chapter1211111111111111111111111111111.ppt

jmori12pwph 6 views 56 slides Jul 22, 2024
Slide 1
Slide 1 of 56
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56

About This Presentation

1


Slide Content

Chapter 12
Chemical Kinetics

Section 12.1
Reaction Rates
Copyright © Cengage Learning. All rights reserved 2
Reaction Rate
Change in concentration of a reactant or product
per unit time.
[A] means concentration of A in mol/L; A is the
reactant or product being considered.
21
21
concentration of A at time concentration of A at time
Rate =

A
=




tt
tt
t

Section 12.1
Reaction Rates
Copyright © Cengage Learning. All rights reserved 3
The Decomposition of Nitrogen Dioxide

Section 12.1
Reaction Rates
Copyright © Cengage Learning. All rights reserved 4
The Decomposition of Nitrogen Dioxide

Section 12.1
Reaction Rates
Copyright © Cengage Learning. All rights reserved 5
Instantaneous Rate
Value of the rate at a particular time.
Can be obtained by computing the slope of a line
tangent to the curve at that point.

Section 12.2
Rate Laws: An Introduction
Rate Law
Shows how the rate depends on the concentrations of
reactants.
For the decomposition of nitrogen dioxide:
2NO
2(g) → 2NO(g) + O
2(g)
Rate = k[NO
2]
n
:
k= rate constant
n= order of the reactant
Copyright © Cengage Learning. All rights reserved 6

Section 12.2
Rate Laws: An Introduction
Rate Law
Rate = k[NO
2]
n
The concentrations of the products do not appear in the
rate law because the reaction rate is being studied
under conditions where the reverse reaction does not
contribute to the overall rate.
Copyright © Cengage Learning. All rights reserved 7

Section 12.2
Rate Laws: An Introduction
Rate Law
Rate = k[NO
2]
n
The value of the exponent nmust be determined by
experiment; it cannot be written from the balanced
equation.
Copyright © Cengage Learning. All rights reserved 8

Section 12.2
Rate Laws: An Introduction
Types of Rate Laws
Differential Rate Law (rate law) –shows how the rate of
a reaction depends on concentrations.
Integrated Rate Law –shows how the concentrations of
species in the reaction depend on time.
Copyright © Cengage Learning. All rights reserved 9

Section 12.2
Rate Laws: An Introduction
Rate Laws: A Summary
Because we typically consider reactions only under
conditions where the reverse reaction is unimportant,
our rate laws will involve only concentrations of
reactants.
Because the differential and integrated rate laws for a
given reaction are related in a well–defined way, the
experimental determination of either of the rate laws is
sufficient.
Copyright © Cengage Learning. All rights reserved 10

Section 12.2
Rate Laws: An Introduction
Rate Laws: A Summary
Experimental convenience usually dictates which type of
rate law is determined experimentally.
Knowing the rate law for a reaction is important mainly
because we can usually infer the individual steps
involved in the reaction from the specific form of the
rate law.
Copyright © Cengage Learning. All rights reserved 11

Section 12.3
Determining the Form of the Rate Law
Determine experimentally the power to which each
reactant concentration must be raised in the rate law.
Copyright © Cengage Learning. All rights reserved 12

Section 12.3
Determining the Form of the Rate Law
Method of Initial Rates
The value of the initial rate is determined for each
experiment at the same value of tas close to t= 0 as
possible.
Several experiments are carried out using different
initial concentrations of each of the reactants, and the
initial rate is determined for each run.
The results are then compared to see how the initial
rate depends on the initial concentrations of each of the
reactants.
Copyright © Cengage Learning. All rights reserved 13

Section 12.3
Determining the Form of the Rate Law
Overall Reaction Order
The sum of the exponents in the reaction rate equation.
Rate = k[A]
n
[B]
m
Overall reaction order = n+ m
k = rate constant
[A] = concentration of reactant A
[B] = concentration of reactant B
Copyright © Cengage Learning. All rights reserved 14

Section 12.3
Determining the Form of the Rate Law
How do exponents (orders) in rate laws compare to
coefficients in balanced equations?
Why?
Copyright © Cengage Learning. All rights reserved 15
CONCEPT CHECK!

Section 12.4
The Integrated Rate Law
First-Order
Rate = k[A]
Integrated:
ln[A] = –kt+ ln[A]
o
[A] = concentration of A at time t
k= rate constant
t= time
[A]
o= initial concentration of A
Copyright © Cengage Learning. All rights reserved 16

Section 12.4
The Integrated Rate Law
Plot of ln[N
2O
5] vs Time
Copyright © Cengage Learning. All rights reserved 17

Section 12.4
The Integrated Rate Law
First-Order
Time required for a reactant to reach half its original
concentration
Half–Life:
k= rate constant
Half–life does not depend on the concentration of
reactants.
Copyright © Cengage Learning. All rights reserved 181
2
0.693
= t
k

Section 12.4
The Integrated Rate Law
A first order reaction is 35% complete at the end of
55 minutes. What is the value of k?
k = 7.8 ×10
–3
min
–1
Copyright © Cengage Learning. All rights reserved 19

Section 12.4
The Integrated Rate Law
Second-Order
Rate = k[A]
2
Integrated:
[A] = concentration of A at time t
k= rate constant
t= time
[A]
o= initial concentration of A
Copyright © Cengage Learning. All rights reserved 20 
0
11
= +
AA
kt

Section 12.4
The Integrated Rate Law
Plot of ln[C
4H
6] vs Time and Plot of 1/[C
4H
6] vs Time

Section 12.4
The Integrated Rate Law
Second-Order
Half–Life:
k= rate constant
[A]
o= initial concentration of A
Half–life gets longer as the reaction progresses and the
concentration of reactants decrease.
Each successive half–life is double the preceding one.
Copyright © Cengage Learning. All rights reserved 22
1
2
0
1
=
A
t
k

Section 12.4
The Integrated Rate Law
For a reaction aA Products,
[A]
0= 5.0 M, and the first two half-lives are 25 and 50
minutes, respectively.
a)Write the rate law for this reaction.
rate = k[A]
2
b)Calculate k.
k= 8.0 ×10
-3
M
–1
min
–1
c)Calculate [A] at t= 525 minutes.
[A] = 0.23 M
Copyright © Cengage Learning. All rights reserved 23
EXERCISE!

Section 12.4
The Integrated Rate Law
Zero-Order
Rate = k[A]
0
= k
Integrated:
[A] = –kt+ [A]
o
[A] = concentration of A at time t
k= rate constant
t= time
[A]
o= initial concentration of A
Copyright © Cengage Learning. All rights reserved 24

Section 12.4
The Integrated Rate Law
Plot of [A] vs Time
Copyright © Cengage Learning. All rights reserved 25

Section 12.4
The Integrated Rate Law
Zero-Order
Half–Life:
k= rate constant
[A]
o= initial concentration of A
Half–life gets shorter as the reaction progresses and the
concentration of reactants decrease.
Copyright © Cengage Learning. All rights reserved 26
0
1
2
A
=
2
t
k

Section 12.4
The Integrated Rate Law
How can you tell the difference among 0
th
, 1
st
, and 2
nd
order rate laws from their graphs?
Copyright © Cengage Learning. All rights reserved 27
CONCEPT CHECK!

Section 12.4
The Integrated Rate Law
Rate Laws
Copyright © Cengage Learning. All rights reserved 28
To play movie you must be in Slide Show Mode
PC Users: Please wait for content to load, then click to play
Mac Users: CLICK HERE

Section 12.4
The Integrated Rate Law
Summary of the Rate Laws
Copyright © Cengage Learning. All rights reserved 29

Section 12.4
The Integrated Rate Law
Consider the reaction aA Products.
[A]
0= 5.0 Mand k= 1.0 ×10
–2
(assume the units are appropriate
for each case). Calculate [A] after 30.0 seconds have passed,
assuming the reaction is:
a)Zero order
b)First order
c)Second order
Copyright © Cengage Learning. All rights reserved 30
4.7 M
3.7 M
2.0 M
EXERCISE!

Section 12.5
Reaction Mechanisms
Reaction Mechanism
Most chemical reactions occur by a series of elementary
steps.
An intermediate is formed in one step and used up in a
subsequent step and thus is never seen as a product in
the overall balanced reaction.
Copyright © Cengage Learning. All rights reserved 31

Section 12.5
Reaction Mechanisms
A Molecular Representation of the Elementary Steps in the Reaction
of NO
2and CO
NO
2(g) + CO(g) → NO(g) + CO
2(g)
Copyright © Cengage Learning. All rights reserved 32

Section 12.5
Reaction Mechanisms
Elementary Steps (Molecularity)
Unimolecular –reaction involving one molecule; first
order.
Bimolecular –reaction involving the collision of two
species; second order.
Termolecular –reaction involving the collision of three
species; third order. Very rare.
Copyright © Cengage Learning. All rights reserved 33

Section 12.5
Reaction Mechanisms
Rate-Determining Step
A reaction is only as fast as its slowest step.
The rate-determining step (slowest step) determines the
rate law and the molecularity of the overall reaction.
Copyright © Cengage Learning. All rights reserved 34

Section 12.5
Reaction Mechanisms
Reaction Mechanism Requirements
The sum of the elementary steps must give the overall
balanced equation for the reaction.
The mechanism must agree with the experimentally
determined rate law.
Copyright © Cengage Learning. All rights reserved 35

Section 12.5
Reaction Mechanisms
Decomposition of N
2O
5
Copyright © Cengage Learning. All rights reserved 36
To play movie you must be in Slide Show Mode
PC Users: Please wait for content to load, then click to play
Mac Users: CLICK HERE

Section 12.5
Reaction Mechanisms
Decomposition of N
2O
5
2N
2O
5(g) 4NO
2(g) + O
2(g)
Step 1:N
2O
5 NO
2+ NO
3 (fast)
Step 2:NO
2+ NO
3→ NO + O
2+ NO
2(slow)
Step 3:NO
3+ NO → 2NO
2 (fast)
Copyright © Cengage Learning. All rights reserved 37
2( )

Section 12.5
Reaction Mechanisms
The reaction A + 2B C has the following proposed
mechanism:
A + B D(fast equilibrium)
D + B C (slow)
Write the rate law for this mechanism.
rate = k[A][B]
2
Copyright © Cengage Learning. All rights reserved 38
CONCEPT CHECK!

Section 12.6
A Model for Chemical Kinetics
Collision Model
Molecules must collide to react.
Main Factors:
Activation energy, E
a
Temperature
Molecular orientations
Copyright © Cengage Learning. All rights reserved 39

Section 12.6
A Model for Chemical Kinetics
Activation Energy, E
a
Energy that must be overcome to produce a chemical
reaction.
Copyright © Cengage Learning. All rights reserved 40

Section 12.6
A Model for Chemical Kinetics
Transition States and Activation Energy
Copyright © Cengage Learning. All rights reserved 41
To play movie you must be in Slide Show Mode
PC Users: Please wait for content to load, then click to play
Mac Users: CLICK HERE

Section 12.6
A Model for Chemical Kinetics
Change in Potential Energy
Copyright © Cengage Learning. All rights reserved 42

Section 12.6
A Model for Chemical Kinetics
For Reactants to Form Products
Collision must involve enough energy to produce the
reaction (must equal or exceed the activation energy).
Relative orientation of the reactants must allow
formation of any new bonds necessary to produce
products.
Copyright © Cengage Learning. All rights reserved 43

Section 12.6
A Model for Chemical Kinetics
The Gas Phase Reaction of NO and Cl
2
Copyright © Cengage Learning. All rights reserved 44
To play movie you must be in Slide Show Mode
PC Users: Please wait for content to load, then click to play
Mac Users: CLICK HERE

Section 12.6
A Model for Chemical Kinetics
Arrhenius Equation
A = frequency factor
E
a= activation energy
R = gas constant (8.3145 J/K·mol)
T = temperature (in K)
Copyright © Cengage Learning. All rights reserved 45/
=

a
E RT
k Ae

Section 12.6
A Model for Chemical Kinetics
Linear Form of Arrhenius Equation
Copyright © Cengage Learning. All rights reserved 46
a
E1
ln( ) = ln
RT



k + A

Section 12.6
A Model for Chemical Kinetics
Linear Form of Arrhenius Equation
Copyright © Cengage Learning. All rights reserved 47

Section 12.6
A Model for Chemical Kinetics
Chemists commonly use a rule of thumb that an
increase of 10 K in temperature doubles the rate of a
reaction. What must the activation energybe for this
statement to be true for a temperature increase from
25°C to 35°C?
E
a= 53 kJ
Copyright © Cengage Learning. All rights reserved 48
EXERCISE!

Section 12.7
Catalysis
Catalyst
A substance that speeds up a reaction without being
consumed itself.
Provides a new pathway for the reaction with a lower
activation energy.
Copyright © Cengage Learning. All rights reserved 49

Section 12.7
Catalysis
Energy Plots for a Catalyzed and an Uncatalyzed Pathway
for a Given Reaction
Copyright © Cengage Learning. All rights reserved 50

Section 12.7
Catalysis
Effect of a Catalyst on the Number of Reaction-Producing
Collisions
Copyright © Cengage Learning. All rights reserved 51

Section 12.7
Catalysis
Heterogeneous Catalyst
Most often involves gaseous reactants being adsorbed
on the surface of a solid catalyst.
Adsorption –collection of one substance on the surface
of another substance.
Copyright © Cengage Learning. All rights reserved 52

Section 12.7
Catalysis
Heterogeneous Catalysis
Copyright © Cengage Learning. All rights reserved 53
To play movie you must be in Slide Show Mode
PC Users: Please wait for content to load, then click to play
Mac Users: CLICK HERE

Section 12.7
Catalysis
Heterogeneous Catalyst
1.Adsorption and activation of the reactants.
2.Migration of the adsorbed reactants on the surface.
3.Reaction of the adsorbed substances.
4.Escape, or desorption, of the products.
Copyright © Cengage Learning. All rights reserved 54

Section 12.7
Catalysis
Homogeneous Catalyst
Exists in the same phase as the reacting molecules.
Enzymes are nature’s catalysts.
Copyright © Cengage Learning. All rights reserved 55

Section 12.7
Catalysis
Homogeneous Catalysis
Copyright © Cengage Learning. All rights reserved 56
To play movie you must be in Slide Show Mode
PC Users: Please wait for content to load, then click to play
Mac Users: CLICK HERE
Tags