chapter-9_op-amp.pdfnnnnnnnnnnnnnnnnnnnnnnnnnn

PhngTrn921626 27 views 46 slides Jun 28, 2024
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj


Slide Content

CHAPTER 9:
OPERATIONAL AMPLIFIER

Contents
Symbol
Example
Characteristics
Structure
Operation
Applications
μp 741

Symbol

Example

Characteristics
Characters of circuits depend on outside circuit
structure, not the opamp itself
Gain A
V: very high, ideally ∞
Zin: very large, ideally ∞
Zout: very small, ideally 0
Current entering the amp at either terminal:
extremely small, ideally 0
Voltage out (when voltages into each other are
equal): small, ideally 0
Bandwidth: broad, ideally infinite

Characteristics
Input: 2 inputs (positive and negative)
Single-ended input: 1 input to signal source, 1 input to
ground
Double-ended input: 2 different signal sources or 1 signal
source apply between 2 inputs
Output: 1 or 2 outputs, typically 1 output
Mode gain:
Differential-mode gain A
dm -large
Common-mode gain A
cm -small
Common-mode rejection ratio CMRR=G=A
dm/A
cm, usually
about 10
3
-10
5

Structure
Requirement:
Gain: large
Offset: small
Currents: small
Input impedance: large
Output impedance: small
Input: symmetric

Structure
Input stage
Intermediate stage
Level shifting stage
Output stage
Example: 741 –at the end of chapter

Applications
Basic and advance applications
Basic applications:
Inverting, non-inverting amplifier
Uni-gain circuit
Addition and subtraction circuits
Integration and differential circuits
Multi-stages circuit

Applications
Advance applications
Current-controlled voltage source
Voltage-controlled current source
DC voltmeter
AC voltmeter
Driver circuit
Active filters
NIC
.etc.

Non-inverting fixed-gain amplifier
Prove:
V-= V+ = V
1
I-= I+ = 0
=>I
R1= I
rf = V
1/R
1
=>A = 1+R
f/R
1

Non-inverting fixed-gain amplifier
A = 1+R
f/R
1=101
V
o=101V
i

Inverting fixed-gain amplifier
Prove:
V-= V+ = 0
I-= I+ = 0
=>I
R1= I
rf = V
1/R
1
=>A = -R
f/R
1

Voltage addition
V
o= -V
1R
f/R
1-V
2R
f/R
2 –
V
3R
f/R
3
If V
1=V
2=V
3then:
A= -R
f/R
1-R
f/R
2 –R
f/R
3

Voltage subtraction
V
out1= -R
f/R
1V
1
V
out= -R
f/R
2V
2 -R
f/R
2V
out1= -R
f/R
2V
2 + R
f/R
2V
1
= -R
f/R
2(V
1 –V
2)

Voltage subtraction with 1 amp
Prove:
V-=V+=V
1*R
3/(R
1+R
3)
I-= I+ = 0
=>I
R2= I
R4 = (V
2-
V
1*R
3/(R
1+R
3))/R
2
=>Vo=V
1*R
3/(R
1+R
3)*
(R
2+R
4)/R
2–V
2*R
4/R
2

Uni-gain (buffer) amplifier
Provide required input and output resistant stage
Provide multiple identical output signals

Voltage-controlled voltage source
V
o=(-R
f/R
1)V
1
V
o=(1+R
f/R
1)V
1

Voltage-controlled current source
I
o=V
1/R
1

Current-controlled voltage source
V
o=-I
1R
L

Current-controlled current source
I
o=I
1(R
2+R
1)/R
2

Integration circuit
V
o=(V
i/RC)

T
V
i(t)dt+V
ou
t(t=0)

Differential circuit
V
o=-RC dV
i/dt

Filter
Low pass filter
High pass filter
Band pass filter

1
st
order low pass filter
Cutoff frequency: f
OH=1/(2πR
1C
1)
Voltage gain below cutoff freq: A
v=1+R
f/R
G

2
nd
order low pass filter
Cutoff frequency: f
OH=1/(2πR
1C
1)
Voltage gain below cutoff freq: A
v=1+R
f/R
G

1
st
and 2
nd
order high pass
filter
Cutoff frequency: f
OL=1/(2πR
1C
1)
Voltage gain above cutoff freq: A
v=1+R
f/R
G

Band pass filter

Multi-stages gain
A = A
1*A
2*A
3

741 application-Light activated alerter

12V battery monitor

Homework
Chapter 14: 1, 4, 9, 10, 12, 15, 17, 18
Chapter 15: 1, 6, 8, 11, 14, 16, 17

OpAmp 741
Maximum ratings
Inside structure

Maximum ratings

OpAmp 741 inside
structure
Biasing Currents
Input Stage
Second Stage
Output Stage
Short Circuit Protection

Inside structure: SchematicQ2
Q 1 9
Vo
R 1 1
50k
Q 2 1
Q 1 2
R 1 0
40k
Q 1 0
R9
50k
Q5
HI
R8
100
Cc
30p
Q6
R5
39k
Q 1 3 a
Q9
R2
1k
Q1
R3
50k
R7
27k
Q 1 6
Q 1 4
Q 2 0
Q8
Q 1 3 b
Q 2 3Q3
V i n +
Q 2 2
Q 2 4
Q 1 5
R1
1k
Q7
Q 1 7
Q 1 8
LO
Q4
R6
27k
V i n -
R4
5k
Q 1 1

Biasing Current Sources
Generates reference
bias current through R
5
The opAmp reference
current is:
I
ref=[V
CC-V
EB12-V
BE11-(-V
EE)]/R
5
For V
CC=V
EE=15V and
V
BE11=V
BE12=0.7V, we
have I
REF=0.73mAQ 1 0
Q9
Q 1 2
R5
39k
R4
5k
Q 1 1
Q8

Input Stage
The differential pair,
Q1 and Q2 provide
the main input
Transistors Q5-Q7
provide an active
load for the inputQ6
Q3
Q1
Q7
Q5
R1
1k
V i n -V i n +
Q4
R3
50k
R2
1k
Q2

Input Stage:
DC Analysis -1
Assuming that Q10 and Q11 are matched, we
can write the equation from the Widlar current
source:V
T
ln
I
REF
I
C10
I
C10
R
4
Using trial and error, we can solve for
I
C10, and we get: I
C10=19A

Input Stage: DC Analysis -2
From symmetry
we see that
I
C1=I
C2=I, and if the
npnis large,
then I
E3=I
E4=I
Analysis
continues:

Input Stage: DC Analysis -3
Analysis of the active load:

Second (Intermediate) Stage
Transistor Q16 acts as
an emitter-follower
giving this stage a high
input resistance
Capacitor Cc provides
frequency compensation
using the Miller
compensation techniqueQ 1 3 b
R9
50k
Q 1 3 a
Q 1 6
Q 1 7
Cc
30p
R8
100

Second Stage:
DC Analysis
Neglecting the base current of Q23, I
C17is
equal to the current supplied by Q13b
I
C13b=0.75I
REFwhere
P>> 1
Thus: I
C13b=550uA=I
C17
Then we can also write:V
BE17
V
T
ln
I
C17
I
S
618mV I
C16
I
E16
I
B17
I
E17
R
8
V
BE17
R
9
16.2A

Output Stage
Provides the
opAmp with a low
output resistance
Class AB output
stage provides
fairly high current
load capabilities
without hindering
power dissipation
in the ICQ 1 5
Q 1 8
Q 2 3
Q 2 1
Q 1 4
Vo
Q 1 9
R7
27k
R6
27k
Q 2 0
R 1 0
40k

Output Stage:
DC Analysis
Q13a delivers a current of 0.25I
REF, so we can
say: I
C23=I
E23=0.25I
REF=180A
Assuming V
BE18= 0.6V, then I
R10=15A,
I
E18=180-15=165A and I
C18=I
E18=165A
I
C19=I
E19=I
B18+I
R10=15.8A

Short Circuit Protection
These transistors are normally off
They only conduct in the event that a large current is drawn
from the output terminal (i.e. a short circuit)R 1 1
50k
Q 2 4
Q 2 2
Tags