Collision theory
Thesimplestquantitativeaccountofreactionratesisintermsof
collisiontheory,whichcanbeusedonlyforthediscussionof
reactionsbetweensimplespeciesinthegasphase.
■Collisiontheory:
Weshallconsiderthebimolecularelementaryreaction;
A+B→P v=k
2[A][B]
wherePdenotesproducts,andaimtocalculatethesecond-order
rateconstantk
2.
Weexpecttheratevtobeproportionaltotherateofcollisions,and
thereforetothemeanspeedofthemolecules,c∝(T/M)
1/2
whereM
isthemolarmassofthemolecules,theircollisioncross-section,σ,
andthenumberdensitiesN
AandN
BofAandB.
v ∝σ(T/M)
1/2
N
AN
B∝σ (T/M)
1/2
[A][B]
Collision theory
However,acollisionwillbesuccessfulonlyifthekineticenergy
exceedsaminimumvalue,theactivationenergy,E
a,ofthereaction.
Thisrequirementsuggeststhattherateconstantshouldalsobe
proportionaltoaBoltzmannfactoroftheforme
−Ea/RT
.Sowecan
anticipate,bywritingthereactionrateintheform;
k
2∝σ (T/M)
1/2
e
−Ea /RT
Noteverycollisionwillleadtoreactioneveniftheenergy
requirementissatisfied,becausethereactantsmayneedtocollide
inacertainrelativeorientation.This‘stericrequirement’suggests
thatafurtherfactor,P,shouldbeintroduced,andthat
k
2∝σ P (T/M)
1/2
e
−Ea /RT
Thisexpressionhastheformpredictedbycollisiontheory.
k
2∝stericrequirement×encounterrate×minimumenergy
requirement
Collision theory
■Diffusion-controlledreactions:
Thecomplicatedoverallprocesscanbedividedintosimplerpartsby
settingupasimplekineticscheme.Wesupposethattherateof
formationofanencounterpairABisfirst-orderineachofthe
reactantsAandB:
A + B → AB v = k
d[A][B]
k
d(wherethedsignifiesdiffusion)isdeterminedbythediffusional
characteristicsofAandB.Theencounterpaircanbreakupwithout
reactionoritcangoontoformproductsP.Ifwesupposethatboth
processesarepseudofirst-orderreactions(withthesolventperhaps
playingarole),thenwecanwrite
AB → A + B v = k
d′[AB] and
AB → P v = ka[AB]
The Eyringequation
(b)Theconcentrationoftheactivatedcomplex:
EquilibriumconstantK
‡
isgivenby;
The arethestandardmolarpartitionfunctionsandtheunitsofN
A
andthearemol
−1
,soK
‡
isdimensionless.
Accordingtothepartitionfunction,avibrationoftheactivated
complexC
‡
tipsitthroughthetransitionstate.Thepartitionfunction
forthisvibrationis;
where νis its frequency (the same frequency that determines k
‡
).
The Eyringequation
If theexponentialmaybeexpandedandthepartition
functionreducesto;
Wecanthereforewrite;
Wheredenotesthepartitionfunctionforalltheothermodesofthe
complex.TheconstantK
‡
istherefore;
withK
‡
akindofequilibriumconstant,butwithonevibrationalmode
ofC
‡
discarded.
The Eyringequation
(c)Therateconstant:
Wecannowcombineallthepartsofthecalculationinto
Atthisstagetheunknownfrequenciesνcanceland,afterwriting;
We obtain the Eyringequation:
intermsofthepartitionfunctionsofA,B,andC
‡
,
soinprinciplewenowhaveanexplicitexpressionforcalculatingthe
second-orderrateconstantforabimolecularreactionintermsofthe
molecularparametersforthereactantsandtheactivatedcomplexand
thequantityκ.
ItfollowsthattheArrheniusfactorAcanbeidentifiedas;
Theentropyofactivationisnegativebecausetworeactantspecies
cometogethertoformonespecies.
wecanidentifythatadditionalreductioninentropy,Δ
‡
S
steric,asthe
originofthestericfactorofcollisiontheory,andwrite
Thus,themorecomplexthestericrequirementsoftheencounter,the
morenegativethevalueofΔ
‡
S
steric,andthesmallerthevalueofP.
Gibbsenergies,enthalpies,entropies,volumes,andheatcapacities
ofactivationarewidelyusedtoreportexperimentalreactionrates,
especiallyfororganicreactionsinsolution.
Thermodynamic aspects
■Thethermodynamicversionoftransitionstatetheorysimplifies
thediscussionofreactionsinsolution.
■Thestatisticalthermodynamictheoryisverycomplicatedtoapply
becausethesolventplaysaroleintheactivatedcomplex.Inthe
thermodynamicapproachwecombinetheratelaw
withthethermodynamicequilibriumconstant.
Then,
Ifk
o
2istherateconstantwhentheactivitycoefficientsare1(thatis,
k
o
2=k
‡
K),wecanwrite;
Reactions between ions