SlidePub
Home
Categories
Login
Register
Home
General
Chapter 6 - Electronic Spectroscopy of Molecules.pdf
Chapter 6 - Electronic Spectroscopy of Molecules.pdf
3,269 views
27 slides
Apr 12, 2023
Slide
1
of 27
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
About This Presentation
Gklxgkxo
Size:
1.72 MB
Language:
en
Added:
Apr 12, 2023
Slides:
27 pages
Slide Content
Slide 1
Electronic Spectroscopy of Molecules
ElectronicSpectraofDiatomicmolecules
TheBorn-OppenheimerApproximation
UsingtheBorn-Oppenheimerapproximation,thetotalenergyofadiatomicmoleculemaybe
written:
E
total=E
electronic+E
vibration+E
rotation (1)
whichimpliesthattheelectronic,vibrational,androtationalenergiesofamoleculearecompletely
independentofeachother.Achangeinthetotalenergyofmoleculemaythenbewritten:
ΔE
total=ΔE
elec.+ΔE
vib.+ΔE
rot. J
or
ΔƐ
total=ΔƐ
elec.+ΔƐ
vib.+ΔƐ
rot. cm
‒1
(2)
Theapproximateordersofmagnitudeofthesechangesare:
ΔƐ
elec.≈ΔƐ
vib.×10
3
≈ΔƐ
rot.×10
6
(3)
andsoweseethatvibrationalchangewillproducea‘coarsestructure’androtationalchangesa
‘finestructure’onthespectraofelectronictransitions.
Slide 2
VibrationalCoarseStructure
IgnoringrotationalchangesmeansthatwerewriteEq.(1)as
E
total=E
elec.+E
vib.J
or
Ɛ
total=Ɛ
elec.+Ɛ
vib.cm
‒1
(4)
Moreover,wecanwrite:
Ɛ
total=Ɛ
elec.+(ʋ+
1
2
)ϖ
e‒x
e(ʋ+
1
2
)
2
ϖ
ecm
‒1
(ʋ=0,1,2,……) (5)
Ananalyticalexpressioncaneasilybewrittenforthespectrum.FromEq.(5)wehave
immediately:
ΔƐ
total=ΔƐ
elec.+ΔƐ
vib.
Therefore
ʋ
spec=(Ɛ'–Ɛʺ)+{(ʋ'+
1
2
)ϖ'
e‒x'
e(ʋ'+
1
2
)
2
ϖ'
e}
‒{(ʋ''+
1
2
)ϖ''
e‒x''
e(ʋ''+
1
2
)
2
ϖ''
e} cm
‒1
(6)
and,providedsomehalf-dozenlinescanbeobservedintheband,valuesforϖ'
e,x'
e,ϖ''
e,and
x''
e,aswellastheseparationbetweenelectronicstates,(Ɛ'–Ɛʺ),canbecalculated.
Slide 3
Figure:Thevibrational‘coarse’
structureofthebandformed
duringelectronicabsorptionfrom
theground(ʋʺ=0)statetoa
higherstate.
TheenergylevelsoftheEq.(5)are
showninthisfigurefortwoarbitrary
valuesofƐ
elec..
Thisfiguresuggeststhattheground
statecanusuallyundergoatransition
toseveralexcitedstates,andeach
suchtransitionwillbeaccompaniedby
abandspectrumsimilartothisfigure.
Slide 4
The Franck-Condon Principle
TheFranck-Condonprinciplestatesthatanelectronictransitiontakes
placesorapidlythatavibratingmoleculedoesnotchangeits
internucleardistanceappreciablyduringthetransition.
Figure:Theprobabilitydistributionforadiatomicmoleculeaccordingto
thequantumtheory.Thenucleiaremostlikelytobefoundatdistances
apartgivenbythemaximaofthecurveforeachvibrationalstate.
TheFigureshowsthevariationofψ
2
with
internucleardistance,whereψisthevibrational
wavefunction.Ifadiatomicmoleculeundergoesa
transitionintoanupperelectronicstateinwhichthe
excitedmoleculeisstablewithrespectto
dissociationintoitsatoms,thenwecanrepresent
theupperstatebyaMorsecurvesimilarinoutline
tothatofthegroundelectronicstate.
Slide 5
The Franck-Condon Principle
Figure:TheoperationoftheFranck-Condonprinciplefor(a)
internucleardistancesequalintheupperandlowerstates,(b)
upperstateinternucleardistancealittlelessthanthatinthelower
state,(c)upperstatedistancealittlegreaterthaninthelower,and
(d)upperstatedistanceconsiderablegreater.
Figureshowsfourpossibilities.Figure(a)shows
theupperelectronicstatehavingthesame
equilibriuminternucleardistanceasthelower.
NowtheFranck-Condonprinciplesuggeststhat
atransitionoccursverticallyonthisdiagram.
Figure(b)showsthecasewheretheexcited
electronicstatehasaslightlysmallerinternuclear
separationthanthegroundstate.Avertical
transitionfromʋ''=0levelwillbemostlikelyto
occurintotheuppervibrationalstateʋ'=2.
InFigure(c),theexcitedelectronicstatehasa
slightlylargerinternuclearseparationthanthe
groundstate,buttheresultingtransitionsand
spectrumaresimilar.
InFigure(d),theupperstateseparationisdrawn
asconsiderablygreaterthanthatinthelower
stateandweseethatthevibrationallevelto
whichatransitiontakesplacehasahighʋ'
value.
Slide 6
Dissociation Energy and Dissociation Products
Figure(a)and(b)showstwoofthewaysinwhich
electronicexcitationcanleadtodissociation.
Figure(a)representsthecasewherethe
equilibriumnuclearseparationintheupperstateis
considerablygreaterthanthatinthelower.The
dashedlinelimitsoftheMorsecurvesrepresent
thedissociationofthenormalandexcited
moleculeintoatoms,thedissociationenergies
being??????
0
′′
and??????
0
′
fromtheʋ=0stateineachcase.
Weseethatthetotalenergyofthedissociation
productsfromtheupperstateisgreaterbyan
amountcalledE
exthanthatoftheproductsof
dissociationinthelowerstate.Thisenergyisthe
excitationenergyofoneoftheatomsproducedon
dissociation.
ʋ
continuumlimit=??????
0
′′
+E
ex.cm
‒1
(7)
Figure(b)illustratesthecaseinwhichtheupper
electronicstateisunstable:thereisnominimum
intheenergycurveand,assoonasamoleculeis
raisedtothisstatebyexcitation,themolecule
dissociatesintoproductswithtotalexcitation
energyE
ex..
Figure:Illustratingdissociationbyexcitation
into(a)astableupperstateand(b)a
continuousupperstate.
Slide 7
Rotational Fine Structure of Electronic-Vibration Transitions
Slide 10
Figure:Therotationalfinestructureofaparticularvibration-electronictransitionfor
adiatomicmolecule.TheR,P,andQbranchesareshownseparatelyat(a),(b),and
(c),respectivelywiththecompletespectrumat(d).
Slide 11
Electronic Angular Momentum in Diatomic Molecules
Slide 14
Spectrum of Hydrogen Molecules
Figure:Thesingletandtripletenergylevelsof
thehydrogenmolecule.Oneelectrononlyis
assumedtoundergotransitions,theother
remaininginthe1sσstate.
Thegroundstateofmolecularhydrogencan
bewritten:
Groundstate:(1sσ
g)
21
Σ
??????
+
Alargenumberofexcitedsingletstatesalso
exist:letusconsidersomeofthelowerones
forwhichoneelectrononlyhasbeenraised
fromthegroundstateintosomehigher
molecularorbital,i.e.singlyexcitedstates.
Thuswemayconsiderthethreepossible
excitedstates(1sσ
g2sσ
g),(1sσ
g2pσ
g),and
(1sσ
g2pπ
u).
Taking(1sσ
g2sσ
g)first:herebothelectrons
areσelectrons;henceΛ=λ
1+λ
2=0and,
sinceweareconsideringonlysingletstates,
S=0also.Further,sincebothconstituent
orbitalsareevenandsymmetrical,theoverall
statewillbethesame,andwehave
(1sσ
g2sσ
g)
1
Σ
??????
+
.
Slide 15
Now(1sσ
g2pσ
g):hereweagainhavea
1
Σstatesincebothelectronsareσ,buttheoverallstateis
nowodd(u);thismayberationalizedifwethinkofoneelectronasrisingfromahydrogenatomin
theeven1sstateandtheotherfromanodd2pstate,thecombinationofanoddandanevenstate
leadingtoanoveralloddstate.Thus(1sσ
g2pσ
g)
1
Σ
??????
+
.
Finallythe(1sσ
g2pπ
u):nowΛ=λ
1+λ
2=1,sinceoneelectronisinaπstateand,againsinceone
electronoriginatesfroma2porbital,thecombinedstateisu:
1
Π
??????.
Theenergiesofthesethreestatesincreaseintheorderoftheconstituentmolecularorbitals:
1
Σ
??????
+
<
1
Π
??????<
1
Σ
??????
+
Similarstatesareobtainedbyexcitationtothe3sand3pstates,tothe4sand4pstatesetc.Also
forn=3,4,….thereexiststhepossibilityofexcitationtothendorbital.Itmaybeshownby
methodssimilartothoseabovethatinteractionbetween1sandndelectronscanleadtothethree
configurationsandstatesymbolsinincreasingenergy:
(1sσndσ)
1
Σ
??????
+
<(1sσndπ)
1
Π
??????<(1sσndδ)
1
Δ
g
SomeoftheseenergylevelsareshownattheleftoftheFigure.Transitionbetweenthemcanoccur
accordingtotheselectionrules:
1. ΔΛ=0,±1 (1)
ThustransitionsΣ↔Σ,Σ↔Π,Π↔Π,etc.,areallowedbutΣ↔Δ,isnot.
2. ΔS=0 (2)
Forthepresentweareconcernedonlywithsingletstatessothisruledoesnotarise.
Slide 16
3. ΔΩ=0,±1 (3)
Thisfollowsdirectlyfrom1and2above.
4.Therearealsorestrictionsonsymmetrychanges.Σ
+
statescanundergotransitionsonlyinto
otherΣ
+
stateswhileΣ
‒
goonlyintoΣ
‒
(orΠ).Symbolically:
Σ
+
↔Σ
+
Σ
‒
↔Σ
‒
Σ
+
Σ
‒
(4)
Andfinally
??????↔?????????????????????????????? (5)
Thetripletstatesofmolecularhydrogenandorderofenergiesas:
(1sσ
g2pσ
g)
3
Σ
??????
+
<(1sσ
g2pπ
u)
3
Π
??????<(1sσ
g2sσ
g)
3
Σ
??????
+
Theseenergylevelsareshownontherightofthefigure.
⁄↔
⁄↔ ⁄↔
Slide 17
Chemical Analysis by Electronic Spectroscopy
Figure:Theregionsoftheelectronicspectrumandthetypeoftransitionwhich
occursineach.
Slide 19
Re-emission of Energy by an Excited Molecule
Figure:Showingthevariouswaysinwhichan
electronicallyexcitedmoleculecanloseenergy.
Afteramoleculehasundergoneanelectronic
transitionintoanexcitedstatethereareseveral
processesbywhichitsexcessenergymaybe
lost;wediscusssomeofthesebrieflybelow.
1.Dissociation:Theexcitemoleculebreaksinto
twofragments.Nospectroscopicphenomena
areobservedunlessthefragmentsradiate
energybyoneoftheprocessesmentioned
below.
2.Re-emission:Iftheabsorptionprocesstakes
asshownschematicallyinFigure(a),then
there-emissionisjustthereverseofthisasin
(b)oftheFigure.Theradiationemitted,which
maybecollectedanddisplayedasan
emissionspectrum,isidenticalinfrequency
withthatabsorbed.
Slide 20
Figurec
1:Thesequenceof
stepsleadingtofluorescence.
Aftertheinitialabsorption,the
upper vibrationalstates
undergoradiationlessdecay
bygivingupenergytothe
surroundings.Aradiative
transitionthenoccursfrom
thevibrationalgroundstateof
theupperelectronicstate.
3.Fluorescence:If,asinpreviousFig.(a),themoleculeisinahigh
vibrationalstateafterelectronicexcitation,thenexcessvibrationalenergy
maybelostbyintermolecularcollisions;thisisillustratedinFig.(c)and(c
1).
Thevibrationalenergyisconvertedtokineticenergyandappearsasheatin
thesample;suchtransferbetweenenergylevelsisreferredtoas
‘radiationless’.Whentheexcitedmoleculehasreachedalowervibrational
state,itmaythenemitradiationandreverttothegroundstate;theradiation
emitted,calledfluorescencespectrum,isnormallyoflowerfrequencythan
thatoftheinitialabsorption,butundercertainconditionsitmaybehigher
frequency.Thetimebetweeninitialabsorptionandreturntogroundstateis
verysmall,oftheorderof10
‒8
s.
Figure:Anabsorptionspectrum(a)
shows avibrationalstructure
characteristicoftheupperstate.A
fluorescencespectrum(b)showsa
structurecharacteristicofthelower
state;itisalsodisplacedtolower
frequencies(butthe0–0transitions
arecoincident)andresemblesa
mirrorimageoftheabsorption.
Slide 21
4.Phosphorescence:Thiscanoccurwhentwoexcitedstatesofdifferent
totalspinhavecomparableenergies.ThusinFig.(d),weimaginethe
groundstateandoneoftheexcitedstatestobesinglets(thatisS=0),
whiletheneighbouringexcitedstateisatriplet(S=1).Althoughtherule
ΔS=0forbidsspectroscopictransitionsbetweensingletandtripletstates,
thereisnoprohibitionifthetransferbetweentheexcitedstatesoccurs
kinetically,i.e.throughradiationlesstransitionsinducedbycollisions.
Figured
1showsthesequenceofeventsleadingtophosphorescencefora
moleculewithasingletgroundstate.Thefirststepsarethesameasin
fluorescence,butthepresenceofatripletexcitedstateplaysadecisive
role.Thesingletandtripletexcitedstatesshareacommongeometryatthe
pointwheretheirpotentialenergycurvesintersect.Hence,ifthereisa
mechanismforunpairingtwoelectronspins(andachievingtheconversion
of↑↓to↑↑),themoleculemayundergointersystemcrossing,a
nonradiativetransitionbetweenstatesofdifferentmultiplicity,andbecomea
tripletstate.Wecanexpectintersystemcrossingtobeimportantwhena
moleculecontainsamoderatelyheavyatom(suchasS),becausethenthe
spin–orbitcouplingislarge.
Thusitisthataphosphorescentmaterialwillcontinuetoemitradiation
seconds,minutes,orevenhoursaftertheinitialabsorption.The
phosphorescencespectrumconsistsoffrequencieslowerthanthat
absorbed.
Figured
1:Thesequenceofsteps
leadingtophosphorescence.The
importantstepistheintersystem
crossing,theswitchfromasinglet
statetoatripletstatebrought
aboutbyspin–orbitcoupling.The
tripletstateactsasaslowly
radiatingreservoirbecausethe
returntothegroundstateisspin-
forbidden.
Slide 22
Circular Dichroism(CD) Spectroscopy
CircularDichroismisthedifferenceinabsorptionbetweenleftandrighthand
circularlypolarisedlightinchiralmolecules.Achiralmoleculeisonewithalow
degreeofsymmetrywhichcanexistintwomirrorimageisomers.Illustrated
aboveisanexampleofcirculardichroisminglucose,asimplesugar.
Slide 23
•Circulardichroism
=ΔA(λ)
=A(λ)
LCPL‐A(λ)
RCPL
•whereλisthewavelength
LCPL=Left-handedcircularlypolarisedlight
RCPL=Right-handedcircularlypolarisedlight
•CDofmoleculesismeasuredoverarangeofwavelengths.
•Usetostudychiralmolecules.
•Analysethesecondarystructureorconformationofmacromolecules,particularlyproteins.
•Observehowsecondarystructurechangeswithenvironmentalconditionsoroninteraction
withothermolecules.
•Measurementscarriedoutinthevisibleandultra-violetregion.
•MoleculecontainschiralchromophoresthenoneCPLstatewillbeabsorbedtoagreater
extentthantheother.
•CDsignaloverthecorrespondingwavelengthswillbenon-zero.
Circular Dichroism(CD) Spectroscopy
Slide 24
Prism Polarizer
Slide 25
Circular Dichroism(CD)
Slide 26
CD for Biological Molecules
•Majorityofbiologicalmoleculesarechiral.
•Tounderstandthehigherorderstructuresofchiralmacromolecules
suchasproteinsandDNA.
•Eachstructurehasaspecificcirculardichroismsignature.
•Toidentifystructuralelementsandtofollowchangesinthestructureof
chiralmacromolecules.
•Tostudysecondarystructuralelementsofproteinssuchastheα-helix
andtheβsheet.
•Tocompare2macromolecules,orthesamemoleculeunderdifferent
conditionsanddetermineiftheyhaveasimilarstructure.
•Toascertainifanewlypurifiedproteiniscorrectlyfolded.
•Todetermineifamutantproteinhasfoldedcorrectlyincomparisonto
thewild-type.
•Foranalysisofbiopharmaceuticalproductstoconfirmthattheyarestill
inacorrectlyfoldedactiveconformation.
Slide 27
ThesecondarystructureconformationandtheCDspectraofproteinstructuralelements.
Right:apeptideinanα-helix;Left:apeptideinaβ-sheet.Centre:CDspectraforthese
differentconformations.
Themostcommonlyusedunitsaremeanresidueellipticity,(degree·cm
2
/dmol),andthe
differenceinmolarextinctioncoefficientscalledthemolarcirculardichroism,ε
L-εR=Δε
(liter/mol·cm).
Themolarellipticity[]isrelatedtothedifferenceinextinctioncoefficientsby[]=3298Δε.
Tags
kfzfzfo
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
3,269
Slides
27
Favorites
1
Age
968 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
33 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
36 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
33 views
14
Fertility awareness methods for women in the society
Isaiah47
30 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
29 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
30 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-27)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better