~ne Sea Water
Butane
Calcum B~sulfte Paper Mill
1 1 A 10 11 13 14
A 10 11 13 14
lAC13
Over 3"0 Salt Cod
Over 3'0 Sat HO!
1 03 ABC 1 C4H,
CaIHSO
102-1 20 A 8 9 lC 11 13
14
1 9 10 11 12 14
i
Hydrosulfte of Soda
Calc~um Chlorate
Calcum Hypochlorite
Calcium Magnesum
Chloride
[See Sodjum Hydro-
sulf~te)
(See Sodum Tho-
Aqueous Sol
[See Brnesr
Hyposulfte of Soda
sulfate!
Suspenson In Water
Suspenston n Acd
(See 011 Kerosene,
Cane Ju~ce
Carbon Bisufioe
Kaon SIP
Kaolq S11p
Kerosene
Lard
Lead Acetate (Sugar
of Lead)
Lead
Carbonate of Soda
Carbon Tetracnlor~de
Carbon Tetracnor de
Catsup
Cabst~c Potash
Molten
(See Soda Ashi
Annydrous
Plus Water
(See Potassum ~y
droxldei
Lme Water (Mk of
L~mel
L~quor-Pulp M111
Black
Caustlc Soda (See Sodbm Hy3rox del
Cellulose Acetate
Cnlorate of L8me [See Calcium Chlo~atel
' Courtesy of Hydraul~c lnst~tute ' Courtesy of Hydraulic lnslllute
8-25

MISCELLANEOUS
Materials of Construction For Pumping Various Liquids (cont.)
Materials of Construction For Pumping Various Liquids (cont.)
Liquor-Pulp MII
Green
L~quor-Pulp MII
Whlte
Liquor-Pup M~ll
Plnk
Column 1
L~quid
Aqueous Sol 1 LICI
Lye Causl~c
Column 4
Specific
gravity
1 07
Column 3
Chemlcal
symbol
C,H 0
A1 (SO,) K SO 24H 0
Column 1
L~quid
Paraff n
Perhydro1
Peroxlde o'
Hydrogen
Petroleum Ether
Phenol
Pink Liquor
Photographlc
Developers
Plating Solut~ons
Potash
Potash Alum
(See Potass~um 8
Sod~um Hydroxldel
Aqueous Sol
Aqueous Sol
Column
5
Materal
selection
Column 2
Cond~ton
of Iiquld
Column 5
Material
select~on
B C
B C
8 9 10 11
A 8 9 10 11 13
14
A
9 10 11 12 13
14
Column
2
Condltlon
of liquid
Hot
(See Hydrogen
Peroxde)
(See Hydrogen
Perox~de
(See L~quor Pulp Mill)
(Var~ed and compli
cated consult pump
mfgrs )
Plant Liquor
Aqueous Sol
Magnes~um Chorde
Magnes~um Sulfate
(Epsom Salts)
Manganese Chlor~de Aqueous Sol
I
MnCl ,H 0
Column 3
Chem~cal
symbol
Manganous Sulfate
Mash
Mercuric Chlor de
Mercur~c Chloride
Column
4
Specflc
gravity
Aqueous Sol MnSO 4H 0
VeryD~luteAqueousSol HgCl
Coml Conc Aqueous HgCl
Sol
In Sulfur~c Acid HgSO + H SO
Potassium B-
chromate
Potass~um Carbonate
K.CrlO-
KICO
KClO,
KC1
KCN
KOH
I
Mercuric Sulfate
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol
Sol
Potassium Chorale
Potasslum Chlorlde
Potasslum Cyanide
Potassium Hydrox~de
Mercurous Sulfate
Methyl Chlor~de
Methyene Chloride
Milk
M~lk of Lime
In Sulfur~c Acid Hg SO, - H SO,
CH CI
CH Cl
iSee Lime Water) Aqueous Sol KNO
M~ne Water
M~scella
(See Acld M~ne Water)
(Zoo0 Soyabean 011 8
Solvent)
Potassium Sulfate
Prooane
Aqueous Sol
Pyridine
Pyrd~ne Sulphate
i Rhdolene
CHN
Rosn (Colophony)
Sal Ammon~ac
Paper Mll
(See Ammonium
Chloride)
Aqueous Sol
(See Brlnesj
(See Brines)
C
A 8 9 10 11 12
ABC
Naphtha Crude
N~cot~ne Sulfate
N~tre
N11re Cake
I
Salt Lake
Sat Water
Sea Water Sulphate 1 CHNO Nitre Ethane
Sewage
Shellac
Silver Ntrate
Slop Brewery
Slop D~st~llers
Aqueous Sol
Nitro Methane
011 Coal Tar
011 Coconut
A
8 9 10 11 12
ABC
A
8 9 10 11
Oil Creosote
011 Crude Cold
Hot
Soap Llqbor
Soda Ash
Soda ASI
I
Oil Crude
Oil Essential
Oil Fuel
011 Kerosene
01 Llnseed Sodfum Carbonate
Sodium Chlorate
Sodtum Chlor~de
Sodlum Cyan~de
Sodlum Hvdrox~de
(See Soda Ash]
Aqueous Sol
(See Brnesr
Aqueous Sol
Aqueous Sol
NaClO
NaCN
NaOH
011 Lubrcattng
011. Mineral
Oil. Olwe
Oil Palm
Sodium Hydrosulfte
Sodum Hypochlorite
Sodlum Hyposulf~te
Aqueous Sol
[See Sodturr Thio
sulfatel
Aqueous Sol
Aqueous Sol
011 Quenching
011 Rapeseed
01 Soya Bean
Sod~um Mela S~cate
Sodturn N~trate
Sodum Phosphate
t
Monobaslc
NaNO
NaH PO H 0
Courtesy of Hydraul~c lnst~tute
8-26
' Courtesy of Hydraulic lnstltute

INGERSOLL-RAND CAMERON HYDRAULIC DATA
*Materials of Construction For Pumping Various Liquids (cont.)
Column 1
L~qu~d
Sodlum Phosphate
Dlbas~c
Sodlum Phosphate
Tr~baslc
Sodlurn Phosphate
Meta
Sodlum Phosphate
Hexarneta
Sod~um Plumblte
Sod~urn Sulfate
Sodlum Sulflde
Sodlum Sulf~te
Sod~um Thlosulfate
Stannlc Chlor~de
Stannous Chlorlde
Starch
Strontium N~trate
Sugar
Sulf~te Llquor
Sulfur
Sulfur
Sulfur Chlorlde
Syrup
Tallow
Tannlng L~quors
Tar Tar
8 Ammonla
Tetrachloride of Tin
Tetraethyl Lead
Toluene (Toluol)
Tr~chloroethylene
Ur~ne
Varnlsh
Vegetable Julces
Vlnegar
Vltr~ol, Blue
V~trlol, Green
Vltrlol. 011 of
V~tr~ol. Wh~te
Water. Boller Feed
H~gh Makeup
Low Makeup
Water. Dlstllled
Water, D~stllled
Water. Fresh
Water. Mlne
Water. Salt & Sea
Whlskey
Wh~te L~quor
Whlte Water
W~ne
Wood Pulp (Stock)
Wood V~negar
Wort
Xylol (Xylene)
Yeast
Z~nc Chlor~de
Z~nc Sulfate
Column
2
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aaueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol
Aqueous Sol.
........
Aqueous Sol
Aqueous Sol
(See
Llquor. Pulp M~ll)
In Water
Molten
Cold
(See Sugar)
Hot
Hot
In Water
(See Stannlc Chlor~de)
(See Copper Sulfate)
(See Ferrous Sulfate)
(See Acrd Sulfur~c)
(See Zlnc Sulfate)
Not evaporated pH
8 5 pH' 85
Evaporated. any pH
H~gh Purlty
Condensate
....
(See Ac~d. M~ne Water)
(See Brlnes)
(See L~quor. Pulp MIII)
Paper M~ll
(See Ac~d Pyrollgneous)
(See Beer Wort)
Aqueous Sol
Aqueous Sol
Column
3
Chernlcal
symbol
SnCl,
SnCl,
(C,.H,,,O .)x
Sr(NO0,
Pb(C:H-,),
C-H,
C2HCI,
ABC
A
8
A
B C
' Courtesy of Hydraulic Institute.
8-28

CONVERSION
DATA
f r I
/
A

SECTION IX -
-

INGERSOLLRAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
CONTENTS OF SECTION 9
Conversion Factors
Page
.................................... General Notes 9-3
Common English Equivalents and Formulas .............. 9-4
Notes on International System (SI) of Units ............... 9-5
.......................... Metric (SI) Conversion Data 9-8
Fahrenheit and Celsius Equivalents (Conversion Table) ..... 9-11
................ Metric (S1)-Conversion Factors 9-14 thru 9-27
............................... Metric Flow Formulas 9-28
General Notes
Since the British Gravitational System (English System) of units
is still the system in practical use in the United States today and
will continue to be so for sometime in the future and is the basis
on which the data in this book is printed, the proper understanding
of certain fundamental terms in this system is essential and therefore
the following review is offered:
The pound
(Ib) is the unit applylng to force or weight and also
to mass, but with a different meaning. It is therefore ambiguous,
and confusion in its use may result. Force is a "quantity" (of something
rather undefinable, a primary cause known only by its effects) which
will change the velocity of-accelerate or decelerate-a particle of
, matter. Weight of a body means the force required to support it
I,
against the action of gravity (in that locality). Mass is defined by the
relation; Force
= mass
x acceleration = weight r acceleration of grav-
ity. To avoid confusion we should really speak of "lb force" and "lb
mass".
The foot
(ft) is the "arbitrarily selected" unit of length.
The foot-pound (ft-lb) is the unit of work, or of mechanical energy
which is the capacity to do work. 1 ft-lb is the work performed by
a force of 1 lb acting through a distance of 1 ft; or the work required
to lift a weight of
1 lb vertically by 1 ft; or the potential energy of
the weight after being raised, in reference to its former level. Stand-
ard conversions of ft-lb to other units are based on the acceleration of
gravity at sea level,
45" latitude.
The horsepower (hp) is a unit for measuring power, or work
performed in unit time. It is a rate of doing work or expending me-
chanical energy
1 hp = 550 ft-lb per
sec = 33,000 ft-lb per min = 0.7067 Btu per
j sec.
The horsepower-hour (hp-h) is a unit of work; so is the kilo-
watt-hour (kW-h). The time consumed may be anything, say a frac-
tion of a second or a million years, depending on the rate at which
the work is performed. It is one hour only if the rate of work is
1 hp
I
or 1
kW.
I
1 hpeh = 1,980,000 ft-lb = 2544.17 Btu = 0.7457 kW.h.
I
1 kW.h = 1.341 hp.h = 3412.14 Btu = 2,655,000 ft-lb
9-3

INGERSOLLRAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
Torque is turning effort caused by a force acting normal to a radius
at a set rli.;tance from the axis of rotation, and is expressed in pound-
feet tlb at a radius of 1 ft 1.
5250 (hl))
Torque (lb-ft) = force (lb) x lever arm (ft) =
rpm
Conversions . . . Ecluations involving units of measure are of two
types: (1) equations of equivalent physical quantities, such as 12 in.
- 1 ft: an(]. (2) rqnation..; of eclilivalent nuniel-ical value, such as (no.
of in.)
=
1" ((no. of ft). In making conversions or in substituting
terms in a formula the second type is usually more convenient.
English Conversion Table
convert Convert Multlply
From
MUltlply 1 From
To By
Length Volume
inches / feet
Inches 1 yards
feet inches
feet 1 yards
feet m~les
yards feet
yards m~les
-1
Area
cu feet cu ~nches
cu feet cu yards
cu feet U S gal
cu yards cu ~nches
cu yards cu feet
Weight (Avoirdupo~s)
ounces o 002286
grains 437 5
sq lflchfts 0.0625
-~
sq yards acres 2000
acres 2240
Circumference of C~rcle - 3 1416 . da - 6 2832 rad~us
Area of C~rcle 7854 . (dial-' - 3 1416 . (radius\!
Area of Sphere -- 3 1416 (d~al-
Volume of Sphere = 0.5236 x (dia)j
Area of triangle 0 5 . base . he~ght
Area of a trapezo~d 0 5 x sum of tile two parallel s~des . he~ght
Area of a square, a rectangle or parallelogram = base x height
Volume of
a
pyramd area of base . 1 3 height
Volume
of a cone
- 0 2618 (dia of base)' he~ght
Volume of a cyl~nder = 0.7854 x height x diag
International System of Units (Metric)
General Notes
The International System of Units, generally known as "SI", has
been adopted by the International Standards Organization. Recog-
nizing the worldwide trend to the use of this modernized metric
system this edition is providing these guidelines for the use of
SI
in its practical applications to hydraulic engineering. These guidelines
include most units which are likely to be used in handling of hydraulic
fluids.
This system is
known as SI and consists of seven base units and
other units which are coherently derived from them. The fact that
it is coherent is one of the main advantages claimed for
SI. It means
that the product or quotient of any two unit quantities in the system
results in another unit quantity.
SI Base and Supplementary Units
Quantity Unit Symbol
Length
Mass
Time
Electric current
Thermodynamic temperature
Luminous intensity
Molecular substance
Plane angle
Solid angle
Derived Units
Quantity
SPACE AND TIME
Area
Volume
Velocity
Acceleration
Angular velocity
Angular acceleration
Frequency
Rotational speed
meter
kilogram
second
ampere
kelvin
candela
mole
radian
steradian
Unit
square meter
cubic meter
meter per second
meter per second squared
radian per second
radian per second squared
hertz
revolution per second
revolution per minute
m
kg
S
A
K
cd mol
rad
sr
Symbol

INGERSOLL-RAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
Quantity Unit Symbol
Quantity Unit Symbol
MECHANICS
VISCOSITY
Density
Momentum
Moment of inertia
Force
Torque, moment of force
Energy, work, heat
quantity
Power
Pressure, stress
LIGHT
Customary temperature
Thermal conductivity
Entropy
Specific heat
ELECTRICITY AND
MAGNETISM
Electric charge
Electric potential, volt-
age, electromotive
force
Electric field strength
Capacitance
Current density
Magnetic field strength
Magnetic flux
Magnetic flux density
Inductance
Permeability
Resistance
Conductance
Magnetomotive force
LIGHT
Lumonous flux
Illumination
Luminance
kilogram per cubic meter
kgim:'
hlogram meter per second kg m/s
kilogram meter squared kg. mZ
newton N = kg.m/s2
newton meter N.m
joule
watt
pascal J =
N.m
W = Jls
Pa = N/mZ
degree Celsius "C
watt per meter kelvin W/(m, K)
joule per kelvin J/K
joule per kilogram kelvin J/(kg. K)
1
knemetic viscositv square meter per second m2/s
Dynamic (absolute) viscosity pascal second Pa.s
coulomb C = A.s
volt
volt per meter
farad
ampere per square meter
ampere per meter
weber
tesla
henry
henry per meter
ohm
siemens
ampere
V = W/A
Vlm
F = A. s/V
A/m2
A/m
Wb= v.s
T = Wb/mZ
H = V. s/A
Him
11 = VIA
S
=
A/v
A
lumen lm
=
cd.sr
lux lx = lm/m2
candela per square meter cdm2
Explanation of Some of the Units
The principal departure of
SI from the gravimetric form of metric
engineering units is the separate and distinct units for mass and force.
Kilogram
(kg) is restricted to the unit of mass. Mass is the property
of matter to which it owes its inertia.
Newton
(N) is a unit of force and should be used in place of kilo-
gramforce, poundforce, etc. The first law of motion, force is equal
to mass times acceleration, defines the newton in terms of base units.
1 N =
1 kg.rn/s2
Joule (J) is a unit of energy and is the work done when the point
of application of a force of one newton is displaced a distance of one
meter in the direction of the force.
1 J = 1
N. m
Watt (W) is a unit of power which gives rise to the production of
energy at the rate of one joule per second.
1 W = 1
J/s
Pascal (Pa) is a unit for pressure or stress of one newton per
square meter.
1 Pa = 1 N/mZ
Kelvin
(K) is the unit for Thermodynamic Temperature ancl should
be used as the preferred unit to express temperature and temperature
intervals. However, wide use is made of the degree Celsius in non-
scientific areas, and it is permissible to use the Celsius scale where
considered necessary. The Celsius scale is what was formerly called
the centigrade scale. The temperature interval one degree Celsius
- -
equals one Kelvin exactly: 1°C = 1K.
Celsius temperature is related to thermotlynamic temperature by
the equation: "C = K - 273.15.

INGERSOLLRAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
SI Units and Conversion Factors
Units underlined are those selected for common use
b
LENGTH
Feet meter m 0.304 8
Inch mllllmeter mm 25 4
M~cro~nches micrometer Pm 0 025 4
Statute mlles k~lometer km 1.609
AREA
Square Inches square mllllmeter mm- 645 2
Square Inches square centimeter cm- 6 452
Square Inches square meter m- 0 000 645
Square feet square meter m- 0 092 90
Acres hectare ha 0 404 7
VOLUME
Cublc lnches cublc mlllhmeter mm' 16387
Cublc ~nches cublc centimeter cm' 16 387
Cub~c lnches cub~c meter m 0 000 016 39
Cublc feet cublc meter mi 0 028 32
Fluld ounce m~ll~l~ter mL 29 57
Quarts (U S
)
!&I L 0 946 4
Gallons (U S
)
- liter L 3 785
Mult~ply by To Convert from
MASS
Pounds
Ton (short)
Ton (long)
to
kilogram kg 0.453 59
metric ton (t) t 0.907 2
metric ton (t) t 1.016
FORCE
Pound force newton N 4.448
Kilogram force newton N 9 807
t Note. The unlt tonne IS used ~n place of metrlc ton 11- other countrles uslng
IS0 symbols
SI Units and Conversion Factors (Continued)
PRESSURE STRESS
Pounds square lnch pascal Pa 6895
Pounds'square lnch k~lopascal kPa 6 895
Pounds square lnch megapascal M Pa 0.006 895
Kilogram square meter pascal Pa 9 807
Bar' k~lopascal kPa 100
Units underlined are those selected for common use
M~ll~bar' pascal Pa 100.
To Convert from
SPEED. VELOCITY
Feetisecond
Feetlmlnute
MlIes/hour
I
to
meter per second m:s 0.304 8
meter per second m/s 0.005 08
k~lometer per hour km:h 1.609
Mult~ply by
ENERGY, WORK
Brltlsh Thermal Unlts BTU joule - J 1055.
Foot pound force - joule J 1.356
Calorle joule J 4.186 8
-
POWER
BTU!hour
BTUIsecond
Horsepower
watt W 0.293 1
watt W 1055.
k~lowatt kW 0.746
TORQUE, BENDING
MOMENT
Pound feet newton meter N.m 1 356
K~logram meter newton meter N m 9 807
DENSITY MASS VOLUME
Pound-mass cublc foot kllogram per cublc kg m' 16 018
meter
FLOW RATE VOLUME"
Cublc feet mlnute cublc meter per m' mln 0 028 32
mlnute
Gallons (U S ) minute llter per mlnute L/m~n 3 785
FLOW RATE MASS
Poundslm~nute kllogram per mlnute kg mln 0.453 6
' Note Some European countrles have adopted the Bar for pressure un~ts for
~ts pract~cal value and or use ~n speclal~zed f~elds
" For other flow conversions see pages 2-6 and 2-7
9-9

INGERSOLLRAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
SI Units and Conversion Factors (Continued)
Units underlined are those selected for common use
WATER HARDNESS
Grainstgallon (U S.) (GPG) grams per l~ter g/L 0.017 12
ACCELERATION
Feetisecond' meter per secondL m/sL 0.304 8
Free fall, standard meter per second2 mls2 9.806 7
Mult~ply by To Convert from
ENERGYIAREA TIME
BTU/feet2 second watt per meter" WtmL 1 1348
BTU!feet2 hour watt per meter' Wlm' 3.152 5
THERMAL CONDUCTIVITY
BTU,inch/hour.feet2.deg F watt per meter- Wl(m,K) 0,144 2
kelvin
THERMAL CONDUCTANCE
BTUIhour. feet', deg F watt per meter"- W!(mY. K) 5 678
kelvin
to
CAPACITY, DISPLACEMENT
inches~'/revolution liter per revolution Ur 0.016 39
~nches'trevolut~on m~ll~liter per revo- mL/r 16.39
lut~on
SPECIFIC ENERGY, LATENT
HEAT
BTUipound joule!kilogram Jikg 2326
ENERGY DENSITY
BTUIcubic foot kilojoule/rneter' kJ:m' 37 25
SPECIFIC HEAT, SPECIFIC
ENTROPY
BTUIpound-deg F ~oules/k~logram- JI(Kg K) 4184
kelv~n
Equivalent Temperature Readings for Fahrenheit
and Celsius Scales
'F = 9 5 "C + 32 'C = 5/9 ("F-32)
274
-256
238
220
202
184
166
148
139
-130
121
-112
-103
94
85
76
- 67
- 58
- 49
- 40
39
-38
2
38
37
36 4
170
160
150
-140
- 130
120
110
100
95
90
85
80
75
70
65
60
55
50
45
40
-39 4
39
-38 9
-38 3
38
14 8
-14
-13
120
11 2
11
100
94
9
8
-7 6
-7
-6
-5 8
5
4
-3
2 2
-2
1
0 4
0
- 1
14
2
26
25
6
25
-244
24
-23 9
233
-23
22 8
-222
22
-21 7
21 1
2 1
20
6
20
-194
19
-189
183
18
178
172
-17
16 7
24 8
25
26
266
27
28
284
29
30
302
3 1
32
33
33 8
34
35
356
36
37
374
38
39
392
40
4
1
-4
3 9
3 3
3
2 8
2 2
2
17
-11
1
0 6
0
-0 6
1
11
17
2
2 2
2 8
3
3 3
3 9
4
4 4
5
63
64
64 4
65
66
66 2
67
68
69
69 8
70
7 1
71 6
72
73
73 4
74
75
75 2
76
77
78
78 8
79
80
17 2
178
18
18 3
18 9
19
19 4
20
20 6
21
21 1
21 7
22
22 2
22 8
23
23 3
23 9
24
24 4
25
25 6
26
26 1
26 7

INGERSOLLUAND CAMERON HYDRAULIC DATA
Equivalent Temperature Readings for Fahrenheit
and Celsius Scales (Continued)
"F = 9!5 "C + 32
'C = 5:s ("F-32)
CONVERSION FACTOR DATA
Equivalent Temperature Readings for Fahrenheit
and Celsius Scales (Continued)
Fahren-
hell Cels~us
'Fahren
hell Cels~us
Fahren
hell Cels~us
Fahren-
helt Celstus

INGERSOLLRAND CAMERON HYDRAULIC DATA
General Conversion Factors
acres square feet (ft') 43 560
'square meters (rn') 4 046.9
'hectares (ha) 0.404 69
acre-feet cublc feet (ft') 43 560
gallons (U.S.) 325 851
'cub~c meters (m:') 1 233.5
'Indicates preferred SI system units
atmospheres
(standard)
bars (bar)
centimeters of mercury (cmHg) at 32°F
(0°C)
feet of water (ftH,O) at 68°F (20°C)
inches of mercury at 32°F (0°C)
k~lograms-force per square centimeter
(kgf/cm2)
kilograms-force per square meter (kgf/mL)
'kilopascals (kPa)
pounds-force per square Inch (Ibf/inL) (PSI)
tons-force (short) per square foot (tonf/ft2)
torr (torr) (= mmHg at 0°C)
Multlply by To convert from
barrels (U.S. gallons (U.S.)
liquid) 'cubic meters (m")
barrels (oil) gallons of oil (U.S.)
'cub~c meters (m,')
bars atmospheres (atm) (standard)
feet of water (ftH,O at 68°F) (20°C)
inches of mercury (inHg) at PC
kilograms-force per square cent~meter
(kgf/cm2)
kilograms-force per square meter (kgf/m2)
' kilopascals (kPa)
pounds-force per square Inch (Ibf/in2) (psi)
torr (torr)
(=
mmHg at O'C)
absolute (dynamic) (refer to viscosity tables-pages 4-25 to
viscosity page 4-28)
To
boiler horsepower British thermal units per hour (Btulh) (see
note) 33 479
'kilowatts (kW) 9.809 5
pounds of water evaporated per hour at
212°F (100°C) 34.5
Br~t~sh thermal calories (cal) 252.0
units (Btu) (see foot-pounds (ftlb) 778.2
note) horsepower hours (hp,h) 0.000 393
'joules (J) 1 055
kilowatt-hours (kW. h) 0.000 293
kilo-calorles (kcal) 0.252
kilogram-force-meters (kgf - m) 107.6
CONVERSION FACTOR DATA
General Conversion Factors (Continued)
Br~tish thermal
unlts (Btu) per
second (see
note) 'watts (W)
Br~tish thermal
unlts (Btu) per
minute (see
note) horsepower (hp)
'watts (W)
British thermal
un~ts (Btu) per
hour (see note) 'watts (W)
*Indicates preferred
SI system units
calor~es British thermal units (Btu) 0.003 968 3
foot-pounds (ft. Ib) 3.088
'joules (J) 4.186 8
k~logram-meters (kg. m) 0.426 5
watt hours (W.h) 0.001 163
Celsius (centl- degrees F-see pages 8-1 1 to 8-1 4
grade) also see temperature page 8-26
To convert from
'centimeters (cm) inches (in) 0.393 7
centimeters of
mercury (cmHg
at 0°C) atmospheres (standard) (atm)
bars
feet of water (ftH,O) at 68°F
inches of water (inH,O) at 68°F
k~lograms-force per square centimeter
(kgf/cm2)
'kilopascals (kPa)
pounds-force per square inch (Ibfiin2)
(Psi)
pounds-force per square foot (Ibf/ftL)
torr
(=
mmHg at PC)
To
centimeters per feet per second (ftls) 0.032 81
second (cmis) feet per minute (ftimin) 1.968 5
miles per hour (mph) 0 022 37
kilometers per hour (kmih) 0.036 00
meters per mlnute (mirnin) 0.600 00
Multlply by
centipo~ses (see pages 4-25 to 4-28)
centistokes (see pages 4-25 to 4-28)
c~rcurnference radians (rad) 6.283
circular mils square Inches (in') 0.000 000 785 4

INGERSOLLRAND CAMERON HYDRAULIC DATA
General Conversion Factors (Continued)
cubic centimeters cublc Inches (in3)
(cm') cublc feet (ft3)
cubic yards (yd")
gallons (U.S.) (U.S. gal)
gallons (Imperial) (imp gal)
'liters (L)
*Indicates preferred SI system units
cublc feet (ft") cubic centimeters (cm3)
'cublc meters (mi)
cubic inches (~n:')
cub~c yards (ydT3)
gallons-U.S. (U.S. gal)
gallons-Imperial (imp gal)
'I~ters (L)
cublc feet per cubic centimeters per second (cm:'/s)
minute (ft'jim~n) 'cubic meters per second (m"ls)
cubic meters per hour (m:'lh)
liters per second (Lis)
gallons-U.S, per second (U.S. gps)
pounds of water per minute (IbH,Oimin)
at 68°F
To convert from
cublc feet per 'cubtc meters per second (milis) 0.028 317
second (ft'jis) cubic meters per minute (m.'!m~n) 1.699
cubic meters per hour (m:'lh) 101.9
gallons-U.S. per minute (U.S. gallmin) 448.8
gallons-U.S. per 24 hours (U.S. gpd) (see
table-pages 2-6 and 2-7) 646 31
5
liters per second
(Lls) 28.32
To I Multiply by
cubic inches (1n3) cubic centimeters (cm')
cubic feet (ft3)
'cubic meters (m:')
cubic yards (yd:')
gallons-U.S. (U.S. gal)
gallons-lmperlal (imp gal)
'liters (L)
'cub~c meters (m') cub~c Inches (In')
cub~c feet (ftl)
cub~c yards (yd3
gallons-U S (U S gal)
gallons-lmper~al (Imp gal)
l~ters (L)
'cublc meters per cub~c meters per mlnute (m1:mln)
hour (miih) 'cublc meters per second (mJ/s)
gallons U S per mlnute (U S glm~n)
l~ters per second (Lls)
'cubic meters per 'cubic meters per hour (m"ih) 3 600
second (m3is) gallons U.S..per minute (U.S. gpm) 15 850
CONVERSION FACTOR DATA
General Conversion Factors (Continued)
cubic yards (yd.') cubic centimeters (crn") 764 550
cubic feet (ft") 27
cublc Inches (ln3) 46 656
'cubic meters (mJ) 0.764 55
gallons-Imperial (imp gal) 168.17
gallons-U.S. (U.S. gal) 201.97
liters (L) 764.55
'Indicates preferred SI system units
degrees angular grade (gon)
radians (rad)
degrees per radians per second (radis)
second revolutions per minute (rlmln)
(angular) revolutions per second (ris)
To convert from
degrees
(temperature) (see temperature-page
8-26)
drams-avoir grains (gr) 27.344
*grams (g) 1.771 8
ounces (02) 0.062 5
dynes 'newtons
(N) 0.000 01
ergs 'joules
(J) 0.000 000 1
To
fathoms feet (ft)
'meters
(m)
Multiply by
feet (ft) centimeters (cm)
inches (In)
'meters (m)
yards (yd)
feet of water atmosphere (standard) (atm)
(ftH,O) at 68'F bars (bar)
Inches of mercury at PC (1nHg)
k~lograms-force per square cent~meter
(kgflcm')
'k~lopascals (kPa)
pounds-force per square Inch (Ibfl~n')
(PSI)
pounds-force per square foot (Ibflft')
feet per mlnute centlmeters per second (cmls)
(ftirn~n) krlometers per hour (krn,h)
meters per m~nute (rnirnln)
'meters per second (mls)
m~les per hour (rnph)
feet per second centimeters per second (cm!s)
(f tls) k~lometers per hour (krnih)
meters per m~nute (mlmin)
'meters per second (mls)
miles per hour (mph)

INGERSOLLRAND CAMERON HYDRAULIC DATA
General Conversion Factors (Continued)
'Indicates preferred SI system units
To convert from To I Multlply by
feet per second centlmeters per second squared (cm:s2) 30 480
squared (ftis-) 'meters per second squared (mls') 0 304 80
-
foot-pounds-force Br~t~sh thermal unlts (Btu) (see note) 0 001 285
(ft Ibf) calor~es 0 323 8
horsepower hours (hp h) 0 000000 505 0
'joules (J) 1 355 8
k~localories (kcal) 0 000 323 8
k~logram-force meters (kgf m) 0 138 25
k~lowatt hours (kW h) 00000003766
foot candle 'lumen per square meter (lux) 10 764
gallons (U S ) (gal) cub~c centlmeters (cm')
'cub~c meters (m')
cub~c Inches (Ini)
cub~c feet (ft')
cublc yards (yd3
p~nts-l~qu~d (pt)
quarts-liqu~d (qt)
gallons-lmper~al (Imp gal)
'Ilters (L)
pounds of water at 60 F
gallons (Imperial) cub~c centlmeters (cm')
'cub~c meters (mi)
cub~c feet (ft')
cub~c yards (ydl)
gallons U S (U S gal)
'I~ters (L)
pounds of water at
62 F
gallons (U
S ) per 'cub~c meters per second (miis)
mlnute (U S 'cublc meters per minute (m'lrn~n)
gPm) 'cublc meters per hour (m'ih)
cub~c feet per second (ft'is)
cub~c feet per hour (ft3/h)
'I~ters per second (Lls)
gralns (gr) 'grams (g)
ounces-avolr (oz)
gralns per gallon grams per cublc meter (g~m') 17 118
(U S ) (gr U S 'k~lograms per cublc meter (kg m') 0017118
gal) parts per m~ll~on by we~ght In water (ppm) 17 118
pounds per m~ll~on gallons 142 9
gralns per gallon grams per cublc meter (g~rn') 14 25
(Imper~al) 'k~lograms per cublc meter (kg m') 0 014 25
parts per m~ll~on by we~ght In water (ppm) 14 25
CONVERSION FACTOR DATA
General Conversion Factors (Continued)
grams (g) grains (gr)
ounces-avoir (02)
pounds-avoir (Ib)
'Indicates preferred SI system units
grams-force (gf) 'newtons (N)
0.009 806 6
grams-force per 'newtons per meter
(Nim) 98.07
centimeter pounds-force per inch (Ibfl~n) 0.005 600
(gflcm)
Multiply by To convert from
grams per cubic 'k~lograms per cubic meter (kglm:') 0.001
centimeter poun,ds per cubic inch (Ibiin") 0.036 13
(gicm ') pounds per cubic foot (Ibift:') 62.427
To
'grams per liter grains per U.S. gallon (grlU.S. gal) 58.417
(gi'-) parts per million (ppm) by mass weight In
water 1 000
pounds per cubic foot (Ib/ft7) 0.062 242 7
pounds per 1000 U.S. gallons 8.354 4
hectares (ha) acres
square feet (ft")
'square meters (m')
horsepower (hp) British thermal units per minute (see note)
(Btu)lmin) 42.43
foot-pounds force per minute (ft.Ibfimin) 33 000
foot-pounds force per second (ft.Ibfis) 550
kilocalories per minute (kcalimin) 10.69
'kilowatts (kW) 0.745 7
horsepower-metric 1.013 9
'watts (W) 745.7
horsepower-boiler British thermal units per hour (see note)
(Btuih)
33 479
kilowatts
(kW) 9.809 5
pounds of water evaporated per hour
at
212°F 34.5
horsepower hours British thermal units (Btu)
(h~.h) foot-pounds-force (ft.Ibf)
'joules (J)
kilocalories (kcal)
kilogram-force-meters (kgf. m)
'kilowatt-hours (kW. h)
inches (in) centimeters (cm)
2.540
'meters (m) 0.025 40
'mill~meters (mm) 25.40

INGERSOLLRAND CAMERON HYDRAULIC DATA
General Conversion Factors (Continued)
'Indicates preferred SI system units
inches of water atmosphere (standard) (atm)
(inH,O) at 68°F bars (bar)
inches of mercury (inHg) at PC
kilograms-force per square centimeter
(kgf/cm2)
'kilopascals (kPa)
ounces-force per square inch (ozf/in2)
pounds-force per square foot (Ibf/ft2)
pounds-force per square inch (Ibflin) (psi)
To convert from
'joules
(J) British thermal units (see note)
calories (cal)
(thermochemical)
foot-pounds-force (ft.Ibf)
watt-hours (W. h)
kelvin
(K) (see temperature-page 8-26)
'kilograms (kg) pounds (Ib) 2.204 6
tons (ton) short 0.001 102 3
kilograms-force 'newtons (N) 9.806 6
(kgf pounds-force (Ibf) 2.204 6
kilograms-force 'newtons per meter (Nim) 9.806 6
per meter pounds-force per foot (Ibfift) 0.672 1
(kgfim)
ktlograms-force atmospheres (standard) (atm) 0.967 8
per square bars (bar) 0.980 66
centimeter feet of water (ftH,O) at 68°F 32.87
(kgficm') inches of mercury (1nHg) at O'C 28.96
'kilopascals (kPa) 98.066
pounds-force per square foot (Ibfift') 2 048
pounds-force per square inch (Ibf/inY) (PSI) 14.223
kilograms-force kilograms-force per square meter (kgflm') 1 000 000
per square 'megapascals (MPa) 9.806 6
millimeter
(kgfimmL)
~nches of mercury atmospheres (standard) (atm) 0.033 42
(inHg) at PC bars (bar) 0.033 864
feet of water (ftH,O) at 68°F 1.135
inches of water (inH,O) at 68°F 13.62
kilograms-force per square centimeter
(kgflcm') 0.034 532
kilograms-force per square meter (kgflm') 345.32
'kilopascals (kPa) 3.386 4
m~llimeters of mercury (mmHg) 25.40
pounds-force per square foot (Ibf/ft2) 70.73
pounds-force per square inch (Ibfiin" (psi) 0.491 2
To
CONVERSION FACTOR DATA
Multiply by
General Conversion Factors (Continued)
'k~lometers (km) feet (ft)
miles (mi)
'Indicates preferred SI system units
kilometers per centimeters per second (cmis)
hour (kmih) feet per second (ftls)
feet per minute (ftimin)
international knots (kn)
meters per minute (mlmin)
'meters per second (mls)
miles per hour (mph)
To convert from
k~lometers per centimeters per second squared (cm/sL)
hour per second !eet per second squared (ftisL)
(km/h s) meters per second squared (mlsL)
kilometers per miles per mlnute (m~lm~n)
second (kmis)
'kilopascals (kPa) dynes per square centimeter (dy/cmL) 10 000
feet of water (ftH,O) at 68°F 0.335 I
inches of mercury (inHg) at 32°F 0.295 3
lnches of water (inH,O) at 68°F 4.021
kilograms-force per square centimeter
(kgf/cm2) 0.01 0 197
pascals (Pa) (or newtons per square meter
(N/m2) I 000
pounds-force per square inch (Ibfl~n" (PSI) 0.145 0
k!loponds 'newton (N) 9.807
k~lograms-force (kgf) 1
pounds-force (Ibf) 2.204
6
poundals 70.932 klps 0.002 205
klps (1000 Ibf) 'newton (N) 4 448
kilogram-force (kgf) 453.6
pounds-force (Ibf) 1 000
poundal 32 174
k~lopond 453.6
To
kips per square 'kilopascals
~nch (ksi) kilograms-force per square centimeter
(kgficm')
bars (bar)
pounds per square inch (psi)
'kilowatts (kW) British thermal units per minute (Btulmin)
foot-pounds-force per minute (ft.Ibfirnin)
foot-pounds-force per second (ft.lbls)
horsepower (hp)
kilocalories per mlnute (kcallmin)
Multiply by

INGERSOLLRAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
General Conversion Factors (Continued)
'Indicates preferred SI system units
'liters per minute cubic feet per second (ft3is) 0.000 588 5
(Llmin) 'liters per second (Lis) 0.016 67
gallons (U.S.) per second (U.S. galls) 0.004 403
gallons (U.S.) per minute (US. gallmin) 0.264 18
gallons (Imperial) per min (imp galimin) 0.003 666
*liters per second cubic meters per second (mVs) 0.001
(Lls) cubic meters per minute (mymin) 0.06
cubic meters per hour (myh) 3.600
liters per minute (Llmin) 60
gallons (U.S.) per minute (U.S. gallmin) 15.85
gallons (Imperial) per minute (imp gal) 13.20
'megapascals kilograms-force per square m~llimeter
(MPa) (kgflmm2) 0.101 97
kilograms-force per square centimeter
(kgficm2) 10.197
' kilopascals (kPa) 1 000
'pascals (Pa) 1 000 000
pounds-force per square inch (IbfilnL) (psi) 145.0
To convert from
'meters (m) feet (ft)
inches (in)
yards (yd)
'meters per centimeters per second (cmls)
minute (mlmin) feet per minute (ftlmin)
feet per second (ftls)
kilometers per hour (kmih)
miles per hour (mph)
kilowatt hours British thermal units (Btu) (see note) 3 413
(kW.h) foot-pounds-force (ft. Ibf) 2 655 000
horsepower hours (hp. h) 1.341 0
'joules
(J) 3.600 000
kilocalories (kcal) 860
kilogram-force meters
(kgf. m) 367 100
knots (inter- 'meters per second (mis) 0.514 4
national) miles per hour (mph) 1.151 6
'liters (L) cubic centimeters (cm,') 1 000
cubic feet (ftR) 0.035 31 5
cubic inches (in3) 61.024
cubic meters (m3) 0.001
cubic yards (yd3) 0.001 308
gallons U.S. (U.S. gal) 0.264 18
gallons Imperial (imp gal) 0.220 0
To
General Conversion Factors (Continued)
Mult~ply by
'Indicates preferred SI system units
To convert from I To I Multiply by
+ 'meters per feet per minute (ftlmin) 196.8
second (mis) feet per second (ftis) 3.281
kilometers per hour (kmlh) 3.600
kilometers per minute (kmlmin) 0.060 0
miles per hour (mph) 2.237
miles per minute (milmin) 0.037 28
'micrometers 'meters (m)
(formerly
microns)
mills (0.001 'millimeters (mm) 0.025 4
inches)
miles feet (ft) 5 280
i.
'kilometers (km) 1.609 3
'meters (m) 1 609.3
yards (yd) 1 760
I miles per hour centimetars per second (cmis) 44.70
(mPh) feet per minute (ftimin) 88
feet per second (ftls) 1.466
7
international knots (kn) 0.869 0
'kilometers per hour (kmih) 1.609 3
'meters per minute (mlmin) 26.82
i
i
milligrams per liter parts per million (ppm) 1 .O
(mglL)
'm~llimeters (mm) inches (in) 0.039 370
m~llimeters of bars (bar) 0.001 333 2
mercury at OC feet of water at 68°F 0.004 680
(mmHg) Inches of mercury (inHg) 0.039 37
inches of water (68°F) 0.536 16
k~lograms per square centimeter (kg/cm2) 0.001 359 5
'pascals (Pa) 133.32
pounds per square inch (psi) 0.019 336 8
i
million gallons per (see table pages 2-6 and 2-7)
day
miner's inch (see page 2-6)
minutes, angular radlans (rad) 0.000 290 9
'newtons
(N) dynes (dyn)
k~lograms-force (kgf)
poundals
pounds-force (Ibf)

INGERSOLLRAND CAMERON HYDRAULIC DATA
CONVERSION FACTOR DATA
General Conversion Factors (Continued)
'Indicates preferred
SI system units
ounces-force per grams-force per square centimeter
square inch (gf/cmL)
(ozf/inL) 'pascals (Pa)
pounds-force per square inch (Ibf/inL) (psi)
To convert from
parts per million grains per U.S. gallon at
60°F
(gr/U.S, gal)
by mass (ppm) grains per imperial gallon at
62°F (griimp gal)
grams per cubic meter (g/m" at 15°C
'milligrams per liter (mgIL)
pounds per million U.S. gallons at 60°F
'pascals (Pa) bars (bar) 0.000 01
dynes per square centimeters (dyn/cm2) 10.0
grams-force per square centimeter
(gf/cmL) 0.010 197
kilograms-force per square centimeter
(kg/cm2) 0.000 010 197
kilograms-force per square meter (kg/m2) 0.101 97
'kilopascals (kPa) 0.001
'newtons per square meter (N/m2) 1 .O
pounds-force per square inch (Ibf/in2) (psi) 0.000 145 0
poise (see viscosity tables-page 4-25 to 4-28)
centipoises (CP) 100
'pascal second (Pa,s) 0.100 0
pound-force-seconds per square foot
(I bf ,siftL) 0.002 088 6
pounds per foot second (Ib1ft.s) 0.067 21
ounces-avoir (oz) drams-avoir (dr) 16 I
gralns (gr) 437.5
'grams (g) 28.349 5
'kilograms (kg) 0.028 350
pounds-avoir (Ib) 0.062 50
tons (ton) long 0.000 027 90
'tonnes (t) metric ton 0.000 028 350
ounces-U.S. fluid cubic inches (in3) 1.804 6
'liters (L) 0.029 57
To
poundals 'newtons (N) (joules per meter)
0.138 26
pounds-force (Ibf) kilograms-force (kgf) 0.453 59
'newtons (N) 4.448 2
pounds-avoir (Ib) drams-avoir (dr) 256
grains (gr) 7 000
'grams (g) 453.59
'kilograms (kg) 0.453 59
ounces-avoir (02) 16
'tonnes-metric tons (t) 0.000 453 59
tons-long 0.000 446 43
tons-short 0.000 5
Multiply by
General Conversion Factors (Continued)
pounds per foot 'kilograms per meter (kglm) 1.488 2
(Iblft)
'Indicates preferred SI system units
pounds per square 'kilograms per square meter (kg/m2) 4.882 4
foot (Ib/ft2)
pounds-mass of cubic centimeters (cm3)
water at
60°F cubic feet (ft")
cubic
Inches (in3)
gallons (U.S.) (U.S. gal)
liters (L)
Multiply by To convert from
pounds of water cubic centimeters per second (cm3/s)
7.566 7
per minute at cubic feet per second
(ftys) (cfs) 0.000 267 5
60°F 'cublc meters per minute (in3/min) 0.000 453 98
'kilograms per second (kg/?.) 0.007 559 9
To
pounds per cublc grams per cubic centimeter (g/cm3) 0.016 018
foot (Iblft") 'kilograms per cubic meter (kg/m3) 16.018
pounds per cubic inch (lb/in3) 0.000 578 7
pounds per cubic grams per cubic centimeter (g/cm3) 27.68
inch (lb/in3) 'kilograms per cubic meter (kg/m3) 27 680
pounds per cubic foot (Ib/ft3) 1 728
pounds-force per grams-force per centimeter (gficm) 14.882
foot (Ibflft) kilograms-force per meter (kgflm) 1.488 2
'newtons per meter (N/m) 14.594
pounds-force per feet of water (ftH,O) at 68°F 0 016 05
square foot k~lograms-force per square centimeter
(I bflft-) (Kgf crn2) 0 000 488 2
'k~lopascals (kPa) 0 004 788 0
'pascals (Pa) 47 880
pounds-force per square Inch (Ibf/ln2) (PSI) 0 006 944 4
pounds-force per atmospheres (standard) (atm) 0 068 05
square Inch feet of water (ftH20) at 68°F 2 311
(Ibf/ln2) (PSI) lnches of water (1nH2O) at 68°F 27 73
Inches of mercury (1nHg) at 0°C 2 036
k~lograrns-force per square centlmeter
(kgf cm2) 0 070 31
'k~lopascals (kPa) 6 894 8
quarts-dry cublc cent~meters (cm') 1101 2
(qt dry) cublc ~nches (~n') 67 20
'cublc meters (m3) 0 001 101 2
quarts-liquid cubic centimeters (cm,')
(qt liquld) cubic lnches (1n3)
'liters
(L)
radians (rad) degrees
(") angular 57.296

INGERSOLLRAND CAMERON HYDRAULIC DATA CONVERSION FACTOR DATA
General Conversion Factors (Continued)
rad~ans per degrees per second ( s) angular 57 296
second (radls) revolut~ons per mlnute (rlmln) 9 549
revolut~ons per degrees per second 6
minute (rlrn~n) rad~ans per second (radls) 0 014 72
square centl- square inches (in ) 01550
meters (crn')
'Indicates preferred SI system units
square feet (ft') acres
'square meters (m')
To convert from
square Inches (in') square cent~meters (crn') 6.451 6
square k~lorneters acres
(km') square m~les
To
'square meters acres
(mL) square feet (ft')
Multlply by
square miles acres
square kilometers (krn')
square yards (yd') acres 0 000 206 61
'square meters (m-) 0 836 13
standard cubic cublc meters per hour (m'lh) at standard
feet per rn~nute cond~tions (15°C and 101 325 kPa) 1 695 7
(scfm) (at 14 696 l~ters per second (Lls) at standard
I
psia and 60°F) condit~ons (15'C and 101 325 kPa) 0 471 03
stokes square feet per second (ft2 S) 0 001 076
'square meters per second (mZ s) 0 000 1
(see viscosity tables-pages 4-25 to 4-28)
temperatures degrees 'degrees Ceis~us ('C), C = 5 9 ("F - 32)
Fahrenheit ( F)
'degrees Celsius
( C) degrees Fahrenheit ('F) F = 9 5 C
+ 32
degrees Fahrenheit ('F) 'kelvin (K) K = 5 9 ('F + 459 67)
^degrees Cels~us ('C) 'kelvin (K) K = 'C t 273.15
degrees Rank~ne ( R) 'kelvln (K) K = 'R 1 8
degrees Fahrenheit (OF) degrees Rankine ( R) R = F - 459 67
General Conversion Factors (Continued)
'tonnes-metric ton 'kilograms (kg)
pounds (Ib)
'Indicates preferred SI system units
tons-short 'kilograms (kg)
pounds-avoir (Ib)
tons-long
tonnes (metric ton) (t)
To convert from
tons (short) of cub~c feet per hour (ftvh) 1.338
water per 24 cubic meters per hour (m3!h) 0.037 89
hours (at 60°F) gallons (U.S.) (U.S. galim~n) 0.166 8
pounds of water per hour (IbH,O!h) at 60°F 83.333
To I Multiply by
tons of refr~gera- Brlt~sh thermal unlts (Btu) (see note) per
tlon hour 12 000
Brltlsh thermal un~ts (Btu) (see note) per
24 hours 288 000
'watts
(W) British thermal units (Btu) per minute
(Btuimin)
foot-pounds-force per second
(ft.lbf!s)
foot-pounds-force per minute (ftdbfimin)
horsepower (hp)
joules per second (Jis)
kilocalories per minute (kcallmin)
watt-hours (W.h) British thermal units (Btu)
foot-pounds-force (ft
. Ibf)
horsepower hours
(hp.h)
'joules (J)
kilocalories (kcal)
kilograms-force-meters (kgf. rn)
Yards (yd) 'meters (m) 0.914 40
NOTE: BRITISH THERMAL UNITS (Btu)-since there are several definitions of
the Btu, the values of appl~cable and/or equivalent factors may vary slightly
depending on the definition used. In the accompanying tables of conversion
factors, the first three or four s~gnificant figures given, in most cases, are common
to most definitions of the Btu;
if greater accuracy is
requ~red for certain calculations
then reference to the appropriate handbooks and standards should be made.
for temperature conversion tables; i.e 'F to 'C and vice versa refer to pages 8-1 1 to 8-14
tons-long 'k~lograms (kg) 1 016.0
metrlc tons (1) 1.016 0
pounds-avoir (Ib) 2 240
tons-short 1.120

INGERSOLLRAND CAMERON HYDRAULIC DATA
Metric Flow Formulas
Q 4 Q 1,273,240 Q 21.22 q
- Velocity: V = - = - - -
-
-
A 77D2 d" d 2
v2
velocity head: h, = - = 0.050 99 V2 =
0.082 66 Q2 - 22.958 q2
-
2 gc D4 d4
0.102 kPa 10.2 B
head: H =
-
-
sp gr sP gr
Q(!rPa)
power required: P = - -
q(kPa)
eff 60,000 x (eff)
VD 1000 Vd 1,273,240 Q 21,221 q
-
Reynolds no.: R = - -
- -
-
-
v k Dk dk
fLV2 0.082 66 fLQV2,965 fLq2
Darcy friction formula: H, = - -
- -
2 gcD D5 d5
Hazen & Williams friction formula:
Symbols
To be used only with formulas above on this page
A = cross sectional area of pipe-m2
B = pressure -bars = 100 kPa
C = Hazen and Williams friction factor (see page 3-8)
D = internal diameter of pipe-m
d
= internal diameter of pipe-mm
eff
= efficiency expressed as a decimal
f
= friction factor for Darcy formula (see page 3-11)
g, = acceleration due to gravity = 9.806 65 m/sec2
H = head in meters of liquid-m
HI = friction loss in meters of liquid-m
h, = velocity head in meters-m
k
= kinematic viscosity-centistokes = 0.000 001 m2/sec kPa = pressure - kilopascals
L = length of pipe-meters-m
P = power for pumping-kilowatts-kW
Q = flow-m"/sec
q = flow-liters per minute-Llmin
R = Reynolds number
sp gr = density -kg/L - kgldm"g/cm3
V = velocity of flow-mlsec
v = kinematic viscosity-mLlsec = 1,000,000 centistokes

INDEX
/
-
SECTION X
-
-
-
1
INGERSOLLRAND-

INGERSOLLRAND CAMERON HYDRAULIC DATA
*General lndex (A to 2) *General lndex (A to 2)-(Continued)
Page
Absolute (dynamic) viscosity-conversion tables ....... 4-25 to 4-28
Absolute (dynamic) viscosity to SSU (Saybolt Seconds
Universal)-conversion tables ...................... 4-25 to 4-28
Acce!eration head- reciprocating pumps ................... 1-18
Acids-pump fittings for ............................... 8-22
-sp gr and viscosity of ............................. 4-37
Affinity laws ........................................ 1-30
Altitudes. barometric readings and atmospheric pressure ....... 8-4
API to specify gravity conversion tables ................... 4-6
Aqueous solutions- specific gravity ................... 4-17
Areas of circle. of plane and solid figures-formulas ........... 9-4
Atmospheric pressures altitudes and barometric reading ........ 8-4
Automobile crankcase oils-viscosity of .................... 4-28
............ Ballings-table of degrees (for sugar solutions) 4-13
Barometers. mercurial-corrections for ..................... 8-7
Barometric readings. atmospheric pressures and altitude ....... 8-4
Barrels-capacity of. for various liquids .................. 2.4. 2-6
Baume to specific gravity conversion tables .................. 4-12
Boiler. feeding requirements .............................. 5-42
Boiling point of various liquids ........................... 4-37
Boiling point of water at altitudes ........................ 8-4
Bourdon gages. use of ................................. 8-17
Brake horsepower of a pump-formula for ................... 1-27
Brass tubing and pipe. friction losses in .................... 3-34
Brass tubing and pipe-weight and dimensions .......... 8-10
Brix- table of degrees (for sugar solution) ................ 4-13
Btu (British thermal units)-definition of .................. 5-4
Calcium chloride-properties of ......................... 4-10
Capacityhime units conversion tables ................... 2-6
Capillarity-correction for. in mercury tube .... ...... 8-7
Cast iron and steel pipe flanges and flange fittings ........... 7-2
Cast iron fittings-dimensions .................... 7-5 to 7-7
-weights ......................... 7-3 to 7-4
Cavitation-reciprocating pump component damage ..... 1.43. to 1-45
Caustic soda-properties of ......................... 4-11
Celsius to Fahrenheit conversion table .................. 9-11 to 9-13
Centrifugal pump horsepower .......................... 1-27
10-2 'Index of Liquidspages 10-11 to 10-15
C Page
Check values-friction losses in ........................... 3-114
Chemical liquids-pump fittings for ... ... 8-22
-sp gr and viscosity ................ 4-37
Circles-areas of -formula ........................... 9-4
Colebrook friction factor equations ........................ 3-4
Conductorselectricproperties of ...................... 6-12
Contractions in pipe-losses due to ............. ... 3.117. 3-118
Conversion of units-English ............................ 9-4
-general ........................ 9-14 to 9-27
-metric .......................... 9-5
Conversion tables ........ ..... . . 9-14to9-27
Copper tubing-friction losses through .................. 3-34
-weights and dimensions of ................ 8-10
Copper wire-data on ................................ 6-14
Curves-pump characteristic .............................. 1-29
-system ...................................... 1-31
Cylinders -volume of in gallons ........................... 8-1
Darcy-Weisback Friction formula ......................... 3-3
Decimal equivalents of fractions ......................... 8-3
Density of sugar solutions ............................... 4-13
Density of water .............................. 4-4
Differential gages. use of ................................ 8-19
Dilatant Liquid ..... ... . . ........ 1-16
Discharge head ................................... 1-8
Discharge over weirs ................................ 2.10. 2.11
Driver for pumps 1-45
Drums 2-4
Dry pit pumps-intakes for 1-25
............................... Efficiencies of motors 6-5
Efficiencies of steam turbines
.......................... 5-30
.......................... Electrical data (Section VI ) 6-2
Electrical formulas .............................. 6-3
Electric motors-efficiencies of ...... ... . . 6-5
.................... -motor characteristics 6-6
-torque of 6-4
..........................
-wiring for
.......................... 6-9
Engine drivers for pumps
Enlargements in pipe-losses due to 3.117. 3-118
Entrance losses for pipe 1.19. 3.116. 3-118
Index of Llqu~ds 10-11 to 10.15 . 10-3

INGERSOLLUAND CAMERON HYDRAULIC DATA
*General Index (A to Z)-(Continued)
E Page
Exit losses for pipe ..... .... .............. 3-116
............................ Equivalents of -flow 2.6, 2.7
-Head and pressure ....... ....... 2-5
-volume and weight equivalents ............ 2-4
Equivalents of weights and measures of water .............. 2-4
............... Fahrenheit to Celsius conversion table 9-11 to 9-13
Fanning formula ........................... 3-3
......................... Fittings. cast iron-dimensions 7-5 to 7-8
.......................... -weights 7-3 to 7-8
......................... Fittings. steel-dimensions 7.13. 7-14
................. Fittings for pumps handling various liquids 8-22
...................... Flanges. pipe - data on -iron 7-3 to 7-7
........................ -steel 7-8 to 7-15
.................... -ratings 7-16 to 7-22
............................... Flowformulas-metric 9-28
................................... Flow over weirs 2.10. 2.11
........................... Flow units conversion tables 2.6. 2-7
...................... Flow through orifices and nozzles 2.8. 2-9
Fractions -decimal equivalents of ........................ 8-3
Francis formula for flow over rectangular weirs .......... 2-10
................... Friction factor vs Reynolds No . curves 3-11
Friction head loss- sample calculation ..................... 3-9
Friction losses in pipe-general .......................... 3-3
................. Friction of water in steel and cast iron pipe 3-12
......................... Friction of water in smooth tubes 3-34
........................ Friction of viscous liquids in pipe 3-48
................. Friction of paper pulp stock in pipes 3-88
....................... Friction of paper stock in fittings 3-101
............................ Friction of steam in pipes 5-33
........................ Friction of steam in pipe fittings 5-39
........................... Friction of water in pipe 3-12
............ Friction of water in copper tubing and brass pipe 3-34
..................... Friction of water in pipe fittings 3-110
.............. Friction of water in smooth tubing . . 3-34
........................... Fuels oils-viscosity of 4-30
........... Gages and
U.tubes. use of ............ 8-16
........................ Gases. friction in pipes-formula 5-32
Page
Hardness scales-metals ........................... 8-15
.......................... -minerals 4-51
Hazen and Williams friction formula .................. 3-7
Head on pump -discharge ............................. 1-8
Head measurement with gages ..................... 8-16
............................. Head (pressure) equivalents 2-5
................................ Horsepower of a pump 1-27
Hydraulics (Section 1 ) ............................... 1-3
Hydrocarbons -- specific gravity ........................ 4-15
........................... -vapor pressure 4-20
-viscosity ............................. 4-37
-- ................... Hydrocarbon liquids NPSH corrections 1-16
Hygrometric chart ................................... 5-40
I
Impeller specific speeds ................... 1.19. 1-47
Inch-decimal and millimeter equivalents ................... 8-3
Intake design-for pumps ............................. 1-22
Irrigation table ..................................... 2-12
Kinematic viscosity conversions ...................... 4-25 to 4-28
....................... Liquids-See special Index 10-11 to 10-14
Liquids-discussion ................................. 1-3
... Liquids-friction in pipes ......................... 3-3
....................... Liquids. miscellaneous (Section IV) 4-2
Liquids-pump fittings for ..................... . . 8-22 to 8-28
Liquids-sp gr. viscosity and boiling points of ......... 4-37 to 4-46
Liquid types (Newtonian. Thixotropic. Dilatant) ............ 1-5
...... Mass density-definition
Materials for pumping various liquids
2-3 and 4-3
'Index of Llqulds pages 10-11 to 10-15
'Index of Llqulds pages 10-11 to 10-15

*General lndex (A to Z)-(Continued)
M Page
Measures -- English ......... ............... 9-4
-equivalents of water ......................... 2-4
-offlow .................................. 2.6, 2.7
-of head and pressure
. .
....... ..... 2-5
-metric .......................... 9-5
Mercurial barometers, corrections for ..................... 8-7
Mercury gages-measurement of head with .............. 8-18
Metals used in pumps to handle various liquids ............ 8-22
Mercury-specific weight ..... ........ .... 8-16
Metric conversion tables .............................. 9-6
Metric flow formulas .............................. 9-28
Millimeter equivalents of fractions of an inch ............. 8-3
Miners inch-equivalents for ...................... 2-6
Miscellaneous data (Section VIII) ............... 8-2
Mollier diagram for Steam .............................. 5-5
Moody friction factor chart .............................. 3-11
Motors. electric-efficiencies of ........................ 6-5
-characteristics ................ 6-6
-dimensions ......................... 6-18 to 6-28
-torque of ........................ 6-4
-wiring for ......................... 6-9
Motor oils. sp gr and viscosity of ......................... 4-37
Motor speed chart ................................. 6.16.6.17
Multiple pumps -intakes for ............................. 1-23
Net Positive Suction Head (NPSH) ...................... 1.11. 1.42
Net Positive Suction Head-Approximation Method ...... 1-42 to 1-45
Net Positive Suction Head corrections ...................... 1-16
Net Positive Suction Head-reciprocating pumps ....... 1.17 . 1-42
Newtonian Liquid .......................... .... 1-5
Nozzles - discharge of .............................. 2-9
Nozzles -flow formula .................................. 2-8
Oil-friction of in pipes .............................. 3-48
Oil. sp gr and temperature relations of .............. 4-14
Oil. turbine-viscosity 09 ......................... 4-29
Oil-viscosity and temperature relations of ............... 4-31
Oil-volume and temperature relations of ............. 4-36
Orifices -flow formula ........................... 2-8
'General lndex (A to Z)-(Continued)
P Page
Paper pulp stock-friction of in pipe and fittings
. . 3-88 to 3-103
-weights and volumes of
...... 3-103 to 3-110
............................ Parallel operation of pumps 1-32
Petroleum oils-friction of ~n pipes 3-48
-- sp gr and temperature relations of 4-14
-viscosity and temperature relations of ..... 4-31
-volume and temperature relations of .......... 4-36
Pipe. cast iron flanged-weight of ....................... 7-5
................ Pipe-entrance losses for . . 1-19 and 3-116
Pipe fittings-dimensions ............... 7-5 to 7-8
...................... -friction losses in 3-110
-weights of ....................... 7.3. to 7-4
Pipe flanges-data on ............................ 7-8 to 7-22
Pipe-friction of oil and other liquids ...................... 3-48
-friction of paper pulp stock in .................. 3-88
-friction of steam in .............................. 5-33
-friction of water (other liquids of same viscosity) in ..... 3-12
Pipe. steel-weights and dimensions .................... 7-8
........ Plastic pipe-friction in ............. 3-34
Plungers-displacement ................................. 8-13
Pressure conversion factors (and head) ............... 2-5
Properties of water .................................... 4-4
Psychrometric chart 5-40
Pump characteristic curves 1-29
Pump drivers ........................................ 1-45
Pump fittings for various liquids ...................... 8-22 to 8-28
....................... Pump head and pressure 1-9
Pump horsepower 1-27
Pump parallel and series operation 1-32
................... Pump performance with viscous liquids 4-45
....... Pump reciprocating performance ...... 1-35
Pump reciprocating pulsation analysis an- . 1-36 to 1-42
............. Pump system curves ....... 1-31
................ Pump system head calculations 1.9. 1-31 and 1-32
Pump specific speed charts .................... 1-49 to 1-52
Rankine cycle turbine efficiencies 5-30
Reciprocating pumps-performance 1-35
Rectangular weirs. flow over 2-10
Reynolds Number formulas 1 5. 2.16. 3-6 and 9-28
Roughness parameters for pipe
'Index of
Llqu~di page? 10-11 to 10 li
10-7

INGERSOLLRAND CAMERON HYDRAULIC DATA
*General Index (A to 2)-(Continued)
Page
v
Velocity of flow in pipe-formula ..................... 3-6
Vertical pumps-measurement of head ................. 8-20
Vertical wet pit pumps-intake design .................... 1-23
Viscosity
- general information
........................ 4-23
Viscosity of water ................................. 4-4
Viscosity conversions ..................... 4-25 to 4-28
........ Viscosity of -crankcase oils .......... 4-28
-turbine oils .......................... 4-29
-fuel oils ............................. 4-30
-petroleum oils ....................... 4-31
-miscellaneous liquids ................. 4-32,437
-refrigerant liquids ....................... 4-33
-sucrose solutions ....................... 4-34
Viscosity blending chart ............................ 4-35
Viscous liquids-pump performance with .................. 4-45
Volume equivalents ................................. 2-4
Volume of tanks .............. ....... .... 8-11. 8-12
Water-boiling point at altitudes ......................... 8-4
Water gages-measurement of head with .................. 8-17
Water data .................................... 4-4
Water gages and U-tubes, use of ....................... 8-16
Water hammer ................................. 1-34
Water - head conversion tables ........................ 4-4
Water friction in pipe ........................ 3-3, 3-12 to 3-48
Water -properties of ........................ 4-4
Weights of cast iron pipe ..................... 7-3
.... Weights of copper and brass tubing and pipe ..... 8-10
Weights-English equivalents ....................... 9-4
-metric equivalents .......... .......... 9-5
Weir -discharge from rectangular ................... 2-10
-discharge from triangular ................ 2-11
Weisbach-Darcy friction formula ....................... 3-3
Williams and Hazen formula for pipe friction ................ 3-'7
Wire, copper - data on .......................... 6-14
Work performed in pumping ....................... 1-27
'Indrx of Llquqds pages 10-11 to 10-15
INDEX OF LIQUIDS
Key Liquid Information Page No. s
1 Boiling points 4-37 to 4-46
2 Specific gravities 4-6 to 4-19 and 4-37 to 4-46
3
Vapor pressures 4-19 to 4-23
4
Viscosities 4-23 to 4-35 and 4-37 to 4-46
* Pump construction materials 8-22 to 8-28
Acetate
sol enta-*
Acetlc acld-1, 2, 4, '
Acetlc anhydride -*
Acetone-1. 2, 3, 4. '
Acids-*
Alcohol, allal-1, 2, 4, *
Alcohol, butyl-1, 2, 4, '
Alcohol, ethyl-1, 2, 3, 4, *
Alcohol, methyl-1, 2, 3, 4, '
Alcohol, propyl-1. 2. 4,
Alum-*
Alummum sulphate-2, 4, A
Ammonia, aqua-1, 2, 3, 4, '
Ammonium bicarbonate-*
I Ammonium chloride-"
Ammonium nitrate-*
I Ammonlum phosphate-*
Ammonium sulphate-"
Anlline-1, 2, 4, '
Amllne hydrochloride-,
Asphalt-2,
4, , Automotive olla-2, 4
Banum chloride-,
Barlum nltrate-"
,
Beer-2, 4, '
Beer uort-A
Beet julce-'
Beet pulp-"
Benzene-1,
2, 4,
*
Benz~ne-2. 4, '
Benzol-1 2. 4. '
Blchlonde of Hp-
Black Ilquor-*
Bleach -olutionb-*
Blood-"
Boiler feedwater-'
Bone oil-2, 4
Boric acid-2
Brine solutions-2,
4,
*
Brine, sea water-2, 4, "
Bromine-1, 2, 4
Butane-1, 2, 4, *
Calcium bisulfite-'+
Calcium chloride-4-9, 2, 4, "
Calcium chlorate-*
Calcium hypochlorite-"
Calcium mag chloride-"
Cane julce-A
Carbol~c acld-1, 2, 4
Carbon blsulfide-1, 2. 3, 4.
Carbon dloxlde-2. 3, 4
Carbonate of soda-*
Carbon
tetrachloride-1,
2. 3, 4, *
Castor 011-2. 4
Catsup-"
Caust~c potash-*
Caustic soda-4-10, 2, 4, '
Cellulose acetate- *
Chlna mood 011-2. 4
Chlorate of Ilme-"
Chlor~de of lime-"
Chlor~ne water-"
Chlorobenzene-'
Chloroform-1. 2. 4. '
Chrome alum-"
Coconut 011-2, 1, *
Condensate -"
Cod 011-2. 4
Copperas, .peen-*

CAMERON HYDRAULIC DATA
INDEX OF LIQUIDS
Key Liquid Information Page No.s
1 Boiling points 4-37 to 4-46
2
Specific gravities 4-6 to 4-19 and 4-37 to 4-46
3
Vapor pressures 4-19 to 4-23
4
Viscosities 4-23 to 4-35 and 4-37 to 4-46
* Pump construction materials 8-22 to 8-28
Copper am acetate--
Copper chloride-"
Copper
nltrate-"
Copper sulfate-*
Corn 011-2, 4
Corn starch sol-2, 4
Cotton seed 011-2, 4
Creosote-2,
4,
A
Cresol, meta-"
Crude 011-2, 4, "
Cyanide-'
Cyanogen-"
Decane-1, 2, 3, 4
Diethylene glycol-2. 4
Diethyl ether-1, 2, 4
Diesel fuel-2, 4. *
Diphenol-*
Enamel-'
Ethane-2. 3
Ethanol-'
Ether-2,
3
Ethyl acetate-1, 2, 3
Ethyl bromide-1, 2, 4
Ethylene-1, 2, 3
Ethylene bromide-1, 2, 4
Ethylene chloride-1,
2, 4,
Ethylene glycol-2, 4
Ferric chloride-
*
Ferric sulphate-*
Ferrous chloride-"
Ferrous
sulphate-"
Formaldehyde-"
Formic acid-2. 4
Freon-2.
3, 4
Fruit juices-'
Fuel oils-2, 4
Furfural-1, 2, 4, *
Gas oils-2, 4
Gasoline-2,
3, 4,
"
Glaubers salt-"
Glucose-2, 4, "
Glue-* Glue sizing-"
Glycerine-1, 2,
4,
*
Green liquor-"
Heal y qater-2
Heptane-1, 2, 3, 4, '
Hexane-1, 2, 3, 4
Honey-4
Hydrocarbons-2,
3
Hydrogen peroxide-"
Hjdrogen sulfide-'
Hydrosulfite of soda-'
Industrial lubl-icants-4
Ink-2, 4
Iso-butane-" 3
Iso-pentnne-2. 3
Insulating 011-4
Jet fuel-2. -1
Kaolin hlip-'
Kerosene-2. 4, '
Lard-2. 4, *
Lard oil-2. 4
Lead acetate-*
Lead, molten-*
Lime water-*
Linseed oil-2, 4
Liquor, pulp mill--*
Lithium chloride-*
Lye caustic-*
Magnesium chloride-"
Magnesium sulfate-*
Manganese chloride-*
Manganese sulfate-
*
Mash-*
Menhadden oil-2, 4
Mercuric chloride-*
Mercuric sulfate-
*
Mercurous sulfate-*
I Mercury-1, 2, 4, 7-26
Methyl acetate-1, 2,
4
Methyl chloride-2, 3, 4, *
Methyl iodide-1, 2, 4
Methylene
chloride-*
Milk-2, 4, *
Milk of lime-*
Mine water-"
Miscella--
Molasses-2, 4, '
(
Mustard -"
Naphtha- *
Naphthalene-1, 2, 4
Neatsfoot 011-2, 4
Nicotine sulfate-"
Nitre-"
Nitre cake-*
Nitre ethane-"
Nltrobenzene - 1, 2, 4
Nltro methane-"
Nonane-1, 2, 3, 4
Octane-1, 2, 3, 4
Oils-4,
*
Olive oil-1, 2,
4, "
Palm oil-2, 4, *
Parafin- *
I Peanut oil-2, 4
I
Pentane-2, 3, 4
Perhydrol-* Peroxide of hydrogen-*
Petrolatum-2,
4
Petroleum ether-2, 4, *
Petroleum oils-4, *
Phenol-1, 2, 3, 4, *
Pink liquor-"
Photo developer-*
Plating solutions
- *
Potash-* Potash alum-*
Potassium bichromate
-*
Potassium carbonate-*
Potassium
chlorate-*
Potassium chloride- *
Potassium cyanide-*
Potassium hydroxide-*
Potassium nitrate-*
Potassium sulfate-
*
Propane-2, 3, *
Propionic acid-1, 2, 4
Propylene-3
Propylene glycol-2,
4
Pyridine- *
Quenching oil-2, 4, *
Rapeseed oil-2, 4, *
Refrigerant liquids-2, 3, 4
Rhidolene-*
Rosin-"
Rosin oil-2, 4
Sal ammoniac-
*
Salt lake-*
Salt
water-*
Sesame seed oil-2. 4
Sewage-*
-
Shellac-*
S11ver nitrate-*
Slop-x
Soda ash-*
Sodium bicarbonate-
*
Sodium
hisulfate--
Sodium carbonate- *

INGERSOLLRAND CAMERON HYDRAULIC DATA
INDEX OF LIQUIDS
Key Liquid Information Page No.s
1 Boiling points 4-37 to 4-46
2 Specific gravities 4-6 to 4-19
and 4-37 to 4-46
3 Vapor pressures 4-19 to 4-23
4 Viscosities 4-23 to 4-35 and 4-37 to 4-46
*
Pump construction materials 8-22 to 8-28
Sodium chlorate-*
Sodium chloride-4-9, 2,
4, *
Sodium cyanide
- *
Sodium hydroxide-2, 4, *
Sodium hydrosulfite -*
Sodium hypochlorite-*
Sodium hyposulfite-*
Sodium meta silicate-*
Sodium nitrate-"
Sodium phosphate
-*
Sodium
plumbite-"
Sodium sulfate -*
Sodium sulfide - *
Sodium sulfite - *
Sodium thiosulfate - *
Soya bean oil-2, 4, *
Sperm oil-2, 4
Stannic chloride- *
Stannous chloride-*
Starch
- *
Strontium nitrate- *
Sugar solutions, 4-12, 2, 4,
*
Sulfite liquor-"
Sulfur-1, "
Sulfur chloride-*
Sulfur dioxide-2,
3, 4
Sulfuric acid-2, 4
Sulfurous acid-2, 3
Tallow-*
Tanning liquors-"
Tar-2,
4,
*
Tar & ammonia-"
Tetrachloride
of
tin-"
Tetraethyl of lead-"
Toluene-1, 2, 3, 4,
*
Trichloroethylene-"
Triethylene glycol-2, 4
Turbine oils -4
Turpentine-1,
2, 3, 4, *
Varnish-2, 4
*
Vegetable juice-"
Vinegar-
*
Vi
trio1 - *
Water, 4-3, 3
Water, boiler feed-"
Water, make up-*
Water, distilled-2, 4, *
Water, fresh-2, 4, *
Water, heavy -2
Water, mine--*
Water, salt & sea-2, 4, "
Whale oil-*
Whiskey - *
White liquor-"
White water-*
Wine--*
Wood pulp-stock -*'
Wood vinegar-*
wort *
Yeast-"
Zinc chloride-*
Zinc sulfate-*
Tags