CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS
carloxio
10,049 views
20 slides
Sep 08, 2013
Slide 1 of 20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
About This Presentation
Challenge questions to prepare you for CAPE exam
Size: 350.86 KB
Language: en
Added: Sep 08, 2013
Slides: 20 pages
Slide Content
CAPE Pure Mathematics Unit 2
Practice Questions
By Carlon R.Baird
MODULE 1: COMPLEX NUMBERS AND CALCULUS II
1. (a) Use de Moivre’s theorem to prove the trigonometric identity:
7 5 3
cos7 64cos 112cos 56cos 7cos
(b) Use de Moivre’s theorem to evaluate
8
1i
(c) Express
2
cos3 sin3
cos sin
q i q
q i q
in the form cos sinkq i kq where k is an integer to be
determined.
2. If | 6| 2| 6 9 |z z i ,
(a) Use an algebraic method to show that the locus of z is a circle, stating its centre and its
radius.
(b) Sketch the locus of z on an Argand diagram.
3. Find dy
dx in terms of x and y where 3 3 2
3 6 4x x y y x
4. (a) Find the derivative of the function
12ln( )
( ) cot( ) sin( )cos( ) cos ( ) 9
ln(2 )
x
h x x x x x x
x
(b) The curve C has equation 2
cos( )
x
y e x
i. Show that the stationary points on C occur when tan( ) 2x
ii. Find an equation of the tangent to C at the point where x=0
5. (a) Given that8
( , , ) 4 cos( ) sin(4 ) tan 0
z
f x y z xyz xy x e xz y
i. Determine x
f ,y
f ,z
f
ii. Determine xy
f , yx
f ,yz
f
(b) Given that 24
2 4 18
x
p xv v x
v
i. Determine p
v
and p
x
ii. Determine 2
p
xv
and 2
p
vx
6. (a) Integrate with respect to x
i. 2
10
1
x
x
ii. 2
15
1
x
x
iii. 2
28
1
x
x
(b) (i) Express the function 4 3 2
32
4 9 17 12
()
44
x x x x
hx
x x x
as partial fractions
(ii) Hence, evaluate 4
4 3 2
32
3
4 9 17 12
44
x x x x
dx
x x x
(c) Determine 1
2
1
tan
1
x dx
x
7. Using the substitution secx ,find 2
2
11
1
x
dx
xxx
8. (a) Show that 43
1 (1 )x x x
(b) Given that 1
3
0
(1 )
n
n
I x x dx
, show that 1
3
32
nn
n
II
n
(c) Use your reduction formula to evaluate 4
I .
9. Given that sin(2 1)
sin( )
m
mx
J dx
x
,
(a) Show that 1
sin2
mm
mx
JJ
m
(b) Hence find 5
J .
10. Use the trapezium rule using 4 strips to estimate 3
0
1 tan( ) x dx
giving your answer to
3 significant figures.
By Carlon R. Baird
1. (a) First let’s consider 7
(cos sin )i
Now, by de Moivre’s theorem
7
7
(cos sin ) cos7 sin7
cos7 sin7 (cos sin )
Using binomial expansion:
ii
ii
7 7 6 7 5 2 7 4 3
1 2 3
7 3 4 7 2 5 7 6 7
4 5 6
7 6 5 2 2 4 3 3
cos7 sin7 cos (cos )( sin ) (cos )( sin ) (cos )( sin )
(cos )( sin ) (cos )( sin ) (cos )( sin ) ( sin )
cos 7(cos )( sin ) 21(cos )( sin ) 35(cos )( sin )
i C i C i C i
C i C i C i i
i i i
3 4 4 2 5 5 6 6 7 7
7 6 5 2 4 3
3 4 2 5 6 7
35(cos )( sin ) 21(cos )( sin ) 7(cos )( sin ) sin
cos 7cos sin 21cos sin 35cos sin
35cos sin 21cos sin 7cos sin sin
i i i i
ii
ii
Now equating real parts: 7 5 2 3 4 6
7 5 2 3 2 2 2 3
7 5 7 3 2 4
3 3 0 3 2 3 1
0 1 2
cos7 cos 21cos sin 35cos sin 7cos sin
cos 21cos (1 cos ) 35cos (1 cos ) 7cos (1 cos )
cos 21cos 21cos 35cos 1 2cos cos
7cos (1) ( cos ) (1) ( cos ) (1) ( cC C C
2 3 0 3
3
7 5 7 3 5 7
2 4 6
7 5 7 3 5 7 3
57
7 7 7
os ) (1) ( cos )
cos 21cos 21cos 35cos 70cos 35cos
7cos 1 3cos 3cos cos
cos 21cos 21cos 35cos 70cos 35cos 7cos 21cos
21cos 7cos
cos 21cos 35cos
C
7 5 5 5 3
3
7cos 21cos 70cos 21cos 35cos
21cos 7cos
7 5 3
cos7 64cos 112cos 56cos 7cos
2
(cos3 sin3 )
cos(6 ) sin(6 )
cos sin
cos7 sin7
q i q
q q i q q
q i q
q i q
(b)
8
22
1
Let ( 1 )
Let 1
( 1) (1) 2
tan 1
tan (1)
4
zi
pi
rp
arg
4
3
4
p
8
8
8
Rewriting in polar form: (cos sin )
33
2 cos( ) sin( )
44
33
2 cos( ) sin( )
44
Now applying de Moivre's theorem:
33
( 2) (cos(8 ) sin(8 ))
44
24 24
16(cos( ) sin( )
44
p p r i
pi
zp
zi
zi
zi
)
16(cos(6 ) sin(6 ))
16(1 (0))
16.
zi
zi
z
(c)
2
(cos3 sin3 ) cos(2(3) ) sin(2(3) )
cos sin cos( ) sin( )
cos6 sin6
cos( ) sin( )
q i q q i q
q i q q i q
q i q
q i q
Recall that 11
1 2 1 2
22
(cos( ) sin( ))
zr
i
zr
α
Im z
Re z
arg p
1
1
Recall that cos( ) cos
and sin( ) sin( )
C(-10,12)
O
12
-10
y
x 7k
2. (a) 2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
22
6 2 6 9
6 2 6 9
( 6) 2 ( 6) ( 9)
( 6) 2 ( 6) ( 9)
( 6) 4 ( 6) ( 9)
12 36 4 12 36 18 81
12 36 4 48 144 4 72 324
3 60 3 72 432 0
ou
z z i
x iy x iy i
x iy x y i
x y x y
x y x y
x x y x x y y
x x y x x y y
x x y y
22
22
22
t by 3
20 24 144 0
By completing the square
( 10) 100 ( 12) 144 144 0
( 10) ( 12) 100
The locus of z is a circle with radius 10 and centre (-10,12)
x x y y
xy
xy
33
x x y y x
d dy dy
x y x
dx dx dx
dy
y x x
dx
dy x x
dx y
4. (a)
12
12
2
22
ln( )
( ) cot( ) sin( )cos( ) cos ( ) 9
ln(2 )
ln( ) 1
( ) sin( )cos( ) cos ( ) 9
ln(2 ) tan( )
12
ln(2 ) ln( )
tan( ) 0 1 sec
2
'( )
(ln(2 )) tan
(cos )(cos ) (sin )(
x
h x x x x x x
x
x
h x x x x x
xx
xx
xx
xx
hx
xx
x x x
2
2
22
22
2
2
22
22
2
2
22
22
2
1
sin ) 18
1
1
(ln(2 ) ln( ))
sec 1
'( ) cos sin 18
ln (2 ) tan 1
2
ln( )
sec 1
= cos sin 18
ln (2 ) tan 1
ln(2) sec 1
'( ) = cos sin 18
ln (2 ) tan 1
xx
x
xx
x
x
h x x x x
xx x
x
xx
x x x
x x x x
x
h x x x x
x x x x
xx
xx
x
x
x
dy
x e e x
dx
e x e x
e x x
dy
dx
e x x
e x x
xx
xx
sin( )
2=
cos( )
tan( ) 2
x
x
x
ii) When0x ,2(0)
cos(0) 1ye
We have co-ordinates (0,1)
2(0)
0
11
2cos(0) sin(0) 2
Gradient of tangent at x=0 is 2
So equation of tangent : ( )
1 2( 0)
2 1
x
dy
e
dx
y y m x x
yx
yx
5. (a) 8
( , , ) 4 cos( ) sin(4 ) tan( )
z
f x y z xyz xy x e xz y
i)
8
8
4 (cos )( ) ( )( sin( )) (sin(4 )(0) ( )(4 cos(4 )) 0
4 cos( ) sin( ) 4 cos(4 ).
z
x
z
f yz x y xy x xz e z xz
yz y x xy x ze xz
2
2
4 [( )(0) (cos )( )] 0 sec
4 cos( ) sec
y
f xz xy x x y
xz x x y
88
88
8
4 0 [ 4 cos(4 ) (sin(4 )(8 )] 0
4 4 cos(4 ) 8 sin(4 )
4 4 ( cos(4 ) sin(4 ))
zz
z
zz
z
f xy e x xz xz e
xy xe xz e xz
xy e x xz xz
ii)
4 [ ][ sin( )] [cos( )][1] 0
4 sin( ) cos( )
xy
f z x x x
z x x x
4 cos( ) ( )(0) (sin( ))( ) 0
4 cos( ) sin( )
yx
f z x xy x x
z x x x
4 0 0
4
yx
fx
x
(b) 24
2 4 18
x
p xv v x
v
i)
2
2
2 2 4 0
4
22
p
xv xv
v
x
xv
v
23
23
4
0 72
4
72
p
vx
xv
vx
v
ii)
2
2
2
4
20
4
2
p
v
x v v
v
v
2
2
2
2 4 0
4
2
p
vv
vx
v
v
6 (a) i)
22
2
10 2
5
11
=5ln 1
xx
dx dx
xx
xc
ii) 1
22
2
15
15 (1 )
1
x
dx x x dx
x
Recall that if some function 1
22
( ) (1 )f x x
1
22
1
22
1
'( ) (2 )(1 )
2
'( ) (1 )
f x x x
f x x x
So
11
2222
1
22
15 (1 ) 15 (1 )
15(1 )
x x dx x x dx
xC
iii) 2 2 2
2 8 2 8
1 1 1
xx
dx dx dx
x x x
22
12
12
24
11
2tan ( ) 4ln 1
x
dx dx
xx
x x C
(b) i) 4 3 2
32
4 9 17 12
()
44
x x x x
hx
x x x
This algebraic fraction is improper so we shall use algebraic long division:
3 2 4 3 2
4 3 2
2
4 4 4 9 17 12
4 4 0
5 17 12
x
x x x x x x x
x x x
xx
2
32
5 17 12
()
44
xx
h x x
x x x
2
2
2
2
5 17 12
( 4 4)
5 17 12
( 2)
xx
x
x x x
xx
x
xx
Let 2
2
5 17 12
()
( 2)
xx
qx
xx
2
2 ( 2)
A B C
x x x
Multiplying out both sides by 2
( 2)xx gives
2
5 17 12xx 2
( 2) ( 2)A x Bx x Cx
22
Let 0;
5(0) 17(0) 12 (0 2)
4 12
3
x
A
A
A
2
2 2 2
Comparing terms:
5
5
3 5
2
x
Ax Bx x
AB
B
B
Comparing terms:
17 4 2
17 4 2
17 4(3) 2(2)
17 12 4
C= 17 16 1
x
x Ax Bx Cx
A B C
C
C
2
3 2 1
()
2 ( 2)
qx
x x x
So ( ) ( )h x x q x
2
3 2 1
()
2 ( 2)
h x x
x x x
ii) Hence, 44
4 3 2
3 2 2
33
4 9 17 12 3 2 1
4 4 2 ( 2)
x x x x
dx x dx
x x x x x x
(c) 11
22
11
tan ( ) tan ( )
11
x dx x dx dx
xx
11
tan ( ) tan ( )x dx x
Let 1
tan ( )I x dx
1
(1)(tan ( ))x dx
Let 1
tan and 1
dv
ux
dx
2
1
1
du
dx x
vx
Using integration by parts:
1
2
1
2
1
2
12
1
tan ( ) ( )( )
1
tan ( )
1
12
tan ( )
21
1
tan ( ) ln |1 |
2
I x x x dx
x
x
x x dx
x
x
x x dx
x
x x x
1 1 2 1
2
11
tan ( ) tan ( ) ln |1 | tan ( )
12
x dx x x x x C
x
7. 2
2
11
1
x
dx
xxx
Using the substitution 1
sec
cos
x
2
2
[cos ][0] [1][ sin ]
cos
sin
cos
sin 1
cos cos
dx
d
tan sec
tan sec
dx
d
dx d
22
22
1 1 1 sec 1
tan sec
sec1 sec sec 1
1
sec
x
dx d
xxx
2
2
1
tan tan sec
tan
2
1
tan tan
tan
1 tan
tan
d
d
tan
2
2
1 tan
sec
tan
d
d
d
C
Remember in the question that 1
sec
cos
x
1
cos
adj
x hyp
Now let’s apply a little bit of trigonometry:
θ
x
1
A
B
C
By Pythagoras’s theorem:
2 2 2
22
2
1
AB BC AC
BC AB AC
BC x
So 2
Opp 1
tan
Adj 1
BC x
AC
Now we can replace 2
tan with 1x
2
2
2
11
1
1
x
dx x C
xxx
8 (a) R.T.S.
43
1 1 x x x
R.H.S.:
(b) 1
3
0
(1 )
n
n
I x x dx
Employing integration by parts:
Let 3
(1 ) and
n dv
u x x
dx
33
4
4
1 1 (1 )
x x x x x
x x x
x
3 1 2
2 3 1
(1 ) ( 3 )
3 (1 )
n
n
du
n x x
dx
nx x
and 2
2
x
v
1
122
1
3 2 3
0
0
1
4 3 1
0
1
3 3 1
0
11
3 1 3 3 1
00
1
(1 ) 3 1
22
3
0 (1 )
2
Using the identity in
3
1 (1 ) (1 )
2
33
(1 ) (1 ) (1 )
22
33
2
n
n
n
n
n
n
n
nn
n
nn
xx
I x nx x dx
n
I x x dx
n
I x x x dx
nn
I x x dx x x x dx
nn
II
1
3
0
1
1
1
1
1
(1 )
2
33
22
33
22
23 3
22
(2 3 ) 3
3
32
n
n n n
n n n
nn
n
nn
nn
x x dx
nn
I I I
nn
I I I
I nI n
I
n I nI
n
II
n
(c)
1
30
0
0
1
0
1
2
0
(1 )
(1)
2
1
0
2
1
2
I x x dx
x dx
x
4
12 9 6 3 1 243
sin( )
42
2cos sin
22
=
sin( )
2cos 2 sin( )
=
mm
m m x m m x
J J dx
x
mx x
dx
x
mx x
sin( )x
=2 cos(2 )
= 2
dx
mx dx
1
2
sin(2 )
sin(2 )
=
mx
m
mx
m
1
sin (2( 1) 1)sin((2 1) )
sin( ) sin( )
sin((2 1) ) sin((2 2 1) )
sin( ) sin( )
sin((2 1) ) sin((2 1) )
sin( ) sin( )
sin((2 1) ) sin((2 1) )
sin( )
mm
mxmx
J J dx
xx
m x m x
dx
xx
m x m x
dx
xx
m x m x
dx
x
(b)
0
sin(2(0) 1)
sin( )
1
x
J dx
x
dx
x
5
sin(10 ) sin(8 ) sin(6 ) sin(4 ) sin(2 )
5 4 3 2 1
x x x x x
J x C
10. 3
0
1 tan( ) x dx
0
3
width of strips= where n is the number o f strips
4 12
ba
h
n
x 0 12
6
4
3
y 1 1.126032 1.25593 1.41421 1.65289
Using the trapezium rule: 3
0
1
1 tan( ) (width of strips)(1 height+2(sum of all middle heights)+last height)
2
st
x dx
1
54
3
2
1
0
sin(2 )
sin(2(5))
5
sin 2(4)sin(10 )
54
sin(10 ) sin(8 ) sin(2(3) )
5 4 3
sin(10 ) sin(8 ) sin(6 ) sin(2(2) )
5 4 3 2
sin(10 ) sin(8 ) sin(6 ) sin(4 ) sin(2(1) )
5 4 3 2 1
sin(10 ) sin
5
mm
mx
JJ
m
x
JJ
xx
J
x x x
J
x x x x
J
x x x x x
J
x
0
(8 ) sin(6 ) sin(4 ) sin(2 )
4 3 2 1
x x x x
J