Chapter 5 - Collision Theory.pdf

1,769 views 26 slides Apr 07, 2023
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Colli


Slide Content

Collision theory
Thesimplestquantitativeaccountofreactionratesisintermsof
collisiontheory,whichcanbeusedonlyforthediscussionof
reactionsbetweensimplespeciesinthegasphase.
■Collisiontheory:
Weshallconsiderthebimolecularelementaryreaction;
A+B→P v=k
2[A][B]
wherePdenotesproducts,andaimtocalculatethesecond-order
rateconstantk
2.
Weexpecttheratevtobeproportionaltotherateofcollisions,and
thereforetothemeanspeedofthemolecules,c∝(T/M)
1/2
whereM
isthemolarmassofthemolecules,theircollisioncross-section,σ,
andthenumberdensitiesN
AandN
BofAandB.
v ∝σ(T/M)
1/2
N
AN
B∝σ (T/M)
1/2
[A][B]

Collision theory
However,acollisionwillbesuccessfulonlyifthekineticenergy
exceedsaminimumvalue,theactivationenergy,E
a,ofthereaction.
Thisrequirementsuggeststhattherateconstantshouldalsobe
proportionaltoaBoltzmannfactoroftheforme
−Ea/RT
.Sowecan
anticipate,bywritingthereactionrateintheform;
k
2∝σ (T/M)
1/2
e
−Ea /RT
Noteverycollisionwillleadtoreactioneveniftheenergy
requirementissatisfied,becausethereactantsmayneedtocollide
inacertainrelativeorientation.This‘stericrequirement’suggests
thatafurtherfactor,P,shouldbeintroduced,andthat
k
2∝σ P (T/M)
1/2
e
−Ea /RT
Thisexpressionhastheformpredictedbycollisiontheory.
k
2∝stericrequirement×encounterrate×minimumenergy
requirement

Collision theory
■(a)Collisionratesingases:
Wehaveanticipatedthatthereactionrate,andhencek
2,depends
onthefrequencywithwhichmoleculescollide.Thecollision
density,Z
AB,isthenumberof(A,B)collisionsinaregionofthe
sampleinanintervaloftimedividedbythevolumeoftheregionand
thedurationoftheinterval.
Whereσisthecollisioncross-sectionandμisthereducedmass,
Similarly,thecollisiondensityforlikemoleculesatamolar
concentration[A]is

Collision theory
■Thecollisioncross-sectionfortwomoleculescanberegarded
tobetheareawithinwhichtheprojectilemolecule(A)mustenter
aroundthetargetmolecule(B)inorderforacollisiontooccur.Ifthe
diametersofthetwomoleculesared
Aandd
B,theradiusofthetarget
areaisd=1/2(d
A+d
B)andthecross-sectionisπd
2
.

Collision theory
■Theenergyrequirement:
Accordingtocollisiontheory,therateofchangeinthemolar
concentrationofAmoleculesistheproductofthecollisiondensity
andtheprobabilitythatacollisionoccurswithsufficientenergy.
Collisiondensitycanbeincorporatedbywritingthecollisioncross-
sectionasafunctionofthekineticenergyofapproachofthetwo
collidingspecies,andsettingthecross-section,σ(ε),equaltozeroif
thekineticenergyofapproachisbelowacertainthresholdvalue,ε
a.
Later,weshallidentifyN

aasE
a,the(molar)activationenergyof
thereaction.Then,foracollisionwithaspecificrelativespeedof
approachv
rel(not,atthisstage,ameanvalue),

Collision theory
■Thestericrequirement:
Wecanaccommodatethedisagreementbetweenexperimentand
theorybyintroducingastericfactor,P,andexpressingthereactive
cross-section,σ*,asamultipleofthecollisioncross-section,σ*=
Pσ.Thentherateconstantbecomes
Thecollisioncross-sectionisthetarget
areathatresultsinsimpledeflectionof
theprojectilemolecule;thereaction
cross-sectionisthecorrespondingarea
forchemicalchangetooccuron
collision.

Collision theory
■Diffusion-controlledreactions:
Encountersbetweenreactantsinsolutionoccurinaverydifferent
mannerfromencountersingases.Reactantmoleculeshavetojostle
theirwaythroughthesolvent,sotheirencounterfrequencyis
considerablylessthaninagas.However,becauseamoleculealso
migratesonlyslowlyawayfromalocation,tworeactantmolecules
thatencountereachotherstayneareachotherformuchlongerthan
inagas.Thislingeringofonemoleculenearanotheronaccountof
thehinderingpresenceofsolventmoleculesiscalledthecageeffect.
Suchanencounterpairmayaccumulateenoughenergytoreact
eventhoughitdoesnothaveenoughenergytodosowhenitfirst
forms.

Collision theory
■Diffusion-controlledreactions:
Thecomplicatedoverallprocesscanbedividedintosimplerpartsby
settingupasimplekineticscheme.Wesupposethattherateof
formationofanencounterpairABisfirst-orderineachofthe
reactantsAandB:
A + B → AB v = k
d[A][B]
k
d(wherethedsignifiesdiffusion)isdeterminedbythediffusional
characteristicsofAandB.Theencounterpaircanbreakupwithout
reactionoritcangoontoformproductsP.Ifwesupposethatboth
processesarepseudofirst-orderreactions(withthesolventperhaps
playingarole),thenwecanwrite
AB → A + B v = k
d′[AB] and
AB → P v = ka[AB]

Collision theory
TheconcentrationofABcannowbefoundfromtheequationforthe
netrateofchangeofconcentrationofAB:
Therateofformationofproductsistherefore;
Twolimitscannowbedistinguished.Iftherateofseparationofthe
unreactedencounterpairismuchslowerthantherateatwhichit
formsproducts,thenk

d<<k
aandtheeffectiverateconstantis
Inthisdiffusion-controlledlimit,therateofreactionisgovernedby
therateatwhichthereactantmoleculesdiffusethroughthesolvent.

Collision theory
Anactivation-controlledreactionariseswhenasubstantialactivation
energyisinvolvedinthereactionAB→P.
Thenk
a<<k
d′
whereKistheequilibriumconstantforA+B AB.Inthislimit,the
reactionproceedsattherateatwhichenergyaccumulatesinthe
encounterpairfromthesurroundingsolvent.
■Therateofadiffusion-controlledreactioniscalculatedby
consideringtherateatwhichthereactantsdiffusetogether.therate
constantforareactioninwhichthetworeactantmoleculesreactif
theycomewithinadistanceR*ofoneanotheris
k
d= 4πR*DNA
whereDisthesumofthediffusioncoefficientsthetworeactant
speciesinthesolution.

Transition state theory
Weknowthat,anactivatedcomplexformsbetweenreactantsas
theycollideandbegintoassumethenuclearandelectronic
configurationscharacteristicofproducts.
Wealsosawthatthechangeinpotentialenergyassociatedwith
formationoftheactivatedcomplexaccountsfortheactivation
energyofthereaction.
Wenowconsideramoredetailedcalculationofrateconstants
usingtransitionstatetheory(alsowidelyreferredtoasactivated
complextheory).
Transitionstatetheoryisanattempttoidentifytheprincipal
featuresgoverningthesizeofarateconstantintermsofamodel
oftheeventsthattakeplaceduringthereaction.

■TransitionstatetheorypicturesareactionbetweenAandBas
proceedingthroughtheformationofanactivatedcomplex,C

,ina
rapidpre-equilibrium.
Whenweexpressthepartialpressures,p
J,intermsofthemolar
concentrations,[J],byusingp
J=RT[J],theconcentrationof
activatedcomplexisrelatedtothe(dimensionless)equilibrium
constantby
Theactivatedcomplexfallsapartbyunimoleculardecayinto
products,P,witharateconstantk

:
The Eyringequation

The Eyringequation
Itfollowsthat,
Ourtaskistocalculatetheunimolecularrateconstantk

andthe
equilibriumconstantK

.

The Eyringequation
(a)Therateofdecayoftheactivatedcomplex
Anactivatedcomplexcanformproductsifitpassesthroughthe
transitionstate,thearrangementtheatomsmustachieveinorder
toconverttoproducts.
Ifitsvibration-likemotionalongthereactioncoordinateoccurswitha
frequencyν,thenthefrequencywithwhichtheclusterofatoms
formingthecomplexapproachesthetransitionstateisalsoν.
Therefore,wesupposethattherateofpassageofthecomplex
throughthetransitionstateisproportionaltothevibrational
frequencyalongthereactioncoordinate,andwrite
Whereκisthetransmissioncoefficient.Intheabsenceof
informationtothecontrary,κisassumedtobeabout1.

The Eyringequation
(b)Theconcentrationoftheactivatedcomplex:
EquilibriumconstantK

isgivenby;
The arethestandardmolarpartitionfunctionsandtheunitsofN
A
andthearemol
−1
,soK

isdimensionless.
Accordingtothepartitionfunction,avibrationoftheactivated
complexC

tipsitthroughthetransitionstate.Thepartitionfunction
forthisvibrationis;
where νis its frequency (the same frequency that determines k

).

The Eyringequation
If theexponentialmaybeexpandedandthepartition
functionreducesto;
Wecanthereforewrite;
Wheredenotesthepartitionfunctionforalltheothermodesofthe
complex.TheconstantK

istherefore;
withK

akindofequilibriumconstant,butwithonevibrationalmode
ofC

discarded.

The Eyringequation
(c)Therateconstant:
Wecannowcombineallthepartsofthecalculationinto
Atthisstagetheunknownfrequenciesνcanceland,afterwriting;
We obtain the Eyringequation:
intermsofthepartitionfunctionsofA,B,andC

,
soinprinciplewenowhaveanexplicitexpressionforcalculatingthe
second-orderrateconstantforabimolecularreactionintermsofthe
molecularparametersforthereactantsandtheactivatedcomplexand
thequantityκ.

Thermodynamic aspects
Thestatisticalthermodynamicversionoftransitionstatetheoryrapidly
runsintodifficultiesbecauseonlyinsomecasesisanythingknown
aboutthestructureoftheactivatedcomplex.
However,theconceptsthatitintroduces,principallythatofan
equilibriumbetweenthereactantsandtheactivatedcomplex,have
motivatedamoregeneral,empiricalapproachinwhichtheactivation
processisexpressedintermsofthermodynamicfunctions.
(a)Activationparameters
Ifweacceptthatisanequilibriumconstant,wecanexpressitin
termsofaGibbsenergyofactivation,Δ

G,throughthedefinition

Thermodynamic aspects
Thentherateconstantbecomes;
----------(1)
BecauseG=H−TS,theGibbsenergyofactivationcanbedivided
intoanentropyofactivation,Δ

S,andanenthalpyofactivation,
Δ

H,bywriting;Δ

G=Δ

H−TΔ

S-----------(2)
Wheneqn(2)isusedineqn(1)andκisabsorbedintotheentropy
term,weobtain;
Theformaldefinitionofactivationenergy, then
gives;E
a=Δ

H+2RT,so

ItfollowsthattheArrheniusfactorAcanbeidentifiedas;
Theentropyofactivationisnegativebecausetworeactantspecies
cometogethertoformonespecies.
wecanidentifythatadditionalreductioninentropy,Δ

S
steric,asthe
originofthestericfactorofcollisiontheory,andwrite
Thus,themorecomplexthestericrequirementsoftheencounter,the
morenegativethevalueofΔ

S
steric,andthesmallerthevalueofP.
Gibbsenergies,enthalpies,entropies,volumes,andheatcapacities
ofactivationarewidelyusedtoreportexperimentalreactionrates,
especiallyfororganicreactionsinsolution.
Thermodynamic aspects

■Thethermodynamicversionoftransitionstatetheorysimplifies
thediscussionofreactionsinsolution.
■Thestatisticalthermodynamictheoryisverycomplicatedtoapply
becausethesolventplaysaroleintheactivatedcomplex.Inthe
thermodynamicapproachwecombinetheratelaw
withthethermodynamicequilibriumconstant.
Then,
Ifk
o
2istherateconstantwhentheactivitycoefficientsare1(thatis,
k
o
2=k

K),wecanwrite;
Reactions between ions

Atlowconcentrationstheactivitycoefficientscanbeexpressedin
termsoftheionicstrength,I,ofthesolutionbyusingtheDebye–
Hückellimitinglawintheform;
withA=0.509inaqueoussolutionat298K.Then
--------(1)
ThechargenumbersofAandBarez
Aandz
B,sothechargenumber
oftheactivatedcomplexisz
A+z
B;thez
Jarepositiveforcationsand
negativeforanions.
Equation(1)expressesthekineticsalteffect,thevariationofthe
rateconstantofareactionbetweenionswiththeionicstrengthofthe
solution.
Reactions between ions

Reactions between ions
Ifthereactantionshavethesamesign(asinareactionbetween
cationsorbetweenanions),thenincreasingtheionicstrengthbythe
additionofinertionsincreasestherateconstant.

The dynamics of molecular collisions
■Reactivecollisions:
Molecularbeamsallowustostudycollisionsbetweenmoleculesin
preselectedenergystates,andcanbeusedtodeterminethestates
oftheproductsofareactivecollision.
Detailedexperimentalinformationabouttheintimateprocessesthat
occurduringreactiveencounterscomesfrommolecularbeams,
especiallycrossedmolecularbeams.
Itispossibletostudythedependence
ofthesuccessofcollisionsonthese
variablesandtostudyhowtheyaffect
thepropertiesoftheoutcoming
productmolecules.

The dynamics of molecular collisions
Chemiluminescence:
■Onemethodforexaminingtheenergydistributionintheproducts
isinfraredchemiluminescence,inwhichvibrationallyexcited
moleculesemitinfraredradiationastheyreturntotheirground
states.
■Bystudyingtheintensitiesoftheinfraredemissionspectrum,the
populationsofthevibrationalstatesmaybedetermined
Laser-inducedfluorescence:
■Anothermethodmakesuseoflaser-inducedfluorescence.Inthis
technique,alaserisusedtoexciteaproductmoleculefroma
specificvibration-rotationlevel;theintensityofthefluorescencefrom
theupperstateismonitoredandinterpretedintermsofthe
populationoftheinitialvibration-rotationstate.

(a)Therateofdecayoftheactivatedcomplex
Noteveryoscillationalongthereactioncoordinatetakesthecomplexthroughthe
transitionstateandcentrifugaleffectofrotationsmightalsobeanimportantcontribution
tothebreakupofthecomplex,andinsomecasesthecomplexmightberotatingtoo
slowly,orrotatingrapidlybutaboutthewrongaxis.
Tags