Ch 8: Introduction to Metabolism

veneethmathew 23,103 views 95 slides Jan 06, 2015
Slide 1
Slide 1 of 95
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95

About This Presentation

AP Biology Powerpoint Presentations: 9th Edition


Slide Content

LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
© 2011 Pearson Education, Inc.
Lectures by
Erin Barley
Kathleen Fitzpatrick
An Introduction to Metabolism
Chapter 8

Overview: The Energy of Life
•The living cell is a miniature chemical factory
where thousands of reactions occur
•The cell extracts energy and applies energy to
perform work
•Some organisms even convert energy to light,
as in bioluminescence
© 2011 Pearson Education, Inc.

Figure 8.1

Concept 8.1: An organism’s metabolism
transforms matter and energy, subject to the
laws of thermodynamics
•Metabolism is the totality of an organism’s
chemical reactions
•Metabolism is an emergent property of life that
arises from interactions between molecules within
the cell
© 2011 Pearson Education, Inc.

Organization of the Chemistry of Life into
Metabolic Pathways
•A metabolic pathway begins with a specific
molecule and ends with a product
•Each step is catalyzed by a specific enzyme
© 2011 Pearson Education, Inc.

Figure 8.UN01
Enzyme 1 Enzyme 2 Enzyme 3
Reaction 1 Reaction 2 Reaction 3
ProductStarting
molecule
A B C D

•Catabolic pathways release energy by
breaking down complex molecules into
simpler compounds
•Cellular respiration, the breakdown of glucose
in the presence of oxygen, is an example of a
pathway of catabolism
© 2011 Pearson Education, Inc.

•Anabolic pathways consume energy to build
complex molecules from simpler ones
•The synthesis of protein from amino acids is an
example of anabolism
•Bioenergetics is the study of how organisms
manage their energy resources
© 2011 Pearson Education, Inc.

Forms of Energy
•Energy is the capacity to cause change
•Energy exists in various forms, some of which
can perform work
© 2011 Pearson Education, Inc.

•Kinetic energy is energy associated with motion
•Heat (thermal energy) is kinetic energy
associated with random movement of atoms or
molecules
•Potential energy is energy that matter possesses
because of its location or structure
•Chemical energy is potential energy available
for release in a chemical reaction
•Energy can be converted from one form to another
© 2011 Pearson Education, Inc.
Animation: Energy Concepts

Figure 8.2
A diver has more potential
energy on the platform
than in the water.
Diving converts
potential energy to
kinetic energy.
Climbing up converts the kinetic
energy of muscle movement
to potential energy.
A diver has less potential
energy in the water
than on the platform.

The Laws of Energy Transformation
•Thermodynamics is the study of energy
transformations
•A isolated system, such as that approximated by
liquid in a thermos, is isolated from its
surroundings
•In an open system, energy and matter can be
transferred between the system and its
surroundings
•Organisms are open systems
© 2011 Pearson Education, Inc.

The First Law of Thermodynamics
•According to the first law of thermodynamics,
the energy of the universe is constant
–Energy can be transferred and transformed,
but it cannot be created or destroyed
•The first law is also called the principle of
conservation of energy
© 2011 Pearson Education, Inc.

The Second Law of Thermodynamics
•During every energy transfer or transformation,
some energy is unusable, and is often lost as
heat
•According to the second law of
thermodynamics
–Every energy transfer or transformation
increases the entropy (disorder) of the
universe
© 2011 Pearson Education, Inc.

Figure 8.3
(a) First law of thermodynamics(b) Second law of thermodynamics
Chemical
energy
Heat

Figure 8.3a
(a) First law of thermodynamics
Chemical
energy

Figure 8.3b
(b) Second law of thermodynamics
Heat

•Living cells unavoidably convert organized
forms of energy to heat
•Spontaneous processes occur without
energy input; they can happen quickly or
slowly
•For a process to occur without energy input, it
must increase the entropy of the universe
© 2011 Pearson Education, Inc.

Biological Order and Disorder
•Cells create ordered structures from less
ordered materials
•Organisms also replace ordered forms of
matter and energy with less ordered forms
•Energy flows into an ecosystem in the form
of light and exits in the form of heat
© 2011 Pearson Education, Inc.

Figure 8.4

Figure 8.4a

Figure 8.4b

•The evolution of more complex organisms does
not violate the second law of thermodynamics
•Entropy (disorder) may decrease in an
organism, but the universe’s total entropy
increases
© 2011 Pearson Education, Inc.

Concept 8.2: The free-energy change of a
reaction tells us whether or not the reaction
occurs spontaneously
•Biologists want to know which reactions occur
spontaneously and which require input of
energy
•To do so, they need to determine energy
changes that occur in chemical reactions
© 2011 Pearson Education, Inc.

Free-Energy Change, DG
•A living system’s free energy is energy that
can do work when temperature and pressure
are uniform, as in a living cell
© 2011 Pearson Education, Inc.

•The change in free energy (∆G) during a
process is related to the change in enthalpy, or
change in total energy (∆H), change in entropy
(∆S), and temperature in Kelvin (T)
∆G = ∆H – T∆S
•Only processes with a negative ∆G are
spontaneous
•Spontaneous processes can be harnessed to
perform work
© 2011 Pearson Education, Inc.

Free Energy, Stability, and Equilibrium
•Free energy is a measure of a system’s
instability, its tendency to change to a more
stable state
•During a spontaneous change, free energy
decreases and the stability of a system
increases
•Equilibrium is a state of maximum stability
•A process is spontaneous and can perform
work only when it is moving toward equilibrium
© 2011 Pearson Education, Inc.

Figure 8.5
• More free energy (higher G)
• Less stable
• Greater work capacity
In a spontaneous change
• The free energy of the system
decreases (DG < 0)
• The system becomes more
stable
• The released free energy can
be harnessed to do work
• Less free energy (lower G)
• More stable
• Less work capacity
(a) Gravitational motion (b) Diffusion (c) Chemical reaction

Figure 8.5a
• More free energy (higher G)
• Less stable
• Greater work capacity
In a spontaneous change
• The free energy of the system
decreases (DG < 0)
• The system becomes more
stable
• The released free energy can
be harnessed to do work
• Less free energy (lower G)
• More stable
• Less work capacity

Figure 8.5b
(a) Gravitational motion (b) Diffusion (c) Chemical reaction

Free Energy and Metabolism
•The concept of free energy can be applied to
the chemistry of life’s processes
© 2011 Pearson Education, Inc.

Exergonic and Endergonic Reactions in
Metabolism
•An exergonic reaction proceeds with a net
release of free energy and is spontaneous
•An endergonic reaction absorbs free energy
from its surroundings and is nonspontaneous
© 2011 Pearson Education, Inc.

Figure 8.6
(a) Exergonic reaction: energy released, spontaneous
(b) Endergonic reaction: energy required, nonspontaneous
Reactants
Energy
Products
Progress of the reaction
Amount of
energy
released
(DG < 0)
Reactants
Energy
Products
Amount of
energy
required
(DG > 0)
Progress of the reaction
F
r
e
e

e
n
e
r
g
y
F
r
e
e

e
n
e
r
g
y

Figure 8.6a
(a) Exergonic reaction: energy released, spontaneous
Reactants
Energy
Products
Progress of the reaction
Amount of
energy
released
(DG < 0)
F
r
e
e

e
n
e
r
g
y

Figure 8.6b
(b) Endergonic reaction: energy required, nonspontaneous
Reactants
Energy
Products
Amount of
energy
required
(DG > 0)
Progress of the reaction
F
r
e
e

e
n
e
r
g
y

Equilibrium and Metabolism
•Reactions in a closed system eventually reach
equilibrium and then do no work
•Cells are not in equilibrium; they are open
systems experiencing a constant flow of materials
•A defining feature of life is that metabolism is
never at equilibrium
•A catabolic pathway in a cell releases free energy
in a series of reactions
•Closed and open hydroelectric systems can
serve as analogies
© 2011 Pearson Education, Inc.

Figure 8.7
(a) An isolated hydroelectric system
(b) An open hydro-
electric system
(c) A multistep open hydroelectric system
DG < 0
DG < 0
DG < 0
DG < 0
DG < 0
DG = 0

Figure 8.7a
(a) An isolated hydroelectric system
DG < 0 DG = 0

Figure 8.7b
(b) An open hydroelectric
system
DG < 0

Figure 8.7c
(c) A multistep open hydroelectric system
DG < 0
DG < 0
DG < 0

Concept 8.3: ATP powers cellular work by
coupling exergonic reactions to endergonic
reactions
•A cell does three main kinds of work
–Chemical
–Transport
–Mechanical
•To do work, cells manage energy resources by
energy coupling, the use of an exergonic
process to drive an endergonic one
•Most energy coupling in cells is mediated by ATP
© 2011 Pearson Education, Inc.

The Structure and Hydrolysis of ATP
•ATP (adenosine triphosphate) is the cell’s
energy shuttle
•ATP is composed of ribose (a sugar), adenine
(a nitrogenous base), and three phosphate
groups
© 2011 Pearson Education, Inc.

Figure 8.8
(a) The structure of ATP
Phosphate groups
Adenine
Ribose
Adenosine triphosphate (ATP)
Energy
Inorganic
phosphate
Adenosine diphosphate (ADP)
(b) The hydrolysis of ATP

Figure 8.8a
(a) The structure of ATP
Phosphate groups
Adenine
Ribose

Figure 8.8b
Adenosine triphosphate (ATP)
Energy
Inorganic
phosphate
Adenosine diphosphate (ADP)
(b) The hydrolysis of ATP

•The bonds between the phosphate groups
of ATP’s tail can be broken by hydrolysis
•Energy is released from ATP when the
terminal phosphate bond is broken
•This release of energy comes from the
chemical change to a state of lower free
energy, not from the phosphate bonds
themselves
© 2011 Pearson Education, Inc.

How the Hydrolysis of ATP Performs Work
•The three types of cellular work (mechanical,
transport, and chemical) are powered by the
hydrolysis of ATP
•In the cell, the energy from the exergonic
reaction of ATP hydrolysis can be used to
drive an endergonic reaction
•Overall, the coupled reactions are exergonic
© 2011 Pearson Education, Inc.

Figure 8.9
Glutamic
acid
Ammonia Glutamine
(b)Conversion
reaction
coupled
with ATP
hydrolysis
Glutamic acid
conversion
to glutamine
(a)
(c)Free-energy
change for
coupled
reaction
Glutamic
acid
GlutaminePhosphorylated
intermediate
Glu
NH
3 NH
2
Glu
DG
Glu
= +3.4 kcal/mol
ATP
ADP ADP
NH
3
Glu Glu
P
P
i
P
iADP
Glu
NH
2
DG
Glu
= +3.4 kcal/mol
Glu Glu
NH
3
NH
2
ATP
DG
ATP
= -7.3 kcal/mol
DG
Glu = +3.4 kcal/mol
+ DG
ATP
= -7.3 kcal/mol
Net DG = -3.9 kcal/mol
1 2

•ATP drives endergonic reactions by
phosphorylation, transferring a phosphate
group to some other molecule, such as a
reactant
•The recipient molecule is now called a
phosphorylated intermediate
© 2011 Pearson Education, Inc.

Figure 8.10
Transport protein Solute
ATP
P P
i
P
iADP
P
iADPATP
ATP
Solute transported
Vesicle Cytoskeletal track
Motor protein Protein and
vesicle moved
(b) Mechanical work: ATP binds noncovalently to motor
proteins and then is hydrolyzed.
(a) Transport work: ATP phosphorylates transport proteins.

The Regeneration of ATP
•ATP is a renewable resource that is
regenerated by addition of a phosphate
group to adenosine diphosphate (ADP)
•The energy to phosphorylate ADP comes
from catabolic reactions in the cell
•The ATP cycle is a revolving door through
which energy passes during its transfer from
catabolic to anabolic pathways
© 2011 Pearson Education, Inc.

Figure 8.11
Energy from
catabolism (exergonic,
energy-releasing
processes)
Energy for cellular
work (endergonic,
energy-consuming
processes)
ATP
ADPP
i
H
2O

Concept 8.4: Enzymes speed up metabolic
reactions by lowering energy barriers
•A catalyst is a chemical agent that speeds up
a reaction without being consumed by the
reaction
•An enzyme is a catalytic protein
•Hydrolysis of sucrose by the enzyme sucrase
is an example of an enzyme-catalyzed
reaction
© 2011 Pearson Education, Inc.

Figure 8.UN02
Sucrase
Sucrose
(C
12
H
22
O
11
)
Glucose
(C
6
H
12
O
6
)
Fructose
(C
6H
12O
6)

The Activation Energy Barrier
•Every chemical reaction between molecules
involves bond breaking and bond forming
•The initial energy needed to start a chemical
reaction is called the free energy of activation,
or activation energy (E
A
)
•Activation energy is often supplied in the form
of thermal energy that the reactant molecules
absorb from their surroundings
© 2011 Pearson Education, Inc.

Figure 8.12
Transition state
Reactants
Products
Progress of the reaction
F
r
e
e

e
n
e
r
g
y
E
A
DG < O
A B
C D
A B
C D
AB
CD

How Enzymes Lower the E
A
Barrier
•Enzymes catalyze reactions by lowering the E
A

barrier
•Enzymes do not affect the change in free
energy (∆G); instead, they hasten reactions
that would occur eventually
© 2011 Pearson Education, Inc.
Animation: How Enzymes Work

Figure 8.13
Course of
reaction
without
enzyme
E
A
without
enzyme
E
A
with
enzyme
is lower
Course of
reaction
with enzyme
Reactants
Products
DG is unaffected
by enzyme
Progress of the reaction
F
r
e
e

e
n
e
r
g
y

Substrate Specificity of Enzymes
•The reactant that an enzyme acts on is called the
enzyme’s substrate
•The enzyme binds to its substrate, forming an
enzyme-substrate complex
•The active site is the region on the enzyme
where the substrate binds
•Induced fit of a substrate brings chemical
groups of the active site into positions that
enhance their ability to catalyze the reaction
© 2011 Pearson Education, Inc.

Figure 8.14
Substrate
Active site
Enzyme Enzyme-substrate
complex
(a) (b)

Catalysis in the Enzyme’s Active Site
•In an enzymatic reaction, the substrate binds to
the active site of the enzyme
•The active site can lower an E
A
barrier by
–Orienting substrates correctly
–Straining substrate bonds
–Providing a favorable microenvironment
–Covalently bonding to the substrate
© 2011 Pearson Education, Inc.

Figure 8.15-1
Substrates
Substrates enter active site.
Enzyme-substrate
complex
Substrates are held
in active site by weak
interactions.
1
2
Enzyme
Active
site

Figure 8.15-2
Substrates
Substrates enter active site.
Enzyme-substrate
complex
Substrates are held
in active site by weak
interactions.
Active site can
lower E
A
and speed
up a reaction.
1
2
3
Substrates are
converted to
products.
4
Enzyme
Active
site

Figure 8.15-3
Substrates
Substrates enter active site.
Enzyme-substrate
complex
Enzyme
Products
Substrates are held
in active site by weak
interactions.
Active site can
lower E
A
and speed
up a reaction.
Active
site is
available
for two new
substrate
molecules.
Products are
released.
Substrates are
converted to
products.
1
2
3
45
6

Effects of Local Conditions on Enzyme
Activity
•An enzyme’s activity can be affected by
–General environmental factors, such as
temperature and pH
–Chemicals that specifically influence the
enzyme
© 2011 Pearson Education, Inc.

Effects of Temperature and pH
•Each enzyme has an optimal temperature in
which it can function
•Each enzyme has an optimal pH in which it can
function
•Optimal conditions favor the most active shape
for the enzyme molecule
© 2011 Pearson Education, Inc.

Figure 8.16
Optimal temperature for
typical human enzyme (37°C)
Optimal temperature for
enzyme of thermophilic
(heat-tolerant)
bacteria (77°C)
Temperature (°C)
(a) Optimal temperature for two enzymes
R
a
t
e

o
f

r
e
a
c
t
i
o
n
R
a
t
e

o
f

r
e
a
c
t
i
o
n
120100806040200
01 23 4 56 78910
pH
(b) Optimal pH for two enzymes
Optimal pH for pepsin
(stomach
enzyme)
Optimal pH for trypsin
(intestinal
enzyme)

Figure 8.16a
Optimal temperature for
typical human enzyme (37°C)
Optimal temperature for
enzyme of thermophilic
(heat-tolerant)
bacteria (77°C)
Temperature (°C)
(a) Optimal temperature for two enzymes
R
a
t
e

o
f

r
e
a
c
t
i
o
n
120100806040200

Figure 8.16b
R
a
t
e

o
f

r
e
a
c
t
i
o
n
012 34 5 67 8 910
pH
(b) Optimal pH for two enzymes
Optimal pH for pepsin
(stomach
enzyme)
Optimal pH for trypsin
(intestinal
enzyme)

Cofactors
•Cofactors are nonprotein enzyme helpers
•Cofactors may be inorganic (such as a metal in
ionic form) or organic
•An organic cofactor is called a coenzyme
•Coenzymes include vitamins
© 2011 Pearson Education, Inc.

Enzyme Inhibitors
•Competitive inhibitors bind to the active site
of an enzyme, competing with the substrate
•Noncompetitive inhibitors bind to another
part of an enzyme, causing the enzyme to
change shape and making the active site less
effective
•Examples of inhibitors include toxins, poisons,
pesticides, and antibiotics
© 2011 Pearson Education, Inc.

Figure 8.17
(a) Normal binding (b) Competitive inhibition(c) Noncompetitive
inhibition
Substrate
Active
site
Enzyme
Competitive
inhibitor
Noncompetitive
inhibitor

The Evolution of Enzymes
•Enzymes are proteins encoded by genes
•Changes (mutations) in genes lead to changes
in amino acid composition of an enzyme
•Altered amino acids in enzymes may alter their
substrate specificity
•Under new environmental conditions a novel
form of an enzyme might be favored
© 2011 Pearson Education, Inc.

Figure 8.18
Two changed amino acids were
found near the active site.
Active site
Two changed amino acids
were found in the active site.
Two changed amino acids
were found on the surface.

Concept 8.5: Regulation of enzyme activity
helps control metabolism
•Chemical chaos would result if a cell’s
metabolic pathways were not tightly regulated
•A cell does this by switching on or off the
genes that encode specific enzymes or by
regulating the activity of enzymes
© 2011 Pearson Education, Inc.

Allosteric Regulation of Enzymes
•Allosteric regulation may either inhibit or
stimulate an enzyme’s activity
•Allosteric regulation occurs when a regulatory
molecule binds to a protein at one site and
affects the protein’s function at another site
© 2011 Pearson Education, Inc.

Allosteric Activation and Inhibition
•Most allosterically regulated enzymes are
made from polypeptide subunits
•Each enzyme has active and inactive forms
•The binding of an activator stabilizes the
active form of the enzyme
•The binding of an inhibitor stabilizes the
inactive form of the enzyme
© 2011 Pearson Education, Inc.

Figure 8.19
Regulatory
site (one
of four)
(a) Allosteric activators and inhibitors
Allosteric enzyme
with four subunits
Active site
(one of four)
Active form
Activator
Stabilized active form
Oscillation
Non-
functional
active site
Inactive form
Inhibitor
Stabilized inactive
form
Inactive form
Substrate
Stabilized active
form
(b) Cooperativity: another type of allosteric activation

Figure 8.19a
Regulatory site
(one of four)
(a) Allosteric activators and inhibitors
Allosteric enzyme
with four subunits
Active site
(one of four)
Active form
Activator
Stabilized active form
Oscillation
Nonfunctional
active site
Inactive form
Inhibitor
Stabilized inactive form

Figure 8.19b
Inactive form
Substrate
Stabilized active
form
(b) Cooperativity: another type of allosteric activation

•Cooperativity is a form of allosteric regulation
that can amplify enzyme activity
•One substrate molecule primes an enzyme to
act on additional substrate molecules more
readily
•Cooperativity is allosteric because binding by a
substrate to one active site affects catalysis in
a different active site
© 2011 Pearson Education, Inc.

Identification of Allosteric Regulators
•Allosteric regulators are attractive drug
candidates for enzyme regulation because of
their specificity
•Inhibition of proteolytic enzymes called
caspases may help management of
inappropriate inflammatory responses
© 2011 Pearson Education, Inc.

Figure 8.20
Caspase 1 Active
site
Substrate
SH SH
SH
Known active form Active form can
bind substrate
Allosteric
binding site
Allosteric
inhibitor
Hypothesis: allosteric
inhibitor locks enzyme
in inactive form
Caspase 1
Active form Allosterically
inhibited form
Inhibitor
Inactive form
EXPERIMENT
RESULTS
Known inactive form

Figure 8.20a
Caspase 1 Active
site
Substrate
SH SH
SH
Known active form Active form can
bind substrate
Allosteric
binding site
Allosteric
inhibitor
Hypothesis: allosteric
inhibitor locks enzyme
in inactive form
EXPERIMENT
Known inactive form

Figure 8.20b
Caspase 1
Active form Allosterically
inhibited form
Inhibitor
Inactive form
RESULTS

Feedback Inhibition
•In feedback inhibition, the end product of a
metabolic pathway shuts down the pathway
•Feedback inhibition prevents a cell from
wasting chemical resources by synthesizing
more product than is needed
© 2011 Pearson Education, Inc.

Figure 8.21
Active site
available
Isoleucine
used up by
cell
Feedback
inhibition
Active site of
enzyme 1 is
no longer able
to catalyze the
conversion
of threonine to
intermediate A;
pathway is
switched off.
Isoleucine
binds to
allosteric
site.
Initial
substrate
(threonine)
Threonine
in active site
Enzyme 1
(threonine
deaminase)
Intermediate A
Intermediate B
Intermediate C
Intermediate D
Enzyme 2
Enzyme 3
Enzyme 4
Enzyme 5
End product
(isoleucine)

Specific Localization of Enzymes Within
the Cell
•Structures within the cell help bring order to
metabolic pathways
•Some enzymes act as structural components
of membranes
•In eukaryotic cells, some enzymes reside in
specific organelles; for example, enzymes for
cellular respiration are located in mitochondria
© 2011 Pearson Education, Inc.

Figure 8.22
Mitochondria
The matrix contains
enzymes in solution that
are involved in one stage
of cellular respiration.
Enzymes for another
stage of cellular
respiration are
embedded in the
inner membrane.
1 mm

Figure 8.22a
1 mm

Figure 8.UN03
Course of
reaction
without
enzyme
E
A

without
enzyme E
A
with
enzyme
is lower
Course of
reaction
with enzyme
Reactants
Products
DG is unaffected
by enzyme
Progress of the reaction
F
r
e
e

e
n
e
r
g
y

Figure 8.UN04

Figure 8.UN05

Figure 8.UN06

Figure 8.UN07
Tags