Ch3 2 Data communication and networking

nehakurale77 234 views 16 slides Apr 21, 2021
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

Data communication and networking by neha g. kurale


Slide Content

DATA RATE LIMITS
Averyimportantconsiderationindatacommunications
ishowfastwecansenddata,inbitspersecond,overa
channel.Dataratedependsonthreefactors:
1.Thebandwidthavailable
2.Thelevelofthesignalsweuse
3.Thequalityofthechannel(thelevelofnoise)
Noiseless Channel: Nyquist Bit Rate
Noisy Channel: Shannon Capacity
Using Both Limits
Topics discussed in this section:

Increasing the levels of a signal
increases the probability of an error
occurring, in other words it reduces the
reliability of the system. Why??
Note

Capacity of a System
The bit rate of a system increases with an
increase in the number of signal levels we
use to denote a symbol.
A symbol can consist of a single bit or “n”
bits.
The number of signal levels = 2
n
.
As the number of levels goes up, the spacing
between level decreases -> increasing the
probability of an error occurring in the
presence of transmission impairments.

Nyquist Theorem
Nyquist gives the upper bound for the bit rate
of a transmission system by calculating the
bit rate directly from the number of bits in a
symbol (or signal levels) and the bandwidth
of the system (assuming 2 symbols/per cycle
and first harmonic).
Nyquist theorem states that for a noiseless
channel:
C = 2 B log
22
n
C= capacity in bps
B = bandwidth in Hz

DoestheNyquisttheorembitrateagreewiththe
intuitivebitratedescribedinbasebandtransmission?
Solution
Theymatchwhenwehaveonlytwolevels.Wesaid,in
basebandtransmission,thebitrateis2timesthe
bandwidthifweuseonlythefirstharmonicintheworst
case.However,theNyquistformulaismoregeneralthan
whatwederivedintuitively;itcanbeappliedtobaseband
transmissionandmodulation.Also,itcanbeapplied
whenwehavetwoormorelevelsofsignals.
Example 3.33

Consideranoiselesschannelwithabandwidthof3000
Hztransmittingasignalwithtwosignallevels.The
maximumbitratecanbecalculatedas
Example 3.34

Considerthesamenoiselesschanneltransmittinga
signalwithfoursignallevels(foreachlevel,wesend2
bits).Themaximumbitratecanbecalculatedas
Example 3.35

Weneedtosend265kbpsoveranoiselesschannelwith
abandwidthof20kHz.Howmanysignallevelsdowe
need?
Solution
WecanusetheNyquistformulaasshown:
Example 3.36
Sincethisresultisnotapowerof2,weneedtoeither
increasethenumberoflevelsorreducethebitrate.Ifwe
have128levels,thebitrateis280kbps.Ifwehave64
levels,thebitrateis240kbps.

Shannon’s Theorem
Shannon’s theorem gives the capacity
of a system in the presence of noise.
C = B log
2(1 + SNR)

Consideranextremelynoisychannelinwhichthevalue
ofthesignal-to-noiseratioisalmostzero.Inother
words,thenoiseissostrongthatthesignalisfaint.For
thischannelthecapacityCiscalculatedas
Example 3.37
Thismeansthatthecapacityofthischanneliszero
regardlessofthebandwidth.Inotherwords,wecannot
receiveanydatathroughthischannel.

Wecancalculatethetheoreticalhighestbitrateofa
regulartelephoneline.Atelephonelinenormallyhasa
bandwidthof3000.Thesignal-to-noiseratioisusually
3162.Forthischannelthecapacityiscalculatedas
Example 3.38
Thismeansthatthehighestbitrateforatelephoneline
is34.860kbps.Ifwewanttosenddatafasterthanthis,
wecaneitherincreasethebandwidthofthelineor
improvethesignal-to-noiseratio.

Thesignal-to-noiseratioisoftengivenindecibels.
AssumethatSNR
dB=36andthechannelbandwidthis2
MHz.Thetheoreticalchannelcapacitycanbecalculated
as
Example 3.39

Forpracticalpurposes,whentheSNRisveryhigh,we
canassumethatSNR+1isalmostthesameasSNR.In
thesecases,thetheoreticalchannelcapacitycanbe
simplifiedto
Example 3.40
Forexample,wecancalculatethetheoreticalcapacityof
thepreviousexampleas

Wehaveachannelwitha1-MHzbandwidth.TheSNR
forthischannelis63.Whataretheappropriatebitrate
andsignallevel?
Solution
First,weusetheShannonformulatofindtheupper
limit.
Example 3.41

TheShannonformulagivesus6Mbps,theupperlimit.
Forbetterperformancewechoosesomethinglower,4
Mbps,forexample.ThenweusetheNyquistformulato
findthenumberofsignallevels.
Example 3.41 (continued)

The Shannon capacity gives us the
upper limit; the Nyquist formula tells us
how many signal levels we need.
Note