SlidePub
Home
Categories
Login
Register
Home
Business
Chapter 4-Forecasting Operations management
Chapter 4-Forecasting Operations management
RaisaTasnim6
18 views
30 slides
Mar 03, 2025
Slide
1
of 30
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
About This Presentation
None
Size:
630.06 KB
Language:
en
Added:
Mar 03, 2025
Slides:
30 pages
Slide Content
Slide 1
4 - 1 © 2014 Pearson Education, Inc.
Forecasting
PowerPoint presentation to accompany
Heizer and Render
Operations Management, Eleventh Edition
Principles of Operations Management, Ninth Edition
PowerPoint slides by Jeff Heyl
4
© 2014 Pearson Education, Inc.
Slide 2
4 - 2 © 2014 Pearson Education, Inc.
What is Forecasting?
►Process of predicting a
future event
►Underlying basis
of all business
decisions
►Production
►Inventory
►Personnel
►Facilities
??
Slide 3
4 - 3 © 2014 Pearson Education, Inc.
1.Short-range forecast
►Up to 1 year, generally less than 3 months
►Purchasing, job scheduling, workforce levels,
job assignments, production levels
2.Medium-range forecast
►3 months to 3 years
►Sales and production planning, budgeting
3.Long-range forecast
►3
+
years
►New product planning, facility location,
research and development
Forecasting Time Horizons
Slide 4
4 - 4 © 2014 Pearson Education, Inc.
Types of Forecasts
1.Economic forecasts
►Address business cycle – inflation rate, money
supply, housing starts, etc.
2.Technological forecasts
►Predict rate of technological progress
►Impacts development of new products
3.Demand forecasts
►Predict sales of existing products and services
Slide 5
4 - 5 © 2014 Pearson Education, Inc.
Seven Steps in Forecasting
1.Determine the use of the forecast
2.Select the items to be forecasted
3.Determine the time horizon of the
forecast
4.Select the forecasting model(s)
5.Gather the data needed to make the
forecast
6.Make the forecast
7.Validate and implement results
Slide 6
4 - 6 © 2014 Pearson Education, Inc.
Forecasting Approaches
►Used when situation is vague and
little data exist
►New products
►New technology
►Involves intuition, experience
►e.g., forecasting sales on Internet
Qualitative Methods
Slide 7
4 - 7 © 2014 Pearson Education, Inc.
Forecasting Approaches
►Used when situation is ‘stable’ and
historical data exist
►Existing products
►Current technology
►Involves mathematical techniques
►e.g., forecasting sales of color
televisions
Quantitative Methods
Slide 8
4 - 8 © 2014 Pearson Education, Inc.
Overview of Qualitative Methods
1.Jury of executive opinion
►Pool opinions of high-level experts,
sometimes augment by statistical
models
2.Delphi method
►Panel of experts, queried iteratively
Slide 9
4 - 9 © 2014 Pearson Education, Inc.
Overview of Qualitative Methods
3.Sales force composite
►Estimates from individual salespersons
are reviewed for reasonableness, then
aggregated
4.Market Survey
►Ask the customer
Slide 10
4 - 10 © 2014 Pearson Education, Inc.
►Involves small group of high-level experts
and managers
►Group estimates demand by working
together
►Combines managerial experience with
statistical models
►Relatively quick
►‘Group-think’
disadvantage
Jury of Executive Opinion
Slide 11
4 - 11 © 2014 Pearson Education, Inc.
Delphi Method
►Iterative group
process, continues
until consensus is
reached
►3 types of
participants
►Decision makers
►Staff
►Respondents
Staff
(Administering
survey)
Decision Makers
(Evaluate responses
and make decisions)
Respondents
(People who can make
valuable judgments)
Slide 12
4 - 12 © 2014 Pearson Education, Inc.
Sales Force Composite
►Each salesperson projects his or her
sales
►Combined at district and national
levels
►Sales reps know customers’ wants
►May be overly optimistic
Slide 13
4 - 13 © 2014 Pearson Education, Inc.
Market Survey
►Ask customers about purchasing
plans
►Useful for demand and product
design and planning
►What consumers say, and what they
actually do may be different
►May be overly optimistic
Slide 14
4 - 14 © 2014 Pearson Education, Inc.
Overview of Quantitative
Approaches
1.Moving averages
2.Exponential
smoothing
3.Linear regression
Slide 15
4 - 15 © 2014 Pearson Education, Inc.
►Set of evenly spaced numerical data
►Obtained by observing response
variable at regular time periods
►Forecast based only on past values, no
other variables important
►Assumes that factors influencing past
and present will continue influence in
future
Time-Series Forecasting
Slide 16
4 - 16 © 2014 Pearson Education, Inc.
►MA is a series of arithmetic means
►Used if little or no trend
►Used often for smoothing
►Provides overall impression of data
over time
Moving Average Method Moving average=
demand in previous n periodså
n
Slide 17
4 - 17 © 2014 Pearson Education, Inc.
►Used when some trend might be
present
►Older data usually less important
►Weights based on experience and
intuition
Weighted Moving Average =
Weight for period n( )Demand in period n( )( )å
Weightså
Weighted
moving
average
Slide 18
4 - 18 © 2014 Pearson Education, Inc.
►Form of weighted moving average
►Weights decline exponentially
►Most recent data weighted most
►Requires smoothing constant ()
►Ranges from 0 to 1
►Subjectively chosen
►Involves little record keeping of past
data
Exponential Smoothing
Slide 19
4 - 19 © 2014 Pearson Education, Inc.
Exponential Smoothing
New forecast = Last period’s forecast
+ (Last period’s actual demand
– Last period’s forecast)
F
t = F
t – 1 + (A
t – 1 - F
t – 1)
where F
t = new forecast
F
t – 1 = previous period’s forecast
= smoothing (or weighting) constant (0 ≤ ≤ 1)
A
t – 1 = previous period’s actual demand
Slide 20
4 - 20 © 2014 Pearson Education, Inc.
Choosing
The objective is to obtain the most
accurate forecast no matter the
technique
We generally do this by selecting the
model that gives us the lowest forecast
error
Forecast error = Actual demand – Forecast value
= A
t – F
t
Slide 21
4 - 21 © 2014 Pearson Education, Inc.
Least Squares Method
Figure 4.4
Deviation
1
(error)
Deviation
5
Deviation
7
Deviation
2
Deviation
6
Deviation
4
Deviation
3
Actual observation
(y-value)
Trend line, y = a + bx
^
Time period
Values of Dependent Variable (
y
-
values)
| | | | | | |
1 2 3 4 5 6 7
Least squares method minimizes the
sum of the squared errors (deviations)
Slide 22
4 - 22 © 2014 Pearson Education, Inc.
Least Squares Method
Equations to calculate the regression variables ˆy=a+bx b=
xy-nxyå
x
2
-nx
2
å a=y-bx
Slide 23
4 - 23 © 2014 Pearson Education, Inc.
Least Squares Requirements
1.We always plot the data to insure a
linear relationship
2.We do not predict time periods far
beyond the database
3.Deviations around the least squares
line are assumed to be random
Slide 24
4 - 24 © 2014 Pearson Education, Inc.
Associative Forecasting
Used when changes in one or more independent
variables can be used to predict the changes in
the dependent variable
Most common technique is linear
regression analysis
We apply this technique just as we did
in the time-series example
Slide 25
4 - 25 © 2014 Pearson Education, Inc.
Associative Forecasting
Forecasting an outcome based on predictor
variables using the least squares technique
y = a + bx
^
where y = value of the dependent variable (in our example,
sales)
a = y-axis intercept
b = slope of the regression line
x = the independent variable
^
Slide 26
4 - 26 © 2014 Pearson Education, Inc.
►How strong is the linear relationship
between the variables?
►Correlation does not necessarily imply
causality!
►Coefficient of correlation, r, measures
degree of association
►Values range from -1 to +1
Correlation
Slide 27
4 - 27 © 2014 Pearson Education, Inc.
Correlation Coefficient r=
nxy-xyååå
nx
2
-xå()
2
å
é
ë
ê
ù
û
ú
ny
2
-yå()
2
å
é
ë
ê
ù
û
ú
Slide 28
4 - 28 © 2014 Pearson Education, Inc.
Correlation Coefficient
y
x
(a) Perfect negative
correlation
y
x
(c) No correlation
y
x
(d) Positive correlation
y
x
(e) Perfect positive
correlation
y
x
(b) Negative correlation
High Moderate Low
Correlation coefficient values
High Moderate Low
| | | | | | | | |
–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
Figure 4.10
Slide 29
4 - 29 © 2014 Pearson Education, Inc.
Correlation Coefficient r=
(6)(51.5)–(18)(15.0)
(6)(80)–(18)
2é
ë
ù
û
(16)(39.5)–(15.0)
2é
ë
ù
û
y x x
2
xy y
2
2.0 1 1 2.0 4.0
3.0 3 9 9.0 9.0
2.5 4 16 10.0 6.25
2.0 2 4 4.0 4.0
2.0 1 1 2.0 4.0
3.5 7 49 24.5 12.25
Σy = 15.0 Σx = 18 Σx
2
= 80 Σxy = 51.5 Σy
2
= 39.5 =
309-270
(156)(12)
=
39
1,872
=
39
43.3
=.901
Slide 30
4 - 30 © 2014 Pearson Education, Inc.
►Coefficient of Determination, r
2
,
measures the percent of change in y
predicted by the change in x
►Values range from 0 to 1
►Easy to interpret
Correlation
For the Nodel Construction example:
r = .901
r
2
= .81
Tags
Categories
Business
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
18
Slides
30
Age
282 days
Related Slideshows
1
DTI BPI Pivot Small Business - BUSINESS START UP PLAN
MeljunCortes
36 views
1
CATHOLIC EDUCATIONAL Corporate Responsibilities
MeljunCortes
38 views
11
Karin Schaupp – Evocation; lançamento: 2000
alfeuRIO
36 views
10
Pillars of Biblical Oneness in the Book of Acts
JanParon
32 views
31
7-10. STP + Branding and Product & Services Strategies.pptx
itsyash298
33 views
44
Business Legislation PPT - UNIT 1 jimllpkggg
slogeshk98
36 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-30)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better