Chapter 6 - Electronic Spectroscopy of Molecules.pdf

3,269 views 27 slides Apr 12, 2023
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

Gklxgkxo


Slide Content

Electronic Spectroscopy of Molecules
ElectronicSpectraofDiatomicmolecules
TheBorn-OppenheimerApproximation
UsingtheBorn-Oppenheimerapproximation,thetotalenergyofadiatomicmoleculemaybe
written:
E
total=E
electronic+E
vibration+E
rotation (1)
whichimpliesthattheelectronic,vibrational,androtationalenergiesofamoleculearecompletely
independentofeachother.Achangeinthetotalenergyofmoleculemaythenbewritten:
ΔE
total=ΔE
elec.+ΔE
vib.+ΔE
rot. J
or
ΔƐ
total=ΔƐ
elec.+ΔƐ
vib.+ΔƐ
rot. cm
‒1
(2)
Theapproximateordersofmagnitudeofthesechangesare:
ΔƐ
elec.≈ΔƐ
vib.×10
3
≈ΔƐ
rot.×10
6
(3)
andsoweseethatvibrationalchangewillproducea‘coarsestructure’androtationalchangesa
‘finestructure’onthespectraofelectronictransitions.

VibrationalCoarseStructure
IgnoringrotationalchangesmeansthatwerewriteEq.(1)as
E
total=E
elec.+E
vib.J
or
Ɛ
total=Ɛ
elec.+Ɛ
vib.cm
‒1
(4)
Moreover,wecanwrite:
Ɛ
total=Ɛ
elec.+(ʋ+
1
2

e‒x
e(ʋ+
1
2
)
2
ϖ
ecm
‒1
(ʋ=0,1,2,……) (5)
Ananalyticalexpressioncaneasilybewrittenforthespectrum.FromEq.(5)wehave
immediately:
ΔƐ
total=ΔƐ
elec.+ΔƐ
vib.
Therefore
ʋ
spec=(Ɛ'–Ɛʺ)+{(ʋ'+
1
2
)ϖ'
e‒x'
e(ʋ'+
1
2
)
2
ϖ'
e}
‒{(ʋ''+
1
2
)ϖ''
e‒x''
e(ʋ''+
1
2
)
2
ϖ''
e} cm
‒1
(6)
and,providedsomehalf-dozenlinescanbeobservedintheband,valuesforϖ'
e,x'
e,ϖ''
e,and
x''
e,aswellastheseparationbetweenelectronicstates,(Ɛ'–Ɛʺ),canbecalculated.

Figure:Thevibrational‘coarse’
structureofthebandformed
duringelectronicabsorptionfrom
theground(ʋʺ=0)statetoa
higherstate.
TheenergylevelsoftheEq.(5)are
showninthisfigurefortwoarbitrary
valuesofƐ
elec..
Thisfiguresuggeststhattheground
statecanusuallyundergoatransition
toseveralexcitedstates,andeach
suchtransitionwillbeaccompaniedby
abandspectrumsimilartothisfigure.

The Franck-Condon Principle
TheFranck-Condonprinciplestatesthatanelectronictransitiontakes
placesorapidlythatavibratingmoleculedoesnotchangeits
internucleardistanceappreciablyduringthetransition.
Figure:Theprobabilitydistributionforadiatomicmoleculeaccordingto
thequantumtheory.Thenucleiaremostlikelytobefoundatdistances
apartgivenbythemaximaofthecurveforeachvibrationalstate.
TheFigureshowsthevariationofψ
2
with
internucleardistance,whereψisthevibrational
wavefunction.Ifadiatomicmoleculeundergoesa
transitionintoanupperelectronicstateinwhichthe
excitedmoleculeisstablewithrespectto
dissociationintoitsatoms,thenwecanrepresent
theupperstatebyaMorsecurvesimilarinoutline
tothatofthegroundelectronicstate.

The Franck-Condon Principle
Figure:TheoperationoftheFranck-Condonprinciplefor(a)
internucleardistancesequalintheupperandlowerstates,(b)
upperstateinternucleardistancealittlelessthanthatinthelower
state,(c)upperstatedistancealittlegreaterthaninthelower,and
(d)upperstatedistanceconsiderablegreater.
Figureshowsfourpossibilities.Figure(a)shows
theupperelectronicstatehavingthesame
equilibriuminternucleardistanceasthelower.
NowtheFranck-Condonprinciplesuggeststhat
atransitionoccursverticallyonthisdiagram.
Figure(b)showsthecasewheretheexcited
electronicstatehasaslightlysmallerinternuclear
separationthanthegroundstate.Avertical
transitionfromʋ''=0levelwillbemostlikelyto
occurintotheuppervibrationalstateʋ'=2.
InFigure(c),theexcitedelectronicstatehasa
slightlylargerinternuclearseparationthanthe
groundstate,buttheresultingtransitionsand
spectrumaresimilar.
InFigure(d),theupperstateseparationisdrawn
asconsiderablygreaterthanthatinthelower
stateandweseethatthevibrationallevelto
whichatransitiontakesplacehasahighʋ'
value.

Dissociation Energy and Dissociation Products
Figure(a)and(b)showstwoofthewaysinwhich
electronicexcitationcanleadtodissociation.
Figure(a)representsthecasewherethe
equilibriumnuclearseparationintheupperstateis
considerablygreaterthanthatinthelower.The
dashedlinelimitsoftheMorsecurvesrepresent
thedissociationofthenormalandexcited
moleculeintoatoms,thedissociationenergies
being??????
0
′′
and??????
0

fromtheʋ=0stateineachcase.
Weseethatthetotalenergyofthedissociation
productsfromtheupperstateisgreaterbyan
amountcalledE
exthanthatoftheproductsof
dissociationinthelowerstate.Thisenergyisthe
excitationenergyofoneoftheatomsproducedon
dissociation.
ʋ
continuumlimit=??????
0
′′
+E
ex.cm
‒1
(7)
Figure(b)illustratesthecaseinwhichtheupper
electronicstateisunstable:thereisnominimum
intheenergycurveand,assoonasamoleculeis
raisedtothisstatebyexcitation,themolecule
dissociatesintoproductswithtotalexcitation
energyE
ex..
Figure:Illustratingdissociationbyexcitation
into(a)astableupperstateand(b)a
continuousupperstate.

Rotational Fine Structure of Electronic-Vibration Transitions

Figure:Therotationalfinestructureofaparticularvibration-electronictransitionfor
adiatomicmolecule.TheR,P,andQbranchesareshownseparatelyat(a),(b),and
(c),respectivelywiththecompletespectrumat(d).

Electronic Angular Momentum in Diatomic Molecules

Spectrum of Hydrogen Molecules
Figure:Thesingletandtripletenergylevelsof
thehydrogenmolecule.Oneelectrononlyis
assumedtoundergotransitions,theother
remaininginthe1sσstate.
Thegroundstateofmolecularhydrogencan
bewritten:
Groundstate:(1sσ
g)
21
Σ
??????
+
Alargenumberofexcitedsingletstatesalso
exist:letusconsidersomeofthelowerones
forwhichoneelectrononlyhasbeenraised
fromthegroundstateintosomehigher
molecularorbital,i.e.singlyexcitedstates.
Thuswemayconsiderthethreepossible
excitedstates(1sσ
g2sσ
g),(1sσ
g2pσ
g),and
(1sσ
g2pπ
u).
Taking(1sσ
g2sσ
g)first:herebothelectrons
areσelectrons;henceΛ=λ
1+λ
2=0and,
sinceweareconsideringonlysingletstates,
S=0also.Further,sincebothconstituent
orbitalsareevenandsymmetrical,theoverall
statewillbethesame,andwehave
(1sσ
g2sσ
g)
1
Σ
??????
+
.

Now(1sσ
g2pσ
g):hereweagainhavea
1
Σstatesincebothelectronsareσ,buttheoverallstateis
nowodd(u);thismayberationalizedifwethinkofoneelectronasrisingfromahydrogenatomin
theeven1sstateandtheotherfromanodd2pstate,thecombinationofanoddandanevenstate
leadingtoanoveralloddstate.Thus(1sσ
g2pσ
g)
1
Σ
??????
+
.
Finallythe(1sσ
g2pπ
u):nowΛ=λ
1+λ
2=1,sinceoneelectronisinaπstateand,againsinceone
electronoriginatesfroma2porbital,thecombinedstateisu:
1
Π
??????.
Theenergiesofthesethreestatesincreaseintheorderoftheconstituentmolecularorbitals:
1
Σ
??????
+
<
1
Π
??????<
1
Σ
??????
+
Similarstatesareobtainedbyexcitationtothe3sand3pstates,tothe4sand4pstatesetc.Also
forn=3,4,….thereexiststhepossibilityofexcitationtothendorbital.Itmaybeshownby
methodssimilartothoseabovethatinteractionbetween1sandndelectronscanleadtothethree
configurationsandstatesymbolsinincreasingenergy:
(1sσndσ)
1
Σ
??????
+
<(1sσndπ)
1
Π
??????<(1sσndδ)
1
Δ
g
SomeoftheseenergylevelsareshownattheleftoftheFigure.Transitionbetweenthemcanoccur
accordingtotheselectionrules:
1. ΔΛ=0,±1 (1)
ThustransitionsΣ↔Σ,Σ↔Π,Π↔Π,etc.,areallowedbutΣ↔Δ,isnot.
2. ΔS=0 (2)
Forthepresentweareconcernedonlywithsingletstatessothisruledoesnotarise.

3. ΔΩ=0,±1 (3)
Thisfollowsdirectlyfrom1and2above.
4.Therearealsorestrictionsonsymmetrychanges.Σ
+
statescanundergotransitionsonlyinto
otherΣ
+
stateswhileΣ

goonlyintoΣ

(orΠ).Symbolically:
Σ
+
↔Σ
+
Σ

↔Σ

Σ
+
Σ

(4)
Andfinally
??????↔?????????????????????????????? (5)
Thetripletstatesofmolecularhydrogenandorderofenergiesas:
(1sσ
g2pσ
g)
3
Σ
??????
+
<(1sσ
g2pπ
u)
3
Π
??????<(1sσ
g2sσ
g)
3
Σ
??????
+
Theseenergylevelsareshownontherightofthefigure.
⁄↔
⁄↔ ⁄↔

Chemical Analysis by Electronic Spectroscopy
Figure:Theregionsoftheelectronicspectrumandthetypeoftransitionwhich
occursineach.

Re-emission of Energy by an Excited Molecule
Figure:Showingthevariouswaysinwhichan
electronicallyexcitedmoleculecanloseenergy.
Afteramoleculehasundergoneanelectronic
transitionintoanexcitedstatethereareseveral
processesbywhichitsexcessenergymaybe
lost;wediscusssomeofthesebrieflybelow.
1.Dissociation:Theexcitemoleculebreaksinto
twofragments.Nospectroscopicphenomena
areobservedunlessthefragmentsradiate
energybyoneoftheprocessesmentioned
below.
2.Re-emission:Iftheabsorptionprocesstakes
asshownschematicallyinFigure(a),then
there-emissionisjustthereverseofthisasin
(b)oftheFigure.Theradiationemitted,which
maybecollectedanddisplayedasan
emissionspectrum,isidenticalinfrequency
withthatabsorbed.

Figurec
1:Thesequenceof
stepsleadingtofluorescence.
Aftertheinitialabsorption,the
upper vibrationalstates
undergoradiationlessdecay
bygivingupenergytothe
surroundings.Aradiative
transitionthenoccursfrom
thevibrationalgroundstateof
theupperelectronicstate.
3.Fluorescence:If,asinpreviousFig.(a),themoleculeisinahigh
vibrationalstateafterelectronicexcitation,thenexcessvibrationalenergy
maybelostbyintermolecularcollisions;thisisillustratedinFig.(c)and(c
1).
Thevibrationalenergyisconvertedtokineticenergyandappearsasheatin
thesample;suchtransferbetweenenergylevelsisreferredtoas
‘radiationless’.Whentheexcitedmoleculehasreachedalowervibrational
state,itmaythenemitradiationandreverttothegroundstate;theradiation
emitted,calledfluorescencespectrum,isnormallyoflowerfrequencythan
thatoftheinitialabsorption,butundercertainconditionsitmaybehigher
frequency.Thetimebetweeninitialabsorptionandreturntogroundstateis
verysmall,oftheorderof10
‒8
s.
Figure:Anabsorptionspectrum(a)
shows avibrationalstructure
characteristicoftheupperstate.A
fluorescencespectrum(b)showsa
structurecharacteristicofthelower
state;itisalsodisplacedtolower
frequencies(butthe0–0transitions
arecoincident)andresemblesa
mirrorimageoftheabsorption.

4.Phosphorescence:Thiscanoccurwhentwoexcitedstatesofdifferent
totalspinhavecomparableenergies.ThusinFig.(d),weimaginethe
groundstateandoneoftheexcitedstatestobesinglets(thatisS=0),
whiletheneighbouringexcitedstateisatriplet(S=1).Althoughtherule
ΔS=0forbidsspectroscopictransitionsbetweensingletandtripletstates,
thereisnoprohibitionifthetransferbetweentheexcitedstatesoccurs
kinetically,i.e.throughradiationlesstransitionsinducedbycollisions.
Figured
1showsthesequenceofeventsleadingtophosphorescencefora
moleculewithasingletgroundstate.Thefirststepsarethesameasin
fluorescence,butthepresenceofatripletexcitedstateplaysadecisive
role.Thesingletandtripletexcitedstatesshareacommongeometryatthe
pointwheretheirpotentialenergycurvesintersect.Hence,ifthereisa
mechanismforunpairingtwoelectronspins(andachievingtheconversion
of↑↓to↑↑),themoleculemayundergointersystemcrossing,a
nonradiativetransitionbetweenstatesofdifferentmultiplicity,andbecomea
tripletstate.Wecanexpectintersystemcrossingtobeimportantwhena
moleculecontainsamoderatelyheavyatom(suchasS),becausethenthe
spin–orbitcouplingislarge.
Thusitisthataphosphorescentmaterialwillcontinuetoemitradiation
seconds,minutes,orevenhoursaftertheinitialabsorption.The
phosphorescencespectrumconsistsoffrequencieslowerthanthat
absorbed.
Figured
1:Thesequenceofsteps
leadingtophosphorescence.The
importantstepistheintersystem
crossing,theswitchfromasinglet
statetoatripletstatebrought
aboutbyspin–orbitcoupling.The
tripletstateactsasaslowly
radiatingreservoirbecausethe
returntothegroundstateisspin-
forbidden.

Circular Dichroism(CD) Spectroscopy
CircularDichroismisthedifferenceinabsorptionbetweenleftandrighthand
circularlypolarisedlightinchiralmolecules.Achiralmoleculeisonewithalow
degreeofsymmetrywhichcanexistintwomirrorimageisomers.Illustrated
aboveisanexampleofcirculardichroisminglucose,asimplesugar.

•Circulardichroism
=ΔA(λ)
=A(λ)
LCPL‐A(λ)
RCPL
•whereλisthewavelength
LCPL=Left-handedcircularlypolarisedlight
RCPL=Right-handedcircularlypolarisedlight
•CDofmoleculesismeasuredoverarangeofwavelengths.
•Usetostudychiralmolecules.
•Analysethesecondarystructureorconformationofmacromolecules,particularlyproteins.
•Observehowsecondarystructurechangeswithenvironmentalconditionsoroninteraction
withothermolecules.
•Measurementscarriedoutinthevisibleandultra-violetregion.
•MoleculecontainschiralchromophoresthenoneCPLstatewillbeabsorbedtoagreater
extentthantheother.
•CDsignaloverthecorrespondingwavelengthswillbenon-zero.
Circular Dichroism(CD) Spectroscopy


Prism Polarizer

Circular Dichroism(CD)

CD for Biological Molecules
•Majorityofbiologicalmoleculesarechiral.
•Tounderstandthehigherorderstructuresofchiralmacromolecules
suchasproteinsandDNA.
•Eachstructurehasaspecificcirculardichroismsignature.
•Toidentifystructuralelementsandtofollowchangesinthestructureof
chiralmacromolecules.
•Tostudysecondarystructuralelementsofproteinssuchastheα-helix
andtheβsheet.
•Tocompare2macromolecules,orthesamemoleculeunderdifferent
conditionsanddetermineiftheyhaveasimilarstructure.
•Toascertainifanewlypurifiedproteiniscorrectlyfolded.
•Todetermineifamutantproteinhasfoldedcorrectlyincomparisonto
thewild-type.
•Foranalysisofbiopharmaceuticalproductstoconfirmthattheyarestill
inacorrectlyfoldedactiveconformation.

ThesecondarystructureconformationandtheCDspectraofproteinstructuralelements.
Right:apeptideinanα-helix;Left:apeptideinaβ-sheet.Centre:CDspectraforthese
differentconformations.
Themostcommonlyusedunitsaremeanresidueellipticity,(degree·cm
2
/dmol),andthe
differenceinmolarextinctioncoefficientscalledthemolarcirculardichroism,ε
L-εR=Δε
(liter/mol·cm).
Themolarellipticity[]isrelatedtothedifferenceinextinctioncoefficientsby[]=3298Δε.