CAPE PURE MATHEMATICS UNIT 2 MODULE 1 PRACTICE QUESTIONS

carloxio 10,049 views 20 slides Sep 08, 2013
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Challenge questions to prepare you for CAPE exam


Slide Content

CAPE Pure Mathematics Unit 2
Practice Questions
By Carlon R.Baird
MODULE 1: COMPLEX NUMBERS AND CALCULUS II

1. (a) Use de Moivre’s theorem to prove the trigonometric identity:
7 5 3
cos7 64cos 112cos 56cos 7cos       

(b) Use de Moivre’s theorem to evaluate  
8
1i
(c) Express  
2
cos3 sin3
cos sin
q i q
q i q

 in the form cos sinkq i kq where k is an integer to be
determined.

2. If | 6| 2| 6 9 |z z i    ,
(a) Use an algebraic method to show that the locus of z is a circle, stating its centre and its
radius.
(b) Sketch the locus of z on an Argand diagram.

3. Find dy
dx in terms of x and y where 3 3 2
3 6 4x x y y x    
4. (a) Find the derivative of the function
12ln( )
( ) cot( ) sin( )cos( ) cos ( ) 9
ln(2 )
x
h x x x x x x
x

    
(b) The curve C has equation 2
cos( )
x
y e x
i. Show that the stationary points on C occur when tan( ) 2x
ii. Find an equation of the tangent to C at the point where x=0

5. (a) Given that8
( , , ) 4 cos( ) sin(4 ) tan 0
z
f x y z xyz xy x e xz y    
i. Determine x
f ,y
f ,z
f
ii. Determine xy
f , yx
f ,yz
f
(b) Given that 24
2 4 18
x
p xv v x
v
   

i. Determine p
v

 and p
x


ii. Determine 2
p
xv

 and 2
p
vx


6. (a) Integrate with respect to x
i. 2
10
1
x
x
ii. 2
15
1
x
x
iii. 2
28
1
x
x


(b) (i) Express the function 4 3 2
32
4 9 17 12
()
44
x x x x
hx
x x x
   

 as partial fractions
(ii) Hence, evaluate 4
4 3 2
32
3
4 9 17 12
44
x x x x
dx
x x x
   

(c) Determine 1
2
1
tan
1
x dx
x



7. Using the substitution secx ,find 2
2
11
1
x
dx
xxx



8. (a) Show that 43
1 (1 )x x x  

(b) Given that 1
3
0
(1 )
n
n
I x x dx
 , show that 1
3
32
nn
n
II
n



(c) Use your reduction formula to evaluate 4
I .
9. Given that sin(2 1)
sin( )
m
mx
J dx
x


 ,
(a) Show that 1
sin2
mm
mx
JJ
m


(b) Hence find 5
J .

10. Use the trapezium rule using 4 strips to estimate 3
0
1 tan( ) x dx


 giving your answer to
3 significant figures.

By Carlon R. Baird

1. (a) First let’s consider 7
(cos sin )i
Now, by de Moivre’s theorem
7
7
(cos sin ) cos7 sin7
cos7 sin7 (cos sin )
Using binomial expansion:
ii
ii
   
   
  
    7 7 6 7 5 2 7 4 3
1 2 3
7 3 4 7 2 5 7 6 7
4 5 6
7 6 5 2 2 4 3 3
cos7 sin7 cos (cos )( sin ) (cos )( sin ) (cos )( sin )
(cos )( sin ) (cos )( sin ) (cos )( sin ) ( sin )
cos 7(cos )( sin ) 21(cos )( sin ) 35(cos )( sin )
i C i C i C i
C i C i C i i
i i i
        
      
      
    
   
   

3 4 4 2 5 5 6 6 7 7
7 6 5 2 4 3
3 4 2 5 6 7
35(cos )( sin ) 21(cos )( sin ) 7(cos )( sin ) sin
cos 7cos sin 21cos sin 35cos sin
35cos sin 21cos sin 7cos sin sin
i i i i
ii
ii
      
      
      
  
   
   
Now equating real parts: 7 5 2 3 4 6
7 5 2 3 2 2 2 3
7 5 7 3 2 4
3 3 0 3 2 3 1
0 1 2
cos7 cos 21cos sin 35cos sin 7cos sin
cos 21cos (1 cos ) 35cos (1 cos ) 7cos (1 cos )
cos 21cos 21cos 35cos 1 2cos cos
7cos (1) ( cos ) (1) ( cos ) (1) ( cC C C
       
      
     
  
   
      
     

     
2 3 0 3
3
7 5 7 3 5 7
2 4 6
7 5 7 3 5 7 3
57
7 7 7
os ) (1) ( cos )
cos 21cos 21cos 35cos 70cos 35cos
7cos 1 3cos 3cos cos
cos 21cos 21cos 35cos 70cos 35cos 7cos 21cos
21cos 7cos
cos 21cos 35cos
C
     
   
       

  
 

     
   

       

   
7 5 5 5 3
3
7cos 21cos 70cos 21cos 35cos
21cos 7cos
    

   
 7 5 3
cos7 64cos 112cos 56cos 7cos        

2
(cos3 sin3 )
cos(6 ) sin(6 )
cos sin
cos7 sin7
q i q
q q i q q
q i q
q i q

     

 (b)
8
22
1
Let ( 1 )
Let 1
( 1) (1) 2
tan 1
tan (1)
4
zi
pi
rp




  
  
    


arg
4
3
4
p



  


8
8
8
Rewriting in polar form: (cos sin )
33
2 cos( ) sin( )
44
33
2 cos( ) sin( )
44
Now applying de Moivre's theorem:
33
( 2) (cos(8 ) sin(8 ))
44
24 24
16(cos( ) sin( )
44
p p r i
pi
zp
zi
zi
zi







  




  


    
   )
16(cos(6 ) sin(6 ))
16(1 (0))
16.
zi
zi
z
  
  

(c)
2
(cos3 sin3 ) cos(2(3) ) sin(2(3) )
cos sin cos( ) sin( )
cos6 sin6
cos( ) sin( )
q i q q i q
q i q q i q
q i q
q i q


   


  
Recall that 11
1 2 1 2
22
(cos( ) sin( ))
zr
i
zr
      
 α
Im z
Re z
arg p
1
1
Recall that cos( ) cos
and sin( ) sin( )  

C(-10,12)
O
12
-10
y
x 7k
2. (a) 2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2
22
6 2 6 9
6 2 6 9
( 6) 2 ( 6) ( 9)
( 6) 2 ( 6) ( 9)
( 6) 4 ( 6) ( 9)
12 36 4 12 36 18 81
12 36 4 48 144 4 72 324
3 60 3 72 432 0
ou
z z i
x iy x iy i
x iy x y i
x y x y
x y x y
x x y x x y y
x x y x x y y
x x y y
   
     
     
     
     

        

        
    

22
22
22
t by 3
20 24 144 0
By completing the square
( 10) 100 ( 12) 144 144 0
( 10) ( 12) 100
The locus of z is a circle with radius 10 and centre (-10,12)
x x y y
xy
xy
     
       
    


(b)

3. 3 3 2
22
22
2
2
3 6 4
:3 1 3 3 8
(3 3) 8 1 3
8 1 3

33
x x y y x
d dy dy
x y x
dx dx dx
dy
y x x
dx
dy x x
dx y
    
   
   




4. (a)
  
 
12
12
2
22
ln( )
( ) cot( ) sin( )cos( ) cos ( ) 9
ln(2 )
ln( ) 1
( ) sin( )cos( ) cos ( ) 9
ln(2 ) tan( )
12
ln(2 ) ln( )
tan( ) 0 1 sec
2
'( )
(ln(2 )) tan
(cos )(cos ) (sin )(
x
h x x x x x x
x
x
h x x x x x
xx
xx
xx
xx
hx
xx
x x x


    
     
   

    
     

   
2
2
22
22
2
2
22
22
2
2
22
22
2
1
sin ) 18
1
1
(ln(2 ) ln( ))
sec 1
'( ) cos sin 18
ln (2 ) tan 1
2
ln( )
sec 1
= cos sin 18
ln (2 ) tan 1
ln(2) sec 1
'( ) = cos sin 18
ln (2 ) tan 1
xx
x
xx
x
x
h x x x x
xx x
x
xx
x x x
x x x x
x
h x x x x
x x x x



     

    

     

(b) i) 2
cos
x
y e x    
 
 
22
22
2
2
2
cos( ) 2 sin( )
=2 cos( ) sin( )
= 2cos( ) sin( )
At stationary pts. 0
2cos( ) sin( ) 0
0 and 2cos( ) sin( ) 0
2cos( ) sin( ) 0
2cos( ) sin( )

xx
xx
x
x
x
dy
x e e x
dx
e x e x
e x x
dy
dx
e x x
e x x
xx
xx
     
   



  
   


sin( )
2=
cos( )
tan( ) 2
x
x
x



ii) When0x ,2(0)
cos(0) 1ye
We have co-ordinates (0,1)
 
 
2(0)
0
11
2cos(0) sin(0) 2
Gradient of tangent at x=0 is 2
So equation of tangent : ( )
1 2( 0)
2 1
x
dy
e
dx
y y m x x
yx
yx

  

  
  


5. (a) 8
( , , ) 4 cos( ) sin(4 ) tan( )
z
f x y z xyz xy x e xz y   
i)
 
8
8
4 (cos )( ) ( )( sin( )) (sin(4 )(0) ( )(4 cos(4 )) 0
4 cos( ) sin( ) 4 cos(4 ).
z
x
z
f yz x y xy x xz e z xz
yz y x xy x ze xz
      

   
2
2
4 [( )(0) (cos )( )] 0 sec
4 cos( ) sec
y
f xz xy x x y
xz x x y
    
  

 
88
88
8
4 0 [ 4 cos(4 ) (sin(4 )(8 )] 0
4 4 cos(4 ) 8 sin(4 )
4 4 ( cos(4 ) sin(4 ))
zz
z
zz
z
f xy e x xz xz e
xy xe xz e xz
xy e x xz xz
    
  
  
ii)
4 [ ][ sin( )] [cos( )][1] 0
4 sin( ) cos( )
xy
f z x x x
z x x x
    
  
 4 cos( ) ( )(0) (sin( ))( ) 0
4 cos( ) sin( )
yx
f z x xy x x
z x x x
    
  
4 0 0
4
yx
fx
x
  


(b) 24
2 4 18
x
p xv v x
v
   
i)
2
2
2 2 4 0
4
22
p
xv xv
v
x
xv
v

   

  

23
23
4
0 72
4
72
p
vx
xv
vx
v

   

  

ii)
2
2
2
4
20
4
2
p
v
x v v
v
v

  


2
2
2
2 4 0
4
2
p
vv
vx
v
v

  


6 (a) i)
22
2
10 2
5
11
=5ln 1
xx
dx dx
xx
xc





ii) 1
22
2
15
15 (1 )
1
x
dx x x dx
x



Recall that if some function 1
22
( ) (1 )f x x
1
22
1
22
1
'( ) (2 )(1 )
2
'( ) (1 )
f x x x
f x x x


  
  
So
11
2222
1
22
15 (1 ) 15 (1 )
15(1 )
x x dx x x dx
xC

  
  


iii) 2 2 2
2 8 2 8
1 1 1
xx
dx dx dx
x x x


    
22
12
12
24
11
2tan ( ) 4ln 1
x
dx dx
xx
x x C



   


(b) i) 4 3 2
32
4 9 17 12
()
44
x x x x
hx
x x x
   


This algebraic fraction is improper so we shall use algebraic long division:
3 2 4 3 2
4 3 2
2
4 4 4 9 17 12
4 4 0
5 17 12
x
x x x x x x x
x x x
xx
     
  

2
32
5 17 12
()
44
xx
h x x
x x x

  

2
2
2
2
5 17 12
( 4 4)
5 17 12
( 2)
xx
x
x x x
xx
x
xx






Let 2
2
5 17 12
()
( 2)
xx
qx
xx


  2
2 ( 2)
A B C
x x x


Multiplying out both sides by 2
( 2)xx gives
2
5 17 12xx 2
( 2) ( 2)A x Bx x Cx     

22
Let 0;
5(0) 17(0) 12 (0 2)
4 12
3
x
A
A
A

   


2
2 2 2
Comparing terms:
5
5
3 5
2
x
Ax Bx x
AB
B
B

  
  

Comparing terms:
17 4 2
17 4 2
17 4(3) 2(2)
17 12 4
C= 17 16 1
x
x Ax Bx Cx
A B C
C
C
    
    
    
    
   
2
3 2 1
()
2 ( 2)
qx
x x x
   

So ( ) ( )h x x q x
2
3 2 1
()
2 ( 2)
h x x
x x x
   



ii) Hence, 44
4 3 2
3 2 2
33
4 9 17 12 3 2 1
4 4 2 ( 2)
x x x x
dx x dx
x x x x x x
   
   
   

4 4 4 4
2
3 3 3 3
11
3 2 ( 2)
( 2)
x dx dx dx x dx
xx

   
      
44
21
44
33
33
2 2 1 1
32
( 2)
3 ln 2 ln 2
21
4 3 (4 2) (3 2)
3 ln(4) ln(3) 2 ln(4 2) ln(3 2)
2 2 1 1
9 4 1
8 3 ln( ) 2ln(2)
2 3 2
7 4 1
ln( ) ln(2)
2 3 2
64
3 ln( 4)
27
25
3 ln(
xx
xx


    
        
      
   
    
          
   
   
   
    
   
   
   
  

6
)
27

(c) 11
22
11
tan ( ) tan ( )
11
x dx x dx dx
xx

  
  
11
tan ( ) tan ( )x dx x



Let 1
tan ( )I x dx



1
(1)(tan ( ))x dx



Let 1
tan and 1
dv
ux
dx


2
1
1
du
dx x

 vx
Using integration by parts:
 
1
2
1
2
1
2
12
1
tan ( ) ( )( )
1
tan ( )
1
12
tan ( )
21
1
tan ( ) ln |1 |
2
I x x x dx
x
x
x x dx
x
x
x x dx
x
x x x










  


1 1 2 1
2
11
tan ( ) tan ( ) ln |1 | tan ( )
12
x dx x x x x C
x
  
      


7. 2
2
11
1
x
dx
xxx



Using the substitution 1
sec
cos
x


2
2
[cos ][0] [1][ sin ]
cos
sin
cos
sin 1
cos cos
dx
d










tan sec
tan sec
dx
d
dx d


  


 
22
22
1 1 1 sec 1
tan sec
sec1 sec sec 1
1
sec
x
dx d
xxx

  




    





2
2
1
tan tan sec
tan
  




 
2

1
tan tan
tan
1 tan
tan
d
d

  










tan

2
2

1 tan
sec
tan
d
d
d
C









Remember in the question that 1
sec
cos
x


1
cos
adj
x hyp
  

Now let’s apply a little bit of trigonometry:
θ
x
1
A
B
C
By Pythagoras’s theorem:
2 2 2
22
2
1
AB BC AC
BC AB AC
BC x


  
So 2
Opp 1
tan
Adj 1
BC x
AC


  
Now we can replace 2
tan with 1x 
2
2
2
11
1
1
x
dx x C
xxx

    


8 (a) R.T.S.  
43
1 1 x x x  

R.H.S.:



(b) 1
3
0
(1 )
n
n
I x x dx

Employing integration by parts:
Let 3
(1 ) and
n dv
u x x
dx
    
33
4
4
1 1 (1 )

x x x x x
x x x
x
    

  

3 1 2
2 3 1
(1 ) ( 3 )
3 (1 )
n
n
du
n x x
dx
nx x


  
   and 2
2
x
v
  
1
122
1
3 2 3
0
0
1
4 3 1
0
1
3 3 1
0
11
3 1 3 3 1
00
1
(1 ) 3 1
22
3
0 (1 )
2
Using the identity in
3
1 (1 ) (1 )
2
33
(1 ) (1 ) (1 )
22
33
2
n
n
n
n
n
n
n
nn
n
nn
xx
I x nx x dx
n
I x x dx
n
I x x x dx
nn
I x x dx x x x dx
nn
II





    
         
   
  
    

      
  




1
3
0
1
1
1
1
1
(1 )
2
33
22
33
22
23 3
22
(2 3 ) 3
3
32

n
n n n
n n n
nn
n
nn
nn
x x dx
nn
I I I
nn
I I I
I nI n
I
n I nI
n
II
n






  
  


  


(c)











1
30
0
0
1
0
1
2
0
(1 )
(1)
2
1
0
2
1
2
I x x dx
x dx
x












 4
12 9 6 3 1 243

14 11 8 5 2 1540
I      

43
2
2
1
1
0
0
3(4)
3(4) 2
12 3(3)
=
14 3(3) 2
12 9
=
14 11
12 9 3(2)
=
14 11 3(2) 2
12 9 6
=
14 11 8
12 9 6 3(1)
=
14 11 8 3(1) 2
12 9 6 3
=
14 11 8 5
II
I
I
I
I
I
I












  


  

9. sin((2 1) )

sin( )
m
mx
J dx
x



(a)






Recall: sin( ) sin( ) 2cos sin
22
   

   

   
   

1
(2 1 2 1) ((2 1) (2 1))
2cos sin
22

sin( )
42
2cos sin
22
=
sin( )
2cos 2 sin( )
=
mm
m m x m m x
J J dx
x
mx x
dx
x
mx x

        
   
   
  
   
   
   



sin( )x

=2 cos(2 )
= 2
dx
mx dx


1
2
sin(2 )
sin(2 )
=

mx
m
mx
m



 
1
sin (2( 1) 1)sin((2 1) )

sin( ) sin( )
sin((2 1) ) sin((2 2 1) )

sin( ) sin( )
sin((2 1) ) sin((2 1) )

sin( ) sin( )
sin((2 1) ) sin((2 1) )

sin( )
mm
mxmx
J J dx
xx
m x m x
dx
xx
m x m x
dx
xx
m x m x
dx
x


  
  



  




(b)









0
sin(2(0) 1)

sin( )
1
x
J dx
x
dx
x






5
sin(10 ) sin(8 ) sin(6 ) sin(4 ) sin(2 )

5 4 3 2 1
x x x x x
J x C       
10. 3
0
1 tan( ) x dx



0
3
width of strips= where n is the number o f strips
4 12
ba
h
n




  

x 0 12
 6
 4
 3

y 1 1.126032 1.25593 1.41421 1.65289

Using the trapezium rule: 3
0
1
1 tan( ) (width of strips)(1 height+2(sum of all middle heights)+last height)
2
st
x dx

  


1
54
3
2
1
0
sin(2 )
sin(2(5))
5
sin 2(4)sin(10 )
54
sin(10 ) sin(8 ) sin(2(3) )
5 4 3
sin(10 ) sin(8 ) sin(6 ) sin(2(2) )
5 4 3 2
sin(10 ) sin(8 ) sin(6 ) sin(4 ) sin(2(1) )
5 4 3 2 1
sin(10 ) sin
5
mm
mx
JJ
m
x
JJ
xx
J
x x x
J
x x x x
J
x x x x x
J
x



  
   
    
     

0
(8 ) sin(6 ) sin(4 ) sin(2 )
4 3 2 1
x x x x
J   

 
 
 
1
1 2(1.126032 1.25593 1.41421) 1.65289
2 12
1 7.592344 1.65289
24
10.245234
24
1.3410979...
1.34 {3 sig. fig}




    


  


Tags