Cellulose biosynthesis

tcha163 9,510 views 27 slides Dec 28, 2011
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

No description available for this slideshow.


Slide Content

Cellulose biosynthesis in seed
plants

Essay title
Please write this exact title on the front page of the essay:
Critically discuss what is known about the biosynthesis of
cellulose in seed plants.

•Reviews (do NOT use these for seminars)
•Guerriero, G., Fugelstad, J. and Bulone, V. (2010) What do we really know about cellulose biosynthesis in
higher plants? Journal of Integrative Plant Biology 52, 161-175.
•Bessueille, L. and V. Bulone. 2008. A survey of cellulose biosynthesis in higher plants. Plant Biotechnology.
25:315-322.
•Endler, A. and S. Persson. 2011. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant. 4:199–
211.
•Harris, D. and DeBolt, S. (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant
Biotechnology Journal 8, 244-262.
•Wightman, R. and Turner, S. (2010) Trafficking of the plant cellulose synthase complex. Plant Physiology
153, 427-432.
•Taylor, N.G. (2008) Cellulose biosynthesis and deposition in higher plants. New Phytologist 178, 239-252.
References on Cellulose Biosynthesis

Original papers
•Atanassov, I. I., Pittman, J. K., & Turner, S. R. (2009). Elucidating the mechanisms of assembly and subunit interaction of the
cellulose synthase complex of Arabidopsis secondary cell walls. Journal of Biological Chememistry, 284, 3833-3841.
•Barratt, D.H.P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A.J. and Smith, A.M. (2009)
Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proceedings of the National Academy of
Science USA 106 13124-13129.
•Bessueille, L., Sindt, N., Guichardant, M., Djerbi, S., Teeri, T.T. and Bulone, V. (2009) Plasma membrane microdomains from
hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. Biochemical Journal 420, 93-103.
•Bischoff, V., Nita, S., Neumetzler, L., Schindelasch, D., Urbain, A., Eshed, R., Persson, S., Delmer, D. and Scheible, W.-R. (2010)
TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose
biosynthesis in Arabidopsis. Plant Physiology 153, 590-602.
•Bowling, A. J., & Brown Jr, R. M. (2008). The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants.
Protoplasma, 233, 115-127.
•Cifuentes, C., Bulone, V. and Emons, A.M.C. (2010) Biosynthesis of callose and cellulose by detergent extracts of tobacco cell
membranes and quantification of the polymers synthesized in vitro. Journal of Integrative Plant Biology 52, 221-233.
•Coleman, H.D., Yan, J. and Mansfield, S.D. (2009) Sucrose synthase affects carbon partitioning to increase cellulose production
and altered cell wall ultrastructure. Proceedings of the National Academy of Science USA 106, 13118-13123.
•Crowell, E. F., Bischoff, V., Desprez, T., Rolland, A., Stierhof, Y.-D., Schumacher, K., Gonneau, M., Höfte, H., & Samantha
Vernhettesa. (2009). Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in
Arabidopsis. Plant Cell 21, 1141-1154.
•Daras, G., Rigas, S., Penning, B., Milioni, D., McCann, M.C., Carpita, N.C., Fasseas, C. and Hatzopoulos, P. (2009) The thanatos
mutation in Arabidopsis thaliana cellulose synthase 3 (AtCesA3) has a dominant-negative effect on cellulose synthesis and plant
growth. New Phytologist 184, 114-126.
•Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M. and Vernhettes, S. (2007)
Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana Proceedings of the
National Academy of Sciences, USA 104, 15572–15577.
•Fujii, S., Hayashi, T. and Mizuno, K. (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery.
Plant Cell Physiology 51, 294-301.
•Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of
cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National
Academy of Sciences, USA 104: 15572–15577.

•Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. C., & Ehrhardt, D. W. (2009). Arabidopsis cortical microtubules position
cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell
Biology 11, 797-808.
•Hofmannová, J., Schwarzerová, K., Havelková, L., Boříková, P., Petrášek, J., & Opatrny, Z. (2008). A novel, cellulose synthesis
inhibitory action of ancymidol impairs plant cell expansion. Journal of Experimental Botany, 59, 3963-3974.
•Li, M., Xiong, G., Li, R., Cui, J., Tang, D., Zhang, Z., Pauly, M., Cheng, Z. and Zhou, Y. (2009) Rice cellulose synthase-like D4 is
essential for normal cell-wall biosynthesis and plant growth. The Plant Journal 60, 1055-1069.
•Maloney, V.J. and Mansfield, S.D. (2010) Characterization and varied expression of a membrane-bound endo-β-1,4-glucanase in
hybrid poplar. Plant Biotechnology Journal 8, 294-307
•Paredez, A. R., Somerville, C. R., & Ehrhardt, D. W. (2006). Visualization of cellulose synthase demonstrates functional association
with microtubules. Science, 312, 1491-1495.
•Paredez, A. R., Persson, S., Ehrhardt, D. W., & Somerville, C. R. (2008). Genetic evidence that cellulose synthase activity influences
microtubule cortical array organization. Plant Physiology, 147, 1723-1734.
•Rajangam, A. S., Kumar, M., Aspeborg, H., Guerriero, G., Arvestad, Pansri, P., Brown, C. J.-L., Hober, S., Blomqvist, K., Divne, C.,
Ezcurra, I., Mellerowicz, E., Sundberg, B., Bulone, V., & Teeri, T. T. (2008). MAP20, a microtubule-associated protein in the
secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiology, 148,
1283-1294.
•Salnikov, V.V., Grimson, M.J., Delmer, D.P. and Haigler, C.H. (2001) Sucrose synthase localizes to cellulose synthesis sites in
tracheary elements. Phytochemistry 57, 823-833.
•Stork, J., Harris, D., Griffiths, J., Williams, B., Beisson, F., Li-Beisson, Y., Mendu, V., Haughn, G. and DeBolt, S. (2010) CELLULOSE
SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiology 153,
580-589.
•Takahashi, J., Rudsander, U.J., Hedenström, M., Banasiak, A., Harholt, J., Amelot, N., Immerzeel, P., Ryden, P., Endo, S., Ibatullin,
F.M., Brumer, H., del Campillo, E., Master, E.R., Scheller, H.V., Sundberg, B., Teeri, T.T. and Mellerowicz, E.J. (2009) KORRIGAN1
and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems Plant and Cell Physiology 50, 1099-1115.
•Timmers, J., Samantha Vernhettes, S., Desprez, T., Vincken, J.-P., Visser, R. G. F., & Trindade, L. M. (2009). Interactions between
membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters, 583, 978-982.
•Wightman, R., Marshall, R., & Turner, S. R. (2009). A cellulose synthase-containing compartment moves rapidly beneath sites of
secondary wall synthesis. Plant Cell Physiology, 50, 584-594.
•Wightman, R., & Turner, S. R. (2008). The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant
Journal, 54, 794-805.

•Cellulose is a (1®4)-b-D-glucan

•Occurs in the form of microfibrils
•In primary walls dimensions 3-3.5 nm wide crystallites
(~ 25 cellulose molecules 5 x 5, rather than 36)

From: Brett & Waldron (1996) Physiol. &
biochemistry of plant cell walls, p 78
• Synthesized from an activated donor: UDP-glucose

•Location of synthesis – plasma membrane
•Studies with the transmission electron microscope (TEM)
of the plasma membranes of all land plants after
preparation using freeze fracturing showed rosettes of 6
particles
From: Delmer, D. P. (1999). Annual Review Plant Physiology Plant Molecular Biology, 50, 245-276.

•Rosettes are often located at the ends of cellulose microfibrils
•Particles of rosette contain cellulose synthases (immunogold
labelling)
From: Taiz and Zeiger (2006) Plant Physiology 4 th edition. Sinauer, Sunderland (USA).

Direction of cellulose microfibrils follows that of underlying
microtubules
From: Lloyd, C. (2006). Science, 312, 1482-1483.
Heath, I. B. (1974). A unified hypothesis for the role of membrane
bound enzyme complexes and microtubules in plant cell wall synthesis
Journal of Theoretical Biology 48, 445-449.
Paredez et al. (2006).
Science, 312, 1491-1495.

•But when plasma membranes or mixed membranes are
isolated from developing cotton fibres and incubated with
UDP-glucose, labelled (
14
C or
3
H), label is mostly incorporated
in another polysaccharide: callose [(1®3)-b-glucan].
•[Biochemical approach]

•Delmer (1995) showed that if feed
14
C-sucrose to developing
cotton fibres 'permeabilized' with digitonin (a detergent):
- Up to 60% of product cellulose
- Rates of synthesis much higher than usual,
approach in vivo rates. (Amor et al. 1995 PNAS USA 92,
9353-9357)
•At least half of sucrose synthase (SuSy) in cotton fibres tightly
associated with plasma membrane.
Catalyses:
Sucrose + UDP « UDP-Glc + Fructose
Suggested SuSy forms a complex with cellulose synthase and
channels C from sucrose to UDP-Glc to cellulose.

Cellulose synthesis in bacteria
•Several genera of bacteria synthesize cellulose
•Gluconacetobacter xylinus (formerly Acetobacter xylinus)
synthesizes massive amounts of extracellular cellulose as a
pellicle.
Used as a model organism.
•Unlike cellulose synthases of seed plants, can solubilize
cellulose synthases with digitonin and obtain high rates of in
vitro cellulose synthesis.

•If solublized enzyme is incubated in vitro with UDP-Glc,
cellulose fibrils visible in TEM form within 20-30 min.
•Operon of 4 genes involved in cellulose synthesis in A.
xylinum
•Genes have been cloned: first (A) encodes catalytic subunit;
second (B) encodes a regulatory subunit; third (C) function
not clear could encode a pore-forming protein; and fourth (D)
encodes a protein that may control crystallization of the
microfibrils.

Do similar genes occur in angiosperms?
•Attempts to identify these using antibodies and nucleic acid
hybridization probes failed
•Pear et al. (1996) PNAS USA 93, 12637-12642
Used a bioinformatic approach.
Identified 2 cDNAs from a cotton (Gossypium hirsutum) fibre
cDNA library
30% sequence similarity to G. xylinus gene A.
Expressed abundantly at onset of secondary wall
formation:GhCESA1 and GhCESA2
•Definitive genetic evidence for functionality demonstrated
using an Arabidopsis thaliana radial swelling mutant (rsw
mutants) (Arioli et al. 1998 Science, 279, 717-720).
•Temperature sensitive mutants: root-tip swelling at 31°, but
not at 18°C

Wild type
rsw1
From: Baskin et al. (1992) Australian
Journal of Plant Physiology, 19, 427-437.

•rsw1 mutant reduced amount of cellulose synthesized &
reduced cellulose crystallinity
•RSW1 cloned & found to complement rsw1 mutant
Restored the wildtype – functionally a cellulose synthase
(AtCESA1)
•In rsw1 at 31°C, single particles rather than rosettes
•In mutant, alanine substitutes for valine at position 549.

Cellulose synthase superfamily
10 Cellulose synthase genes in A. thaliana (AtCESA1-10), plus 30
cellulose synthase-like (CSL) genes (cellulose synthase superfamily)
Fincher, G. B. (2009).
Plant Physiology, 149, 27-37.

Structures of predicted CESA proteins
•Vertical bars: predicted transmembrane domains (2 near N-
terminal region and 6 near the C-terminus)
•CESAs from bacteria and angiosperms characterized by 4
conserved domains (U1-U4)
•U1-U3 each have a conserved aspartic acid residue (D)
•U4 contains a conserved QXXRW motif (Q glutamine; R
arginine; W tryptophan)
•The D,D,D,QXXRW motifs are characteristic of family 2 β-
glycosyltransferases (Carbohydrate active enzymes server at:
http://afmb.cnrs-mrs.fr/CAZY/)
In CESAs they occur in the cytoplasmic domain and bind UDP-
glucose

From: Delmer, D. P. (1999). Annual Review Plant Physiology Plant Molecular Biology, 50, 245-276.

Guerriero, G., Fugelstad, J. and Bulone, V. (2010) Journal of Integrative Plant Biology 52, 161-175.

Structures of predicted CESA proteins
•Compared with CESAs from bacteria, those from angiosperms
have:
–Zinc finger domain (Zn)
–Hypervariable region (HVR1)
–Plant-conserved region (CR-P)
–Class-specific region (CSR) also known as hypervariable region 2
•Callose synthase is encoded by glucan synthase-like (GSL)
genes

•Numerous other cellulose synthase mutants in A. thaliana
e.g. irregular xylem mutants (irx) with collapsed xylem cells
e.g. isoxaben (a herbicide) resistant (ixr)
•Mutant, antisense and expression analyses of the 10 AtCESA
genes suggests that at least 3 encode proteins that synthesize
cellulose in cells laying down primary walls: AtCESA1, 3, & one
of the AtCESA6-related CESAs (2, 5, 6 or 9).
And at least 3 encode proteins that synthesize cellulose in
cells laying down secondary walls: AtCESA4, 7 & 8

From: Somerville (2006). Annual Review of Cell and Developmental Biology, 22, 53-78.

Seminars
•Only 10 minutes, including questions
•Select an original, experimental paper (NOT a review) from
the list
•We will try to do all the seminars in one session (we can
continue Session 1 in Mac 2 (11-12 noon)
•Use PowerPoint and load file on to the hard drive at the
beginning of the session
•Focus on the Results section.
•The Introduction should be no longer than one slide
Tags