Ch-5 Transistor Characteristics.pdf

HarikrushnaRathod2 133 views 41 slides Aug 20, 2022
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

This covers the transistor characteristics, the concept of saturation, cutoff and active region


Slide Content

Transistor Characteristics
9/29/20211 Prof. H. B. Rathod, EC Dept. DDU, Nadiad

The Junction Transistor
•Currents I
E, I
B, I
Care considered positive
flowing into the transistor
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad2

Open Circuited Transistor
•Emitter and collector are identical
•Base region is very small and lightly doped
compared to Emitter and Collector
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad3

Transistor Biased in the Active Region
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad4

Transistor Current Components
•I
E
= I
pE
+ I
nE
•I
C
= I
CO
-I
pC1
•-I
CO
= I
nCO
+ I
pCO
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad5

Transistor current components(Cont..) •Large –signal current gain α:
0


−≡
E
CO C
I
I I
α
•Generalized transistor equation: 9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad6
0

E
I
) 1(
T
C
CO E C
V
V
e I I I− + −=
α

Transistor as an Amplifier
E L C L L
I R I R V


=


=

'
α
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad7
VCB
I
I
Where
r
R
Ir
I R
A
E
C
e
L
E e
E L
| ',
' '



−=


−≡
α
α
α

Early Effect or Base -Width Modulation
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad8

Early Effect or Base -Width
Modulation(Cont..)
Has three consequences:
1. Recombination within base region decreases i.e.
base current decreases, hence increases
2.
Concentration gradient of minority carriers
α
2.
Concentration gradient of minority carriers increases, hence increases
3. Extremely large reverse bias at collector junction
reduces the effective base width to zero. And
that causes voltage breakdown in the transistor
called punch through
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad9
E
I

Common Base (CB) Configuration
•Input Characteristics:
•Output Characteristics:
),(
1E CB EB
I V V
φ
=
), (
2E CB C
I V I
φ
=
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad10

CB Output Characteristics
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad11
) 1(
T
C
CO E C
V
V
e I I I− + −=
α

CB Input Characteristics
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad12

Common Emitter(CE) Configuration
•Input Characteristics:
•Output Characteristics:
),(
1B CE BE
I Vf V=
), (
2B CE C
I Vf I
=
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad13

CE Output Characteristics
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad14

E C B
E CO C
I
I
and From
I I I
I
I
I
α
α + −=

=
)2( )1(
)2( ) (
)
1
(
CE Characteristics (Active Region)
B CO C
B CO
C
I I I becomes
eq then If
I
I
I
β β
α
α
β
α
α
α
+ + =



+

=
) 1(
)3.(
1
,
)3(
1 1
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad15

CE Characteristics (Active Region)
•The CE output characteristics lines in active
region are having higher slope compared to
CB output characteristics lines

Because of base width modulation
α
increases

Because of base width modulation
α
increases
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad16
49
98.01
98.0
1
,98.0=

=

= =
α
α
β α
For
66
985.01
985.0
1
, 985.0=

=

= =
α
α
β α
For

Cutoff Region
•Cutoff means:
•Isitenoughtosetinputcurrent0(i.eV
BE=0)to
settransistorincutoffregion?
CO C
I I
=
TForCBconfiguration:Yes
TForCEconfiguration:Nofor Germaniumtransistor
andYesforSilicontransistor
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad17

Cutoff Region(Cont..)
•For GE transistor αmay be as high as 0.9 even
with zero base current
•At this much high value of α
I
•So, to set GE transistor in cutoff emitter
junction is reverse biased by 0.1 volt.
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad18
CO CEO
CO
E C
I I
I
I I10
1
= ≡

= −=
α

Cutoff Region(Cont..)
•What is I
CBO?
•Two reasons for I
CBO greater than I
CO:
TSurface leakage current
T
Avalanche multiplication
T
Avalanche multiplication
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad19

Circuit Considerations at Cutoff
•Manufacturer provides BV
EBO. Why?
•I
CBOhas large range (from few nA to tens of
µA) due to temperature effects, avalanche
multiplication, and large variability from multiplication, and large variability from sample to sample
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad20

Circuit Considerations at Cutoff(Cont..)
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad21
V IR V V
CBO B BB BE
1.0


+

=
Reverse biasing of emitter junction to maintain tra nsistor in cutoff

Circuit Considerations at Cutoff(Cont..) •Assume I
CBOis 100µAandR
Bis 100kΩ, then
RequiredV
BBis10.1volttosetV
BE=-0.1volt
•Ifthetransistorisreplacedbythesametype
of
transistor
and
new
transistor
is
having
I
of
transistor
and
new
transistor
is
having
I
CBO
fewnA, thenVBE will be approximately
-10.1Volt
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad22

CE Saturation Region
•J
Eand J
Cboth forward biased
•Common emitter saturation resistance, R
CE,sat
or R
CESis the ratio V
CE,sat/I
C
•Base spreading resistance r
bb’is of the order of
magnitude 100

.
magnitude 100

.
•Why don’t we consider collector spreading
resistance or emitter spreading resistance?
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad23

Methodology to Solve Examples
Method 1: Assume transistor in active region
TApply KVL to the base circuit(input loop) and
calculate I
B
TCalculate I
C
using relation I
C
= βI
B
C
C
B
TCalculate V
BC
voltage to conform transistor in
active region
TFor transistor to be in active region following
condition must be satisfied
V
BC
≤ 0.5V (For NPN)
V
BC
≥ 0.5V (For PNP)
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad24

Methodology to Solve Examples(Cont..)
Method 2: Assume transistor in saturation region
TDon’t use I
C
= βI
B
as transistor is assumed in
saturation
T
Calculate I
B
and I
C
by applying KVL to base circuit
T
Calculate I
B
and I
C
by applying KVL to base circuit
and collector circuit respectively
TCalculate I
Bmin
for transistor to be in saturation
IBmin= IC
sat

TIf I
B
≥ I
Bmin
, Then transistor is in saturation
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad25

Example 1
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad26

Examples 2
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad27

Examples 3
CEsat CC
Csat
B
BEsat BB
B
R
V V
I
A
R
V V
I
saturation
in
transistor
Assume

=
=

=
µ
21
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad28
C
Csat
R
I
=
min B B
I I
saturation in beto transistor For

β β
C
CEsat CC Csat
B
R
V V I
I

= =
min
β
µ
C
CEsat CC
R
V V
A

≥ 21
K R
C
66.4

Example 3(Cont..)
mA I I
A
R
V V
I
region
active
in
transistor
Assume
B C
B
BE BB
B
15.2
5. 21
= =
=

=
β
µ
0= − + = −
B B CB C C BB CC
RI V RI V V
KVL Applying
R
I
R
I
V
V
V
+


=

9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad29
B B C C BB CC CB
R
I
R
I
V
V
V
+


=

B B BB CC C C BC
RI V V RI V

+

=

V VBC
region saturation in beto transistor For
V VBC
region active in beto transistor For
5.0
5.0
:
>


K
R
I
RI V V
R
V
V
R
I
V
R
I
C
C
B B BB CC
C
BB B B CC C C
55
.
4
5.0
5
.
0
>

+ − +
> ⇒
>


Example 4 Part (a)
A A
C at I C at I
T T
CBO CBO µ µ
ο ο
64 2) 2(
2 25 75
10
25 75
10
1 2
= × =
× =


9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad30
V IR V V
C at CBO B BB BE
1.0
) 75 (


+

=
ο
BB C CBOat B
V IR+ −≤ ⇒1.0 ) (
75
ο
V IR
C CBOat B
9.4) (
75
≤ ⇒
ο
K R
B
5.76


K R
B
5.76
max
=

Example 4(Cont..)
V IR V V
T temp at CBO B BB BE
1.0
) (


+

=
Part b
BB T temp at CBO B
V V IR
+



1.0
) (
A
K
I
T temp at CBO
µ
18
50
9.0
) (
= ≤ ⇒
T
T
25
25


9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad31
A A C at I CTat I
T
T
CBO CBO
µ µ
ο ο
18 2 2 2) 25 (
10
25
10
25
= × = × =


9 2
10
25
=
−T
17.3
2 log
9log
10
25
= =


T
C T
ο
57 7.56 25 7.31≈ = + = ⇒

CE Current Gain
•Large signal current gain:
•DC current gain:

Small signal current gain:
) (
CBO B
CBO C
I I
I I
−−

=
β
FE
B
C
DC
h
I
I
= ≡
β
C
fe
I
h
|

=

Small signal current gain:
•For active region, relation between h
feand h
FE: 9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad32
CE
B
fe
V
I
I
h
|
∂∂
=
) )( (1
C
FE
B CBO
FE
fe
I
h
I I
h
h


+ −
=

The Ebers-Moll Model
•Normal mode of operation:
)1 ( (
)
− − + −=
T
C
CO E
N
C
V
V
e I I I
α
•Inverted mode of operation: 9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad33
)1 ( (
)
− −+ −=
T
E
EO C
I
E
V
V
e I I I
α

The Ebers-Moll Model(Cont..)
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad34
Can we use two separate diodes to form transistor?

Maximum Voltage Rating
•Avalanche Multiplication
TBV
CBO
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad35

Maximum Voltage Rating(Cont..)
•Avalanche Multiplication
TBV
CBO
CBO CO C
MI MI I
=
=
1
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad36
10 2 ,
1
1
to range the inisn Wher
BV
V
M
n
CBO
CB







Maximum Voltage Rating(Cont..)
•Avalanche Multiplication
TBV
CEO
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad37

Maximum Voltage Rating(Cont..)
•Avalanche Multiplication
TBV
CEO
•Under the presence of avalanche
multiplication
αα
II
appears to be
MM
αα
II
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad38
multiplication
αα
II
EE
appears to be
MM
αα
II
EE
•Relation between BV
CBOand BV
CEO: 2
1
n
FE
CBO CEO
h
BV BV





=

Maximum Voltage Rating(Cont..)
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad39 CE characteristics extended into the breakdown regi on

•Punch-through (Reach-through)
•Unlike avalanche breakdown,
punch-through takes place
at fixed voltage and is
independent of circuit
Maximum Voltage Rating(Cont..)
independent of circuit configuration
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad40
The potential variation through a P-N-P transistor
After “Reach-through”
voltage Breakdown V
W W When
W qN
V
j
B
D
j
=
=
=
, ,
2
2
ε

Maximum Voltage Rating(Cont..)
•In a given transistor voltage limit is determined b y
avalanche break down or punch-through whichever
occurs at lower voltage
9/29/2021 Prof. H. B. Rathod, EC Dept. DDU, Nadiad41
Tags