LÓGICA O QUE É A LÓGICA ? A Lógica é a parte da Filosofia que estuda a argumentação . A Lógica fornece instrumentos úteis para a reflexão e para os debates filosóficos .
E o que é uma proposição? PROPOSIÇÕES Então, uma proposição é uma frase? É o pensamento (ou ideia) literalmente expresso por uma frase declarativa. Por exemplo, a frase « O céu é azul » expressa a proposição o céu é azul. Não. Não se deve confundir proposições com frases . Uma frase é uma entidade linguística, mas a proposição é mental. Quando alguém diz em voz alta «O céu é azul», a proposição não é os sons que ouvimos, mas o pensamento ou ideia que nos vem à mente ao ouvi-los. O céu é azul.
As proposições têm valor de verdade. As proposições são verdadeiras ou falsas, ou seja, têm valor de verdade . PROPOSIÇÕES: VALOR DE VERDADE Valor de verdade Verdadeiro Falso Proposições
Apenas as declarativas. QUAIS AS FRASES QUE EXPRESSAM PROPOSIÇÕES? As frases não declarativas (perguntas, ordens, exclamações, etc.) não expressam proposições, pois não têm valor de verdade (não são verdadeiras nem falsas). Exemplos de frases não declarativas: Queres ir jantar fora? Ufa! Vai limpar o quarto! Desejo ser alto.
Duas frases declarativas diferentes mas a proposição que expressam é a mesma Frases declarativas diferentes podem expressar a mesma proposição. PROPOSIÇÕES: FRASES DECLARATIVAS A diferença entre frase e proposição torna-se mais clara se considerarmos o facto de frases declarativas diferentes poderem expressar a mesma proposição . O rio Minho desagua em Caminha. A foz do rio Minho é em Caminha. Por exemplo:
FRASES AMBÍGUAS A ambiguidade ajuda a perceber que as frases e as proposições são coisas diferentes. Quando uma frase é ambígua , pode expressar proposições diferentes . Existem áreas em que a ambiguidade pode ser valorizada, como na poesia, mas na Filosofia as ambiguidades devem ser evitadas para que o discurso seja o mais claro possível . O João pode estar a carregar uma bateria (instrumento musical) para ir tocar num concerto... O João está a carregar uma bateria . … também pode estar a carregar a bateria do seu automóvel , que ficou com as luzes ligadas toda a noite.
PROPOSIÇÕES CATEGÓRICAS Há diversos tipos de proposições, mas vamos distinguir dois grupos: as proposições categóricas ; e as proposições formadas usando conetivas proposicionais : não , e , ou , se … então , se e só se . Proposições categóricas As proposições categóricas são aquelas em que se afirma ou nega um predicado de um sujeito . Podem incluir quantificadores (palavras como todos , nenhum e alguns , que indicam a quantidade de elementos da classe referida). Todos os seres humanos são ambiciosos . QUANTIFICADOR SUJEITO PREDICADO Um quantificador indica a quantidade de elementos de uma classe referidos numa proposição .
Título do projeto inserir aqui Quanto à quantidade , podem ser: universais ; particulares; ou singulares . Quantidade Universais Particulares Singulares Quanto à qualidade , as proposições categóricas podem ser: afirmativas; ou negativas . Qualidade Afirmativas Negativas PROPOSIÇÕES CATEGÓRICAS
Título do projeto inserir aqui Combinando a quantidade e a qualidade obtêm-se seis tipos de proposições. Proposições categóricas Tipo de proposição Exemplos Forma lógica Universal afirmativa (A) Todas as desigualdades são justas. Todos os pássaros têm duas patas. • Todo o S é P. Universal negativa (E) Nenhuma desigualdade é justa. Nenhum pássaro fala português. • Nenhum S é P. Particular afirmativa (I) Algumas desigualdades são justas. Algumas flores cheiram mal. • Algum S é P. Particular negativa (O) Algumas desigualdades não são justas. Alguns automóveis não são barulhentos. • Algum S não é P. Singular afirmativa Sócrates era filósofo. A ilha da Madeira é muito florida. • S é P. Singular negativa Sócrates não era cético. Aquela cadeira não é de plástico. • S não é P. TIPOS DE PROPOSIÇÕES CATEGÓRICAS
Utiliza-se a linguagem natural. Expressam-se as proposições de uma forma clara e explícita. Exemplo: Todas as árvores são vegetais. Utiliza-se uma linguagem simbólica. A proposição é expressa utilizando um determinado conjunto de símbolos lógicos (por exemplo: S, P…). Exemplo: Todo o S é P. PROPOSIÇÕES: FORMA LÓGICA E FORMA CANÓNICA PROPOSIÇÃO REPRESENTAÇÃO NA FORMA CANÓNICA REPRESENTAÇÃO NA FORMA LÓGICA A forma lógica das proposições (e dos argumentos, como veremos) é a sua estrutura, o modo como as suas partes estão relacionadas. Para encontrar a forma lógica de uma dada proposição devemos abstrair-nos do seu conteúdo e representar as partes relevantes por símbolos. A forma canónica é a maneira padrão de exprimir uma proposição: é a forma mais explícita de o fazer, ocorrendo na linguagem natural (no nosso caso, em português).
A NEGAÇÃO DE PROPOSIÇÕES CATEGÓRICAS Num debate existe frequentemente a necessidade de negar ideias. Contudo, nem sempre é óbvia a correta negação de algumas proposições. A negação é uma operação lógica que inverte o valor de verdade da proposição negada: Sócrates era grego. PROPOSIÇÃO VERDADEIRA Sócrates não era grego. PROPOSIÇÃO FALSA se essa proposição é verdadeira , a sua negação é falsa ; se essa proposição é falsa , a sua negação é verdadeira . Kant era alemão. PROPOSIÇÃO VERDADEIRA Kant não era alemão. PROPOSIÇÃO FALSA
Título do projeto inserir aqui A NEGAÇÃO DE PROPOSIÇÕES CATEGÓRICAS Para negar corretamente proposições singulares basta recorrer ao « não » ou a expressões equivalentes, como « não é verdade » ou « é falso ». Proposição inicial Exemplo Valor de verdade Negação Exemplos Valor de verdade Singular afirmativa John Rawls era norte-americano. V Singular negativa John Rawls não era norte- americano . Não é verdade que John Rawls era norte- americano . É falso que John Rawls era norte- americano . F Singular negativa Kant não era alemão. F Singular afirmativa Kant era alemão. Não é verdade que Kant não era alemão. É falso que Kant não era alemão. V Em resumo : para negar uma proposição singular basta alterar a qualidade da proposição , pois esse procedimento é suficiente para o valor de verdade se inverter.
Título do projeto inserir aqui A NEGAÇÃO DE PROPOSIÇÕES CATEGÓRICAS Já no caso das proposições universais e particulares, a negação implica mudar tanto a quantidade como a qualidade da proposição inicial. Só assim se garante que o valor de verdade da proposição é invertido pela negação . Tipo de proposição Proposição inicial Valor de verdade Negação Tipo da proposição obtida com a negação Valor de verdade Universal afirmativa (A) Todas as cobras são répteis. V Algumas cobras não são répteis. Particular negativa (O) F Universal negativa (E) Nenhuma mulher mede 3 metros. V Algumas mulheres medem 3 metros. Particular afirmativa (I) F Particular afirmativa (I) Alguns artistas são couves. F Nenhum artista é uma couve. Universal negativa (E) V Particular negativa (O) Alguns atletas não são mamíferos. F Todos os atletas são mamíferos. Universal afirmativa (A) V Como se pode observar nos exemplos apresentados, o valor de verdade da proposição inicial é invertido pela negação . Quando uma negação é corretamente efetuada, a proposição inicial e a sua negação não podem ser simultaneamente verdadeiras nem simultaneamente fal sas .
O QUADRADO DA OPOSIÇÃO O quadrado da oposição baseia-se na análise que Aristóteles fez das proposições A, E, I e O, apresentando-nos as relações lógicas que existem entre elas. Ajuda-nos a perceber a negação das proposições universais e particulares. A E I O contrariedade subcontrariedade subalternidade subalternidade contraditoriedade contraditoriedade No quadrado da oposição está também representada uma relação lógica que não estudaremos, dado que não contribui diretamente para compreender a negação. Chama-se subalternidade e é indicada pelas setas laterais que ligam as proposições A e I e E e O.
Título do projeto inserir aqui O QUADRADO DA OPOSIÇÃO Vejamos as seguintes relações lógicas. Tipo de relação lógica Descrição da relação lógica Consequência da relação lógica Contraditoriedade Se duas proposições são contraditórias, não podem ter o mesmo valor de verdade: se uma é verdadeira, a outra é falsa, e vice-versa. As proposições contraditórias são a negação uma da outra. Contrariedade Se duas proposições são contrárias, não podem ser ambas verdadeiras: podem ser ambas falsas ou uma verdadeira e outra falsa. As proposições contrárias não são a negação uma da outra (pois existe a possibilidade de serem ambas falsas). Subcontrariedade Se duas proposições são subcontrárias, não podem ser ambas falsas: podem ser ambas verdadeiras ou uma verdadeira e outra falsa. As proposições subcontrárias não são a negação uma da outra (pois existe a possibilidade de serem ambas verdadeiras).
contraditoriedade contraditoriedade O QUADRADO DA OPOSIÇÃO Vejamos a relação de contraditoriedade . Todos os seres humanos são mamíferos . Nenhum ser humano é mamífero. Alguns seres humanos são mamíferos. Alguns seres humanos não são mamíferos. contraditoriedade contraditoriedade A E I O contrariedade subcontrariedade subalternidade subalternidade
contraditoriedade contraditoriedade O QUADRADO DA OPOSIÇÃO Vejamos a relação de contrariedade . Todos os seres humanos são mamíferos . Nenhum ser humano é mamífero. A E I O contrariedade subcontrariedade subalternidade subalternidade contrariedade
contraditoriedade contraditoriedade O QUADRADO DA OPOSIÇÃO Vejamos a relação de subcontrariedade . A E I O contrariedade subcontrariedade subalternidade subalternidade Alguns seres humanos são mamíferos. Alguns seres humanos não são mamíferos. subcontrariedade
contraditoriedade contraditoriedade O QUADRADO DA OPOSIÇÃO A E I O contrariedade subcontrariedade subalternidade subalternidade Alguns seres humanos são mamíferos. Alguns seres humanos não são mamíferos. Todos os seres humanos são mamíferos . Nenhum ser humano é mamífero.
contraditoriedade contraditoriedade O QUADRADO DA OPOSIÇÃO A E I O contrariedade subcontrariedade subalternidade subalternidade Alguns seres humanos são mamíferos. Alguns seres humanos não são mamíferos. Todos os seres humanos são mamíferos . Nenhum ser humano é mamífero. A relação de subalternidade não é reciproca – deste modo, a verdade da Universal garante a verdade da particular. Mas a verdade da singular não garante a verdade da universal.
contraditoriedade contraditoriedade O QUADRADO DA OPOSIÇÃO A E I O contrariedade subcontrariedade subalternidade subalternidade Alguns seres humanos são mulheres. Alguns seres humanos não são mulheres. Todos os seres humanos são mulheres . Nenhum ser humano é mulher A relação de subalternidade não é reciproca – deste modo, a falsidade da Universal não garante a falsidade da particular. Mas a falsidade da singular garante a falsidade da universal.