January 27, 2005 11:55 L24-ch14 Sheet number 46 Page number 648 black
648 Chapter 14
6.2x=2xλ,−2y=2yλ, x
2
+y
2
=25. Ifx7 =0 thenλ=1 andy=0sox
2
+0
2
=25,x=±5.
Ifx=0 then 0
2
+y
2
=25,y=±5. Test (±5,0) and (0,±5):f(±5,0) =25,f(0,±5) =−25,
maximum 25 at (±5,0), minimum−25 at (0,±5).
7.12x
2
=4xλ,2y=2yλ.Ify7 =0 thenλ=1 and 12x
2
=4x,12x(x−1/3) =0,x=0orx=1/3
so from 2x
2
+y
2
=1 we find thaty=±1 whenx=0,y=±
√
7/3 whenx=1/3. Ify=0
then 2x
2
+ (0)
2
=1,x=±1/
√
2. Test (0,±1),
J
1/3,±
√
7/3
a
, and
J
±1/
√
2,0
a
.f(0,±1) =1,
f
J
1/3,±
√
7/3
a
=25/27,f
J
1/
√
2,0
a
=
√
2,f
J
−1/
√
2,0
a
=−
√
2. Maximum
√
2at
J
1/
√
2,0
a
,
minimum−
√
2at
J
−1/
√
2,0
a
.
8.1=2xλ,−3=6yλ;1/(2x)=−1/(2y),y=−xsox
2
+3(−x)
2
=16,x=±2. Test (−2,2) and
(2,−2).f(−2,2) =−9,f(2,−2) =7. Maximum 7 at (2,−2), minimum−9at(−2,2).
9.2=2xλ,1=2yλ,−2=2zλ;1/x=1/(2y)=−1/zthusx=2y,z=−2yso
(2y)
2
+y
2
+(−2y)
2
=4,y
2
=4/9,y=±2/3. Test (−4/3,−2/3,4/3) and (4/3,2/3,−4/3).
f(−4/3,−2/3,4/3) =−6,f(4/3,2/3,−4/3) =6. Maximum 6 at (4/3,2/3,−4/3), minimum−6
at (−4/3,−2/3,4/3).
10.3=4xλ,6=8yλ,2=2zλ;3/(4x)=3/(4y)=1/zthusy=x,z=4x/3, so
2x
2
+4x
2
+(4x/3)
2
=70,x
2
=9,x=±3. Test (−3,−3,−4) and (3,3,4).
f(−3,−3,−4) =−35,f(3,3,4) =35. Maximum 35 at (3, 3, 4), minimum−35 at (−3,−3,−4).
11.yz=2xλ,xz=2yλ,xy=2zλ;yz/(2x)=xz/(2y)=xy/(2z)thusy
2
=x
2
,z
2
=x
2
so
x
2
+x
2
+x
2
=1,x=±1/
√
3. Test the eight possibilities withx=±1/
√
3,y=±1/
√
3, and
z=±1/
√
3 to find the maximum is 1/
J
3
√
3
a
at
J
1/
√
3,1/
√
3,1/
√
3
a
,
J
1/
√
3,−1/
√
3,−1/
√
3
a
,
J
−1/
√
3,1/
√
3,−1/
√
3
a
, and
J
−1/
√
3,−1/
√
3,1/
√
3
a
; the minimum is−1/
J
3
√
3
a
at
J
1/
√
3,1/
√
3,−1/
√
3
a
,
J
1/
√
3,−1/
√
3,1/
√
3
a
,
J
−1/
√
3,1/
√
3,1/
√
3
a
, and
J
−1/
√
3,−1/
√
3,−1/
√
3
a
.
12.4x
3
=2λx,4y
3
=2λy,4z
3
=2λz;ifx(oryorz)7 =0 thenλ=2x
2
(or 2y
2
or 2z
2
).
Assume for the moment that|x|≤|y|≤|z|. Then:
Case I:x, y, z7 =0soλ=2x
2
=2y
2
=2z
2
,x=±y=±z,3x
2
=1,x=±1/
√
3,
f(x, y, z)=3/9=1/3
Case II:x=0,y,z7 =0; theny=±z,2y
2
=1,y=±z=±1/
√
2,f(x, y, z)=2/4=1/2
Case III:x=y=0,z7 =0; thenz
2
=1,z=±1,f(x, y, z)=1
Thusfhas a maximum value of 1 at (0,0,±1),(0,±1,0), and (±1,0,0) and a minimum value of
1/3 at (±1/
√
3,±1/
√
3,±1/
√
3).
13.f(x, y)=x
2
+y
2
;2x=2λ,2y=−4λ;y=−2xso 2x−4(−2x)=3,x=3/10. The point is
(3/10,−3/5).
14.f(x, y)=(x−4)
2
+(y−2)
2
,g(x, y)=y−2x−3; 2(x−4) =−2λ,2(y−2) =λ;x−4=−2(y−2),
x=−2y+8soy=2(−2y+8)+3,y=19/5. The point is (2/5,19/5).
15.f(x, y, z)=x
2
+y
2
+z
2
;2x=λ,2y=2λ,2z=λ;y=2x,z=xsox+ 2(2x)+x=1,x=1/6.
The point is (1/6,1/3,1/6).
16.f(x, y, z)=(x−1)
2
+(y+1)
2
+(z−1)
2
;2(x−1) =4λ,2(y+1)=3λ,2(z−1) =λ;x=4z−3,
y=3z−4so4(4z−3) + 3(3z−4) +z=2,z=1. The point is (1,−1,1).
17.f(x, y)=(x−1)
2
+(y−2)
2
;2(x−1) =2xλ,2(y−2) =2yλ;(x−1)/x=(y−2)/y,y=2x
sox
2
+(2x)
2
=45,x=±3.f(−3,−6) =80 andf(3,6) =20 so (3,6) is closest and (−3,−6) is
farthest.