Chapter-2: Theoretical model of chemical process

MDIMRANHOSSEN23 22 views 26 slides Sep 26, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Process dynamics and Control


Slide Content

Chapter
2
Theoretical Models of Chemical
Processes

Chapter
2
RationaleforDynamicModels
1.Improveunderstandingoftheprocess
2.TrainPlantoperatingpersonnel
3.Developcontrolstrategyfornewplant
4.Optimizeprocessoperatingconditions

Chapter
2
TypeofModels
1. Theoreticalmodel
-developed using the principles of chemistry, physics,
and biology
-applicableoverwiderangesofconditions
-expensiveandtimeconsuming
-some model parameters such as reaction rate coefficients
physical properties, or heat transfer coefficients are
unknown
2. Empiricalmodels
-obtainedfittingexperimentaldata
-range of the data is typically quite small compared to
thewholerangeofprocessoperatingconditions
-donotextrapolatewell
3. Semi-empiricalmodels
-combinationof1and2
-overcome the previously mentioned limitations to many
extents
-widelyusedinindustry

Chapter
2
GeneralModelingPrinciples
•The model equations are at best an approximation to the real
process.
•Adage:“Allmodelsarewrong,butsomeareuseful.”
•Modeling inherently involves a compromise between model
accuracyandcomplexityononehand,andthecostandeffort
requiredtodevelop themodel,ontheother hand.
•Processmodelingisbothanartandascience.Creativityis
requiredtomakesimplifyingassumptionsthatresultinan
appropriatemodel.
•Dynamic models of chemical processes consist of ordinary
differential equations (ODE) and/or partial differential equations
(PDE),plus relatedalgebraicequations.

Chapter
2
Table2.1.ASystematicApproachfor
Developing DynamicModels
1.State the modeling objectives and the end use of the model.
They determine the required levels of model detail and model
accuracy.
2.Draw a schematic diagram of the process and label all process
variables.
3.Listalloftheassumptionsthatareinvolvedindevelopingthe
model.Try for parsimony; the model should be no more
complicatedthannecessarytomeetthemodelingobjectives.
4.Determinewhetherspatialvariationsofprocessvariablesare
important.Ifso,apartialdifferentialequationmodelwillbe
required.
5.Writeappropriateconservationequations(mass,component,
energy,andsoforth).

Chapter
2
6.Introduceequilibriumrelationsandotheralgebraic
equations(fromthermodynamics,transportphenomena,
chemicalkinetics,equipmentgeometry,etc.).
7.Performadegreesoffreedomanalysis(Section2.3)to
ensurethatthemodelequationscanbesolved.
8.Simplifythemodel.Itisoftenpossibletoarrangethe
equationssothatthedependentvariables(outputs)appear
ontheleftsideandtheindependentvariables(inputs)
appearontherightside.Thismodelformisconvenient
forcomputersimulationandsubsequentanalysis.
9.Classifyinputsasdisturbancevariablesorasmanipulated
variables.
Table2.1.(continued)

Chapter
2
Table2.2.DegreesofFreedomAnalysis
1.Listallquantitiesinthemodelthatareknownconstants(or
parametersthatcanbespecified)onthebasisofequipment
dimensions,knownphysicalproperties,etc.
2.Determine the number of equations N
Eand the number of
processvariables,N
V.Notethattimetisnotconsideredtobea
process variable because it is neither a process input nor a
processoutput.
3.Calculatethenumberofdegreesof freedom,N
F=N
V-N
E.
4.IdentifytheN
Eoutputvariablesthatwillbeobtainedbysolving
theprocess model.
5.IdentifytheN
Finputvariablesthatmustbespecifiedaseither
disturbance variables or manipulated variables, in order to
utilizetheN
Fdegreesof freedom.

Chapter
2
ConservationLaws
Theoretical models of chemical processes are based on
conservationlaws.
ConservationofMass
ConservationofComponenti

Chapter
2
ConservationofEnergy
The general law of energy conservation is also called the First
Lawof Thermodynamics.It canbe expressedas:
Thetotalenergyofathermodynamicsystem,U
tot,isthesumofits
internalenergy, kineticenergy, andpotential energy:
U
tot U
int U
KE U
PE
(2-9)

Chapter
2
Fortheprocessesandexamplesconsideredinthisbook,it
isappropriatetomaketwoassumptions:
1.Changesinpotentialenergyandkineticenergycanbe
neglectedbecausetheyaresmallincomparisonwithchanges
ininternalenergy.
2.Thenetrateofworkcanbeneglectedbecauseitissmall
comparedtotheratesofheattransferandconvection.
Forthesereasonableassumptions,theenergybalancein
Eq.2-8canbewrittenas
U
inttheinternalenergyof
thesystem
Henthalpyperunitmass
wmassflowrate
Qrateofheat transfertothesystem
streams;therefore
(2-10)
denotes the difference
between outletand inlet
conditionsoftheflowing
-ΔwH) = rateofenthalpyoftheinlet
stream(s)-theenthalpy ofthe
outlet stream(s)

Chapter
2
Theanalogousequationformolarquantitiesis,
Where ෩??????istheenthalpy per mole and෥�isthemolarflowrate.
In order to derive dynamic models of processes from the general
energy balances in Eqs. 2-10 and 2-11, expressions for U
intand መ??????
or෩??????are required,whichcan bederivedfromthermodynamics.

Chapter
2
DevelopmentofDynamicModels
Illustrative Example:ABlendingProcess
Anunsteady-statemassbalancefortheblendingsystem:

Chapter
2
where w
1,w
2,andwaremassflowrates.
Theunsteady-statecomponentbalanceis:
(2-3)
For constant density, the corresponding model can be summarized
as:
or
(2-2)

dV
w
1w
2w (2-12)
dt
(2-13)
??????(????????????)
????????????
=�
1+�
2−�
??????(????????????�)
????????????
=�
1�
1+�
2�
2−��
??????
??????(??????�)
????????????
=�
1�
1+�
2�
2−��

Chapter
2
Equation 2-13 can be simplified by expanding the accumulation
termusing the “chainrule”for differentiationof aproduct:

dVx)
V
dx
x
dV
dt dt dt
Substitutionof(2-14)into(2-13)gives:
(2-14)
1 1 22
(2-15)
dt dt
V
dx
x
dV
wxwxwx
Substitutionof themass balance in(2-12)fordV/dtin(2-15)
gives:
Vxw
1w
2w)w
1x
1w
2x
2wx (2-16)
dx
dt
After canceling common terms and rearranging (2-12) and (2-16),
amore convenient model formis obtained:
1 2
dx

w
1
1 2
(2-17)
(2-18)
dt
dV

1
www)
dtV V
xx)
w
2
xx)

Chapter
2
Stirred-TankHeatingProcess
Figure2.3Stirred-tankheatingprocesswithconstantholdup,V.

Chapter
2
Stirred-TankHeatingProcess(cont’d.)
Assumptions:
1.Perfect mixing; thus, the exit temperature T is also the
temperatureof the tankcontents.
2.The liquid holdup V is constant because the inlet and outlet
flowrates areequal,w
i= w.
3.Thedensityand heat capacity C of the liquid are assumed to
beconstant.Thus, theirtemperature dependenceis neglected.
4.Heatlossesarenegligible.

Chapter
2
For a pure liquid at low or moderate pressures, the internal energy
isapproximatelyequaltotheenthalpy,U
intH,and H depends
only on temperature. Consequently, in the subsequent
development,weassumethatU
int= H andUˆ
intHˆwherethe
caret (^) means per unit mass. As shown in Appendix B, a
differential change in temperature, dT, produces a corresponding
changeintheinternalenergyperunitmass,dUˆ
int,
dUˆ
intdHˆCdT (2-29)
where C is the constant pressure heat capacity (assumed to be
constant).The total internal energy of the liquidin the tank is:
U
intVUˆ
int
(2-30)
Model Development -I

Chapter
2
An expression for the rate of internal energy accumulation can be
derivedfrom Eqs. (2-29) and (2-30):
dU
int
VC
dT
dt dt
(2-31)
Note that this term appears in the general energy balance of Eq. 2-
10.
Suppose that the liquid in the tank is at a temperature T and has an
enthalpy, Hˆ.IntegratingEq.2-29fromareferencetemperature
T
refto Tgives,
CTT
ref )HˆHˆ
ref (2-32)
whereHˆ
refisthevalueofHˆ
atT
ref.Withoutlossofgenerality,we
assumethatHˆ
ref0(seeAppendixB).Thus,(2-32)canbe
writtenas:
HˆCTT
ref ) (2-33)
Model Development -II

Chapter
2
(2-34)Hˆ
i CT
i T
ref )
Substituting (2-33) and (2-34) into the convection term of (2-10)
gives:
)))
ˆ
(2-35)
iref ref
wH   wCT T wCTT
  
Finally,substitutionof(2-31)and(2-35)into (2-10)
(2-36)
i
dt
VC
dT
wCT T)Q
Model Development -III
Fortheinletstream

Chapter
2
ThusthedegreesoffreedomareN
F=4–1=3.Theprocess
variablesareclassifiedas:
1outputvariable:T
3inputvariables:Ti,w,Q
For temperature control purposes, it is reasonable to classify the
threeinputsas:
2disturbancevariables:
1manipulatedvariable:
Ti,w
Q
Degrees of Freedom Analysis for the Stirred-Tank
Model:
3parameters:
4variables:
1equation:
V,,C
T,T
i,w,Q
Eq.2-36

Chapter
2
ContinuousStirredTankReactor(CSTR)
Fig.2.6.SchematicdiagramofaCSTR.

Chapter
2
CSTR:ModelDevelopment
Assumptions:
1.Single,irreversiblereaction,A→B.
2.Perfectmixing.
3.Theliquidvolume Viskeptconstantbyanoverflowline.
4.Themassdensitiesofthefeedandproductstreamsareequal
andconstant.They aredenoted by.
5.Heatlossesare negligible.
6.Thereactionrate forthedisappearance ofA,r,isgivenby,
r=kc
A
(2-62)
wherer=molesofAreactedperunit time, perunitvolume,c
A
istheconcentration ofA(molesperunitvolume),andkistherate
constant (unitsofreciprocaltime).
7.Therate constanthasanArrheniustemperaturedependence:
k=k
0
exp(-E/RT) (2-63)
where k
0
is the frequency factor, E is the activation energy,
andRis thethegas constant.

Chapter
2
•Unsteady-statecomponentbalance
.
•Unsteady-statemass balance
Becauseand Vareconstant,
themassbalanceisnotrequired.
.Thus,
CSTR:ModelDevelopment(continued)

AssumptionsfortheUnsteady-stateEnergyBalance:
8.
9.
10.
11.
12.

Chapter
2
CSTRModel:SomeExtensions
•Howwouldthedynamicmodelchangefor:
1.Multiplereactions(e.g.,A →B→ C)?
2.Differentkinetics,e.g.,2
nd
orderreaction?
3.Significantthermalcapacityofthecoolantliquid?
4.LiquidvolumeVisnotconstant(e.g.,nooverflowline)?
5.Heatlossesarenotnegligible?
6.Perfect mixingcannotbeassumed(e.g.,foravery
viscous liquid)?

Chapter
2
SimulationSoftwares
Matlab
Mathematica
HYSYS
Modelica
gPROMS
www.mathworks.com
www.wolfram.com
www.aspentech.com
www.modelica.org
www.psenterprise.com
Aspen Custom Modeller www.aspentech.com
Global CapeOpen www.global-cape-open.org
Tags