-some scattered emissions occur at the same energy while others return
in a different state
Rayleigh Scattering
no change in energy
hn
in= hn
out
Elastic: collision between photon and molecule results in no change in energy
Inelastic: collision between photon and molecule results in a net change in energy
Raman Scattering
net change in energy
hn
in<> hn
out
Anti-Stokes: E = hn+ DE
Two Types of Raman Scattering
Stokes: E = hn-DE
DE –the energy of the first vibration level of the ground state–IR vibration absorbance
Raman frequency shiftand IR absorption peak frequencyare identical
EXPLANATION FOR OBSERVING RAYLEIGH
LINEAND RAMAN LINES
•Elasticandinelasticcollisionsbetweenthe
radiationsandinteractingmoleculesresultsin
theformationofRayleighandRamanlines.
•Intermsofexcitationofelectrons
• v
abs=v
eRayleighline
• v
abs>v
eStokesline
• v
abs<v
eAntiStokesline
ConsiderfirstthediatomicmoleculeH
2placedinanelectric
field,whichshowsend-onandsidewaysorientation,
respectively.Theelectronsformingthebondaremoreeasily
displacedbythefieldalongthebondaxis(Figure:b)than
thatacrossthebond(Figure:a)andthepolarizabilityisthus
saidtobeanisotropic.Thepolarizabilityofamoleculein
variousdirectionsisconventionallyrepresentedbydrawing
apolarizabilityellipsoid(Figurec&d).
Figure: The hydrogen molecule in an electric field and its polarizability
ellipsoid seen along and across the bond axis.
Symmetric top molecule
Onlyend-over-endrotationsproduceachangeinthepolarizability
inthecaseofthesymmetrictopmolecules(amoleculeinwhich
twomomentsofinertiaarethesame).
Theenergylevels:
Ɛ
J,K=BJ(J+1)+(A–B)K
2
cm
–1
(J=0,1,2,…..;K=±J,±(J–1),….)
The Raman selection rules for a symmetric top molecule are:
ΔK= 0
ΔJ= 0, ±1, ±2 (except for K=0 states, when ΔJ = ±2 only)
1-Atomic number Z:
P the amount of electrons,
Electrons become less control by nuclear charge.
2-Bond Length:
P Bond Length
3-Atomic or Molecular Size:
P Size,
4-Molecular orientation with respect to an electric field
Parallel or perpendicular (Exp: Parallel has more effect)
5-Bond Strength (Bond order):
P 1/strength of bond C=C, and C≡C, C≡N bonds are
strong scatterers, bonds undergo polarization.
6-Electronegativity difference:
P 1/ difference in electronegativity
7-Covalent bonds more polarizable than ionic bonds.
Factors affect Polarizability
Vibrational-Rotational Raman spectroscopy
The fine structure is rarely resolved except in the case of diatomic
molecules. We can write the vib-rot energy levels as:
Ɛ
J,ʋ= ϖ
e(ʋ+
1
2
)–ϖ
ex
e(ʋ+
1
2
)
2
+ BJ(J+1) cm
–1
(ʋ= 0, 1, 2,…..; J = 0, 1, 2,……)
wherewehaveignoredthecentrifugaldistortion(Dterm).
FordiatomicmoleculesΔJ=0,±2andcombiningthiswiththe
fundamentaltransitionʋ=0→ʋ=1gives
Q-BranchΔJ=0:ΔƐ
Q=ʋ
0cm
–1
(forallJ)
S-BranchΔJ=+2:ΔƐ
S=ʋ
0+B(4J+6)cm
–1
(J=0,1,2,….)
O-BranchΔJ=–2:ΔƐ
O=ʋ
0–B(4J+6)cm
–1
(J=2,3,4,….)
Stokeslines,lyingatlowfrequency(wavenumber)sideofexciting
radiationwilloccuratwavenumbersgivenby:
ʋ
Q=ʋ
ex.–ΔƐ
Q=ʋ
ex.–ʋ
0cm
–1
(forallJ)
ʋ
O=ʋ
ex.–ΔƐ
O=ʋ
ex.–ʋ
0+B(4J+6)cm
–1
(J=2,3,4,….)
ʋ
S=ʋ
ex.–ΔƐ
S=ʋ
ex.–ʋ
0–B(4J+6)cm
–1
(J=0,1,2,….)
ʋ
ex.isthefrequencyoftheincident(exciting)radiation,e.g.laser
frequency
(ʋ
ex.–ʋ
0)
ʋ
0
Figure:The pure rotation and the rotation vibration spectrum of a diatomic molecule having a fundamental
frequency of ʋ
0 cm
–1
. Stokes’ lines only are shown.
InstrumentationforRamanSpectroscopy
Schematic diagram of a Raman spectrometer