CRE Hmm)
| ü 00 | tos, 15 OSO | sad
CES 130 Zas ECT
E | is MENOS ETS
865.0"
Ea 15300
LA 14055010"
15300
PROPRIETARY MATERIA. 4 2019 Te Sano Campus, AD igh roer, ao of Ms pe pio
Pre dalt ny ort nna niet pr a pr he beret o ol
euer ande pray Menos Mer or mbr com tra Y ma al Se
PROBLEM 5.2
Lee he setoid the plane area show,
SOLUTION
“how
Am) Fam
1 1200 360 |
2 300 san |
2 | mo 35440
‘Then a. F=1621mn 4
za mo
y 04, 550
za van
PROPRIRFARY MATERIA. 930% To Misa Cz, wih ac rs Mel pr an
‘ad nn fon o or av pain of Fe, cd
PROBLEM 5.3
aca the enim of the plane area shown,
| sorurion
Aint sain [pin [aint pain?
' pas. |g 5 7 450
ncis=aıs 25 | 2s | ms mes
z 0500 mors 28125
75095 y:
1 F-10280,
The ae in. €
F4 28125
E 634,
24 ~ 408.00 ue
[PROPRIETARY MATERIA 0 2010 Te au Ces eA ie rl No jo of Mn wo Be in
‘goed owned a cs for btn ren pm of fale reson ee
nr Pr ha cna ht
PROBLEM 5.4
Locate the centroid ofthe plane are shown.
SOLUTION
|
Ain? int | pain
a aos x À 146 1
FT eo » [rs | 1
Te a 5 M
The PE]
Festy=306 Festina
CET
1609-20
PROPRIGTARY MATERLAL. 1208 the Mine A Cp o Apache ts Mae be an
rer tw apnea wot orien pos 0 pace, wnt en aed
en tcp swe ssa
PROBLEM 5.5
sate the cena ofthe plane tea show,
SOLUTION
! 4 ,
« -
EN dm
À
RE x
| Ain? zin | pin ETS Faia”
1 | oma | 7 | w | 10 | 20
i aa 6 2 301.59 603.19
Y mn restar | 2008
he Pen
20
DA, 21068
EMS
PROPRIETARY MATERIA. 2010 the Sk Capes, a eh eal Ne a ir Mo may Be id
Imp nae nfm by yma, mia eis pr aoe, st eee eet
‘Renton thers permi Me Mo hte tae nen Prensas e Mem
Poke dotted oro by ny one rw pono 80
ova chennai otf hae or
PROBLEM 5.7
“Locate the conoid ofthe plane ane shown,
SOLUTION
a y
E x
F
Y ain Fin | ein | Pain?
1 Jon =22082 0 | 161277 o 36581 |
2 ace 320 en x 3000 | 2560
B masa 320 | 39021
Then EA F-1643in. 4
Ea sn
21746. 4
PROPRIETARY MATERIA € 309 Soc Coat, A ih ccoo fof ir Hol e aso
gma ted yor a mast Me rr rn We fan od a
a deci a rb re pro Poon asi een
PROBLEM 5.8
Lacate the entra the plane area show,
sorunon
y ste
5
List -
im 1.
on
L E
is.
| ma in [y im] rain To aim
| 30x50 21500 15 25 22500 3500
2 qa 35343 men | 30 | Bo 106029
5 me | CNE
x uso ;
: „uud Fu 4
‘The EA 1146.57
Ye sin 4
Re eau € o Ye is Cost ne el Ne dm à té
A nfm yey me tr Pa pue er Ind ti
nn ach era Me erh eh re et Se,
poet pen
PROBLEM 5.9
‘Locate the cenroid of the plan ne shown,
SOLUTION
Y
- /%
Hope
x
2A
Am? zan | Fam
1 | con
6x0" ET
| ÉCURE 25468 | 95435 | Foot | 2685010 |
3 sas | 25468 | noue | 7200
Y 7200 ase ET
men PES ET 1000m 4
IDA TODA Fam 4
"| PROBLEM 5.12
SEI A ce tei ath pn as
e
SOLUTION
15
A. mm" FAm
E (05x80) 1200 EST | Den
a] loe | a | m | a | ao
| 2503 IE
Then
roma ao Fas05mm 4
»
Faso Felsen 4
role hacia faery mm sn tj rt yma PIE pl, or eon el
‘Rinne sass pri Coir cdo pri eres a
PROBLEM 5.13
Locate the centroid of de plane area sown
SOLUTION
hy tate
= u
= Bot yam
Es
am
mn | Hm Fam?
1 9 15 2500 | 5000
2 moss | re | 9000 | 2137
z 90686 CRETE
10500 É
The osos: am
Sexe * 1
26137 =
an F-288mm 4
à
Am ma | y mm | mm | Sm
"| ose as | a so | am
>| os a |» | soso | sao
Y 3750 u 112500 243000
a rama
X(3750 mm?) = 112500 mm? or F=300mm 4
= ras
75750 mam") = 243000 or Y 648 mm €
etc the yevonlinate ofthe certo ofthe shaded area in |
terms of ry rand
SOLUTION
ia dbz,
Fin, determine the location ofthe cent.
From Figure 5
Similarly
Then
and
PROBLEM 5.17
Show tha as 13 approaches 3, the location of the cent
approaches tat for an are alle oF rio (5 +72
SOLUTION
Dan és
Fir, termine the losstion oF the eno
rom Figure 584:
Sia (Edo
ele
then
en)
PROBLEM 5.17 (Continued)
Using Few 58, ¥en fs ra
Lee yO,
yet
Dale
e Gold tans
Now
let
‘Then he
Mer
PN qe rara
3) PGA
HAT
“Or
een as
a.
an
Soda
‘Which sprees with Equation (1),
w
a Foun |
[PROPRIEARY are.» 20 yo BG NE Ci, ne A tone of e Mama e ope,
or oad moby ym ew man oh ya, id In ed
‘interessante prey Sn sw bec omen yr asin Me,
sewer tlhe em
PROBLEM 5.18.
For the arca shown, dtr the ai a for which 7
sorunon
s 3 a
ES sa
[27
- fe
36
“i.
[ 4 z va FA
; PRE 2
es 3
à 2
=| lab e
: ca
Now las} ette
E
‘PROPRIETARY MATERIAL 200 Ue A Coogi, eA rtf Mara m erh
‘er er oe ot a ita the tr et pr ho a
nem Ib m He a pene ea esa she
Sorat wy autre
1 PROBLEM 5.19
3 or be sena area of Problem 5.1, determine the ratio rr 50
Lx |. a
est La si
DRE
SOLUTION
‘hen
lat pe
pr +4)
lO +
o 16" +(16-9mp+(16-91)=0
ROPA MATERIAL. 2010 Me Mco Campes A igh eo pt of he Malay deg
reno uated nn a er a oe ih he pe me po une Mae ee
‘Ronin ime nea pelo peed papa ns neways
arin pe
A composite eam is constructed by baling four
plates o Tour 60 x 60 1m angles as shown.
Te bolts are equally spaced along te Bean, and
fe beam suppors a vertcal Toad. Ax proved
mechanics of materials, the shearing forces
exerted on the bolis st and are proportional 10
the fst moment with rec 1 the comida
‘is ofthe rl shaded anexo shown, respective,
in Parts a and ofthe figure. Knowing Mat the
force exerted on the bo a Aix 280 N, determine
the force exerted on the bolts,
SOLUTION
| Prom de problem statement: is proportionate D,
hasta. Fen Fa = Qda
(Oda (Ode [22
(ose 2
Forte st moments: (@.,-(225+42Joaosiay
821600 mun?
(Ode ~(O,)442[ 25 |(48x12) + 2(225- 30X12x60)
1364688 mm?
Thea ALPEN] or Fi, =459N 4
EU
PROPRIETARY MATERIA. € 200m Mss Cpr, We. Al ah ORM fof Hr we dape
pho bed In ap farm hy ony a tr air pmp fds, ra pa i
we ieee oe D aah Ha
PROBLEM 5.21
“The horizontal aid Brough
ti Cafe ars shown, and
it divides the area int (wo component areas A and Ay. Detormins he fst
‚moment of each component aca with respect Io de axis, and explain the
resus bined,
‘SOLUTION u
u
| pty
TEN
foo PONE
=)
Note that sey
Pi conca] a
Voz lio?
due Vile aja
A O
sr @>--s0ù
pon
00) HQ) =0
Hi results expected since x is cetridal axis (thus
and
‘The horizontal x axis is drawa tough de ceaoid€ ofthe area shown,
and vides the rea ino two component ais A and a, Determine
‘ths fr moment of each componen area With respecto the x axis, and
explain the results obs,
SOLUTION
fs eine the locate o De cet C We ave
Ain? ¡EA
,
| eus [es | as
CR CR | ss
u 45x29 65 =
5 ms | dan
“then Franz
F(20.25) = 82.6875
o Fan
Now os
Then an |jos ausm [e.srss-s
116.5 - 4.0833)in [4 SKDTin” or (Qh=233 10 4 |
and a duos Jasmin |
~ 08-0 supo s)e]
PROPRIETARY MATERIA. 6 310 he Mme Comp Im Asse. fet air Ama a eh
‘uo th ny or er y a mcs hal he pr a per fi pee wa ja od
‘mitts pd fee cor pac ona hem
PROBLEM 5.22 (Continued)
Now 2 =@ +0,» 20
‘This reali peut sine iv contwidal ans this 7-0)
and Grp Fra F.020,-0
PROPRIETARY MATERIAL.) 300 The Mo Comp, Me A are pt of mo be dpt
‘otal hl np hr a a ts uw peas pe at ECN rd
ton eas nah pora cn fr bial opus rata he Ne
a tra
PROBLEM 5.23
‘The Sint moment ofthe shaded area with respect othe x axis is denoted by 0,
n (a) press Q, in terms fc, and te distance rom the base of the shaded
Are 10 he ani, (9) For what alar of y de O, ax, and ha Ui
‘exam value?
orater any MATERIAL 13 20 Ti Mean hs Me mr
‘peed acon a fan Ban uaa tee fs ta oa of pe, to
‘Bern tana il ont ia o oc ec a
PROBLEM 5.25
A thin, homogeneous wire i bento form the pernos of the figure
indicated. Locate the center of gravity of the wire igure thus foma. |
SOLUTION
Ftd atc shoes rer ov il ici wih condo
amen
| EA A, min Fon | Fm | Ln Hmm?
oe ele N
AE a
6 CNE 4
ieee m
oe fes Le CT
la ED D HN en
6 sw | 0 30 0 FT
AE wie) |
Then EL Km |
FEL=EÿL F(008 F2298 mm 4
A in, hamogeneons wir bento form the porter ofthe figure
indicated, Locate the enter of gravity ofthe wire figure ts formed,
‘SOLUTION
Fst note hat because the wies homogeneous, is entr of gravity will vinci with he coma o the
creping ine
4 o
6 lo
Tin y
me u 165 o o
| s » 35 ms
os] 2 ns 15 425 ns |
3 | yes | 6 23 | 15256 | 10m
3 su wears | sms
then EFL
868.209) 162726 or F=1845in, €
snd 222073
A uniform circula od of weight § Ib and roe 10 in, itched o pin st Cand
to the able AB. Determine (2) he tension in the cable, (0) te reaction at
SOLUTION 1
Por quater ence rake
som
mm)
50
C,=81o]
C2948 575° 4
PROPRUEEARY MATERIAL. € 210 he Me Wi Caste th ss Nf na e e opio
Inc a heed mse ar ag tn ar ari pom of ye dh le
nen pray Men pn monde nr pre a ao Jo.
oto a te mt
m
PROBLEM 5.29
Mens ARCDE i component oa mail and is formed thm a single
piece of aluminum tubing. Knowing thatthe members supported at Card
that (= 21m, determine the distance d o thot potion BCD ofthe member |
horizon,
SOLUTION
Find note thal for equim, dh enter of gravity ofthe compact amt is o a veda ine dough €
Fuster, because te tubing is uniform, he enter o gravity ofthe component wil coincide withthe croi
ofthe corresponding line. Thus, X 20
Member ARCDE is a component of a mobile and is formed hom a
single piece of aluminum wbing. Knowing thal the member le
supported a Can dat 0,50 m, determine te length fam DE
shat this porion ofthe member horton
SOLUTION
Fist not ha for equilibrium, Ih center of gravity of the component muse le on & vital line then €.
ure, because te tubing is wifi, tbe center of gravity of the component wil coincido wi the cetrold
of the corresponding in, Tha,
So that ted
x 23a ins) 750 he
(a Jor AA
(0,25 mins ®.
{rene patine
o car fus” 4-0
ae “ig
ih -Lnistenisase0
. Lens JETA 80,
bi 2
u men «ros
Nowe that sin 3522 0 fr both values oso bo vales ar acceptable,
‘The homens wie ABC is hont int a semicitenlar ar anda taht
as shown and is atsched to a hinge at, Determine Ne val für shi
‘wie isin equilibrium forte indicated position,
SOLUTION
Fit one hat Fr equis, he center of gravity ofthe wire must ie ona vertical ie through 4. Fares
because the wire is homogeneous, is enter ol gray will cinco with the gend ofthe eoresponding
Tine. Thus,
So that
Then
or 02567 4
PROPRIETARY MATERIAL. 2019 The Melt Compro, A gi soe. fa ur aa ez be do
Er m u fo e mr e ra) ea, rd e pi
PROBLEM 5.32
Determine the distance A fr which the centroid ofthe shade.
ea is as far above lice BB" as posible when (u) & = 0.10,
(a= 080.
SOLUTION
EA a ge)
a EZ
1 Los
|
2 ln |
3
»
beam
Teen en
» PR
man be a
e
or à i
eh) u
amt A en |
de 3 “kin |
Fe A) o!
Sim a.) ici
Ai Zah ra’ =O
PROPRITAKI MATERIA. € 3010 Th Wen Compas, be A ie No is Mood wa ee
‘Spe th Ar fy me a tre ren blas ered hoe
Kenmore hn ifr ta cram pon a em
PROPRES ATENTA, € 200 o Str Cain ihe wir Ne pf Mand dt
hc sr rated me am a ym, rr von pom he Yl red ed
‘Bim end es era, Mi Hf nn nr ae pcos tats th A
or cop
PROBLEM 5.33
ww thal the distance / hy bac selected 1 maxi the
distance y fom line BEF tothe cetrid of the shaded ares,
Show tht F= 201,
o
Haan) ah? =0 o
Rearanging Eq (2) (which defines he value o which maximizes 7) yield
20)
PROPRUEFARY waren. € 200 Tr Mt HB Cnn ns. its sp of sR may a,
{ren mor ata Be re pf the Ftc So te el
Snecma ea Ps bea ppt oe ta Mem
PROBLEM 5.40
"eterno by direct integration the ceri ofthe are dwn. xpress
our ansner in terms far and 0.
SOLUTION
a sat yeh A
Fo at
CORRE
Thea y Lota? IE
Now x
ooo Todo Ge
ant ata ieh
then a fate [hara bts a
and fase [ Le-sal-s [le 20? rar
{2 2543):
(Er ) dan
Ho salas
tres =
yoko
10
organ NE, ce ri, Mb ran en Ma di
son hs ic pase yb cin et
‘ncaa cr pees er am,
Y PROBLEM 5.41
Determine by diet integration the centroid of the arc show, Expres
your ser erm a a
A homogeneous wie is Bent ino te shape shown. Determine ly dicct
w A of is eet,
SOLUTION
Fist mote Ma because 1
corresponding line
mogeneous, its center of gravity coincides with he centros of the
New Ta 1500 né dnd
Then fa (lue nas - En
e
ani A
¡A
Ts «
PROPRIETARY MATERLU. $200 The Mim Comrie be A igh sone o Ma a be de
“em tn e ia ein a of in wl Sl
PROBLEM 5.47"
A iomagenesus wit het into the shape shown. Determine by
veut integration the coordinate of Cenrcd. Express Your
Anserin ens of
‘SOLUTION
rs not hat because the wie is homogeneous, is center of rity wil coincide with he conti of the
caesar I.
We have at soa, yea di
a
Then 1
and
PROPRIRTARY MATERIAL & 70 To eine orga, A om Re Mo pt of i nl may e pa
reco ar na enor by ng me hr wi pn of palsy a en
nern preci Som Pf ade re rept ences Mr
PROBLEM 5.47° (Continued)
À Use integration by pas w
wor dena ae
dads
> Mu
2
‘hen De [Zeenat
2 pa
(40290
glace [
Jura]
PROPRIETARY MATERIAL > 200 The Meer Cana, be A ph ee ur ke ha mo, ed
Fete uta rm pay en pre mi pm fhe pee ed hed
‘Rees MC hic ca pana cn oat
PROBLEM 5.48"
eerie by dec integration the cernoid ofthe aa shown,
SOLUTION
Wehne
and
en =
a]
La
amd Jue Jaco]
Use iron by ars th wer boom
dende va 2h in SE
Then fro sin sn
fut PE =] N”
= 010637402
COPRITARY MATERIAL + 20 Ti Men Cos La. A an. pr of i Mal wb ged
‘rt ent fm ry yo ted ties pen Jato, ud e nd
‘Serre oy Ato nl po pana abs Mah
Determine the volume and the surface ares of the solid obtained by sota
‘he ares of Problem 52 about (a) the ine y =60 mu, the ais,
PROBLEM $2 Locate the conoid ofthe plane are shown,
SOLUTION ,
From the solution 1 Problem 52 we have E Lion
Aero _
Zinn ne
Si 5840 el
Applying th theorems of Pappus-Gudims we have Lu
(€) Ronan about ne y=6omm x
Volume 2560 DA
250604250)
2740) 55640] Volume 308 10 es €
Arch
ern
ZZ Fala Fila Fabel)
Where Je ae measured with respect to ie y= 60m,
aaa» [conan «ca Rom +c +00! +04)
Aves 32x10) 4
(0) Rotation abot the rs
Volume 24. Am 2408.84) 22
200) Volume 177.2546 mm?
Arca 20 Xd = 20 Eig ML 2 Hy EN TL RI)
= 2x don + 29294 05120) GS En 1 00° + 000
Deceriine the volume and the surface area of the cha link
showa, whichis made Go a G=randimete ay of = 10 mm
and L= 30mm.
SOLUTION
“The are À and circumference C ofthe cross section ofthe bar are
Alo, the semicircular ends ft ink can be obtained by rotas the ros section through a horizontal
semicircular are of rive A Now, pls icons of Pappu-Guldius, we have forthe volume 7
PA od
ADD MAR
SUL aR A
or Y 2130 mun + 10 0m)
= 3670 731700" 4
A= WA +A)
UCI) + AAC)
ALADO
or the rea
or 42130 mun + (10 Le
2520 ma or d= 232000 4
PROPRIETARY MATERIAL. D 2010 The Neil ergo, A gs ome fh Maal ay be dd
[ere sordas uh psa a wien pain of he per ed oa re
‘Eien cenafan A oe ao oh Jn
| PROBLEM 5.57
‘Verify that the expressions for the volumes ofthe fics our shapes in Figure 521 0
age 253 ar ona,
SOLUTION
Following the second theorem of Pappus<ildimus, in ech case a specii
generating sea À il be ou about the x axis to produce the given sap,
Values of 7 ave from Figure 3.83,
A Bine bole i ile in apiece of Lán-abick stk the hole
is thes countrsink a shown. termine he volume of steel removed
‘uring the eousersnking process.
‘SOLUTION
he required volume ca he generated by rotating the area shown abou the yan. pling the second
‘core of Paps Galdins, we have
Y
Hu.
+
rl Y 00050? 4
ROPRISTARY SLATERLA, 2 301 Vie MeN Compa tA gh foc or of th Mel de
rene ohare nay fotos ata we fen na pean of Faeroe he od
‘trons cect pony cei bor bk one mots Ds sc Ma
PROBLEM 5.59
Determine the capaci in is, fe punch ove
shown if = 250 rm,
‘SOLUTION
The Yume can be gnc y ring ange ad shear ch sh abo the ya App he
second theorem of Pappus-Guldinus and using Figure Sn, we have ja
ren)
A) gf 2Rsin3@ Vx a}
EEES 5
le CRE K xe ke)
ee
a Bee
(ists)
36,
u
Wi
7 OB
om
Since 10
vom. vad
[PROPRIETARY ATARI. € 200 the am Came A ih som pur ht Manel may e ye
pr din In ou rm by ny nae ven pono he oo ma dea a
Boric ray an tht tbe mar re a,
PROBLEM 5.60
Three disent drive bell profiles are 10 he
sue IP any given time each belt makes
onset with ome al of the circumference of
its pulley, determine the conta aro betwee
the elt and he pulley for each design.
SOLUTION
it,
the ih
Al’ Ve.
I
Jue
hi
SOLUTION
Applying the frst theorem of Pappus Ouldins, Ihe contac arc de of abet
ds given by
Ac = ALAN
‘where the individual lengths are the eng ofthe blt ros section that are
in ontne wih the pale.
‘pected oy ory mo ie rion os of pla ea pod td
a ne pray Nn ei dr repo oracle Mea
See he
PROBLEM 5.61
‘The sum shade forthe smal high neni lamp shown has a unir ticks of} men. Koning that
the density of lumina s 2800 kr determine the mas of the shod,
SOLUTION
Y
2
el
“The mass fie lamp a given by
m= pr
Where is the surcar ands the thickness ofthe shade. The asc canbe generated by rotting the lino
‘sen about the was. Applying the fie theoren of Paps Gulli e have
Av TAS 2a EF.
Tr
BLUE mm /G2 + m)
¿james Emmy
[sm (o
ar ams 325 mn
A:
TO +02 mm)
(Se ee]
BA 3+ 40608431729 1867.50)
109034 sm?
Then mp
= (2800 Kay 10905410 Pm 0.001 1)
or m= 0.0008 iy À
‘The escuicheun (a decorativo plate placed on a pipe whee the
Pipe ents from a wall) shown sent om brace Knowing that
the density of bras is 8470 Kim determino the mas 6 the
cscutcioon
SOLUTION
The mass ofthe esate i given by m
rotating Ihe arca A about the a
Fr te ie me 950
ré om
1229324 mm
EI our 0143168 04
Ares 4 can be obiined by combining the following four anc:
T. ~ Bem
¿Pa CSc Es Be
he + T
en
ES i im
1 | tos, Tongans non.
2 | cms | Mirage | om
3 sas 029-4167 iss
‘ - loss 2 |
Loasy=62 2
z 2507
A manufacturer is planing to proce 20,000 wooden pers
having the shape shown, Determine how many gallon a
pain sho be ordered, knowing that each peg, wll be given
Fo cons oF pitt and tht une allow of pain covers 100
SOLUTION
“The number of gallons of pint needed is aven ty
11 gallon
serfs umi pepsi ar pe cc
iles rat en Ear Je cos)
o Number of gators 4004, (4,80)
where, is the surface are of one eg. A, canbe generated by rotating the ine shawn about the avi.
Using the fr theorem of Pappus-Culdinus and Figures Sb,
We have
“The shade for wallanounted ight i formed rom iy co
twasluceat plastic, Determine the surface area ofthe ouside of
tado, Mowing that has the parabolic cos section show.
| sorurion
Fint aoe that he required surface area À can be generate by rotating the parabolic cross section through a
radians about the y ais. Applying he fs theorem of Pappus-Culdins we have
Anat
Now at 00m y 250
2502 AMOO? or £20025 mm
wd PER
de
ala)“
Do
whee Be
‘Then adi de
Wehe al fade (ra)
Los
fee]
Ao
e RS WA
175433 mm”
uy AROS) or 4255110 mt À
PROPRIRTARY MATERIA. & 710 The Mun Ce, A pt Mer Mar! he ph
Pared or Sri cay mer a mio. es i ft mt pence of i ptt od pone haa
Pl rm i ih lars: Yoh wm
nee rr a encore
+
and location of he resultant of the ditu ad, (2) the
ot reactions the hen spent
SOLUTION
a satan
120 1) ptr
EN vt
A A ake tte
xe
non so
AS
FSU EOI) aa
(a) Sib, F-A33f €
(0) Resetons DEM, =0: BOR -a2smMEI 0
For the boum and loading shown, determine (2) the magnitude and
oom Rare tonte parses we
SE sapo
te
SOLUTION
= at wth
i ea ie
ol, te =
nh Tih
(0) Weine 4-0) (200 Nes} = 800 8
Ram =1600N
thea EEE RRR
or Re 001600 2400
en Late “E2400 = som 2501600)
R-20N] À -233m 4
0) Reocions
20: 4, 41400-21000
o Aion
Amon! mio]
PROPRIETARY MATERIAL. 1) 200 Te Mean Cras In A ht card pf Mn) mao,
‘pe trl nan By a ar aha I ory po of ala, et oe
‘Sinton ca nd pared Sige drid Corren aoe o Ho
qa PROBLEM 5.68
Ls Detenmine the reactions atthe beam supports for he given
Determine the rections at the beam sopor Fr the given loading
SOLUTION
= COMAS A)
y= 30001
Leone)
~ (4000 41.5 8) (LE 28) + HIS 8) =0
Dto
ap, =0: 44 7401-30001 6001
PROPRIEYARY MATERIAL € 210 he Mn Cong A es eno Ne oof Sd wa Be ied
cazar aun sy jor oy man mt ten psn Je rd e le tn
‘Sony fein portly Shoe ce
PROBLEM 5.71
Determine the reactions the beam support fir the ven Ling,
SOLUTION
ist replace the given King with the loading shown below. The two Jondings are sale because both
ae defined by linear relation between load and distance aa the values at (he end points aro th sam
ermine te eations atte ba supports fr the given aang.
SOLUTION
Fit rela the given losing with the loading shown below. The two loadings ae va ocn both
are defined by a parabole relation between fe! and dsc und ie vals at the end point ave the same
unre
x
Weine
Then Er
AIR, <0: 4, +100 Neon 20
= 4 =20mN
Drau: 26x00 0) miooo
a“ Mean 2008 m}4
PROPRIBTAR MATERIA, € 210 the ttl Core, In. Ale Ne of hs Mov wy en
‘echt or raed ey fam ob on us ieee wea per tyler cred hoe ee
‘ons nda Mn lor sre on pon. an th od
fever ng ten pent
PROBLEM 5.75
Determine (o) the distance a o thatthe rection a support 8 is
minimum, 0) the corresponding reactions atthe por.
SOLUTION
e
tm
itm {im sooo {nr oem eo
we DS o
na atta 10000 re
z
i) Fa) 8, = SUKI —100(1) + 800 B-750N! 4
ee
HER, <0: 4, KON - 304 -DN +750N=0
or 4, =1050N A=1050N] 4
PROBLEM 5.76
Danish esos eas he hn lig
a
SOLUTION 7
Mund
|
Weine
Ten Karo
FDEM, =0: (44,100 kip-() (2 1) (4050 1)
ams aan,
or = 2525010] 4
alas, <0: 8, 4801350852900
ie an n-is00n 4
PROBLEM 5.77
Dsemine (he dti nd aus theo ofthe
team ACD fr lt ato (0)
on rot at
SOLUTION |
@ |
Were
Men EM, =O: (LION. My tO AKEEEOM) ER I=
« mann 4
o 0 G20
‘he beam 48 supports tv consentatd Id ad res on oi
exon a Paris diribuie upward lend as shown, Determine the
a E
HI. e es
D |
SOLUTION :
pira pren
zum en
» A
° E “
| oem pain sn
a Lots)
Melon,
DE, 0: AAMO.2-0)- BONE I) =(090, 40m) 20 o
For 405m: 2412-06) (0903)-U54@, 20
14409 05t0,=0 1000 4
ARE, =0: HAN ON OSLO =0 ay SOU À
‘PROPRIETARY MATERIA. € 3010 Me Mei Cm be Ag ans A pf Mama ee
‘ett a nated fora roy e. he lar at cn 9 bon rd ped
“Kintera eds patty Ue Mier peter orn Seed,
For the beam aa lod of Problem 578, determine) the distance a
for hich «= 20 Ni, (6) the corresponding vale oF 0.
PROBLEM 878 The can AR suppors tw concent feds and
rests on soil that exer linearly distributed upward xd as shown
Detennine the values o o, and x costesponding to equilibrium.
= juameom-
= mk Nin 090 18
(12-024 KN 0.6 mx IS RN 0.3 mxIO KN =D
a-035m €
24K FIRKN à (9) EN -3DEN 20
Ders)
‘erat ory hepa esse ae
PROBLEM 5.80
‘the cross section ofa concrete dam is as shown, For a amide
dam section determine (2) resi ul the sion Forces
exerted by the ground on the baso oe dam, (9) the point of
application ef the resultant of Pasta, (e) Ihe relat 07 the
pressure forces exert ys water the fase AC of the da
SOLUTION
Consider fee body mado af don an impor section ul water shown. (Thickness = 1m)
2325 m (lorightof 4) €
(e) Resaltant on face BC
Dirt computation
P= pgh= (U0 kei TEE
PTOS NE
accio
som
os
est
5
= ones? xs mm) |
tea computo: as fe dy ol water soon RCD.
REN IRA
Ren 718430 4
Septic hey fom ur by u means. tho te pr rt pono th uber, wed pod te in
‘Rob centro poly Sn era ep rosa ube Hd
Sree ake poi
PROBLEM 5.81
“The cross section ofa concrete dam i a sh or a
dam section determine (a) the resultat of the reaction forces
exerted by the ground on te Base AB ofthe dam, (8)
pplication of tho resultant of Pet, () the ves
presse faces exerted by the water an the face HC Of the dam.
SOLUTION
‘The fa body shown consists of Il hick section of the dam and the quater icular section of water above
the dam
PROBLEM 5.82
“The Ax dose AP oa ki bot and Win plc by»
‘hin od BC: The mao ese fore the 10 en stn wou bring.
1320 AN, and desen pets quie for in he od oto exer
Do pan hs wal rc slowly filed it wae, dem he
min lobe do water nthe tank
SOLUTION
Comite the ech dng of i
ete eo ig de x
1.
Wehne pelage dined)
2073 ro
am
| Now Dem, 20: CE if
|
Whee ER
Tht or da
CRE 0
“ 120 Rem 54, Nin 20
“ du 2h 4
ROBAR rau. 3 Te M Ca AE an Nw ef a a és
‘Sino sen endet frelon ao bel er man poate te eo
PROBLEM 5.83
‘The 3° m side of an apn tank i hinged at its boom and ie eld in
Place bya hi rdf. The tank st be fled wäh giycrine, whose density
18 1263 kg. Determine the fore Tin the rod and he reachons st he Hinge
fee he tank filed to sath of 29m,
‘SOLUTION
We have
“Then
Consider the ice body dingrm uf the side,
Mesa)
Am) (26m JO ia PS
oi HA
470 yeh *
5 fs
Sauce am ( m)aman-o
roer Tem
FA 24D AN ASTRO
AS AAN 4
tet
ies teri ant pron ef te pale are Spas fus]
RG D M
PROBLEM 5.84
“The tion fore Between u 6% 6 square sluic gate 48 and ts guides ise
to 10 percent ofthe ecullan ofthe pressure forces ext by th water onthe fee
‘ofthe gate. Determine the intl fee needed ot the gate Tit weh 1000 Ib.
SOLUTION
‘Consider the free-body diagram of the gate. TT
m PRE
ET ant
ron oa
ein
ha Pacino en)
Zoos san
07m
Final Se, <0: 726957 101000 10-0
‘PROPRIETARY MATERIA. 200 Ihe Moot Compr, be, A ig Fr der Ma y he die
A ne ow ery ye i tr wen ern of he plier ed bon eed
nino Ref AAA ga ro o a
PROBLEM 5.85
A freshwater nash is dine tothe ocean though an automatic de
‘ate that is 4 N wide and (ug. The gate is eld by Hing une
lon isp edge at 4 and boats on a sil t,he water evel ithe
mars is #6 determine the ocean level for which the ato will
open, (Specific weigh of salt water 6€ It!)
Since gate is 4 wie
Thos:
w= (4 Mp Ad
ih
area
Ber
slot
Lomeru-0-a=-ea—a gun
Mitin
Ga)
DOUTE 7
aaa: OB Ae)
Lenmar
jer-m-3ar-n
Aorta 61-9,
2d 22h Hard ar
Ya
AM ie ec prof Mind eb pie
‘pra ar ed of my yma ea te oc ay pa er tet eo
tr ae or Be D nibs A Dre sun
‘mana ipo ”
PROBLEM 5.85 (Continued)
win Boo amd hman: ONDA
x
1-52
7
Data: SOS
pam
LA
E
00058 asin
da
ROPRISTARY MATERLAL. € 200 ue ke Comore. Al gt Ea of ds Ml y, ere
“esi! racy wry ng en i nn ofa te nd
PROBLEM 5.86
Te dam fora lake i designe to withstand the additional force caused
by sit chal has seed om the fake bottom. Assuming thal il is
«suivant to a quid of density, =1.76x10 km” and considering a
Ewido section of dam, determine the percentage increase 1 the
ce acting on the dam face for sil accumlation o depth? m.
SOLUTION
| Fira, determine the force on te dam fae with the it
We here
,
Lao
= Laos
bs
LG mK ID" Km O. ls 6.6 ml T
Com
13.06 KN
Fire on the dam fae wih sit
Next determine 1
Wehe A= LG MO km OST AE mt
03.290 kN
PE. m OO kar KOT? HAG Wd
90.252 iN
De wy KC1.76%10" Kn NOT ws? X20 my = +,
CR
Then FLA) + Ge = SST AN
“The percentage increase, Ys ins,
“The beso oda for la l designed to resist ap 10 120 percent of
the horizontal force of the water, Aer commetion, à 5 ound tha
tht equivalent to a quid o density 2, = 1 76X10" kee)
Setting om the Take bottom at de rate of 12 inver. Considering u
Y mewido section of dam, determine the number of years until te
da becomes neal
SOLUTION
From Problem 8.85, the force on the dam Face before the sik e deposite, à
alle ie Pa, où he dam is the:
Pan 1321 66 XN} =25639 KN
13.65 KN. The maximum
Next determi the force Pom the dam fie alter depth of silt as sete
al
ooh Wn
Wehne 166. dpa O kn X91 ms 40.6 dm]
mar
(Py = 1d TCO? Kgim KOST mL en)
are
n= comas ape ant om)
“som
PB) | (Pa =14.905(43,560—13.2000d +d)
ona
on
‘Now required shat PP, Lo determine dhe maximum vale Of
IDA + HN BORN 256398
A 05 x am gate AB is looted atthe boston of tank Fille
‘vi wate. Th gate hingod ong its op edge À and reis on a
Ietonless stop at Determine the reetions a 4 and 2 when
cable HCD is slack.
bose!
SOLUTION
Fis conser the force ofthe wate on the gate
We have
so that = 05108 AO AT mi AS)
29 N à
OS NOS MISCO Kim KO ms? 093 ot
24,06 N
Reactions a and B when T=0
7
Weine
pee
Jam, o 408 m2 0 12008 masas (03 mi 5 J
ar mision PR
u RAISINS 4
Paro: 4 415I074N-89N-180466N=0
u Ans
PROPRIETARY MATERA. # 2010 Te Mer Carpi, nA sch A pr ir Am a sr
‘wore ned man fons 79 a sta tet sin pomos of i brea be he
Serban mcs om cn sated a onsen Penang ana
jm tito ere
! PROBLEM 5.89
JA 0 x am ga AR ds located at the bottom of a tank filled ith
‘water. The gate hinged slog is op dye À and set on a Sctioniess
‘open he ee
a =.
fy jus m0. mIDACIO Km OST ONE
152466
Tioopen
First note that when the gute begins to open, the reaction at # — 0. dera ah
a
Tin emo: Loro ecos miissen Wwe
3 3 one
045-027 7) de
iG
or 238.464 978.152 0.33882
or TEN
Ingrid or cise ny frm or by ay m. mühe the rir tien person uf be publi. or ed Aya a eed
‘Kiet le oferta pri no Mom
PROBLEM 5.90
A long tough is supported by continuous hinge along its
Tower edge and by a series of horzomal cables attached to.
li up eg: Deter he tio i cach ofthe che,
ata time when the tough is completely fl of water.
SOLUTION
Com eg eg ha ghana
at ny ps
Dee tie or
fan
nern
PAR
us
a
A 4x2 gate fe hing aA ani hod in position by rod CD.
End D ess agains spring whose constant i 828 Ib. The spring
is undeformed wien the gate is vertical. Assuming thet the force
cecertal by rod CD on the gale remain Normal, determine
‚minimum depth of water for which the brtom B of the gate
move to the end of the cvlndicl potion a the Moo.
SOLUTION
Fist determine the forces exerted on the gate bythe spring and he water when B is atthe end of te
marca porton tte sr
We have. mol gas
4
en ke = GR
ai Fete
TT
ET
an
We have Pal apa! ar) sd
243 ny
i O |
| sad i
| Sl)
2044-0390
For a soga opens, =
À vaig above fico body grams oft as, we have
| En à
Sem, <0: E
ora -0
or (03264 -191.2)+ (66564-35670) 4002
a 46008
48 seston cora! anon 4
PROBLEM 5.92
Solve Problem 5.91 if the gate weighs 10001.
PROBLEM 591 A 492-1 que is ngs at 4 and i held in
posi hy rod CD. End D vests agains a spring whose const is
98 Ih. The spring is undefonved when the gute is verucal.
‘Assuming thatthe fore exert hy rod CD othe yal remains
ron, determine the minimum depth of war fr which the
Soto Bote gat wi mec othe end of sti potion
of te ler.
SOLUTION
First determine the frees exerted onthe gate by the ping ad ie water when Ihe end the
eindicl portion ofthe or
Wehave sn 9-30"
Then an |
ind Fag = Brgy SINS tind"
sais
Ass dean
1
Weave La
Prom
then A)
49 6
RD NUS 60030)
eu as
ct
Tor dya 80 that gate pes, W
Using the above feesboay diagrams ofthe gato, we have
EM, =0: ($e }osaca—ay-[$a amet ossssoiy
Gaia da en
or 68284 151.2) + (668.64 35620) 43024 1000=0
or oon
424 = assumption comet ara d
A prismatially shape gue place at the end ofa esate cane) iy
Suppor by a pin and bracket andá ess na Ftionss support
lanos di 0.10 m bel the ete of gravity C
ofthe te Determine the depth of ward for which he git will open.
Froumon
Fin mot that wen the gate fs sbout to open (lock
action of the allan P ofthe prenne for esse Ih
at hamogencous, then center gravity Coincido with he corto
ad
Now a:
ris
otha Losa.
09-15
SimplDing pete
w
Alternative solution
Considera fee ty consigo Lam hick Seton o he stead We Wangular section BE of water
ove the ite,
Now
PROPRIETARY MATERIAL.) 208 Yue MG M Coma Ic A rom. oof ie Malm and
es rn fo pat aa he tar rps fo er, oe so ed
‘Riad a on i bee a pp Poe sna ed
PROBLEM 5.94
‘A prsmaticaly shaped gate placed atthe end ot
issüpponil ya pin and becker a À wl ess a I
AU. Determine the distance i he gate e o open wh
SOLUTION
Firs woe tha wher dhe gate i about o open Ceci rio is pening), B, > 0 and the line of
ston af the voit Pte reso res pases ugh the in at 4 In adit, it is aimed tat the
dnl ofthe tsar area, Then
te is homogen, thn is comer u gai coincide ml
dann As
Fr
u nn tan sen
Nor
sota or
309-500)
‘Simplifying pies
789 gy 706
eis= a
as = 7 w
Atom slain
Consider tise had consiga Lan thik eto ol the a andthe agli econ HDE of water
pa
o Per)
Now Pai compro sq] E
ir
l
"te,
Sos
‘reel did oy ro Dr
rine ite heen
tic e i oc Mo he Mm ant
reno ee, ed in
«se
PROBLEM 5.94 (Continued)
“Then with B, =0(as explained above), wehave
> EA] AA CS (A
dao [joo for [osa]
sss
sunny Marois on
A SSegilon 2-im meer drum i place oni side to act as a
dam ina 30m de freshwater anne. Keow ng that te dram i
anchored othe sides of the ebm, terne the resaltan of the
rosa ess ang om the drum
SOLUTION
CConsidr the elements of water shown. The rsullant o the weights of water above each section ofthe dm
and the resullani o the pressure Forces acting on the vertical surface a the elements cs ete esl
Prostate ince acia on he dra, Then
Aye) >
Ale] A
En »
A
en Es
ACL (US)
Then HEN: Re 86542-70635) 2 2149118
Jer, + 255.80 112528) 337.581
Filly Ra JET ano
RB 575° 4
see po a i mr ei
pnt mba, a mo nd a
econ Procenet se
PROBLEM 5.96
Determine the location ofthe cent oF the compte body shown
when (a) #29, (0) = 2.56,
Cynder neo |
(o For
lated
a [Le om
Connie of hae of cone À
‘PROPRIETARY SUATPRIAL. € 210 e Mei Ci, eA gt, pur of Mame may yon
‘hr trl e fo wh np mses o pr ven wma of he ahr ota eon ie
‘SoReal ond ee partly cr Mtb ss pre Ppa M,
PROBLEM 5.96 (Continued)
() For h= 25h: r srelpeja sure
ern] 1
erratas Les
E zes ¿Osa
WAS
Ss
ART ENT 2
11368
Centos 0.011360 sight oF ase of come €
ote: Cen ia ese oP em oe = V5 = 2 449
PROPRIETARY MATERIAL € 21 Yh in Conan. Is Mort of hs Man ob ge
‘edo td fb an mn, eyo nr pom ar ten e a
add ro eo Md rn dad nc Pg po ona
o te pin
PROBLEM 5.97
Patrie the yconrinate ofthe centroid of the body shown.
SOLUTION
Fit note thatthe values of Pl eth same forthe piven body ad the boy shown below. Then
oe
tine bea
z ¿ca Gear)
| then ea] Eaton wy on ya 4
“The composite body show i formed by removing semiclipeci uf
revolution of semimjor aus A and semiminor aus a2 fom a
hemisphere uri termine a) they coordina af the cent
‘when b= a, (D) th aio a for which = 0a
ana
; T7
2 far 1 3
sono Er
hen # à La (aa =
pin qu
zw Bauen
| 1
or Yu 7-00
For the machine element shown, leat te y coordinar ofthe
center of gravity.
SOLUTION
For half ylindrica hole:
For half eyndcal pte
| sn Pi
1 | Rectongutrpine | oxao7)=2.0 | ass | as | tars | m
1 ETS ET to | 2 | x00 [tno
m [antoine | Gaza | um | 2 | ser | am
ty | Halteplinder | S(2(0.28)=4.712 | -0375 | -285 | 1767 | 3699
v| singen [oser | ons | 7 | um | 257 |
Y EX) EN
22
een Shin y = 3 Rés in ann 4
u Tan [zu [mn
esta pats | Tons [as | ae
CTE 10 | 2 | 00
ui {Half cylinder) 28) (= 2454 1470 2 3607 | 4908
Ww | marins | eroza=amz | os | ras | 1767 | 5699
v | im see ons | 7 Lin | sm
Y sus | os]
Now ar |
OPEN ze |
Soong ttn pr
the comer oF eit.
PROBLEM 5.105
For the machine element shown, lor te x coordinate of
SOLUTION
Firat sue that
‘eentoid ofthe corresponding volume
€ machine element is homogencoss so ha its center af gravis wil coince withthe
an Locate the center of gravity ofthe sheet metal form shown
a
RA
EU
PT
SOLUTION
"Vist, assume hat he sheet metal is homogeneous o ha he cont of ravi Of form wil cosido with
the centroid of th comesponding ars.
=» [zeae a
15 j 4 12 324 | -0864 | 259
u | "asanzen [om Le DEE
m| Eosyesum | | on | am Passe | sons loués |
Weine Aaron. 230m oe X-0295m 4
FEV =EFW: 73.3694 m?)=5.0585 m0 or Ÿ=0421m 4
PRY REV: 70133684 m") = 22.769 0" or Z-1703m 4
PROPRIBTARY MATERIAL. 1 ue Ml Copa, De A is sare No ut fi an we pt
epee ar a erm 7 a er be an A leo a jo e ea
‘Seatac met owe M mb acne Pee nt
PROBLEM 5.107
ity of the shest metal fom sown,
SOLUTION
Fat assume tar the sheet meals homogeneous so Hat he center ol gaviy ofthe form will coincide with
ho oeil of the eoresponing ares. Now note ut snc imp
x N = a
2 50.930 mm
R
1250 4
de mo Aus
\
> el
an zm | RT ]
1 | comes [7s | 0 | su | immo |
T 1
a | Zooesy=ss | 20095 | som | esoo | só |
m | Zas) ns o | cmo o
= 60 sour | Goo
were FRA EG A GO) 1647100000? Herman 4
ZEA=ErA: Z(98460 mm’) =3.300%10°men? or Z=335mm 4
A srastchasket, designe 1
and hos ise inthe shape oF
the center of gravity of te wastebasket, knowing that it is mado of
shock metal of nfo thickness.
Ihe corner of rom, 16 in i
SOLUTION
v
By symmetry: we Love
ac (Cylindical surface) r <a
5 Dur
tee ete Ws
4
Ain? E
1 | omas 5 800 1280
MIRTA o o 1280,
| u 25133 63002 10000 | 20106
DE ass 15333 o
| 649.7 m3 | 43706
AU STIn 2730.30
E 42059 im HoZoa2iin 4
A mung hc for cetro compone fon mn
sect metal of form thickness. Locate the center ol gra
‘ofthe Bracket.
SOLUTION
rst, assume thatthe sheet metal is homogeneous so thatthe enter of gravity o she bracket coincides with
the entoid of the corresponding aca. Then (sce diagram)
Ain En EN iin! | Phi
ı| es@=1s [us] 0 > CO a
n | users | as | -oms | > | ws [es] 25
m | @rso=as | 2875 | as | 3 | ews | ses | ns
w| (ous | 10 | o | as | as) 0 | mous
CRETE vo | 0 OC 0 [ame
| = En] ‘460739 | 103125 | 65.7197
A thin shec of plaie of uniform thickness is bent 10
form a desk organize, Locate the center of gravity of the
organizer.
SOLUTION
First assure that dhe plastic is homogeneous so tha the center of gravity ofthe organize wil coincide with
| the cenit ofthe corresponding anc Now not ha smc ities
= Timm | Fa
1 oe o | 10
te ai | im m
37] con «iso | a CN WET a |
4 565.497 39.820 2.1803 22518 1233 i
5 (69K60) = 4140 a 405 173880 167670 Î
ma 9 Tas | an mom
7 | Goo | "aus | ais | ion
a EXT 180 2.1803 30638 | 1233
5 Too | os 0 ao 0
La 565,49 16320 | 2.1803 77370 us
PRET _ CT | os}
We have XxA=YFA: X(2222444 mm’) = 1032766 mn or À =46.5 mm 4
An cn forthe duct of «ventilating system is made of sheet
‘metal oF uniform hikes, Locate the center of gravity al he
bow.
SOLUTION
First assume hat the sheet metal is bomogencous 0 hat he center gaviy of the duct eins with no
emo of dc eumesponding area. Also, note that the shape ofthe duct impli
Note dat
00 2 (206) 172.676 um
5, 400 À (400) «230.25 mm
ES
3 200) 315.12 mm
0020021512
4
242300 À 200) 2215 12m
wo 3 20
Also note that she corresponding top and Bottom areas will ont equally when dtm
‘Thus Am z,mm A, mm"
MET [use | nase | ose | as
u | Zeon | ass | uno | css | ann
Mi BH] | 15000 | aoc
w | Ej =25u27 | no | non | sen | sc
) i
v 4 Jeu sm | 1502 tes | 1356220
vi | annee oo | so | 350 | 12000000 | nano
E A A sera | oia
PROPRIETARY MARIA. € 710 Me srl Compas, AN gl pi of Mod uy e dpto
‘nc er nae ep forty e mas cs tn 9 pla, o jo el
‘Sinners chosen pray ben fr eta nr Peat rare neo
PROBLEM 5.112 (Continued)
We hase. SA ERA NDS mm?) = 4103760100 or 1802 m0 4
DEAWEE A FOR ma) =44070260 mu or Z 1935 mm 4
PROPRIETARY ana. 209 the Mea Compre, lu. A ii ur Moa up be ra
rc ea ny fra by ny re e te water puros pl hon ad
Beton pele htc Md rt aos ng oa
PROBLEM 5.113
a Reine eyimdrcl duct and a 4 Si. rectangular
ct are 10 be joined as indicted. Knowing thatthe ducs were
fabriatod from he sane sheet met, which is of uniform
Ickes, toate he centr of gravity ofthe sembly.
‘SOLUTION
Assume that he body i homogeneous 0 that is center af gravity ences with th eer oth ara.
Lae Ein’ | Fain
HOD =e NET
ECS 28 on
A Zep aoe a0 | 96%
ES HT ue
5 | unes m | 7
Fay ar Eo Pr si
| Zu mn | mon | m
EN E i | ae] E
s | aaa é no | m | een
53 1566] aa
En 150501 isla
then EN or erat
354 oma, ern
2a"
PROPERTY MATERIAL € 200 Ie Maes Compu, A hs soil a Mol Be ied
‘aed "ated n oy frm oy ym rer tg pan of hbo, a pe mt
oka inant akon Mire bai rro we sein
PROBLEM 5.114
‘A thin tel wire of uniform ross section e bent no the shape shown,
Lee enter of gray
‘SOLUTION
ins asumo thot the wire is homogeneous so thal is comer oF grvity wi cincid wih he cent ofthe
comsponding ine.
pl 0360015 me
À = O3cos60"= 015m
A — ( + ds
ta * 53,09
um Lae [= [#7 [me]
Duo ous | os ois | oases | 0a |
| 1 i +
oe | | oo | 998 Tam |e | osu
ei a I fur
E ICI IEC 3 10 O48 | on
= | soon | 1 Tas NEON EA
We have (3.0283 m) =0.43981 m? or X-0.1452m 4
76.0283 m) =1.20m" or ¥=03%m 4
20289) —1 08 ar
PROPRIETARY MATERIA 120 he Meme Compu. A ih so er of Malo he dor
‘mnt did yf rr. al pr rte pers plo er one m
A RA peavey th Ma,
Sarno pen
PROBLEM 5.115
Lote the entr of gravity ofthe figure shown, knowing thai is
made of hin bras rod of nilo darter.
SOLUTION
Unio od
AB OT
FEL=ERL: F0m)=205m°
19m
im [em [oe [ae zum
we [te] es | os | os os
zo | 06 | 19 | o | 03 as
Loo wo [os [o [o | om |. °
as jo jejej. Jus |
Es fs i [am | ae | os |
VELSEFI: Y 0255 F20510m 4
Zut=zt: Z60m)=0750? 7-04500m 4
PROBIER erst. EN et np eh ore Np of a ar Ana
ru uncer neers perl y Mera Mir ht ind vera reporto pn sens Ma
owt thon pr
PROBLEM 5.116
Tote the centr of gravity ofthe Figure shone, knowing hat it ik
made of thin bres rods of uniform diameter
SOLUTION
De
ANT
KEN.
Ein | in.
ar | ar o |
ap | hors | 15 | s sw | m
ae | | ts o s0 | 0
E ji 1530 | 784,
FEL=ESL: FU0S2265 in)" 15300?
“the fame of a prenne is constricted fom wif slain
tama. Locate the center ol gravity o the portion of the fame
show,
| sorunon Mr
Fin assume lt cel are bomogencons so tht the center of gravity ofthe fame
il coincido with the centroid ofthe correspond line
LA zn In jr] on | uw
i 2 5 o 6 o 2
3 is o 35 ù a
5 3 25 15 | 3 o
5 3 25 5 | ns 10
D en + 9 |» 16
poy 3 5 CO 2
Ds 13 5 35 15 6
s | Peer 2 | 6909 | 0 Û 32.562 0
E AE E
X 2 o s fa a 16 2
2] »ax 6 [ren | sioux
We have. RL: KH) =09 0° ET
| HER or Pasion
A bronze bushing is mounted side a gel ser, Knowing that he
spite weight of bronze is 0,518 In’ and of see is 0264104
détenir locas of the eter of gray o the vel
SOLUTION
“gu
1
y
x
2
Now wet
Frein nn | es 075 Jn" fosin) 0.238801
A bess collar, of eng 25 in, is mounted on an aluminum rod
contr of gravity of he compost bod:
(Specie weighs: ass =0.306 Ii, slum = 101 in.)
SOLUTION
ir =]
in. ER + z
TT an.
hs m
Am um,
FE 470.300 win
Ark rod wen
= tiv.) La cin (in.
oo [Etém ei]
En
Brass collar: wer
06m) EG
238000
| Component. any E) Si (on) |
asin 2 ron
3.8693 150
E IET 64612
À VAS 646121 in
Y 13018 F-13804
‘enced dnt nob ep me anh tr ey Pas hear, wa en rd
spent eG to má creo Bp ors wigs as
& PROBLEM 5.121
‘he te legs oa anal lasoppel able ane equally spaced und ne
nad of setting, which has am outside diameter of 24 mn and à
«ross sectional area of 150mm. the diameter and the thickness of
the tabletop are 600 mer and 10 mm, repoctivey. Knowing th the
density a sel is 7860 kg/m" and oF glass is 2190 Kg", cate the
center of gravy of the table
SOLUTION
Pint eat symmetry is -0<
Alsa ofre oe eg, muse ol components tan il at $
li by he
vay 2880
ER x
"atk ous
A 750 Dem To
26m sus
Bm = 284190425005 mn = Au = 200 Em 010)
onu =6.1921 ke
| ern rm | mem]
vom | m [nan |
mn | nossn | uns Sn a
[om EJ 2029
> [aren DE
We have YEm= Em: 8.7478 kg) = 3681.3 kg mm
Be 7-008mn
PROBLEM 5.122
Determine by diet integration the values of & forthe two volumes obtained by pasing a vertical cun
plane though the give shape of Figure 5.21. The culing plane i paral! io the base ofthe given pe and
Alves the shaping two volumes oF equal height,
A hemisphere
SOLUTION
Choose m he element of volume is of ras and thickaes dt Then
maria, Te
“The equation of e generting curves x? +? a then
av ar pde
Component 1
and
Now
Component 2
PROPRISTAR MATERIA, 200 02 Me Coses, A inh pr of tt Mal nr be dened,
‘hed w ne ny or macs, rr vn pame he Fath ar
(Donna ol er bal cren Pro arn
Now
PROBLEM 5.122 (Continued)
Diner = [le ae eee
feet
DIR
Gre
ae far: qn) dt
er irda
#
PROBLEM 5.123
ect integration the values of for the to volumen sine by pasing a venical cuting
ie given shape Figure 521. The cti lane à parallel the base o ho given shape ne
Aivides th shape ito wo volumes of equal height.
‘Choose as the element of volume a disk of radius ran thickness di. Then
A)
and werk nen
Camp nana
and
a qual
Now #0 or sus
W edo 4
Component 2
Brinch enna Bar carp nie al nal
PROBLEM 5.124 (Continued)
and
Now nen
3
more. € A e sine rs e na tf So wb ro,
vane aes ion nan ME lio, ed
er Mfr tbo sre ern Urea nn Mama
PROBLEM 5.125
‘Locate the centroid ofthe volume obtain by rotating ie sd area
about the x axis.
an JUE
SOLUTION
Fist note ht sync implies 3-04
mi
Werne var?
a sO yeas a CA
or be.
Choose athe clement of volume a disk of vs rand ice ds Then
dear, Ry oe eer
B om koch)
so oa
so that det NOS
A PTE
a " à
Th nhs SA (SN
Leth
and Jiu = fire sal
arte [ot at ae ae sate
bat dee se ee]
E
Now sr fur (Eon) on se rula 4
ROFRIGTARY MATERIAL.) 200 The New Compan, A ng rea o por fH Mama me be ip
mdd did ny moe ban mi Jr pm ofthe pide, ed had aed
‘wine rca a pure onan Da.
PROBLEM 5.126
Locate the control ofthe volume obtained by stating the sade area
shout the x as
‘SOLUTION
Fin note dat syn imp 5-04
‘Choose as the element of volume a disk of is rand hicknes dí. Then
The sides and the base of a punch bowl are of
uniform thikaes 1 <a = 250 m,
¿item the tion ofthe center of gravity of
{the bowl, (6) the punch.
SOLUTION
(a) Bow! |
Fist ote dat symmetry implies
fo the coordinate axes shown her. Now sms tal the Boel may be teed as a shel
{Pony ri bow wl ecke wth i Cnt ofthese Für wa he bon Sea
Src aire y ron he and about yas Th
age = asin dR) s
d On), Roos +
: A a T
m E 2, SR
€. An [ne nate
arte eu al
a
sos Sota" [Ed
= [ere soso,
fons?
LR
4
Py ocn
Now
or 121900 4
|
the punch is oogenesis cetro avi il coin wt the cent of |
the corresponding volume, Choose us he sleet of volume disk adios x and thickres ch. Then
Wands, Fay
Now wer
soto dae Pr
Tien CO Rt
mi |
Now w= Pratt: zoe) ar
s
E R=20mm p=-M2mm À
+]
PROPRIETARY MATERIAL. 2 300 the Compa Inc AB dt med prof he Ma mar be a,
‘dry ao ene mean oft as a ro ied
PROBLEM 5.133
Alter grain à, a ler pes for stas desig the
‘ever o Uh lb füra howe. Vo provide afin evel base for
the sah, the had places a mi ef 3 in. of gavel
Fanci the sb, Delcrnin the vol of vel al und
the eoordinat ofthe centroid ofthe volume of the save,
(int: Te baton surfe ofthe gravel isan oblique plane,
which ean be presented by the euaton y = 0 + br 2)
ny integration, The equation for he bottom of he gravel
no llos:
where the ests. ed ce et
220: p34, and therefore
à
a
iy Sin and therefore
1 sar
Mesos ee
[el
anne
Thelma
| Then
The: reese 4
isa
onary mei € en nn e rl he a on et
Lo o warn dran pend iy Grew nah or rn Wear su az an,
PROBLEM 5.134
Detemine by dise integration the locaton o the centroid of
the volume between thee plane and the portion shown ofthe
sue y= 16 Nhe = Ver
SOLUTION
Fürst note that symmetry implies a4
Choose asthe cement of volume lament of base dex and high >. Then
a
a a an = Yin ee
Ar)
Then yo [hr
PROPRIETARY MATERIAL 020% ix com Coop. AN it cod iu Mal ay he ana
(enter dance e foo y wr. ith tc rr in pomos oh leo e o jad e ad
‘Miao enero prey RA or oven Ho,
Dear ein pen
PROBLEM 5.134 (Continued)
wa fool tiles A tre
A
ca
A Ca? ae alge ae
O oo pao]
oF 5 2
sele yp o »
- EN
wel wr be ler] Pat
tw A
nN a> final (3) Re
Locate the cent ofthe seston shown, which ves cut Fin thin eter
pine by two oblique panes,
SOLUTION
Fist note that symmetry implies 5-04 |
Assume hat the pipe has a uniform wall thickness y nd choose as the clement of volume 4 vertical sr al
wit aß and eight (9, 1) Then
and
Then
» A 2 |
and (acos0-+ay+ acoso +20 i
»
sc
ke
ai a
ar = "Me Sa =
2 1
RUPRIRTANO MATERIAL € 201 o Men Compris Im. A a wel N pn of hy Md y Be ne
Ivar! fred sf by mao tS pret cn A ble, rod ted
ae hr ander ply en fe eet crepe pot De
Soong ihe prin
PROBLEM 5.135 (Continued)
and
Now
and,
rome area. NV Nm nc A ah pt of Mama on
Sp mun! tn fo e ma hous pes ei net
en ended ie a pon peo sg Ma
PROBLEM 5.136"
cat the centroid of he section shown, which wir
‘finder by an obligue plane.
SOLUTION
tnt tat sme imps
À ST
Ss Sb.
‘
(Choose a the element of volume a vertical slice of with 2, thickness, and height. Ts
PROBLEM 5136" (Continuod)
and
ia
Tin Jin Besos recon a)
[low 026m 0 rte ae
Now
Sou
ay [an sai
hen Gras = La EL ES ee
Lo (2.8028) 2 9, ty u”
abi (Ge) oros ta] .
Saum
Br
Aw LAR Leal
ta a [Load
N en
La Erbin denn
In din D in DN 0940 co 040)
Using
i war ob nf [sno o
P| cod ot ond PO Mea
if foe goed E D
PROPRUTARY MAERAL. € 20 19 CHN Comi, el gu so. pt fhe Mn a he ln
arated fm on en on pen pla cre ped hd
EEE ly Aether an
Now
and
7 PROBLEM 5.136* (Continued)
ROPRUETARY SNA 01 1e eH apne AN A se u of Mal mae di
‘vc att nym By me, aan pi a pra fb who eh
Bain henna py Re bch pen ipo ako Mal
PROBLEM 5.137
Locate the cen ef the pane rca shown
SOLUTION
2 L
Ac Fon | za ma
METER ° El 61236
2 | hara | 0 68 6700
3 a | 27688
a | METE
Then AEA=ESA
0622 m‘) = 200880 mon
and Fear
4 “La
38 A Lis +
x \
Li ne 7
Oo: 1 Ea
x rx
“hn um [me]
1 15 Less | 2200
> tam | gan
= ee [mao
Then 19707777
(5.3333 in?) = 17.0650 in? or Y 1. 4
Pr Fais
Tis 3333 im?) 106670102 or F-20in €
PROPRIETARY MATERIA. 19209 e Mei Compt, eA ph aM Ml ee,
‘rere ened op eu a ay mac ptr ie in à ep vd hood de od
ne che anata pry Ken rin Po nidos Ml
PROBLEM 5.139
Ue frame Foca sign is fabricatd fom thin, at sce har sock a mans
por uni cal 473 Ah Th Fame supported by a pin at € and by a
tale 48. Determine (the tension inthe cable (8) the rosction a C
SOLUTION
Fest mote tha becuse the frame sites fom unir bar stock, its cer o gravity will come with
‘the centroid ofthe corresponding Lins.
‘Le Fases
s| le N los
im Em
7 135 ors |
2 0 | 03
E us o o
4 0 2 on}
| s | Samen | coms | 120000 |
ee | ECTS
then Feet R-
Fae2s10)=25106 L Xe
or F 0542470 pu
the re body agra ofthe fame is then tt,
ve vue SJ
4 PROBLEM 5.140
ja
TE Deine hy dt gan the eo of tae hav. Expres
È Yor sever ts fond
SD E
| z
oe
SOLUTION
by obsecion
| y
Papa RO yal NCA) or kan ===;
“ . ya0: 0e) ar Cn ! Fute
by
Then de
Now
Then
‘owing that two equal caps have been removed fon 10-n.diameter wonden
per, determine he (tl surface ars e the remaining portion,
SOLUTION
“The surface ara cn be generted y rotating ho lino shown about the y us. Applying Abe frat core of
Poppus Guldinu, we have
raie y
Now aad Sm
“ mu. JE
Zi
ans
Ps Stns al
(36m.
du = si
92min
3] (4.
[jo mecano]
ind
RUPRIETANO Mare. 200 Ye cn Come, a i onl pn of i A ay Be apie
‘vt! nda nfm ar) u ih rr ri) prio hb red eed he at
‘Sitar france ply Be Hf brad e pa cada yt ee,
pooch ihn pmo
ine PROBLEM 5.143
ai paie terne bm spt ge eg
SOLUTION
2, = Emo Nm)
EN
Ry Uno Nm)
-4soN
Now HER =O: 4-0
o om eo smn (2a}es0-0
ante
AXE, 20: 1300N-2700N 1 8, -:4S0N=0
o B,=1850N CNE
PROPRIETARY starr. € 2010 Te Men Mi Cp, te sones. uf ol way e dope
‘whl eel i fun ar ey oo ot o pl nie unen A, ren
‘Bice aot ve tis ss rt Jo nt sha
|... PROBLEM 5.144
Jere
SET. L IT T IN ‘beam i suce 10 ner dite dowaword
Fand ino pat Cm DP ach
AT a E
ml 1 o tome
SOLUTION
Wehave = 6 0 Nm 18008
600m) 650 N
Run Nin) ~ (08, N
op OR NON
Ten eat 20: AKI) (MCG) me N) =D
“ Hog = 50 Nm 4
and HER =0: (Me) N 1800 N 3600 N SON 0
“ Mc =28125 Nm Va = 0 Nm 4
[PROPRIETARY MATERIAL. 2010 The ans MN pi. a, A us men Na ar ths Son way Be gle
‘arched dd nay ob np mace ter ve pon eth, foe eon ee
Rite alos dern 1 lft coca or rn praetor hr
cen ton pao
PROBLEM 5.145
"he square gate A shel in the position shown by hinges along its top edge
and by a shear pin at For a dcp af water 43,50, detain Ihe for
‘exerted on the at by the shear pin,
souuron
Pen ths Metro
En
Lam Ve
me nova) =
ss
Lorca ese
vow e (riens
MIR:
I Laon teens
o E, =2770 4300 4
eww note a cee te
‘rol or aed ey ar ot y mana lr wie pom fhe yw a Rod ea
a DN Vrs nd mt ee
PROBLEM 5.146
Consider the compite boy shown. Determine (a) the value
SER when h= 17, (0) the ratio AL or which
soLumon
Y oz ha
D ee Ya
praia
me
ne Raven
ta
rola) aloe oa
LE. o
@
Keosaı 4
PROPRIETARY MATERIA. 6308 Te Mel Corp ts A An of Mal y be age
‘psa er np fo by ma, me hr ers pro loo od nd
Eien pol Soe an per Precio Med
PROBLEM 5.146 (Continued)
0 Bet ten
siria afte) Lafont)
e ;
PROPADETART ware. € 200s Mani Copete. AL oa Me pr of ar Ma py Be pie
‘ned ny rm hr e ee in om so el fe