Chapter4 2.pdf微積分。。。。。。。。。。。。。。。。。。。。。。。。。

deepseekyuntech 6 views 94 slides Sep 22, 2025
Slide 1
Slide 1 of 111
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111

About This Presentation

微積分


Slide Content

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
118 SECTION 4.1
CHAPTER 4
SECTION 4.1
1.fis differentiable on (0,1),continuous on [0, 1]; andf(0) =f(1) = 0.
f

(c)=3c
2
−1; 3c
2
−1=0=⇒c=

3
3



3
3
/∈(0,1)

2.fis differentiable on (−2,2),continuous on [−2,2]; andf(−2) =f(2) = 0.
f

(c)=4c
3
−4c;4c(c
2
−1)=0=⇒c=0,±1
3.fis differentiable on (0,2π),continuous on [0,2π]; andf(0) =f(2π)=0.
f

(c) = 2 cos 2c; 2 cos 2c=0=⇒2c=
π
2
+nπ,andc=
π
4
+

2
,n=0,±1,±2...
Thus,c=
π
4
,

4
,

4
,

4
4.fis differentiable on (0,8),continuous on [0,8]; andf(0) =f(8) = 0.
f

(c)=
2
3
c
−1/3

2
3
c
−2/3
=
2
3
c
1/3
−1
c
2/3
f

(c)=0 =⇒c=1.
5.f

(c)=2c,
f(b)−f(a)
b−a
=
4−1
2−1
=3; 2 c=3 =⇒c=3/2
6.f

(c)=
3
2

c
−4,
f(b)−f(a)
b−a
=
−10−(−1)
4−1
=−3;
3
2

c
−4=−3=⇒c=9/4
7.f

(c)=3c
2
,
f(b)−f(a)
b−a
=
27−1
3−1
= 13; 3c
2
=13 =⇒c=
1
3

39
Δ

1
3

39 is not in [a, b]
θ
8.f

(c)=
2
3
c
−1/3
,
f(b)−f(a)
b−a
=
4−1
8−1
=
3
7
;
2
3
c
−1/3
=
3
7
=⇒c=
(14)
3
9
3
9.f

(c)=
−c

1−c
2
,
f(b)−f(a)
b−a
=
0−1
1−0
=−1;
−c

1−c
2
=−1=⇒c=
1
2

2
(−
1
2

2 is not in [a, b])
10.f

(c)=3c
2
−3,
f(b)−f(a)
b−a
=
−2−2
1−(−1)
=−2; 3c
2
−3=−2=⇒c=±

3
3
11.fis continuous on [−1,1], differentiable on (−1,1) andf(−1) =f(1) = 0.
f

(x)=
−x(5−x
2
)
(3 +x
2
)
2

1−x
2
,f

(c) = 0 forcin (−1,1) impliesc=0.
12.(a)f

(x)=
2
3
x
−1/3
=
2
3x
1/3
δ= 0 for allx∈(−1,1).
(b)f

(0) does not exist. Therefore,fis not differentiable on (−1,1).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.1 119
13.No. By the mean-value theorem there exists at least one numberc∈(0,2) such that
f

(c)=
f(2)−f(0)
2−0
=
3
2
>1.
14.No, by Rolle’s theorem:f(2) =f(3) = 1 but there is no valuec∈(2,3) such that
f

(c)=0.
15.By the mean-value theorem there is a numberc∈(2,6) such that
f(6)−f(2) =f

(c)(6−2) =f

(c)4.
Since 1≤f

(x)≤3 for allx∈(2,6), it follows that
4≤f(6)−f(2)≤12.
16.f(x)=x
2
+x+3,f

(x)=2x+1.
The slope of the line through (−1,3) and (2,9) is 2. Setting 2x+ 1 = 2, we getx=
1
2
. The point on
the graph offwhere the tangent line is parallel to the line through (−1,3) and (2,9) is: (1/2,15/4).
17.fis everywhere continuous and everywhere differentiable except possibly atx=−1.
fis continuous atx=−1: as you can check,
lim
x→−1

f(x)=0,lim
x→−1
+
f(x)=0,andf(−1) = 0.
fis differentiable atx=−1 andf

(−1) = 2: as you can check,
lim
h→0

f(−1+h)−f(−1)
h
= 2 and lim
h→0
+
f(−1+h)−f(−1)
h
=2.
Thusfsatisfies the conditions of the mean-value theorem on every closed interval [a, b].
f

(x)=
δ
2,x≤−1
3x
2
−1,x>−1
f(2)−f(−3)
2−(−3)
=
6−(−4)
2−(−3)
=2.
f

(c) = 2 withc∈(−3,2) iffc=1 or−3<c≤−1.
18.fis continuous and differentiable everywhere;
f

(x)=
δ
3x
2
,x≤1
3,x>1
f(2)−f(−1)
2−(−1)
=
6−1
3
=
5
3
Forc≤1,f

(c)=3c
2
=
5
3
=⇒c=±

5
3
Forc>1,f

(c)=3δ=
5
3

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
120 SECTION 4.1
19.Letf(x)=Ax
2
+Bx+C.Thenf

(x)=2Ax+B.By the mean-value theorem
f

(c)=
f(b)−f(a)
b−a
=
(Ab
2
+Bb+C)−(Aa
2
+Ba+C)
b−a
=
A(b
2
−a
2
)+B(b−a)
b−a
=A(b+a)+B
Therefore, we have
2Ac+B=A(b+a)+B=⇒c=
a+b
2
20.
f(1)−f(−1)
1−(−1)
= 1 andf

(x)=−1/x
2
<0;fis not continuous at 0.
21.
f(1)−f(−1)
1−(−1)
= 0 and f

(x) is never zero. This result does not violate the mean-value theorem
sincefis not differentiable at 0; the theorem does not apply.
22.f(x)=
δ
2x−4,x≥1/2
−2x−2,x<1/2
f

(x)=
δ
2,x>1/2
−2,x<1/2
f

(x)δ= 0 for allxδ=
1
2
.
Rolle’s theorem is not violated becausefis
not differentiable atx=
1
2
.
23.SetP(x)=6x
4
−7x+ 1. If there existed three numbersa<b<cat whichP(x) = 0, then by Rolle’s
theoremP

(x) would have to be zero for somexin (a, b) and also for somexin (b, c).This is not the
case:P

(x)=24x
3
−7 is zero only atx=(7/24)
1/3
.
24.SetP(x)=6x
5
+13x+1.Note thatP(−1)<0 andP(0)>0.By the intermediate-value theorem,
the equationP(x) = 0 has at least one real rootc. If this equation had another real rootd,then
by Rolle’s theoremP

(x) would have to be zero for somexbetweencandd.This is not the case:
P

(x)=30x
4
+ 13 is never zero.
25.SetP(x)=x
3
+9x
2
+33x−8. Note thatP(0)<0 andP(1)>0. Thus, by the intermediate-value
theorem, there exists some numbercbetween 0 and 1 at whichP(x) = 0. If the equationP(x)=0
had an additional real root, then by Rolle’s theorem there would have to be some real number at
whichP

(x) = 0. This is not the case:P

(x)=3x
2
+18x+ 33 is never zero since the discriminant
b
2
−4ac= (18)
2
−12(33)<0.
26.(a) Suppose thatfhas two zeros,x1,x2∈(a, b).Then,fis differentiable on (x1,x2) and continuous
on [x1,x2].By Rolle’s theorem,f

has a zero in (x1,x2) which contradicts the hypothesis.
(b) Iffhad three zeros in (a, b),then, by Rolle’s’ theorem,f

would have at least two zeros
in (a, b) andf
ffff
would have at least one zero in (a, b) which contradicts the hypothesis.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.1 121
27.Letcanddbe two consecutive roots of the equationP

(x) = 0. The equationP(x) = 0 cannot have
two or more roots betweencanddfor then, by Rolle’s theorem,P

(x) would have to be zero somewhere
between these two roots and thus betweencandd. In this casecanddwould no longer be consecutive
roots ofP

(x)=0.
28.Iff(x)=0ata1,a2, ...,anthen by Rolle’s theorem,f

(x) is zero at some numberb1∈(a1,a2),at
some numberb2∈(a2,a3), ...,at some numberbn−1∈(an−1,an);f
ffff
(x),in turn, must be zero at
some numberc1∈(b1,b2),at some numberb2∈(b2,b3),...,at some numbercn−2∈(bn−2,bn−1).
29.Suppose thatfhas two fixed pointsa, b∈I,witha<b.Letg(x)=f(x)−x.Theng(a)=f(a)−a=
0 andg(b)=f(b)−b=0.Sincefis differentiable onI,we can conclude thatgis differentiable on
(a, b) and continuous on [a, b].By Rolle’s theorem, there exists a numberc∈(a, b) such thatg

(c)=
f

(c)−1=0 orf

(c)=1.This contradicts the assumption thatf

(x)<1onI.
30.SetP(x)=x
3
+ax+b.It is obvious that forxsufficiently large,P(x)>0 and forxsufficiently large
negative,P(x)<0.Thus, by the intermediate-value theorem, the equationP(x) = 0 has at least one
real root.
Ifa≥0,thenP

(x)=3x
2
+ais positive, except possibly at 0,where it remains nonnegative. It follows
thatPis everywhere increasing and therefore it cannot take on the value 0 more than once.
Suppose now thata<0.Then−
1
3

3|a|and
1
3

3|a|are consecutive roots of the equationP

(x)=0
and thus, by Exercise 27,Pcannot take on the value zero more than once between these two numbers.
31.(a)f

(x)=3x
2
−3<0 for all x in (−1,1).Also,fis differentiable on (−1,1) and continuous on
[−1,1].Thus there cannot beaandbin (−1,1) such thatf(a)=f(b)=0,or they would contradict
Rolle’s theorem.
(b) Whenf(x)=0,b=3x−x
3
=x(3−x
2
).Whenxis in (−1,1),then|x(3−x
2
)|<2.
Thus|b|<2.
32.f

(x)=3x
2
−3a
2
>0 for all x in(−a, a).Also,fis differentiable on (−a, a) and continuous on [−a, a].
Thus there cannot bebandcin (−a, a) such thatf(b)=f(c)=0,or they would contradict Rolle’s
theorem.
33.Forp(x)=x
n
+ax+b, p

(x)=nx
n−1
+a,which has at most one real zero forneven
ν
x=−
a
n
1
n−1
ω
.
If there were more than two distinct real roots ofp(x),then by Rolle’s theorem there would be more
than one zero ofp

(x).Thus there are at most two distinct real roots ofp(x).
34.Forp(x)=x
n
+ax+b, p

(x)=nx
n−1
+a,which has at most two real zeros fornodd. If there were
more than three distinct real roots ofp(x),then by Rolle’s theorem there would be more than two
zeros ofp

(x).Thus there are at most three distinct real roots ofp(x).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
122 SECTION 4.1
35.Ifx1=x2, then|f(x1)−f(x2)|and|x1−x2|are both 0 and the inequality holds. Ifx1δ=x2, then by
the mean-value theorem
f(x1)−f(x2)
x1−x2
=f

(c)
for some numbercbetweenx1andx2. Since|f

(c)|≤1:




f(x1)−f(x2)
x1−x2




≤1 and thus|f(x1)−f(x2)|≤|x1−x2|.
36.See the proof of Theorem 4.2.2.
37.Set, for instance,f(x)=
δ
1, a<x<b
0,x=a, b
38.(a) Letf(x) = cosx.Choose any numbersxandy,(assumex<y).By the mean-value theorem,
there is a numbercbetweenxandysuch that
f(y)−f(x)
y−x
=f

(c)⇒
|cosy−cosx|
|y−x|
=|−sinc|≤1⇒|cosx−cosy|≤|x−y|
(b) Repeat the in part (a) withf(x) = sinx.
39.(a) By the mean-value theorem, there exists a numberc∈(a, b) such thatf(b)−f(a)=f

(c)(b−a).
Iff

(x)≤Mfor allx∈(a, b),then it follows that
f(b)≤f(a)+M(b−a)
(b) Iff

(x)≥mfor allx∈(a, b),then it follows that
f(b)≥f(a)+m(b−a)
(c) If|f

(x)|≤Kon (a, b),then−K≤f

(x)≤Kon (a, b) and the result follows from parts (a)
and (b).
40.Assume thatg(x)δ= 0 for allx∈[a, b] and leth(x)=
f(x)
g(x)
.Thenhis defined on [a, b] andh(a)=
h(b)=0.Therefore, by Rolle’s theorem, there exists a numberc∈(a, b) such that
h

(c)=
g(c)f

(c)−f(c)g

(c)
g
2
(c)
=0
Thusg(c)f

(c)−f(c)g

(c) = 0 which contradicts the given conditionf(x)g

(x)−g(x)f

(x)δ= 0 for all
x∈I.Thus,ghas at least one zero in (a, b).
By reversing the roles offandg,the same argument can be used to show thatgcannot have
two (or more) zeros on (a, b).
41.We show first that the conditions onfandgimply thatfandgcannot be simultaneously 0.
Seth(x)=f
2
(x)+g(x).Then
h

(x)=2f(x)f

(x)+2g(x)g

(x)=2f(x)[g(x)] + 2g(x)[−f(x)]=0=⇒f
2
(x)+g
2
(x)=Cconstant.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.1 123
IfC=0,thenf
2
(x)=−g
2
(x)=⇒f(x)≡0,contradicting the assumptions onf. Therefore,
f
2
(x)+g
2
(x)=C, C >0. Iff(α)=0,theng(αδ=0.
Assume thatf(a)=f(b) = 0 andf(x)δ= 0 on (a,b). Suppose thatg(x)δ= 0 on (a,b). We know also
thatg(a)δ= 0 andg(b)δ= 0. Seth(x)=f(x)/g(x).Thenhis continuous on the closed interval [a,b]
and differentiable on the open interval (a, b). Therefore, by Rolle’s theorem, there exists at least one
pointcΔ(a, b) such thath

(c)=0.But,
h

(x)=
g(x)f

(x)−f(x)g

(x)
g
2
(x)
=
g
2
(x)+f
2
(x)
g
2
(x)
=
C
g
2
(x)
>0
for allxΔ(a, b),and we have a contradiction. Thusgmust have at least one zero in (a, b).Since
g

(x)=−f(x)δ= 0 in (a, b),ghas exactly one zero in (a, b).
Simply reverse the roles offandgto show thatfhas exactly one zero between two consecutive
zeros ofg.
42.We prove the result forh>0.The proof forh<0 is similar. Iffis differentiable on (x, x+h),it is
continuous there and thus, by the hypothesis atxandx+hcontinuous on [x, x+h]. By the mean-value
theorem, there existscin (x, x+h) for which
f(x+h)−f(x)
x+h−x
=f

(c).
Multiplying through by (x+h)−x=h,we have
f(x+h)−f(x)=f

(c)h.
Sincecis betweenxandx+h, ccan be written
c=x+θhwith 0<θ<1.
43. f

(x0) = lim
h→0
f(x0+h)−f(x0)
h
= lim
h→0
f

(x0+θh)h
h
= lim
h→0
f

(x0+θh)

(by the hint)
= lim
x→x0
f

(x)=L

(by 2.2.6)
44.Suppose thatf(a)=f(b)=k,and letg(x)=f(x)−k.Thengis differentiable on (a, b),continuous
on [a, b],andg(a)=g(b)=0.Therefore, by Rolle’s theorem, there exists at least one numberc∈(a, b)
such thatg

(c)=0.Sinceg

(x)=f

(x),it follows thatf

(c)=0.
45.Using the hint,Fis continuous on [a, b],differentiable on (a, b),andF(a)=F(b).By Exercise 44,
there is a numbercin (a, b) such thatF

(c)=0.
Therefore [f(b)−f(a)]g

(c)−[g(b)−g(a)]f

(c) = 0 and
f(b)−f(a)
g(b)−g(a)
=
f

(c)
g

(c)
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
124 SECTION 4.1
46.f(x)=2x
3
+3x
2
−3x−2 is differentiable on (−2,1),continuous on [−2,1],andf(−2) =f(1) = 0.
f

(x)=6x
2
+6x−3
f

(c)=0atc1

=−1.366,c2

=0.366
47.f(x)=1−x
3
−cos(πx/2) is differentiable on (0,1),continuous on [0,1],andf(0) =f(1) = 0.
f

(x)=−3x
2
+
π
2
sin(πx/2)
f

(c)=0atc

=0.676
48.f(1) = 0;fsatisfies Rolle’s theorem on [0,1];f

(c)=0 atc

=0.6058.
49.b

=0.5437,c

=0.3045,
f(0.3045)

=−0.1749
0.2 0.4 0.6 0.8
x
y
50.x-intercepts:x=0,x=1;f

(x)=0atx

=0.3874
51.0c=0
52.x-intercepts:x=−2,x=
4
5
x=2;f

(x)=0atx

=−1.1005 andx

=1.5577
53.f(x)=x
4
−7x
2
+2;f

(x)=4x
3
−14x
g(x)=4x
3
−14x−
f(3)−f(1)
3−1
=4x
3
−14x−12
g(c)=0 atc

=2.205

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.2 125
54.f(x)=xcosx+ 4 sinx;f

(x) = cosx−xsinx+ 4 cosx= 5 cosx−xsinxand
g(x) = 5 cosx−xsinx−
f(π/2)−f(−π/2)
π
= 5 cosx−xsinx−
8
π
g(c)=0 atc1

=−0.872,c2

=0.872
55.f(x)=x
3
−x
2
+x−1;f

(x)=3x
2
−2x+1;c=8/3.
1 2 3 4
x
20
40
60
y
56.f(x)=x
4
−2x
3
−x
2
−x+1;f

(x)=4x
3
−6x
2
−2x−1;c=1/2,−0.6180,1.6180.
−2 −1 1 2 3
x
5
5
10
y
SECTION 4.2
1.f

(x)=3x
2
−3=3

x
2
−1

=3(x+ 1)(x−1)
fincreases on (−∞,−1] and [1,∞),decreases on [−1,1]
2.f

(x)=3x
2
−6x=3x(x−2)
fincreases on (−∞,0] and [2,∞),decreases on [0,2]
3.f

(x)=1−
1
x
2
=
x
2
−1
x
2
=
(x+ 1)(x−1)
x
2
fincreases on (−∞,−1] and [1,∞),decreases on [−1,0) and (0,1] (fis not defined at 0)
4.f

(x)=3(x−3)
2
;fincreases on (−∞,∞)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
126 SECTION 4.2
5.f

(x)=3x
2
+4x
3
=x
2
(3+4x)
fincreases on


3
4
,∞

, decreases on

−∞,−
3
4

6.f

(x)=3x
2
+6x+2
fincreases on

−∞,−1−
1
3

3

and

−1+
1
3

3,∞

,decreases on

−1−
1
3

3,−1+
1
3

3

7.f

(x)=4(x+1)
3
fincreases on [−1,∞), decreases on (−∞,−1]
8.f

(x)=
2(x
3
+1)
x
3
fincreases on [−∞,−1] and (0,∞), decreases on [−1,0)
9.f(x)=





1
2−x
,x<2
1
x−2
,x>2
f

(x)=





1
(2−x)
2
,x<2
−1
(x−2)
2
,x>2
fincreases on (−∞,2), decreases on (2,∞)(fis not defined at 2)
10.f

(x)=
(1 +x
2
)−x(2x)
(1 +x
2
)
2
; fincreases on [−1,1],decreases on (−∞,−1] and [1,∞)
11.f

(x)=−
4x
(x
2
−1)
2
fincreases on (−∞,−1) and (−1,0],decreases on [0,1) and (1,∞)(fis not defined at±1)
12.f

(x)=
(x
2
+ 1)(2x)−x
2
(2x)
(x
2
+1)
2
=
2x
(x
2
+1)
2
fincreases on [0,∞),decreases on (−∞,0]
13.f(x)=







x
2
−5,x< −

5


x
2
−5

,−

5≤x≤

5
x
2
−5,

5<x
f

(x)=







2x, x < −

5
−2x,−

5<x<

5
2x,

5<x
fincreases on [−

5,0 ] and [

5,∞),decreases on (−∞,−

5] and [0,

5]
14.f

(x)=x
2
(2)(1 +x)+(x+1)
2
(2x)=2x(x+ 1)(2x+1)
fincreases on [−1,−1/2] and [0,∞),decreases on (−∞,−1] and [−1/2,0]
15.f

(x)=
2
(x+1)
2
;fincreases on (−∞,−1) and (−1,∞)(fis not defined at−1)
16.f

(x)=2x−
32
x
3
=
2(x
4
−16)
x
3
=
2(x−2)(x+ 2)(x
2
+4)
x
3
fincreases on [−2,0) and [2,∞),decreases on (−∞,−2] and (0,2]
17.f

(x)=
x
(2 +x
2
)
2

2+x
2
1+x
2
fincreases on [0,∞),decreases on (−∞,0]

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.2 127
18.f(x)=







x
2
−x−2,x ≤−1
−x
2
+x+2,−1<x<2
x
2
−x−2,x ≥2
f

(x)=







2x−1,x ≤−1
−2x+1,−1<x<2
2x−1,x ≥2
fincreases on

−1,
1
2

and [2,∞),decreases on (−∞,−1] and

1
2
,2

19.f

(x) = 1 + sinx≥0;fincreases on [0,2π]
20.f

(x) = 1 + cosx≥0;fincreases on [0,2π]
25.f

(x)=−2 sin 2x−2 sinx=−2 sinx(2 cosx+ 1);fincreases on

2
3
π, π

, decreases on

0,
2
3
π

22.f

(x)=−2 cosxsinx=−2 sin 2x;fincreases on [π/2,π],decreases on [0,π/2]
23.f

(x)=

3 + 2 sin 2x;fincreases on

0,
2
3
π

and

5
6
π, π

, decreases on

2
3
π,
5
6
π

24.f

(x) = 2 sinxcosx−

3 cosx= cosx

2 sinx−

3

fincreases on [
1
3
π,
1
2
π] and [
2
3
π, π],decreases on [0,
1
3
π] and [
1
2
π,
2
3
π]
25.
d
dx
Δ
x
3
3
−x
θ
=f

(x)=⇒f(x)=
x
3
3
−x+C
f(1) = 2 =⇒2=
1
3
−1+C,soC=
8
3
.Thus,f(x)=
1
3
x
3
−x+
8
3
.
26.
d
dx

x
2
−5x

=f

(x)=⇒f(x)=x
2
−5x+C
f(2) = 4 =⇒4=4−10 +C,soC=10.Thus,f(x)=x
2
−5x+10.
27.
d
dx

x
5
+x
4
+x
3
+x
2
+x

=f

(x)=⇒f(x)=x
5
+x
4
+x
3
+x
2
+x+C
f(0) = 5 =⇒5=0+C,soC=5.Thus,f(x)=x
5
+x
4
+x
3
+x
2
+x+5.
28.
d
dx

−2x
−2

=f

(x)=⇒f(x)=−2x
−2
+C
f(1) = 0 =⇒0=−2+C,soC=2.Thus,f(x)=−2x
−2
+2,x>0.
29.
d
dx
Δ
3
4
x
4/3

2
3
x
3/2
θ
=f

(x)=⇒f(x)=
3
4
x
4/3

2
3
x
3/2
+C
f(0) = 1 =⇒1=0+C,soC=1.Thus,f(x)=
3
4
x
4/3

2
3
x
3/2
+1,x≥0.
30.
d
dx


1
4
x
−4

25
4
x
4/5

=f

(x)=⇒f(x)=−
1
4
x
−4

25
4
x
4/5
+C
f(1) = 0 =⇒0=−
1
4

25
2
+C,soC=
13
2
.Thus,f(x)=−
1
4
x
−4

25
4
x
4/5
+
13
2
,x>0.
31.
d
dx
(2x−cosx)=f

(x)=⇒f(x)=2x−cosx+C
f(0) = 3 =⇒3=0−1+C,soC=4.Thus,f(x)=2x−cosx+4.
32.
d
dx
(2x
2
+ sinx)=f

(x)=⇒f(x)=2x
2
+ sinx+C
f(0) = 1 =⇒1=0+C,soC=1.Thus,f(x)=2x
2
+ sinx+1.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
128 SECTION 4.2
33.f

(x)=











1,x< −3
−1,−3<x<−1
1,−1<x<1
−2, 1<x
fincreases on (−∞,−3) and [−1,1];
decreases on [−3,−1] and [1,∞)
34.f

(x)=







2(x−1),x< 1
−1,1<x<3
−2,x> 3
fdecreases on (−∞,1),[1,3) and [3,∞).
35.f

(x)=







−2x, x < 1
−2,1<x<3
3, 3<x
fincreases on (−∞,0] and [3,∞);
decreases on [0,1) and [1,3]
36.f

(x)=











1,x< 0
2(x−1),0<x<3
−1,3<x<7
2,x> 7
fincreases on (−∞,0],[1,3],(7,∞);
decreases on [0,1] and [3,7)
37. 38.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.2 129
39. 40.
41. 42.
43. 44.
45.Not possible;fis increasing, sof(2) must be greater thanf(−1).
46.Not possible; by the intermediate-value theorem,fmust have a zero in (3,5).
47.(a) True. Letx1,x2∈[a, c],x1<x2.Ifx1,x2∈[a, b], or ifx1,x2∈[b, c], thenf(x1)<f(x2).
Ifx1∈[a, b) andx2∈[b, c], thenf(x1)<f(b)≤f(x2). Thereforefincreases on [a, c]
(b) False. A slight modification of Example 6 is a counterexample. Letg(x)=



1
2
x+2,x≤1
x
3
,x> 1.
48.(a) True. Use the obvious modification of the argument in Exercise 47(a).
(b) False. An example like 47(b):f(x)=



−x+2,x≤1
−x+3,x>1.
.
49.(a) True. Iff

(c)<0 at some numberc∈(a, b), then there exists a numberδsuch that
f(x)>f(c)>f(z) forx∈(c−δ, c) andz∈(c, c+δ) (Theorem 4.1.2).
(b) False.f(x)=x
3
increases on (−1,1) andf

(0) = 0.
50.False.f(x)=x+
1

sin (2x−1)πis increasing on [0,4] andf

(x) = 1 + cos (2x−1)πx=0 at
x=1,x=2.x=3.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
130 SECTION 4.2
51.Letf(x)=x−sinx.Thenf

(x)=1−cosx.
(a)f

(x)≥0 for allx∈(−∞,∞) andf

(x) = 0 only atx=
π
2
+nπ, n=0,±1,±2, ...
It follows from Theorem 4.2.3 thatfis increasing on (−∞,∞).
(b) Sincefis increasing on (−∞,∞) andf(0) = 0−sin 0 = 0,we have:
f(x)>0 for allx>0⇒x>sinxon (0,∞);
f(x)<0 for allx<0⇒x<sinxon (−∞,0).
52.A proof is outlined just below the statement of the theorem.
53.f

(x) = 2 secx(secxtanx) = 2 sec
2
xtanxandg

(x) = 2 tanxsec
2
x.
Therefore,f

(x)=g

(x) for allx∈I.
54.Evaluating sec
2
x−tan
2
x=Catx= 0 givesC=1.
55.Letfandgbe functions such thatf

(x)=−g(x) andg

(x)=f(x).Then:
(a) Differentiatingf
2
(x)+g
2
(x) with respect tox,we have
2f(x)f

(x)+2g(x)g

(x)=−2f(x)g(x)+2g(x)f(x)=0.
Thus,f
2
(x)+g
2
(x)=C(constant).
(b)f(0) = 0 andg(0) = 1 impliesC=1.
(c) The functionsf(x) = sinx, g(x) = cosxhave these properties.
56.(a) Leth(x)=f(x)−g(x).Thenh

(x)=f

(x)−g

(x)>0on(0,c),andhis increasing on (0,c).
Sinceh(0) =f(0)−g(0) = 0, it follows thath(x)>0on(0,c).Thus,f(x)>g(x)on(0,c).
(b) Again leth(x)=f(x)−g(x).Thenhis increasing on (−c,0) which implies thath(x)<0 on this
interval sinceh(0) = 0.Therefore,f(x)<g(x)on(−c,0).
57.Letf(x) = tanxandg(x)=xforx∈[0,π/2).Thenf(0) =g(0) = 0 andf

(x) = sec
2
x>g

(x)=1
forx∈(0,π/2).Thus, tanx>xforx∈(0,π/2) by Exercise 56(a).
58.Letf(x) = cosx−

1−
1
2
x
2

forx∈[0,∞).Thenf(0) = 0 andf

(x)=−sinx+x=x−sinx>0
forx∈(0,∞) by Exercise 51 (b). Thus,f(x)>0 forx∈(0,∞) which implies cosx>1−
1
2
x
2
on
(0,∞).
59.Choose an integern>1.Letf(x) = (1 +x)
n
andg(x)=1+nx, x >0.Then,f(0) =g(0) = 1
andf

(x)=n(1 +x)
n−1
>g

(x)=nsince (1 +x)
n−1
>1 forx>0.The result follows from Exercise
56(a).
60.Letf(x) = sinx−

x−
1
6
x
3

.Thenf(0) = 0 andf

(x) = cosx−

1−
1
2
x
2

>0 by Exercise 58.
Therefore,f(x)>f(0) = 0 for allx∈(0,∞) which implies sinx>x−
1
6
x
3
on (0,∞).
61.4
◦∼
=0.06981 radians. By Exercises 51 and 60,
0.6981−
(0.6981)
3
6
=0.06975<sin 4

<0.6981

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.2 131
62.(a) Letf(x) = cosx−(1−
1
2
x
2
+
1
24
x
4
).Thenf(0) = 0 andf

(x)=−sinx+x−
x
3
6
<0by
Exercise 60. Therefore,f(x)<f(0) = 0 on allx∈(0,∞),which implies cosx<1−
1
2
x
2
+
1
24
x
4
on (0,∞).
(b) 6

=
π
30
.Using this forxin 1−
1
2
x
2
<cosx<1−
1
2
x
2
+
1
24
x
4
,
=⇒0.994517<cos 6

<0.994522.
63.Letf(x)=3x
4
−10x
3
−4x
2
+10x+9,x∈[−2,5].Thenf

(x)=12x
3
−30x
2
−8x+10.
f

(x)=0atx

=−0.633,0.5,2.633
fis decreasing on [−2,−0.633]
and [0.5,2.633]
fis increasing on [−0.633,0.5]
and [2.633,5]
64.Letf(x)=2x
3
−x
2
−13x−6,x∈[−3,4].Thenf

(x)=6x
2
−2x−13.
f

(x)=0atx

=−1.315,1.648
fis decreasing on [−1.315,1.648]
fis increasing on [−3,−1.315] and [1.648,4]
65.Letf(x)=xcosx−3 sin 2x, x∈[0,6].Thenf

(x) = cosx−xsinx−6 cos 2x.
f

(x)=0atx

=0.770,2.155,3.798,5.812
fis decreasing on [0,0.770],[2.155,3.798]
and [5.812,6]
fis increasing on [0.770,2.155]
and [3.798,5.812]
66.Letf(x)=x
4
+3x
3
−2x
2
+4x+4,x∈[−5,3].Thenf

(x)=4x
3
+9x
2
−4x+4.
f

(x)=0atx

=−2.747
fis decreasing on [−5,−2.747]
fis increasing on [−2.747,3]

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
132 SECTION 4.3
67.(a)f

(x)=0atx=0,
π
2
,π,

2
,2π (b)f

(x)>0on

π,

2




2
,2π

(c)f

(x)<0on

0,
π
2



π
2


68.(b)f

(x)>0on(−∞,∞)
69.(a)f

(x)=0atx= 0 (b) f

(x)>0on(0,∞)
(c)f

(x)<0on(−∞,0)
70.(a)f

(x)=0atx=−
1
2
,
8
5
,3 (b) f

(x)>0on

−∞,−
1
2




1
2
,
8
5

∪(3,∞)
(c)f

(x)<0on

8
5
,3

71.f=C, constant;f

(x)≡0
SECTION 4.3
1.f

(x)=3x
2
+3>0; no critical pts, no local extreme values
2.f

(x)=8x
3
−8x=8x(x
2
−1); critical pts−1,0,1
f
ffff
(x)=24x
2
−8;f
ffff
(−1) =f
ffff
(1) = 16>0,f
ffff
(0) =−8<0;
f(0) = 6 local max,f(−1) = 4 local min,f(1) = 4 local min
3.f

(x)=1−
1
x
2
; critical pts−1,1
f
ffff
(x)=
2
x
3
,f
ffff
(−1) =−2,f
ffff
(1) = 2f(−1) =−2 local max,f(1) = 2 local min
4.f

(x)=2x+
6
x
3
=
2x
4
+6
x
3
; no critical pts (note: 0 is not in the domain off),
no local extreme values
5.f

(x)=2x−3x
2
=x(2−3x); critical pts 0,
2
3
f
ffff
(x)=2−6x;f
ffff
(0) = 2,f
ffff
(
2
3
)=−2
f(0) = 0 local min,f(
2
3
)=
4
27
local max
6.f

(x)=−2(1−x)(1 +x)+(1−x)
2
=(x−1)(3x+ 1); critical pts−
1
3
,1
f
ffff
(x)=(1+3x)+3(x−1) = 2(3x−1);f
ffff


1
3

=−4,f
ffff
(1) = 4
f


1
3

=
32
27
local max,f(1) = 0 local min
7.f

(x)=
2
(1−x)
2
; no critical pts, no local extreme values
8.f

(x)=
(2 +x)(−3)−(2−3x)(1)
(2 +x)
2
=−
8
(2 +x)
2
; no critical pts (note:−2 is not
in the domain off), no local extreme values

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.3 133
9.f

(x)=−
2(2x+1)
x
2
(x+1)
2
; critical pt−
1
2
f


1
2

=−8 local max
10.f(x)=







x
2
−16,x< −4
16−x
2
,−4≤x<4
x
2
−16,x ≥4
f

(x)=







2x, x < −4
−2x,−4<x<4
2x, x > 4
critical pts−4,0,4;f(−4) =f(4) = 0 local minima,f(0) = 16 local max
11.f

(x)=x
2
(5x−3)(x−1); critical pts 0,
3
5
,1
f
Δ
3
5
θ
=
2
2
3
3
5
5
local max
f(1) = 0 local min
no local extreme at 0
12.f

(x)=3
Δ
x−2
x+2
θ
2
4
(x+2)
2
≥0; critical pt 2,no local extreme values
13.f

(x)=(5−8x)(x−1)
2
; critical pts
5
8
,1
f

5
8

=
27
2048
local max
no local extreme at 1
14.f

(x)=−(1 +x)
3
+(1−x)(3)(1 +x)
2
= 2(1 +x)
2
(1−2x); critical pts−1,
1
2
f

1
2

=
27
16
local max
no local extreme at−1
15.f

(x)=
x(2 +x)
(1 +x)
2
; critical pts−2,0
f(−2) =−4 local max
f(0) = 0 local min
16.f

(x)=(1−x)
1/3

1
3
x(1−x)
−2/3
=
3−4x
3(1−x)
2/3
; critical pts
3
4
,1
f(3/4) =
3
4
4/3local max
no local extreme at 1
17.f

(x)=
1
3
x(7x+ 12)(x+2)
−2/3
; critical pts−2,−
12
7
,0
f


12
7

=
144
49

2
7

1/3
local max
f(0) = 0 local min

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
134 SECTION 4.3
18.f

(x)=
−1
(x+1)
2
+
1
(x−2)
2
=
3(2x−1)
(x+1)
2
(x−2)
2
; critical pt
1
2
f

1
2

=
4
3
local min
19.f(x)=







2−3x, x ≤−
1
2
x+4,−
1
2
<x<3
3x−2, 3≤x
f

(x)=







−3,x< −
1
2
1,−
1
2
<x<3
3, 3<x
critical pts−
1
2
,3
f


1
2

=
7
2
local min
no local extreme at 3
20.f

(x)=
7
3
x
4/3

7
3
x
−2/3
=
7
3
x
2
−1
x
2/3
; critical pts−1,0,1
f(−1) = 6 local max,
f(1) =−6 local min
no local extreme at 0
21.f

(x)=
2
3
x
−4/3
(x−1); critical pt 1
f(1) = 3 local min
no local extreme at 0
22.f

(x)=
(x+ 1)3x
2
−x
3
(x+1)
2
=
x
2
(2x+3)
(x+1)
2
; critical pts−
3
2
,0
f


3
2

=
27
4
local min
no local extreme at 0
23.f

(x) = cosx−sinx; critical pts
1
4
π,
5
4
π
f
ffff
(x)=−sinx−cosx, f
ffff

1
4
π

=−

2,f
ffff

5
4
π

=

2
f(
1
4
π)=

2 local max,f(
5
4
π)=−

2 local min
24.f

(x)=1−2 sin 2x; critical pts
π
12
,

12
f(
1
12
π)=
π
12
+

3
2
local max
f(
5
12
π)=

12


3
2
local min

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.3 135
25.f

(x) = cosx(2 sinx−

3 ); critical pts
1
3
π,
1
2
π,
2
3
π
f(
1
3
π)=f(
2
3
π)=−
3
4
local mins
f(
1
2
π)=1−

3 local max
26.f

(x) = 2 sinxcosx; critical pts
1
2
π, π,
3
2
π
f

1
2
π

=1=f

3
2
π

local max
f(π) = 0 local min
27.f

(x) = cos
2
x−sin
2
x−3 cosx+ 2 = (2 cosx−1)(cosx−1) critical pts
1
3
π,
5
3
π
f

1
3
π

=
2
3
π−
5
4

3 local min
f

5
3
π

=
10
3
π+
5
4

3 local max
28.f

(x) = 6 sin
2
xcosx−3 cosx= 3 cosx(2 sin
2
x−1); critical pts
1
4
π,
1
2
π,
3
4
π
f(
1
4
π)=f(
3
4
π)=−

2 local mins
f(
1
2
π)=−1 local max
29.(a)fincreases on [−2,0] and [3,∞);fdecreases on (−∞,−2] and [0,3].
(b)f(−2) andf(3) are local minima;f(0) = 1 is a local maximum.
30.(a)fincreases on (−∞,−1] and [0,∞);fdecreases on [−1,0].
(b)f(−1) is a local maximum;f(0) = 1 is a local minimum.
31.Leth(x)=f(x)−g(x). Thenh(x) gives the vertical separation between graphs offandgatx.If
hhas a maximum atc, thenh

(c) = 0. Sinceh

(x)=f

(x)−g

(x),h

(c) = 0 impliesf

(c)=g

(c).
Thus the lines tangent to the graphs offandgare parallel atx=c.
32.Setg(x)=−f(−x) and apply the proof of the second derivative test already given.
33.Solvingf

(x)=2ax+b= 0 gives a critical point atx=−
b
2a
.Sincef
ffff
(x)=2a,
fhas a local maximum at−
b
2a
ifa<0 and a local minimum at−
b
2a
ifa>0.
34.Settingf

(x)=3ax
2
+2bx+c= 0 and checking the discriminant, we get
(1) 2 local extrema ifb
2
>3ac
(2) 1 local extrema ifb
2
=3ac
(3) 0 local extrema ifb
2
<3ac

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
136 SECTION 4.3
35. P(x)=x
4
−8x
3
+22x
2
−24x+4
P

(x)=4x
3
−24x
2
+44x−24
P
ffff
(x)=12x
2
−48x+44
SinceP

(1) = 0,P

(x) is divisible byx−1.Division byx−1 gives
P

(x)=(x−1)

4x
2
−20x+24

=4(x−1)(x−2)(x−3).
The critical pts are 1,2,3.Since
P
ffff
(1)>0,P
ffff
(2)<0,P
ffff
(3)>0,
P(1) =−5 is a local min,P(2) =−4 is a local max, andP(3) =−5 is a local min.
SinceP

(x)<0 forx<0,Pdecreases on (−∞,0]. SinceP(0)>0,Pdoes not take on the value 0 on
(−∞,0].
SinceP(0)>0 andP(1)<0,Ptakes on the value 0 at least once on (0,1).SinceP

(x)<0on(0,1),
Pdecreases on [0,1].It follows thatPtakes on the value zero only once on [0,1].
SinceP

(x)>0on(1,2) andP

(x)<0on(2,3),Pincreases on [1,2] and decreases on [2,3].Since
P(1),P(2),P(3) are all negative,Pcannot take on the value 0 between 1 and 3.
SinceP(3)<0 andP(100)>0,Ptakes on the value 0 at least once on (3,100).SinceP

(x)>0on
(3,100),Pincreases on [3,100].It follows thatPtakes on the value zero only once on [3,100].
SinceP

(x)>0 on (100,∞),Pincreases on [100,∞). SinceP(100)>0,Pdoes not take on the value
0 on [100,∞).
36.fhas a local maximum atx=0;fhas a local minimum atx=−1 andx=2.
37.
38.Letf(x)=Ax
2
+Bx+C.Thenf

(x)=2Ax+B.
f(−1) = 3 =⇒A−B+C=3;f(3) =−1=⇒9A+3B+C=−1
Sincefhas a minimum atx=2,f

(2) = 4A+B=0
Solving forA, B, C,we getA=
1
2
,B=−2,C=
1
2
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.3 137
39.Letf(x)=
ax
x
2
+b
2
.Thenf

(x)=
a

b
2
−x
2

(b
2
+x
2
)
2
.Now
f

(0) =
a
b
2
=1⇒a=b
2
andf

(x)=
b
2

b
2
−x
2

(b
2
+x
2
)
2
f

(−2) =
b
2

b
2
−4

(b
2
+4)
2
=0⇒b=±2
Thus,a= 4 andb=±2.
40.(a)f(x)=x
p
(1−x)
q
,p,q≥2;f

(x)=x
p−1
(1−x)
q−1
[p−(p+q)x]
f

(x)=0 =⇒x=0,x=1,x=
p
p+q
(b)peven,p−1 odd:
fhas a local min atx=0
(c)qeven,q−1 odd:
fhas a local min atx=1
(d)f
ffff
Δ
p
p+q
θ
=−(p+q)
Δ
p
p+q
θ
p−1Δ
q
p+q
θ
q−1
<0⇒fhas a local max atx=
p
p+q
.
41.Ifpis a polynomial of degreen,thenp

has degreen−1.This implies thatp

has at most
n−1 zeros, and it follows thatphas at mostn−1 local extreme values.
42.The functionD(x)=

x
2
+[f(x)]
2
gives the distance from the origin to the point (x, f(x)) on the
graph off.Since the graph offdoes not pass through the origin,
D

(x)=
x+f(x)f

(x)

x
2
+[f(x)]
2
is defined for allx∈dom (f).Suppose thatDhas a local extreme value atc.Then
D

(c)=
c+f(c)f

(c)

c
2
+[f(c)]
2
=0⇒c+f(c)f

(c) = 0 andf

(c)=−
c
f(c)
Suppose thatcδ=0.The slope of the line through (0,0) and (c, f(c)) is given bym1=
f(c)
c
and the
slope of the tangent line to the graph offatx=cis given bym2=f

(c)=−
c
f(c)
.Sincem1m2=−1,
these two lines are perpendicular. Ifc=0,then the tangent line to the graph offis horizontal and
the line through (0,0) and (0,f(0)) is vertical.
43.Iff(x)=x
4
−7x
2
−8x−3, thenf

(x)=4x
3
−14x−8 and f
ffff
(x)=12x
2
−14.Sincef

(2) =
−4<0 andf

(3) = 58>0,f

has at least one zero in (2,3).Sincef
ffff
(x)>0 forx∈(2,3),f

is
increasing on this interval and so it has exactly one zero. Thus,fhas exactly one critical pointcin
(2,3).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
138 SECTION 4.3
44.Iff(x) = sinx+
x
2
2
−2x, thenf

(x) = cosx+x−2 andf
ffff
(x)=−sinx+1.Sincef

(2) =
−0.4161<0 andf

(3) = 0.01>0,f

has at least one zero in (2,3).Sincef
ffff
(x)>0 forx∈(2,3),
f

is increasing on this interval and so it has exactly one zero. Thus,fhas exactly one critical point
cin (2,3).
45.f(x)=
ax
2
+b
cx
2
+d
andf

(x)=
2(ad−bc)x
(cx
2
+d)
2
;x= 0 is a critical number.
f
ffff
(x)=
2(ad−bc)(cx
2
−4cx+d)
(cx
2
+d)
3
;f
ffff
(0) =
2(ad−bc)
d
2
Therefore,ad−bc >0 implies thatf(0) is a local minimum;ad−bc <0 implies thatf(0) is a
local maximum.
46.Letδbe any positive number and considerfon the interval (−δ, δ).Letnbe a positive integer
such that
0<
1
π
2
+2nπ
<δand 0<
1
−π
2
+2nπ
<δ.
Then
f
Δ
1
π
2
+2nπ
θ
>0 andf
Δ
1
−π
2
+2nπ
θ
<0.
Thusftakes on both positive and negative values in every interval centered at 0 and it follows that
fcannot have a local maximum or minimum at 0.
47.(a)
critical points:x1

=−0.692,x2

=2.248
local extreme values:f(−0.692)

=29.342,f(2.248)

=−8.766
(b)fis increasing on [−3,−0.692],and [2.248,4];fis decreasing on [−0.692,2.248]
48.(a)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.3 139
critical points:x1

=−2.085,x2

=−1,x3

=0.207,x4

=1.096,x5=1.544
local extreme values:f(−2.085)

=−6.255,f(−1) = 7,f(0.207)

=0.621,f(1.096)

=7.097,
f(1.544)

=4.635
(b)fis increasing on [−2.085,−1],[0.207,1.096],and [1.544,4]
fis decreasing on [−4,−2.085],[−1,0.207],and [1.096,1.544]
49.(a)
critical points:x1

=−2.201,x2

=−0.654,x3

=0.654,x4

=2.201
local extreme values:f(−2.204)

=2.226,f(−0.654)

=−6.634,f(0.654)

=6.634,
f(2.204)

=−2.226
(b)fis increasing on [−3.−2.204],[−0.654,0.654],and [2.204,3]
fis decreasing on [−2.204,−0.654],and [0.654,2.204]
50.f

(x)=0 atx=2,3;f(2) = 0 is a local minimum.
51.f

(x)>0on

2
3
,∞

;fhas no local extrema.
52.f

(x) = 0 at the multiples of
1
4
π;f(0) = 1 is a local maximum,f(π/4) = 0 is a local minimum,
f(π/2) = 1 is a local maximum, and so on.
53.
critical points off:x1

=−1.326,x2=0,x3

=1.816
f
ffff
(−1.326)

=−4<0⇒fhas a local maximum atx=−1.326
f
ffff
(0) = 4>0⇒fhas a local minimum atx=0
f
ffff
(1.816)

=−4⇒fhas a local maximum atx=1.816

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
140 SECTION 4.4
54.
critical number off:x1

=−1.935
f
ffff
(−1.935)

=14.60>0⇒fhas a local minimum atx=−1.935
SECTION 4.4
1.f

(x)=
1
2
(x+2)
−1/2
,x>−2;
f(−2) = 0 endpt and abs min; asx→∞,f(x)→∞; so no abs max
2.f

(x)=2x−3; critical pt.
3
2
;f

3
2

=−
1
4
local and abs min
3.f

(x)=2x−4,x∈(0,3);
critical pt. 2;
f(0) = 1 endpt and abs max,f(2) =−3 local and abs min,f(3) =−2 endpt max
4.f

(x)=4x+5,x∈(−2,0);
critical pt.−
5
4
;
f(−2) =−3 endpt max,f


5
4

=−
33
8
local and abs min,f(0) =−1 endpt and abs max
5.f

(x)=2x−
1
x
2
=
2x
3
−1
x
2
,xδ=0;f

(x)=0 atx=2
−1/3
critical pt. 2
−1/3
;f
ffff
(x)=2+
2
x
3
,f
ffff
ν
2
−1/3
ω
=6
f

2
−1/3

=2
−2/3
+2
1/3
=2
−2/3
+2·2
−2/3
=3·2
−2/3
local min
6.f

(x)=1−
2
x
3
critical pt. 2
1/3
;f

2
1/3

= 3(2)
−2/3
local min
7.f

(x)=
2x
3
−1
x
2
,x∈
Δ
1
10
,2
θ
;
critical pt. 2
−1/3
;
f

1
10

=10
1
100
endpt and abs max,f

2
−1/3

=3·2
−2/3
local and abs min,
f(2) = 4
1
2
endpt max

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.4 141
8.f

(x)=1−
2
x
3,x∈(1,

2)
critical pt. 2
1/3
;f(1) = 2 endpt and abs max
f

2
1/3

= 3(2)
−2/3
local and abs min,f

2

=

2+
1
2
endpt max
9.f

(x)=2x−3,x∈(0,2);
critical pt.
3
2
;
f(0) = 2 endpt and abs max,f

3
2

=−
1
4
local and abs min,
f(2) = 0 endpt max
10.f

(x)=2(x−1)(x−2)(2x−3);x∈(0,4)
critical pts. 1,
3
2
,2,;f(0) = 4 endpt max,f(1) = 0 local and abs min,
f

3
2

=
1
16
local max,f(2) = 0 local and abs min,f(4) = 36 endpt and abs max
11.f

(x)=
(2−x)(2 +x)
(4 +x
2
)
2
,x∈(−3,1);
critical pt.−2;
f(−3) =−
3
13
endpt max,f(−2) =−
1
4
local and abs min,
f(1) =
1
5
endpt and abs max
12.f

(x)=
2x
(1 +x
2
)
2
,x∈(−1,2)
critical pt. 0;f(−1) =
1
2
endpt max,f(0) = 0 local and abs min,
f(2) =
4
5
endpt and abs max
13.f

(x)=2(x−

x)
Δ
1−
1
2

x
θ
,x>0;
critical pts.
1
4
,1;
f(0) = 0 endpt and abs min,f

1
4

=
1
16
local max,f(1) = 0 local and abs min;
asx→∞,f(x)→∞; so no abs max
14.f

(x)=
2(2−x
2
)
(4−x
2
)
1/2
,x∈(−2,2)
critical pts.−

2,

2;f(−2) = 0 endpt max,f



2

=−2 local and abs min,
f

2

= 2 local and abs max,f(2) = 0 endpt min
15.f

(x)=
3(2−x)
2

3−x
,x<3
critical pt. 2;
f(2) = 2 local and abs max,f(3) = 0 endpt min;
asx→−∞,f(x)→−∞; so no abs min

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
142 SECTION 4.4
16.f

(x)=
1
2

x
−1/2
+x
−3/2

,x>0
no critical pts; no extreme values.
17.f

(x)=−
1
3
(x−1)
−2/3
,xδ=1;
critical pt. 1;
no local extremes;
asx→∞,f(x)→−∞
asx→−∞,f(x)→∞

no abs extremes
18.f

(x)=
8
3
3x−1
(4x−1)
2/3
(2x−1)
1/3
;
critical pts.
1
4
,
1
3
,
1
2
; no extreme value at
1
4
f

1
3

=
1
3
local max,f

1
2

= 0 local min
19.f

(x) = sinx

2 cosx+

3

,x∈(0,π);
critical pt.
5
6
π;
f(0) =−

3 endpt and abs min,f

5
6
π

=
7
4
local and abs max,f(π)=

3 endpt min
20.f

(x)=−csc
2
x+1,x∈(0,2π/3) ;
critical pt.
1
2
π(note: 0 is not in the domain)
No extreme value at
1
2
π, f

2
3
π

=
1
3

2π−

3

endpt and abs max
21.f

(x)=−3 sinx

2 cos
2
x+1

<0,x∈(0,π); no critical pts.
f(0) = 5 endpt and abs max,f(π)=−5 endpt and abs min
22.f

(x) = 2 cos 2x−1,x∈(0,π):
critical pts.
1
6
π,
5
6
π;f(0) = 0 endpt min,f

1
6
π

=
1
2

3−
1
6
πlocal and abs max,
f

5
6
π

=−
1
2

3−
5
6
πlocal and abs min,f(π)=−πendpt max
23.f

(x) = sec
2
x−1≥0,x∈


1
3
π,
1
2
π

; critical pt. 0 ;
f


1
3
π

=
1
3
π−

3 endpt and abs min, no abs max
24.f

(x) = 2 sinxcosx(2 sin
2
x−1),x∈

0,
2
3
π

;
critical pts.
1
4
π,
1
2
π;f(0) = 0 endpt and abs max,f

1
4
π

=−
1
4
local and abs min,
f

1
2
π

= 0 local and abs max,f

2
3
π

=−
3
16
endpt min

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.4 143
25.
f

(x)=







−2,0<x<1
1,1<x<4
−1,4<x<7
critical pts. 1,4;
f(0) = 0 endpt max,f(1) =−2 local and abs min,
f(4) = 1 local and absolute max,f(7) =−2 endpt and abs min
26.f

(x)=







1,−8<x<−3
2x+1,−3<x≤2
5, 2<x<5
critical pts.−3,−
1
2
;
f(−8) = 1 endpt min,f(−3) = 6 local max
f


1
2

=−
1
4
local and abs min
27.
f

(x)=







2x,−2<x<−1
2−2x,−1<x<3
1, 3<x<6
critical pts.−1,1,3
f(−2) = 5 endpt max,f(−1) = 2 local and abs min,
f(1) = 6 local and abs max,f(3) = 2 local and abs min
28.f

(x)=











−2x−2,−2<x<0
−1,0<x<2
1,2<x<3
(x−2)
2
,3<x<4
critical pts.−1,0,2,3;
f(−2) = 2 endpt min,f(−1) = 3 local and abs max,
f(0) not an extreme value,f(2) = 0 local and abs min,
f(3) =
1
3
local min,f(4) =
8
3
endpt max

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
144 SECTION 4.4
29.
f

(x)=











−1,−3<x<−1
1,−1<x<0
2x−4, 0<x<3
2, 3≤x<4
critical pts.−1,0,2
f(−3) = 2 endpt and abs max,f(−1) = 0 local min,
f(0) = 2 local and abs max,f(2) =−2 local and abs min
30.f

(x)=







−2x,0<x<1
−2,1<x<2
−x,2<x<3
Note: 1 is not in the domain off.
critical pts. 2;
f(0) = 0 endpt and abs max,f(2) =−2 local max,
f(3) =−
9
2
endpt and abs min
31. 32.
33.Not possible:f(1) =f(3) = 0 impliesf

(c) = 0 for somec∈(1,3) (Rolle’s theorem).
34.f(x)=x−
1

sin 2πx
35.Letp(x)=x
3
+ax
2
+bx+c.Thenp

(x)=3x
2
+2ax+bis a quadratic with discriminant Δ = 4a
2

12b=4(a
2
−3b).Ifa
2
≤3b,then Δ≤0.This implies thatp

(x) does not change sign on (−∞,∞).
On the other hand, ifa
2
−3b>0,then Δ>0 andp

has two real zeros,c1andc2,from which it
follows thatphas extreme values atc1andc2.Therefore, ifphas no extreme values, then we must
havea
2
−3b≤0.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.4 145
36.f(x) = (1 +x)
r
−(1 +rx),x≥−1.
f

(x)=r

(1 +x)
r−1
−1

;f

(x)=0 =⇒x=0
f
ffff
(x)=r(r−1)(1 +x)
r−2
;f
ffff
(0) =r(r−1)>0=⇒fhas a local minimum atx=0
Since 0 is the only critical number off, the local minimum must be an absolute minimum.
37.By contradiction. Iffis continuous atc, then, by the first-derivative test (4.3.4),f(c)isnotalocal
maximum.
38.Sincef(c)≥f(x) for allxin some open interval aroundc,and likewisef(c)≤f(x) for allxin some
open interval aroundc, it follows thatfmust be constant on some open interval containingc.
39.Iffis not differentiable on (a, b), thenfhas a critical point at each pointcin (a, b) wheref

(c)does
not exist. Iffis differentiable on (a, b), then by the mean-value theorem there existscin (a, b) where
f

(c)=[f(b)−f(a)]/(b−a)=0.This meanscis a critical point off.
40.We give a proof by contradiction. Suppose for nocin (c1,c2)isf(c) a local minimum. By Theorem
2.6.2,fhas a minimum on [c1,c2] and therefore, this minimum must occur atc1orc2.Suppose that
f(c1) is an endpoint minimum. Then for someδ1>0,
(*) f(x)≥f(c),x∈[c1,c1+δ1).
Sincef(c1) is a local maximum, there existsδ2>0 such that
(**) f(x)≤f(c1),x∈(c1−δ2,c1+δ2).
Setδ= min [δ1,δ2].From (*) and (**), it follows that
f(x)=f(c1),x∈(c1,c1+δ).
This means thatfhas a local minimum on (c1,c2).The argument atc2is similar.
41.Letf(x)=



1,ifxis a rational number
0,ifxis an irrational number
42.f(x) = sinxandf(x) = cosxeach have an infinite number of local maxima and local minima occur-
ring at distinct points. However, the local maximum values are all the same, 1, and the local minimum
values are all the same,−1. The functionf(x)=
1
2
x+ sinxhas an infinite number of local maxima
and local minima, and the local maximum values and the local minimum values are all different.
43.LetMbe a positive number. Then
P(x)−M≥anx
n


|an−1|x
n−1
+···+|a1|x+|a0|+M

forx>0
≥anx
n
−x
n−1
(|an−1|+···+|a1|+|a0|+M) forx>1
≥x
n−1
[anx−(|an−1|+···+|a1|+|a0|+M)]
It now follows that
P(x)−M≥0 for x≥K=
|an−1|+···+|a1|+|a0|+M
an
1/n
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
146 SECTION 4.4
44.LetRbe a rectangle with its diagonals having lengthc,and letxbe the length of one of its sides.
Then the length of the other side isy=

c
2
−x
2
and the area ofRis given by
A(x)=x

c
2
−x
2
Now
A

(x)=

c
2
−x
2

x
2

c
2
−x
2
=
c
2
−2x
2

c
2
−x
2
,
and
A

(x)=0=⇒x=

2
2
c
It is easy to verify thatAhas a maximum atx=

2
2
c.Sincey=

2
2
cwhenx=

2
2
c,it follows that
the rectangle of maximum area is a square.
45.f(0) =f(1) = 0 andf(x)>0on(0,1).
f

(x)=−qx
p
(1−x)
q−1
+px
p−1
(1−x)
q
;f

(x) = 0 impliesx=
p
p+q
. The absolute maximum value
offisf(p/(p+q)) =
Δ
p
p+q
θ
p
·
Δ
q
p+q
θ
q
46.LetS=x
3
+y
3
wherex+y=16.ThenS(x)=x
3
+ (16−x)
3
and
S

(x)=3x
2
−3(16−x)
2
= 96(x−8);S

(x)=0 =⇒x=8 =⇒y=8;
S
ffff
(x) = 96;S
ffff
(8) = 96>0=⇒Shas a local minimum atx=8.
It now follows thatS(8) is the absolute minimum ofS.
47.SettingR

(θ)=
v
2
cos 2θ
16
=0,givesθ=
π
4
.SinceR
ffff
ν
π
4
ω
=−
v
2
8
<0,θ=
π
4
is a maximum.
48.Cut the wire into two pieces, one of lengthxand the other of lengthL−x.Suppose that the wire of
lengthxis used to form the equilateral triangle, and the other piece is used to form the square. Then
the area of the triangle is

3x
2
/36,and the area of the square is (L−x)
2
/16.Now, let
S(x)=

3
36
x
2
+
1
16
(L−x)
2
Then
S

(x)=

3
18
x−
1
8
(L−x)
=
4

3+9
72
x−
1
8
L
SettingS

(x) = 0 we find that
x=
9
4

3+9
L.

=0.5650L
Now,
S(0) =
1
16
L
2
=0.0625L
2
(absolute maximum)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.4 147
S
Δ
9
4

3+9
L
θ

=0.0390L
2
(absolute minimum)
S(L)=

3
36
L
2
=0.0481L
2
To maximize the sum of the areas, use the wire to form a square; to minimize the sum, usex

=0.5650L
to form the triangle and the remainder to form the square.
49. critical pts:x1=−1.452,x2=0.760
f(−1.452) local maximum
f(0.727) local minimum
f(3) absolute maximum
f(−2.5) absolute minimum
50. critical pts:x1=−2.179,x2=1,x3=1.158
f(−3) endpoint maximum
f(1) local maximum
f(−2.158),f(1.158) local minima
f(3) absolute maximum
f(−2.179) absolute minimum
51. critical points:x1=−1.683,x2=−0.284,
x3=0.645,x4=1.760
f(−1.683),f(0.645) local maxima
f(−0.284),f(1.760) local minima
f(π) absolute maximum
f(−π) absolute minimum
52. critical pts:x1=−0.667,x2=0
f(−0.667) local maximum
f(0) local minimum
f(1) absolute maximum
f(−3) absolute minimum

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
148 SECTION 4.5
53.Yes;M=f(2) = 1;m=f(1) =f(3) = 0
1 2 3
x
0.5
1
y
54.No;fis discontinuous atx=3;M=f(3) =
7
2
;m=f(0) =−
19
4
55.Yes;M=f(6) = 2 +

3;m=f(1) =
3
2
1 4 6
x
1
2
3
y
SECTION 4.5
1.SetP=xyandy=40−x.We want to maximize
P(x)=x(40−x),0≤x≤40.
P

(x)=40−2x, P

(x)=0 =⇒x=20.
SincePincreases on (0,20] and decreases on [20,40),the abs max ofPoccurs whenx=20.Then,
y= 20 andxy= 400.
The maximal value ofxyis 400.
2.SetA=xyand 2x+2y=24ory=12−x.We want to maximize
A(x)=x(12−x),0≤x≤12.
A

(x)=12−2x, P

(x)=0 =⇒x=6.
SinceAincreases on [0,6] and decreases on [6,12],the abs max ofAoccurs whenx=6.Then,y=6.
The dimensions of the rectangle having perimeter 24 and maximum area are: 6×6.
3.
MinimizeP
P=x+2y,200 =xy, y= 200/x
P(x)=x+
400
x
,x>0.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 149
P

(x)=1−
400
x
2
,P

(x)=0 =⇒x=20.
SincePdecreases on (0,20 ] and increases on [20,∞),the abs min ofPoccurs whenx=20.
To minimize the fencing, make the garden 20 ft (parallel to barn) by 10 ft.
4. MaximizeA
A=2xy, y=4−x
2
A(x)=2x(4−x
2
)=8x−2x
3
,0≤x≤2.
A

(x)=8−6x
2
,P

(x)=0 =⇒x=
2

3
.
SinceAincreases on [0,2/

3] and decreases on [2/

3,2],the abs max ofAoccurs whenx=2/

3.
The maximal area is
32
9

3.
5. MaximizeA
A=xy, x
2
+y
2
=8
2
,y=

64−x
2
A(x)=x

64−x
2
,0≤x≤8.
A

(x)=

64−x
2
+x
Δ
−x

64−x
2
θ
=
64−2x
2

64−x
2
,A

(x)=0 =⇒x=4

2.
SinceAincreases on (0,4

2 ] and decreases on [4

2,8),the abs max ofAoccurs whenx=4

2.
Then,y=4

2 andxy=32.
The maximal area is 32.
6.MaximizeP=2x+2y;xy=A(constant) =⇒y=
A
x
P(x)=2x+
2A
x
,x>0;P

(x)=2−
2A
x
2
;
P

(x)=0 =⇒x=

A=⇒y=

A
The rectangle having a given areaAand minimum perimeter is a square of side length

A.
7.
MinimizeP=3x+2y
A=xy=15,000,y=
15,000
x

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
150 SECTION 4.5
P(x)=3x+
30,000
x
,0<x<∞.
P

(x)=3−
30,000
x
2
=
3(x
2
−10,000)
x
2
;P

(x)=0 =⇒x= 100.
SincePdecreases on (0,100] and increases on [100,∞),the abs min ofPoccurs whenx= 100.When
x= 100,y= 150; at least 600 feet of fencing is needed.
8.MinimizeC= 300y+ 400x
A= 5000 =xy⇒y=
5000
x
;p
C(x)=
1,500,000
x
+ 400x, x >0;
C

(x)=−
1,500,000
x
2
+ 400;
C

(x)=0 =⇒x

=61.24.
C
ffff
(x)=
3,000,000
x
3
;C
ffff
(61.24)>0.
Chas an abs min atx=61.24.The dimensions that will minimize the cost are:x=61.24,y=81.65.
9.
MaximizeL
To account for the semi-circular portion admitting less
light per square foot, we multiply its area by 1/3.
L=2xy+
1
3
Δ
πx
2
2
θ
,
2x+2y+πx=p, y=
1
2
(p−2x−πx)
L=2x
Δ
p−2x−πx
2
θ
+
1
6
πx
2
L(x)=px−
Δ
2+
5
6
π
θ
x
2
,0≤x≤
p
2+π
.
L

(x)=p−
Δ
4+
5
3
π
θ
x;L

(x)=0 =⇒x=
3p
12 + 5π
.
SinceL
ffff
(x)<0 for allxin the domain ofL, the local max atx=3p/(12+5π) is the abs max.
For the window that admits the most light, take the radius of the semicircle as
3p
12+5π
ft.
10. MaximizeA
A=xy, x+2y= 800
A(y) = (800−2y)y= 800y−2y
2
,0≤y≤400.
A

(y) = 800−4y, A

(y)=0 =⇒y= 200.
SinceAincreases on [0,200] and decreases on [200,400],the abs max ofAoccurs wheny= 200.
The dimensions of the field of maximum area are: 200×400.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 151
11. MaximizeA
A=xy,
3
4
=
y
4−x
(similar triangles)
y=
3
4
(4−x)
A(x)=
3x
4
(4−x),0≤x≤4.
A

(x)=3−
3x
2
,A

(x)=0 =⇒x=2.
SinceAincreases on (0,2] and decreases on [2,4),the abs max ofAoccurs whenx=2.
To maximize the area of the rectangle, takePas the point

2,
3
2

.
12.The equation of the third side is:y=mx+(1−m).
The base of the triangle is:b=
m−1
m
.
The two lines intersect when 3x=mx+(1−m);
=⇒x=
1−m
3−m
=⇒h=
3(1−m)
3−m
.
We want to minimize
A(m)=
1
2
m−1
m
3(1−m)
3−m
=−
3
2
(1−m)
2
3m−m
2
,m< 0.
A

(m)=−
3
2
(m+ 3)(m−1)
(3m−m
2
)
2
,A

(m)=0 =⇒m=−3.
The area of the triangle is a minimum when the slope of the line is−3.
13. MinimizeA
A=
1
2
(x-intercept) (y-intercept)
Equation of line:y−5=m(x−2)
x-intercept: 2−
5
m
y-intercept: 5−2m
A=
1
2
Δ
2−
5
m
θ
(5−2m)=10−2m−
25
2m
A(m)=10−2m−
25
2m
,m<0.
A

(m)=−2+
25
2m
2
,A

(m)=0 =⇒m=−
5
2
.
SinceA
ffff
(m)=−25/m
3
>0 form<0,the local min atm=−5/2 is the abs min.
The triangle of minimal area is formed by the line of slope−5/2.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
152 SECTION 4.5
14.Since lim
m→0

A(m)=+∞,no minimum exists.
15. MaximizeV
V=2x
2
h,2

2x
2
+xh+2xh

= 100,h=
50−2x
2
3x
V=2x
2
Δ
50−2x
2
3x
θ
V(x)=
100
3
x−
4
3
x
3
,0≤x≤5.
V

(x)=
100
3
−4x
2
,V

(x)=0 =⇒x=
5
3

3.
SinceV
ffff
(x)=−8x<0on(0,5),the local max atx=
5
3

3 is the abs max.
The base of the box of greatest volume measures
5
3

3 in. by
10
3

3 in.
16.With no top, we have 2x
2
+2xh+4xh= 100,orh=
50−x
2
3x
.
MaximizeV(x)=2x
2
Δ
50−x
2
3x
θ
=
2x
3
(50−x
2
),0≤x≤5

2.
V

(x)=
100
3
−2x
2
,V

(x)=0 =⇒x=
5
3

6.
SinceV
ffff
(x)=−4x<0on(0,5

2),the local max atx=
5
3

6 is the abs max.
The base of the box of greatest volume measures
5
3

6 in. by
10
3

6 in.
17. MaximizeA
A=
1
2
hy
2x+y=12 =⇒y=12−2x
Pythagorean Theorem:
h
2
+
ν
y
2
ω
2
=x
2
=⇒h=

x
2

ν
y
2
ω
2
Thus,h=

x
2
−(6−x)
2
=

12x−36.
A(x)=(6−x)

12x−36,3≤x≤6.
A

(x)=−

12x−36+(6−x)
Δ
6

12x−36
θ
=
72−18x

12x−36
,
A

(x)=0 =⇒x=4.
SinceAincreases on (3,4] and decreases on [4,6),the abs max ofAoccurs atx=4.
The triangle of maximal area is equilateral with side of length 4.
18.It is sufficient to minimize the square of the distance:
S=(x−0)
2
+(y−6)
2
=8y+(y−6)
2
sincex
2
=8ywherey≥0.
S

(y)=2y−4,S

(y)=0 =⇒y=2.
The points on the parabola that are closest to (0,6) are: (4,2) and (−4,2).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 153
19. Minimized
d=

(y
2
−0)
2
+(y−3)
2
The square-root function is increasing;
dis minimal whenD=d
2
is minimal.
D(y)=y
4
+(y−3)
2
,yreal.
D

(y)=4y
3
+2(y−3) = (y−1)

4y
2
+4y+6

,D

(y)=0 aty=1.
SinceD
ffff
(y)=12y
2
+2>0,the local min aty= 1 is the abs min.
The point (1,1) is the point on the parabola closest to (0,3).
20.f(x)=Ax
−1/2
+Bx
1/2
,f(9) = 6 =⇒
1
3
A+3B=6.
f

(x)=
−A
2x
3/2
+
B
2x
1/2
;f

(9) = 0 =⇒
−A
54
+
B
6
=0.
Solving the two equations gives:A=9,B=1.
21.The figure shows a rectangle inscribed in the ellipse 16x
2
+9y
2
= 144. The area of the rectangle is:
A=(2x)(2y)=4xy. Solving the equation of the ellipse fory, we gety=
4
3

9−x
2
.
MaximizeA=
16
3
x

9−x
2
,0≤x≤3.
A

(x)=
16
3


9−x
2

x
2

9−x
2

=
16
3
Δ
9−2x
2

9−x
2
θ
A

(x)=0 =⇒x=3/

2.
SinceA(0) =A(3) = 0, we can conclude thatA(3/

2)
is the absolute maximum value ofA.
Atx=3/

2,y=4/

2 andA= 24; the maximum possible
area for a rectangle inscribed in the ellipse is 24 sq. units.
x
y
22.Simply repeat the solution of Exercise 21, replacing 9 bya
2
and 16 by b
2
. The result is:
x=a/

2,y=b/

2; the maximum possible area of a rectangle inscribed in the ellipse isA=
4(a/

2)(b/

2) = 2absquare units.
23. MaximizeA
A=xy+

3
4
x
2
,30 = 3x+2y, y=
30−3x
2
A(x)=15x−
3
2
x
2
+

3
4
x
2
,0≤x≤10.
A

(x)=15−3x+

3
2
x, A

(x)=0 =⇒x=
30
6−

3
=
10
11
(6 +

3).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
154 SECTION 4.5
SinceA
ffff
(x)=−3+

3
2
<0on(0,10),the local max atx=
10
11
ν
6+

3
ω
is the abs max.
The pentagon of greatest area is composed of an equilateral triangle with side
10
11
ν
6+

3
ω

=7.03
in. and rectangle with height
15
11
ν
5−

3
ω

=4.46 in.
24.To maximize the area, use the cross-section that is wider at the top.
A(h)=4h+h

16−h
2
,0≤h≤4;
A

(h)=4+
16−2h
2

16−h
2
;
A

(h)=0 =⇒h=2

3.
The depth of the gutter that has maximum carrying capacity is: 2

3 inches.
25. MaximizeV
V=x(8−2x)(15−2x)
x≥0
8−2x≥0
15−2x≥0







=⇒0≤x≤4
V(x) = 120x−46x
2
+4x
3
,0≤x≤4.
V

(x) = 120−92x+12x
2
= 4(3x−5)(x−6),V

(x)=0 atx=
5
3
.
SinceVincreases on

0,
5
3

and decreases on [
5
3
,4),the abs max ofVoccurs whenx=
5
3
.
The box of maximal volume is made by cutting out squares 5/3 inches on a side.
26. MinimizeP
P=2x+2y;
(x−4)(y−6) = 81;y=
81
x−4
+6.
P(x)=2x+2
Δ
81
x−4
+6
θ
,x>4.
P

(x)=2−
162
(x−4)
2
,P

(x)=0 =⇒x=13.
SinceP
ffff
(x)=
324
(x−4)
3
>0 whenx>4,x= 13 is the abs min.
The most economical page has dimensions: width 13 cm, length 15 cm.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 155
27. MinimizeAP+BP+CP=S
lengthAP=

9+y
2
lengthBP=6−y
lengthCP=

9+y
2
S(y)=6−y+2

9+y
2
,0≤y≤6.
S

(y)=−1+
2y

9+y
2
,S

(y)=0 =⇒y=

3.
Since
S(0) = 12,S
ν√
3
ω
=6+3

3

=11.2,andS(6) = 6

5

=13.4,
the abs min ofSoccurs wheny=

3.
To minimize the sum of the distances, takePas the point

0,

3

.
28.Refer to Exercise 27. Here we want to minimize
S(y)=3−y+2

36 +y
2
,0≤y≤3.
S

(y)=−1+
2y

36 +y
2
,S

(y)=0 =⇒y=

12>3.
Thus, the minimum must occur at one of the endpoints:S(0) = 15,S(3) = 2

45<S(0).
To minimize the sum of the distances, takeP=(0,3).
29. MinimizeL
L
2
=y
2
+(x+1)
2
.
By similar triangles
y
x+1
=
8
x
,y=
8
x
(x+1).
L
2
=

8
x
θ
(x+1)

2
+(x+1)
2
=(x+1)
2
Δ
64
x
2
+1
θ
SinceLis minimal whenL
2
is minimal, we consider the function
f(x)=(x+1)
2
Δ
64
x
2
+1
θ
,x>0.
f

(x)=2(x+1)
Δ
64
x
2
+1
θ
+(x+1)
2
Δ
−128
x
3
θ
=
2(x+1)
x
3

x
3
−64

,f

(x)=0 =⇒x=4.
Sincefdecreases on (0,4] and increases on [4,∞),the abs min offoccurs whenx=4.
The shortest ladder is 5

5 ft long.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
156 SECTION 4.5
30.MaximizeL=x+y.
By similar triangles,
y
6
=
x

x
2
−64
L(x)=x+
6x

x
2
−64
,x>8
L

(x)=1−
384
(x
2
−64)
3/2
L

(x)=0 =⇒x=

64 + (384)
2/3∼
=10.81
L(10.81)

=19.73; the longest ladder is approximately 19.7 ft.
31.
MaximizeA
(We use feet rather than inches to reduce arithmetic.)
A=(L−1)

W−
4
3

LW=27 =⇒W=
27
L
A=(L−1)
Δ
27
L

4
3
θ
=
85
3

27
L

4
3
L
A(L)=
85
3

27
L

4
3
L,1≤L≤
81
4
.
A

(L)=
27
L
2

4
3
,A

(L)=0 =⇒L=
9
2
.
SinceA

(L)=−54/L
3
<0 for 1<L<
81
4
,the max atL=
9
2
is the abs max.
The banner has length 9/2 ft = 54 in. and height 6 ft = 72 in.
32.AssumeV=
1
3
πr
2
h=1,orh=
3
πr
2
.
Minimize surface areaS=πr

r
2
+h
2
=πr

r
2
+
9
π
2
r
4
=

π
2
r
6
+9
r
.
dS
dr
=

2
r
6
−9
r
2

π
2
r
6
+9
=0 =⇒r=
Δ
9

2
θ
1/6
=
3
1/3
2
1/6
π
1/3
=⇒h=
3
π
Δ
9

2
θ
1/3
=
3
1/3
2
1/3
π
1/3
=r

2.
33.
Find the extreme values ofA
A=πr
2
+x
2
2πr+4x=28 =⇒x=7−
1
2
πr.
A(r)=πr
2
+
Δ
7−
1
2
πr
θ
2
,0≤r≤
14
π
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 157
Note: the endpoints of the domain correspond to the instances when the string is not cut:r=0
when no circle is formed,r=14/πwhen no square is formed.
A

(r)=2πr−π
Δ
7−
1
2
πr
θ
,A

(r)=0 =⇒r=
14
4+π
.
SinceA
ffff
(r)=2π+π
2
/2>0on(0,14/π),the abs min ofAoccurs whenr=14/(4 +π) and
the abs max ofAoccurs at one of the endpts:A(0) = 49,A(14/π) = 196/π >49.
(a) To maximize the sum of the two areas, use all of the string to form the circle.
(b) To minimize the sum of the two areas, use 2πr=28π/(4 +π)

=12.32 inches of string for the
circle.
34.MaximizeV=x
2
hgiven thatx
2
+4xh=12 =⇒h=
12−x
2
4x
.
V(x)=x
2
Δ
12−x
2
4x
θ
=3x−
1
4
x
3
,0<x≤

12.
V

(x)=3−
3
4
x
2
,V

(x)=0 =⇒x=2.SinceVincreases on (0,2] and decreases on [2,

12),
Vhas an abs max atx= 2; the maximum volume isV(2) = 4 cu ft.
35.
MaximizeV
V=πr
2
h
By similar triangles
8
5
=
h
5−r
orh=
8
5
(5−r).
V(r)=

5
r
2
(5−r),0≤r≤5.
V

(r)=

5

10r−3r
2

,V

(r)=0 =⇒r=10/3.
SinceVincreases on (0,10/3] and decreases on [10/3,5),the abs max ofVoccurs whenr=10/3.
The cylinder with maximal volume has radius 10/3 and height 8/3.
36.MaximizeA=2πrh=
16π
5
r(5−r),0≤r≤5,

h=
8
5
(5−r) from Exercise 33

.
A

(r)=
16π
5
(5−2r),A

(r)=0 =⇒r=
5
2
The curved surface is a maximum whenr=
5
2
,h=4.
37. MinimizeC
In dollars,
C= cost base + cost top + cost sides
=.35

x
2

+.15

x
2

+.20(4xy)
=
1
2
x
2
+
4
5
xy
Volume =x
2
y= 1250y=
1250
x
2

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
158 SECTION 4.5
C(x)=
1
2
x
2
+
1000
x
,x>0.
C

(x)=x−
1000
x
2
,C

(x)=0 =⇒x=10.
SinceC
ffff
(x) = 1 + 2000/x
3
>0 forx>0,the local min ofCatx= 10 is the abs min.
The least expensive box is 12.5 ft tall with a square base 10 ft on a side.
38.MaximizeA=xy.By similar triangles
y
b−x
=
h
b
,so
A(x)=
h
b
x(b−x),0≤x≤b.
A

(x)=
h
b
(b−2x),A

(x)=0 ⇒x=
b
2
.
SinceAis increasing on [0,b/2] and decreasing on [b/2,b],Ahas an abs max atx=b/2
A(b/2) =
1
4
hb=
1
2
area of triangleABC.
39.
MinimizeA
A=
1
2
(h)(2x)=hx
TrianglesADCandABEare similar:
AD
DC
=
AB
BE
or
h
x
=
AB
r
.
Pythagorean Theorem:
r
2
+(AB)
2
=(h−r)
2
.
Thus
r
2
+
Δ
hr
x
θ
2
=(h−r)
2
.
Solving this equation forhwe find that
h=
2x
2
r
x
2
−r
2
.
A(x)=
2x
3
r
x
2
−r
2
,x>r.
A

(x)=

x
2
−r
2

6x
2
r

−2x
3
r(2x)
(x
2
−r
2
)
2
=
2x
2
r

x
2
−3r
2

(x
2
−r
2
)
2
,
A

(x)=0 =⇒x=r

3.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 159
SinceAdecreases on

r, r

3

and increases on

r

3,∞

,the local min atx=r

3 is the abs
min ofA. Whenx=r

3,we geth=3rso thatFC=2r

3 andAF=FC=

h
2
+x
2
=
2r

3.The triangle of least area is equilateral with side of length 2r

3.
40.MaximizeA(x)=
1
2
(r+x)2

r
2
−x
2
=(r+x)

r
2
−x
2
,0≤x≤r.
A

(x)=
r
2
−rx−2x
2

r
2
−x
2
;
A

(x)=0 =⇒x=
r
2
.
SinceAincreases on [0,r/2] and decreases on [r/2,r],Ahas an abs max atx=r/2;
A(r/2) =
3

3
4
r
2
.
41. MaximizeV
V=πr
2
h
By the Pythagorean Theorem,
(2r)
2
+h
2
=(2R)
2
so
h=2

R
2
−r
2
.
V(r)=2πr
2

R
2
−r
2
,0≤r≤R.
V

(r)=2π

2r

R
2
−r
2

r
3

R
2
−r
2

=
2πr

2R
2
−3r
2


R
2
−r
2
V

(r)=0 =⇒r=
1
3
R

6.
SinceVincreases on

0,
1
3
R

6

and decreases on

1
3
R

6,R

,the local max atr=
1
3
R

6is
the abs max.
The cylinder of maximal volume has base radius
1
3
R

6 and height
2
3
R

3.
42.MaximizeA=2πrh=4πr

R
2
−r
2
,0≤r≤R,

h=2

R
2
−r
2
from Exercise 39

.
A

(r)=
4π(R
2
−2r
2
)

R
2
−r
2
,A

(r)=0 =⇒r=
R

2
.
The curved surface is a maximum whenr=
R

2
,h=R

2.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
160 SECTION 4.5
43.
MaximizeV
V=
1
3
πr
2
h
Pythagorean Theorem
Case 1 : (h−R)
2
+r
2
=R
2
Case 2 : (R−h)
2
+r
2
=R
2
Case 1 :h≥RCase 2 :h≤R In both cases
r
2
=R
2
−(R−h)
2
=2hR−h
2
.
V(h)=
1
3
π

2h
2
R−h
3

,0≤h≤2R.
V

(h)=
1
3
π

4hR−3h
2

,V

(h)=0 at h=
4R
3
.
SinceVincreases on

0,
4
3
R

and decreases on

4
3
R,2R

,the local max ath=
4
3
Ris the abs
max.
The cone of maximal volume has height
4
3
Rand radius
2
3
R

2.
44.MaximizeV=
1
3
πr
2
h,wherer
2
+h
2
=a
2
.
V(h)=
1
3
π(a
2
−h
2
)h,0≤h≤a,
V

(h)=
1
3
π(a
2
−3h
2
),V

(h)=0 ⇒h=
a

3
.
Maximum volumeV

a/

3

=
2
27
πa
3

3.
45. MinimizeC
In units of $10,000,
C=
cost of cable
underground
+
cost of cable
under water
= 3(4−x)+5

x
2
+1.
Clearly, the cost is unnecessarily high if
x>4orx<0.
C(x)=12−3x+5

x
2
+1,0≤x≤4.
C

(x)=−3+
5x

x
2
+1
,C

(x)=0 =⇒x=3/4.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 161
Since the domain ofCis closed, the abs min can be identified by evaluatingCat each critical point:
C(0) = 17,C

3
4

=16,C(4) = 5

17

=20.6.
The minimum cost is $160,000.
46.Maximizeα−θ.
Since the tangent function is an increasing function
on [0,π/2), it suffices to maximize tan(α−θ).
tan(α−θ)=
tanα−tanθ
1 + tanαtanθ
; tanα=
16
x
,tanθ=
9
x
.
Thus, we maximizeT(x)=
16
x

9
x
1+
16
x
·
9
x
=
7x
x
2
+ 144
,x>0.
T

(x)=
7(144−x
2
)
(x
2
+ 144)
2
,T

(x)=0 =⇒x=12.
Stand 12 ft from the wall for the most favorable view.
47.P

(θ)=
−mW(mcosθ−sinθ)
(msinθ+ cosθ)
2
;Pis minimized when tanθ=m.
48.R(θ)=
2v
2
gcos
2
α
cosθsin(θ−α),0<θ<
1
2
π
R

(θ)=
2v
2
gcos
2
α
[−sinθsin(θ−α) + cosθcos(θ−α)]
=
2v
2
gcos
2
α
cos(2θ−α)
R

(θ)=0 =⇒2θ−α=
1
2
π=⇒θ=
1
4
π+
1
2
α.
49.MinimizeI=
a
x
2
+
b
(s−x)
2
.
I

(x)=−
2a
x
3
+
2b
(s−x)
3
,I

(x)=0 =⇒x=
a
1
3s
a
1
3+b
1
3
.
50.MinimizeD=(y−y1)
2
+(x−x1)
2
,wherey=−
1
B
(Ax+C).
D

=2
Δ

1
B
(Ax+C)−y1
∈√

A
B
θ
+2(x−x1)=0
=⇒x=
B
2
x1−AC−ABy1
A
2
+B
2
and thusy=
A
2
y1−BC−ABx1
A
2
+B
2
.
Thusd=

D=

Δ
A
2
y1−BC−ABx1
A
2
+B
2
−y1
θ
2
+
Δ
B
2
x1−AC−ABy1
A
2
+B
2
−x1
θ
2
=
|Ax1+By1+C|

A
2
+B
2
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
162 SECTION 4.5
51.The slope of the line through (a, b) and (x, f(x)) is
f(x)−b
x−a
.
LetD(x)=[x−a]
2
+[b−f(x)]
2
.ThenD

(x)=0
=⇒2[x−a]−2[b−f(x)]f

(x)=0
=⇒f

(x)=
x−a
b−f(x)
.
52.LetP=(x1,x
2
1) andQ=(x2,x
2
2).The slope of the linePQis
x
2
1−x
2
2
x1−x2
=x1+x2.This is
perpendicular to the slope of the tangent to the parabola through pointP,which is 2x1.Thus
x1+x2=−
1
2x1
=⇒x2=−x1−
1
2x1
.Now minimize:
D=(x
2
1−x
2
2)
2
+(x1−x2)
2
=(x
2
1−x
2
2)
2
(1+(x1+x2)
2
)
=
Δ
2x1+
1
2x1
θ

1+
1
4x
2
1
θ
ThusD

=
Δ
2x1+
1
2x1
θ


1
2x
3
1
θ
+2
Δ
2x1+
1
2x1
∈√
2−
1
2x
2
1
∈√
1+
1
4x
2
1
θ
=0
=⇒
Δ
2x1+
1
2x1
∈√
1
2x
3
1
θ
=2
Δ
2−
1
2x
2
1
∈√
1+
1
4x
2
1
θ
=⇒x1=±

2
2
,andy1=
1
2
.
53.SetF(x)=6x
4
−16x
3
+9x
2
. For integral values ofx,F(x)=f(x).
F

(x)=24x
3
−48x
2
+18x=6x(4x
2
−8x+3)=6x(2x−1)(2x−3)
F

(x)=0atx=0,1/2,3/2.
F

(x)<0on(−∞,0)∪(1/2,3/2);F

(x)>0on(0,1/2)∪(3/2,∞).Fhas local minima atx=0
andx=3/2;Fhas a local maximum atx=1/2.F(0) =f(0) = 0,F(1) =f(1) =−1,F(2) =
f(2) = 4;n= 1 minimizesf(n).
54.Letxbe the number of passengers andRthe revenue in dollars.
R(x)=
δ
37x,16≤x≤35

37−
1
2
(x−35)

x,35<x≤48;
R

(x)=
δ
37,16<x<35
109
2
−x,35<x<48.
The critical number is 35.FromR(16) = 592,R(35) = 1295,andR(48) = 1464 we conclude that
the revenue is maximized by taking a full load of 48 passengers.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 163
55.Letxbe the number of customers andPthe net profit in dollars. Then 0≤x≤250 and
P(x)=
δ
12x,0≤x≤50
[12−0.06(x−50)]x,50<x≤250;
P

(x)=
δ
12,0≤x≤50
15−0.12x,50<x≤250.
The critical points are:x=50,x= 125. FromP(0) = 0,P(50) = 600,P(125) = 937.50,and
P(250) = 0,we conclude that the net profit is maximized by servicing 125 customers.
56.MaximizeP(x)=2cy+cx,wherecis the price of low-grade steel andy=
Δ
40−5x
10−x
θ
.
P(x)=2c(
40−5x
10−x
)+cx
P

(x)=2c

(10−x)(−5)−(40−5x)(−1)
(10−x)
2

+c,
P

(x)=0 =⇒x=10−

20 or about 5
1
2
tons.
57.y=mx−
1
400
(m
2
+1)x
2
.Wheny=0,x=
800m
m
2
+1
.
Differentiatingxwith respect tom, x

=
800−800m
2
(m
2
+1)
2
=0
=⇒m=1.
58.Whenx= 300,y= 300m−
225
2
(m
2
+1).
Differentiatingywith respect tom, y

= 300−225m=0
=⇒m=
4
3
.
59.Driving atνmph, the trip takes
300
ν
hours and uses
Δ
1+
1
400
ν
2
θ
300
ν
gallons of fuel.
Thus, the expenses are:
E(ν)=2.60
Δ
1+
1
400
ν
2
θ
300
ν
+20
Δ
300
ν
θ
=1.95ν+
6780
ν
,35≤x≤70.
Differentiating, we get
E

(ν)=1.95−
6780
ν
2
,andE

(ν)=0atν

=59
Eis decreasing on [35,59] and increasing on [59,70]; the minimal expenses occur
when the truck is driven at 59 mph.
60.Letνbe the speed of the boat measured in kilometers per hour. A 100 kilometer trip will take
100/νhours.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
164 SECTION 4.5
Fixed costs:F(ν) = 2500
Δ
100
ν
θ
dollars.
Fuel costs:G(ν)=kν
2
; 400 =k(10)
2
impliesk= 4. Therefore,G(ν)=4ν
2
Δ
100
ν
θ
dollars.
Total cost:C(ν) = 2500
Δ
100
ν
θ
+4ν
2
Δ
100
ν
θ
= 100
Δ
2500
ν
+4ν
θ
,0<ν<∞. Differentiating, we
get
C

(ν) = 100
Δ

2500
ν
2
+4
θ
= 100
Δ

2
−2500
ν
2
θ
andC

(ν)=0atν=25.
Cis decreasing on (0,25] and increasing on [25,∞); the speed that minimizes the expenses is 25
kilometers per hour. If we replace the 100 kilometers byMkilometers, the total cost will be
C(ν)=M
Δ
2500
ν
+4ν
θ
and we will get exactly the same result. The minimizing speed is independent of the length of the trip.
61.MinimizeSA=2πrh+2πr
2
,where 2r≤h<6 andπr
2
h=16π(henceh=
16
r
2
).
ThusSA=
32π
r
+2πr
2
.Differentiating,SA

=−
32π
r
2
+4πr=0
=⇒r
3
=8,sor= 2 feet andh= 4 feet. Thus no minimum exists.
62.We want to maximize the ratio
income
cost
=
200,000n
1,000,000n+ 100,000(1+2+···+n−1)+5,000,000
=
2n
10n+
1
2
(n−1)n+50
=
4n
n
2
+19n+ 100
.
Letf(x)=
4x
x
2
+19x+ 100
,x>0
Thenf

(x)=
(x
2
+19x+ 100)4−4x(2x+ 19)
(x
2
+19x+ 100)
2
=
4(100−x
2
)
(x
2
+19x+ 100)
2
=0
=⇒x=10.
Sincef

(x)>0 forx<0,f

(x)<0 forx>10,fhas an absolute maximum atx=10.
A ten story building provides the greatest return on investment.
63.Swimming at 2 miles per hour, Maggie will reach pointBin 1 hour; walking along the shore (a distance
ofπmiles), she will reach pointBinπ/5

=0.63 hours. Suppose that she swims to a pointCand then
walks toB. Letθbe the central angle (measured in radians) determined by the pointsBandC. See
the figure. By the law of cosines, the square of the distance fromAtoCis given by
d
2
=1
2
+1
2
−2(1)(1) cos (π−θ) = 2 + 2 cosθ.
Therefore the distancedfromAtoCisd=

2 + 2 cosθ. The distance fromCtoBisθ.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.5 165
Now, the total length of time to swim toCand then walk toBis
T(θ)=2

2+2cosθ+5θ
Maggie wants to minimizeT.
T

(θ)=
−2 sinθ
2

2 + 2 cosθ
+5.
SettingT

(θ) = 0, we get
−2 sinθ
2

2 + 2 cosθ
+5=0 A θ B
C
which reduces to 2 cos
2
θ+ 25 cosθ+23=0
and factors into (cosθ+ 1)(2 cosθ+ 23) = 0.
This impliesθ=π. Maggie should walk the entire distance!
64.We modify the solution of Exercise 63, replacing the walking rate of 2 miles per hour by the rowing
rate of 3 miles per hour.
The total length of time to row toCand then walk toBis
T(θ)=3

2+2cosθ+5θ
The derivative ofTis
T

(θ)=
−3 sinθ
2

2+2cosθ
+5.
SettingT

(θ) = 0, we get
−3 sinθ
2

2+2cosθ
+5=0,
which reduces to
9 cos
2
θ+ 50 cosθ+ 41 = (cosθ+ 1)(9 cosθ+ 41) = 0.
This impliesθ=π. Again, Maggie should walk the entire distance!
65.(b) The point on the graph offthat is closest toPis:

1+

2,2+

2

(c)lPQ:y−

2+

2

=
1−

2
3−

2

x−

1+

2

(d) and (e)lPQ=lN.
66.The point on the graph off(x)=x−x
3
that is closest to (1,8) is (approximately) (−2.1474,7.7548).
67.D(x)=

x
2
+(7−3x)
2
; the point on the line that is closest to the origin is:

21
10
,
7
10

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
166 SECTION 4.6
68.The point on the graph offthat minimizes the distance to the point (4,3) is (approximately)
(1.3918,2.0629).
PROJECT 4.5
1.Distance over water:

36 +x
2
.
Distance over land: 12−x.
Total energy:E(x)=W

36 +x
2
+L(12−x),0≤x≤12.
2.W=1.5L,soE(x)=1.5L

36 +x
2
+L(12−x),for 0≤x≤12.
E

(x)=
1.5Lx

36 +x
2
−L=0 =⇒x=
12

5
5.36.
E

(x)<0on(0,
12

5
) andE

(x)>0on(
12

5
,12),soEhas an absolute minimum at
12

5
.
3.(a)W=kL, k >1,soE(x)=kL

36 +x
2
+L(12−x),for 0≤x≤12.
E

(x)=
kLx

36 +x
2
−L=0 =⇒x=
6

k
2
−1
.
E

(x)<0on(0,
6

k
2
−1
) andE

(x)>0on(
6

k
2
−1
,12),soEhas an absolute minimum
at
6

k
2
−1
.
(b) Askincreases,xdecreases. Ask→1
+
,xincreases.
(c)x=12 =⇒k=

5
2
1.12.
(d) No
SECTION 4.6
1.(a)fis increasing on [a, b],[d, n];fis decreasing on [b, d],[n, p].
(b) The graph offis concave up on (c, k),(l, m);
The graph offis concave down on (a, c),(k, l),(m, p).
The x-coordinates of the points of inflection are:x=c, x=k, x=l, x=m.
2.(a)gis increasing on [a, b],[c, e],[m, n];gis decreasing on [b, c],[e, m].
(b) The graph ofgis concave up on (a, b),(b, d);
The graph ofgis concave down on (d, m),(m, n).
The x-coordinate of the point of inflection is:x=d.
3.(i)f

,(ii)f,(iii)f
ffff
.
4.(a)x=−2 local max, no local minima.
(b) points of inflection atx=0,2.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.6 167
(c)
−2 2
x
y
5.f

(x)=−x
−2
,f
ffff
(x)=2x
−3
;
concave down on (−∞,0), concave up on (0,∞); no pts of inflection
6.f

(x)=1−x
−2
,f
ffff
(x)=2x
−3
;
concave down on (−∞,0), concave up on (0,∞); no pts of inflection
7.f

(x)=3x
2
−3,f
ffff
(x)=6x;
concave down on (−∞,0), concave up on (0,∞); pt of inflection (0,2)
8.f

(x)=4x−5,f
ffff
(x) = 4; concave up on (−∞,∞)
9.f

(x)=x
3
−x, f
ffff
(x)=3x
2
−1;
concave up on

−∞,−
1
3

3

and

1
3

3,∞

, concave down on


1
3

3,
1
3

3

;
pts of inflection


1
3

3,−
5
36

and

1
3

3,−
5
36

10.f

(x)=3x
2
−4x
3
,f
ffff
(x)=6x−12x
2
=6x(1−2x);
concave down on (−∞,0), and

1
2
,∞

, concave up on

0,
1
2

;
pts of inflection (0,0),

1
2
,
1
16

11.f

(x)=−
x
2
+1
(x
2
−1)
2
,f
ffff
(x)=
2x

x
2
+3

(x
2
−1)
3
;
concave down on (−∞,−1) and (0,1), concave up on (−1,0) and on (1,∞);
pts of inflection (0,0)
12.f

(x)=
−4
(x−2)
2
,f
ffff
(x)=
8
(x−2)
3
;
concave down on (−∞,2), concave up on (2,∞); no pts of inflection
13.f

(x)=4x
3
−4x, f
ffff
(x)=12x
2
−4;
concave up on

−∞,−
1
3

3

and

1
3

3,∞

, concave down on


1
3

3,
1
3

3

;
pts of inflection


1
3

3,
4
9

and

1
3

3,
4
9

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
168 SECTION 4.6
14.f

(x)=
6(1−x
2
)
(x
2
+1)
2
,f
ffff
(x)=
12x(x
2
−3)
(x
2
+1)
3
;
concave down on

−∞,−

3

and

0,

3

,concave up on



3,0

and

3,∞

;
pts of inflection



3,−
3
2

3

,(0,0),

3,
3
2

3

15.f

(x)=
−1

x(1 +

x)
2
,f
ffff
(x)=
1+3

x
2x

x(1 +

x)
3
;
concave up on (0,∞); no pts of inflection
16.f

(x)=
1
5
(x−3)
−4/5
,f
ffff
(x)=−
4
25
(x−3)
−9/5
;
concave up on (−∞,3), concave down on (3,∞); pt of inflection (3,0)
17.f

(x)=
5
3
(x+2)
2/3
,f
ffff
(x)=
10
9
(x+2)
−1/3
;
concave down on (−∞,−2), concave up on (−2,∞); pt of inflection (−2,0)
18.f

(x)=
4−2x
2
(4−x
2
)
1/2
,f
ffff
(x)=
2x(x
2
−6)
(4−x
2
)
3/2
Note: dom (f)=[−2,2]
concave up on (−2,0),concave down on (0,2); pt of inflection (0,0)
19.f

(x) = 2 sinxcosx= sin 2x, f
ffff
(x) = 2 cos 2x;
concave up on

0,
1
4
π

and

3
4
π, π

, concave down on

1
4
π,
3
4
π

;
pts of inflection

1
4
π,
1
2

and

3
4
π,
1
2

20.f

(x)=−4 cosxsinx−2x, f
ffff
(x)=−4(cos
2
x−sin
2
x)−2=−4 cos 2x−2;
concave down on

0,
1
3
π

and

2
3
π, π

, concave up on

1
3
π,
2
3
π

;
pts of inflection
Δ
1
3
π,
9−2π
2
18
θ
and
Δ
2
3
π,
9−8π
2
18
θ
21.f

(x)=2x+ 2 cos 2x, f
ffff
(x)=2−4 sin 2x;
concave up on

0,
1
12
π

and on

5
12
π, π

, concave down on

1
12
π,
5
12
π

;
pts of inflection
Δ
1
12
π,
72 +π
2
144
θ
and
Δ
5
12
π,
72+25π
2
144
θ
22.f

(x) = 4 sin
3
xcosx, f
ffff
(x) = 4 sin
2
x[3 cos
2
x−sin
2
x];
concave up on

0,
1
3
π

and

2
3
π, π

, concave down on

1
3
π,
2
3
π

;
pts of inflection

1
3
π,
9
16

and

2
3
π,
9
16

23.points of inflection: (±3.94822,10.39228)
24.f
ffff
(x)=0atx

=±0.94,±2.57,±3.71,±5.35
25.points of inflection: (−3,0),(−2.11652,2,39953),(−0.28349,−18.43523)
26.f
ffff
(x)>0 for allx∈domf

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.6 169
27.f(x)=x
3
−9x
(a)f

(x)=3x
2
−9=3(x
2
−3)
f

(x)≥0⇒x≤−

3orx≥

3;
f

(x)≤0⇒−

3≤x≤

3.
Thus,fis increasing on (−∞,−

3]∪[

3,∞)
and decreasing on [−

3,

3].
(b)f(−

3)

=10.39 is a local maximum;
f(

3)

=−10.39 is a local minimum.
(c)f
ffff
(x)=6x;
The graph offis concave up on (0,∞) and concave down on (−∞,0).
(d) point of inflection: (0,0)
28.f(x)=3x
4
+4x
3
+1
(a)f

(x)=12x
3
+12x
2
=12x
2
(x+1)
f

(x)≥0⇒x≥−1;
f

(x)≤0⇒x≤−1.
Thus,fis increasing on [−1,∞)
and decreasing on (−∞,−1].
(b)f(−1) = 0 is a local minimum;
no local maxima.
(c)f
ffff
(x)=36x
2
+24x=36x

x+
2
3

;
The graph offis concave up on

−∞,−
2
3

and (0,∞); and concave down on


2
3
,0

.
(d) points of inflection:


2
3
,
11
27

,(0,1)
29.f(x)=
2x
x
2
+1
(a)f

(x)=−
2(x+ 1)(x−1)
(x
2
+1)
2
f

(x)≥0⇒−1≤x≤1;
f

(x)≤0⇒x≤−1orx≥1.
Thus,fis increasing on [−1,1];
and decreasing on (−∞,−1]∪[1,∞).
(b)f(−1) =−1 is a local minimum;
f(1) = 1 is a local maximum.
(c)f
ffff
(x)=
4x(x+

3)(x−

3)
(x
2
+1)
3
f
ffff
(x)>0⇒x≤−

3orx≥

3;
f
ffff
(x)<0⇒−

3<x<

3.
The graph offis concave up on (−

3,0)∪(

3,∞) and concave down
on (−∞,−

3)∪(0,

3).
(d) points of inflection: (−

3,−

3/2),(0,0),(

3,

3/2)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
170 SECTION 4.6
30.f(x)=x
1/3
(x−6)
2/3
(a)f

(x)=
x−2
x
2/3
(x−6)
1/3
f

(x)≥0⇒x≤2,xδ=0,orx>6;
f

(x)≤0⇒2≤x<6.
Thus,fis increasing on (−∞,2]∪[6,∞)
and decreasing on [2,6].
(b)f(2) = 2(4)
1/3
is a local maximum;
f(6) = 0 is a local minimum.
(c)f
ffff
(x)=
−8
x
5/3
(x−6)
4/3
;
The graph offis concave down on (0,∞) and concave down up (−∞,0).
(d) point of inflection: (0,0)
31.f(x)=x+ sinx, x∈[−π, π]
(a)f

(x) = 1 + cosx
f

(x)>0on(−π, π)
Thus,fis increasing on [−π, π].
(b) No local extrema
(c)f
ffff
(x)=−sinx
f
ffff
(x)>0 forx∈(−π,0);
f
ffff
(x)<0 forx∈(0,π).
The graph offis concave up on (−π,0) and concave down on (0,π).
(d) point of inflection: (0,0)
32.f(x) = sinx+ cosx, x∈[0,2π]
(a)f

(x) = cosx−sinx
f

(x)≥0⇒0≤x≤
1
4
πor
5
4
π≤x≤2π
f

(x)≤0⇒
1
4
π≤x≤
5
4
π
Thus,fis increasing on

0,
1
4
π



5
4
π,2π

;
fis decreasing on

1
4
π,
5
4
π

.
(b)f(π/4) =

2 is a local maximum;
f(5π/4) =−

2 is a local minimum.
(c)f
ffff
(x)=−sinx−cosx
f
ffff
(x)>0⇒
3
4
π<x<
7
4
π;
f
ffff
(x)<0⇒0<x<
3
4
πor
7
4
π<x<2π.
The graph offis concave up on

3
4
π,
7
4
π

and concave down on

0,
3
4
π



7
4
π,2π

.
(d) points of inflection:

3
4
π,0

,

7
4
π,0

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.6 171
33.f(x)=
δ
x
3
,x< 1
3x−2,x ≥1.
(a)f

(x)=
δ
3x
2
,x< 1
3,x ≥1;
f

(x)>0on(−∞,0)∪(0,∞)
Thus,fis increasing on (−∞,∞).
(b) No local extrema
(c)f
ffff
(x)=
δ
6x, x <1
0,x ≥1;
f
ffff
(x)>0 forx∈(0,1);f
ffff
(x)<0 forx∈(−∞,0).
Thus, the graph offis concave up on (0,1) and concave down on (−∞,0).
The graph offis a straight line forx≥1.
(d) point of inflection: (0,0)
34.f(x)=
δ
2x+4,x ≤−1
3−x
2
,x> −1.
(a)f

(x)=
δ
2,x ≤−1
−2x, x >−1;
f

(x)≥0on(−∞,0];
f

(x)≤0on[0,∞).
Thus,fis increasing on (−∞,0] and decreasing on [0,∞).
(b)f(0) = 3 is a local maximum.
(c)f
ffff
(x)=
δ
0,x< −1
−2,x> −1;
f
ffff
(x)<0 forx∈(−1,∞).
Thus, the graph offis concave down on (−1,∞).
The graph offis a straight line forx≤−1.
(d) There are no points of inflection.
35. 36.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
172 SECTION 4.6
37. 38.
39.Sincef
ffff
(x)=6x−2(a+b+c),setd=
1
3
(a+b+c).Note thatf
ffff
(d) = 0 and thatfis concave
down on (−∞,d) and concave up on (d,∞); (d, f(d)) is a point of inflection.
40.f

(x)=2cx−2x
−3
,f
ffff
(x)=2c+6x
−4
.To have a point of inflection at 1 we need
f
ffff
(1) = 0 =⇒2c+6=0 = ⇒c=−3
41.Since (−1,1) lies on the graph, 1 =−a+b.
Sincef
ffff
(x) exists for allxand there is a pt of inflection atx=
1
3
,we must havef
ffff

1
3

=0.
Therefore
0=2a+2b.
Solving these two equations, we finda=−
1
2
andb=
1
2
.
Verification: the function
f(x)=−
1
2
x
3
+
1
2
x
2
has second derivativef
ffff
(x)=−3x+1.This does change sign atx=
1
3
.
42.f(x)=Ax
1/2
+Bx
−1/2
;f(1) = 4 =⇒A+B=4.
f

(x)=
1
2
Ax
−1/2

1
2
Bx
−3/2
,f
ffff
(x)=−
1
4
Ax
−3/2
+
3
4
Bx
−5/2
.
To have a point of inflection at (1,4),we needf
ffff
(1) = 0 =⇒−
1
4
A+
3
4
B=0.
Solving the two equations givesA=3,B=1.
43.First, we require that

1
6
π,5

lie on the curve:
5=
1
2
A+B.
Next we require that
d
2
y
dx
2
=−4Acos 2x−9Bsin 3xbe zero (and change sign) atx=
1
6
π:
0=−2A−9B.
Solving these two equations, we findA=18,B=−4.
Verification: the function
f(x) = 18 cos 2x−4 sin 3x
has second derivativef
ffff
(x)=−72 cos 2x+ 36 sin 3x.This does change sign atx=
1
6
π.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.6 173
44.f(x)=Ax
2
+Bx+C;f

(x)=2Ax+B;f
ffff
(x)=2A.
(a) Concave up =⇒f
ffff
(x)>0=⇒A>0; to decrease betweenAandBwe need
f

(x)<0,forxbetweenAandB=⇒B≤−2A
2
.
(b) Concave down =⇒f
ffff
(x)<0=⇒A<0; to havef

(x)>0 forxbetweenAandBwe
need 2A
2
+B≥0 and 2AB+B≥0,that is,B≥−2A
2
andB(2A+1)≥0.IfA>−
1
2
,then
we needB≥0 (and automaticallyB≥−2A
2
). IfA≤−
1
2
,then we needB≤0 andB≥−2A
2
.
The conditions are:−
1
2
<A<0,B≥0,orA≤−
1
2
,−2A
2
≤B≤0.
45.Letf

(x)=3x
2
−6x+3.Then we must havef(x)=x
3
−3x
2
+3x+cfor some constantc.Note
thatf
ffff
(x)=6x−6 andf
ffff
(1) = 0.Since (1,−2) is a point of inflection of the graph off,(1,−2)
must lie on the graph. Therefore,
1
3
−3(1)
2
+ 3(1) +c=−2 which impliesc=−3
and sof(x)=x
3
−3x
2
+3x−3.
46.f

(x) = cosxandf
ffff
(x)=−sinx=−f(x).
Thusfis concave down whenf
ffff
(x)<0=⇒f(x)>0.
Similarly,fis concave up whenf
ffff
(x)>0=⇒f(x)<0.
g

(x)=−sinxandg
ffff
(x)=−cosx=−g(x),sog(x) has the same property.
47.(a)p
ffff
(x)=6x+2ais negative forx<−a/3,and positive forx>−a/3.Therefore, the graph ofp
has a point of inflection atx=−a/3.
(b)p

(x)=3x
2
+2ax+b. The discriminant of this quadratic is 4a
2
−12b=4(a
2
−3b). Thus,p

has
two real zeros iffa
2
>3b.
(c) Ifa
2
≤3b, thenb≥a
2
/3 andp

(x)=3x
2
+2ax+b≥3x
2
+2ax+a
2
/3=3(x+
1
3
a)
2
≥0 for
allx;pis increasing in this case.
48.It is sufficient to show that the x-coordinate of the point of inflection is the x-coordinate of the mid-
point of the line segment connecting the local extrema. It is easy to show that the x-coordinate of the
point of inflection isx0=−
1
3
a.Now suppose thatphas local extrema atx1andx2,x1δ=x2.Then
p

(x1)=p

(x2)=0⇒3x
2
1+2ax1+b−(3x
2
2+2ax2+b)=0⇒x1+x2=−
2
3
a.
Thus,
x1+x2
2
=−
1
3
a=x0.
49.(a)
(b) No. Iff
ffff
(x)<0 andf

(x)<0 for allx,then
f(x)<f

(0)x+f(0) on (0,∞),which implies that
f(x)→−∞ asx→∞.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
174 SECTION 4.6
50.Letf(x)=anx
n
+an−1x
n−1
+···+a2x
2
+a1x+a0.
Thenf
ffff
(x)=n(n−1)anx
n−2
+···+2a2is a degreen−2 polynomial which can have at most
n−2 roots. Hencefhas at mostn−2 points of inflection.
51.
(a) concave up on (−4,−0.913)∪(0.913,4)
concave down on (−0.913,0.913)
(b) pts of inflection atx=−0.913,0.913
52.
(a) up: (−2π,−3.64),(−1.077,1.077),(3.64,2π)
down: (−3.64,−1.077)∪(1.077,3.64)
(b) pts of inflection atx=±3.64,±1.077
53.
(a) concave up on:
(−π,−1.996)∪(−.0345,2.550)
concave down on:
(−1.996,−0.345)∪(2.550,π)
(b) pts of inflection at:
x=−1.996,−0.345,2,550
54.
(a) concave up on (−5,5)
(b) no pts of inflection
55.(a)f
ffff
(x)=0atx=0.68824,2.27492,4.00827,5.59494
(b)f
ffff
(x)>0on(0.68824,2.27492)∪(4.00827,5.59494)
(c)f
ffff
(x)<0on(0,0.68824)∪(2.27492,4.00827)∪(5.59494,2π)
56.(a)f
ffff
(x)δ= 0 for allx (b)f
ffff
(x)>0on(−∞,−1)∪(1,∞)
(c)f
ffff
(x)<0on(−1,1)
57.(a)f
ffff
(x)=0atx=±1,0,±0.32654,±0.71523
(b)f
ffff
(x)>0on(−0.71523,−0.32654)∪(0,0.32654)∪(0.71523,1)∪(1,∞)
(c)f
ffff
(x)<0on(−∞,−1)∪(−1,−0.71523)∪(−0.32654,0)∪(0,32654,0.71523)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.7 175
58.(a)f
ffff
(x)=0atx= 0 (b)f
ffff
(x)>0on(−4,0)
(c)f
ffff
(x)<0on(0,4)
SECTION 4.7
1.(a)∞ (b)−∞ (c)∞ (d) 1
(e) 0 (f) x=−1,x= 1 (g) y=0,y=1
2.(a)d (b)c (c)x=a, x=b
(d)y=d (e)p (f)q
3.vertical:x=
1
3
; horizontal:y=
1
3
4.vertical:x=−2; horizontal: none
5.vertical:x= 2 ; horizontal: none 6.vertical: none; horizontal:y=0
7.vertical:x=±3 ; horizontal:y=0 8.vertical:x= 16; horizontal:y=0
9.vertical:x=−
4
3
; horizontal:y=
4
9
10.vertical:x=
1
3
; horizontal:y=
4
9
11.vertical:x=
5
2
; horizontal:y=0 12.vertical:x=
1
2
; horizontal:y=−
1
8
13.vertical: none ; horizontal:y=±
3
2
14.vertical:x= 8; horizontal:y=0
15.vertical:x= 1 ; horizontal:y=0 16.vertical:x=±1; horizontal:y=±2
17.vertical: none ; horizontal:y=0 18.vertical: none; horizontal:y=0
19.vertical:x=

2n+
1
2

π; horizontal: none20.vertical:x=2nπ; horizontal: none
21.f

(x)=
4
3
(x+3)
1/3
; neither 22.f

(x)=
2
5
x
−3/5
; cusp
23.f

(x)=−
4
5
(2−x)
−1/5
; cusp 24.neither;f(−1) is not defined
25.f

(x)=
6
5
x
−2/5

1−x
3/5

; tangent 26.f

(x)=
7
5
(x−5)
2/5
; neither
27.f(−2) undefined; neither 28.f

(x)=
3
7
(2−x)
−4/7
; tangent
29.f

(x)=



1
2
(x−1)
−1/2
,x>1

1
2
(1−x)
−1/2
,x<1;
cusp
30.f

(x)=(4x−3)(x−1)
−2/3
; tangent

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
176 SECTION 4.7
31.f

(x)=



1
3
(x+8)
−23
,x>−8

1
3
(x+8)
−2/3
,x<−8;
cusp
32.fis not defined forx>2; neither 33.fnot continuous at 0; neither
34.fis not continuous at 0; neither
35. 36.
37. 38.
39.f(x)=x−3x
1/3
(a)f

(x)=1−
1
x
2/3
fis increasing on (−∞,−1]∪[1,∞)
fis decreasing on [−1,1]
(b)f
ffff
(x)=
2
3
x
−5/3
concave up on (0,∞); concave down on (−∞,0)
vertical tangent at (0,0)
40.f(x)=x
2/3
−x
1/3
(a)f

(x)=
2
3
x
−1/3

1
3
x
−2/3
=
2x
1/3
−1
3x
2/3
fis increasing on

1
8
,∞

fis decreasing on

−∞,
1
8

(b)f
ffff
(x)=−
2
9
x
−4/3
+
2
9
x
−5/3
=
2(1−x
1/3
)
9x
5/3
concave up on (0,1)
concave down on (−∞,0)∪(1,∞)
vertical tangent at (0,0)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.7 177
41.f(x)=
3
5
x
5/3
−3x
2/3
(a)f

(x)=x
2/3
−2x
−1/3
=
x−2
x
1/3
fis increasing on (−∞,0]∪[2,∞)
fis decreasing on [0,2]
(b)f
ffff
(x)=
2
3
x
−1/3
+
2
3
x
−4/3
=
2x+2
3x
4/3
concave up on (−1,0)∪(0,∞); concave down on
(−∞,−1)
vertical cusp at (0,0)
42.f(x)=

|x|
=
δ
x
1/2
,x≥0
(−x)
1/2
,x<0.
(a)f

(x)=
δ
1
2
x
−1/2
,x>0

1
2
(−x)
−1/2
,x<0;
fis increasing on [0,∞)
fis decreasing on (−∞,0]
(b)f
ffff
(x)=
δ

1
4
x
−3/2
,x>0

1
4
(−x)
−3/2
,x<0;
concave down on (−∞,0)∪(0,∞)
vertical cusp at (0,0)
43.
no asymptotes
vertical cusp at (0,1)
44.
vertical asymptotes:x=1,x=−1
horizontal asymptote:y=1
no vertical tangents or cusps

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
178 SECTION 4.7
45.
horizontal asymptotes:y=−1,y=1
vertical tangent at (0,0)
46.
horizontal asymptote:y=4
vertical tangent at (0,1)
47.(a)podd; (b)peven.
48.[r(x)−(ax+b)] =
Q(x)
q(x)
→0asx→±∞,since deg [Q(x)]<deg [q(x)].
49.
vertical asymptote:x=0
oblique asymptote:y=x
50.
vertical asymptote:x=−1
oblique asymptote:y=2x+1
51.
vertical asymptote:x=1
oblique asymptote:y=x
52.
vertical asymptote:x=0
oblique asymptote:y=−3x+1
53.oblique asymptote:y=3x−4 54.oblique asymptote:y=5x−3

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 179
55.y= 1 is a horizontal asymptote.
f(x)=

x
2
+2x−x=

x
2
+2x−x

·

x
2
+2x+x

x
2
+2x+x
=
2x

x
2
+2x+x
→1.
56.y=−
1
2
is a horizontal asymptote.
f(x)=

x
4
−x
2
−x
2
=

x
4
−x
2
−x
2

·

x
4
−x
2
+x
2

x
4
−x
2
+x
2
=
−x
2

x
4
−x
2
+x
2
→−
1
2
.
SECTION 4.8
[Rough sketches; not scale drawings]
1.f(x)=(x−2)
2
f

(x)=2(x−2)
f
ffff
(x)=2
2.f(x)=1−(x−2)
2
f

(x)=−2(x−2)
f
ffff
(x)=−2
3.f(x)=x
3
−2x
2
+x+1
f

(x)=(3x−1)(x−1)
f
ffff
(x)=6x−4

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
180 SECTION 4.8
4.f(x)=x
3
−9x
2
+24x−7
f

(x)=3x
2
−18x+24
f
ffff
(x)=6x−18
5.f(x)=x
3
+6x
2
,x∈[−4,4]
f

(x)=3x(x+4)
f
ffff
(x)=6x+12
6.f(x)=x
4
−8x
2
,x∈[0,∞)
f

(x)=4x
3
−16x
f
ffff
(x)=12x
2
−16
7.f(x)=
2
3
x
3

1
2
x
2
−10x−1
f

(x)=(2x−5)(x+2)
f
ffff
(x)=4x−1

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 181
8.f(x)=x(x
2
+4)
2
=x
5
+8x
3
+16x
f

(x)=5x
4
+24x
2
+16
f
ffff
(x)=20x
3
+48x=4x(5x
2
+ 12)
9.f(x)=x
2
+2x
−1
f

(x)=2x−2x
−2
=2

x
3
−1

/x
2
f
ffff
(x)=2+4x
−3
asymptote:x=0
10.f(x)=x−x
−1
,
f

(x)=1+x
−2
f
ffff
(x)=−x
−3
asymptotes:x=0,y=x

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
182 SECTION 4.8
11.f(x)=(x−4)/x
2
f

(x)=(8−x)/x
3
f
ffff
(x)=(2x−24)/x
4
asymptotes:x=0,y=0
12.f(x)=
x+2
x
3
=
1
x
2
+
2
x
3
f

(x)=−
2
x
3

6
x
4
=
−2x−6
x
4
f
ffff
(x)=
6
x
4
+
24
x
5
=
6(x+4)
x
5
asymptotes:x=0,y=0
13.f(x)=2x
1/2
−x, x∈[0,4]
f

(x)=x
−1/2

1−x
1/2

f
ffff
(x)=−
1
2
x
−3/2
14.f(x)=
1
4
x−

x, x∈[0,9]
f

(x)=
1
4

1
2
x
−1/2
f
ffff
(x)=
1
4
x
−3/2

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 183
15.f(x)=2+(x+1)
6/5
f

(x)=
6
5
(x+1)
1/5
f
ffff
(x)=
6
25
(x+1)
−4/5
16.f(x)=2+(x+1)
7/5
f

(x)=
7
5
(x+1)
2/5
f
ffff
(x)=
14
25
(x+1)
−3/5
17.f(x)=3x
5
+5x
3
f

(x)=15x
2

x
2
+1

f
ffff
(x)=30x

2x
2
+1

18.f(x)=3x
4
+4x
3
f

(x)=12x
3
+12x
2
=12x
2
(x+1)
f
ffff
(x)=36x
2
+24x=12x(3x+2)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
184 SECTION 4.8
19.f(x)=1+(x−2)
5/3
f

(x)=
5
3
(x−2)
2/3
f
ffff
(x)=
10
9
(x−2)
−1/3
20.f(x)=1+(x−2)
4/3
f

(x)=
4
3
(x−2)
1/3
f
ffff
(x)=
4
9
(x−2)
−2/3
21.f

(x)=
8x
(x
2
+4)
2
f
ffff
(x)=48
8(4−3x
2
)
(x
2
+4)
3
f

(x)<0on(−∞,0)
f

(x)>0on(0,∞)
f
ffff
(x)<0on

−∞,−2/

3



2/

3,∞

;
f
ffff
(x)>0on

−2/

3,2/

3

;
asymptote:y=1
22.f(x)=
2x
2
x+1
f

(x)=
2x(x+2)
(x+1)
2
f
ffff
(x)=
4
(x+1)
3
asymptote:y=2x−2

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 185
23.f(x)=
x
(x+3)
2
f

(x)=
3−x
(x+3)
3
f
ffff
(x)=
2x−12
(x+3)
4
asymptotes:x=−3,y=0
24.f(x)=
x
x
2
+1
f

(x)=
1−x
2
(x
2
+1)
2
f
ffff
(x)=
2x(x
2
−3)
(x
2
+1)
3
asymptote:y=0
25.f(x)=
x
2
x
2
−4
f

(x)=
−8x
(x
2
−4)
2
f
ffff
(x)=
8(3x
2
+4)
(x
2
−4)
3
asymptotes:x=−2,x=2,y=1

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
186 SECTION 4.8
26.f(x)=
1
x
3
−x
f

(x)=
1−3x
2
(x
3
−x)
2
increasing on

−1/

3,0



0,1/

3

;
decreasing otherwise
f
ffff
(x)=
2

6x
4
−3x
2
+1

(x
3
−x)
3
concave up on (−1,0)∪(1,∞)
concave down on (−∞,0)∪(0,1)
asymptotes:x=−1,x=0,x=1,y=0
27.f(x)=x(1−x)
1/2
f

(x)=
1
2
(1−x)
−1/2
(2−3x)
f
ffff
(x)=
1
4
(1−x)
−3/2
(3x−4)
28.f(x)=(x−1)
4
−2(x−1)
2
f

(x)=4(x−1)
3
−4(x−1)
f
ffff
(x) = 12(x−1)
2
−4
29.f(x)=x+ sin 2x, x∈[0,π]
f

(x) = 1 + 2 cos 2x
f
ffff
(x)=−4 sin 2x

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 187
30.f(x) = cos
3
x+ 6 cosx, x∈[0,π]
f

(x)=−3 sinx(cos
2
x+2)
f
ffff
(x)=−9 cos
3
x
31.f(x) = cos
4
x, x∈[0,π]
f

(x)=−4 cos
3
xsinx
f
ffff
(x) = 4 cos
2
x

3 sin
2
x−cos
2
x

32.f(x)=

3x−cos 2x, x∈[0,π]
f

(x)=

3 + 2 sin 2x
f
ffff
(x) = 4 cos 2x
33.f(x) = 2 sin
3
x+ 3 sinx, x∈[0,π]
f

(x) = 3 cosx

2 sin
2
x+1

f
ffff
(x) = 9 sinx

1−2 sin
2
x

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
188 SECTION 4.8
34.f(x) = sin
4
x, x∈[0,π]
f

(x) = 4 sin
3
xcosx
f
ffff
(x) = 4 sin
2
x

3 cos
2
x−sin
2
x

35.f(x)=[(x+1)−1]
3
+1
f

(x)=3x
2
f
ffff
(x)=6x
36.f(x)=x
3
(x+5)
2
f

(x)=5x
2
(x+ 3)(x+5)
f
ffff
(x)=10x(2x
2
+12x+ 15)
37.f(x)=x
2
(5−x)
3
f

(x)=5x(2−x)(5−x)
2
f
ffff
(x) = 10(5−x)

2x
2
−8x+5

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 189
38.f(x)=
δ
4−2x+x
2
,0<x<2
4+2x−x
2
,x≤0,x≥2
f

(x)=
δ
−2+2x,0<x<2
2−2x, x <0,x>2
f
ffff
(x)=
δ
2,0<x<2
−2,x<0,x>2
39.f(x)=
δ
4−x
2
,|x|>1
x
2
+2,−1≤x≤1
f

(x)=
δ
−2x,|x|>1
2x,−1<x<1
f
ffff
(x)=
δ
−2,|x|>1
2,−1<x<1
40.f(x)=x−x
1/3
f

(x)=1−
1
3
x
−2/3
f
ffff
(x)=
2
9
x
−5/3
vertical tangent at (0,0)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
190 SECTION 4.8
41.f(x)=x(x−1)
1/5
f

(x)=
1
5
(x−1)
−4/5
(6x−5)
f
ffff
(x)=
2
25
(x−1)
−9/5
(3x−5)
vertical tangent at (1,0)
42.f(x)=x
2
(x−7)
1/3
f

(x)=
7x(x−6)
3(x−7)
2/3
f
ffff
(x)=
14(2x
2
−24x+ 63)
9(x−7)
5/3
vertical tangent at (7,0)
43.f(x)=x
2
−6x
1/3
f

(x)=2x
−2/3

x
5/3
−1

f
ffff
(x)=
2
3
x
−5/3
ν
3x
5/3
+2
ω
vertical tangent at (0,0)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 191
44.f(x)=
2x

x
2
+1
f

(x)=
2
(x
2
+1)
3/2
f
ffff
(x)=
−6x
(x
2
+1)
5/2
asymptotes:y=2,y=−2
45.f(x)=
Δ
x
x−2
θ
1/2
;x≤0,x>2
f

(x)=−
Δ
x
x−2
θ
−1/2
(x−2)
−2
f
ffff
(x)=(2x−1)
Δ
x
x−2
θ
−3/2
(x−2)
−4
asymptotes:x=2,y=1
46.f(x)=
Δ
x
x+4
θ
1/2
;x<−4,x≥0
f

(x)=2
Δ
x
x+4
θ
−1/2
(x+4)
−2
f
ffff
(x)=
−4(x+1)
(x+4)
5/2
x
3/2
asymptotes:x=−4,y=1

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
192 SECTION 4.8
47.f(x)=x
2

x
2
−2

−1/2
,|x|>

2
f

(x)=x

x
2
−4

x
2
−2

−3/2
f
ffff
(x)=2

x
2
+4

x
2
−2

−5/2
asymptotes:x=−

2,x=

2
48.f(x) = 3 cos 4x, x∈[0,π]
f

(x)=−12 sin 4x
f
ffff
(x)=−48 cos 4x
49.f(x) = 2 sin 3x, x∈[0,π]
f

(x) = 6 cos 3x
f
ffff
(x)=−18 sin 3x
50.f(x)=3+2cotx+ csc
2
x, x∈(0,π/2)
f

(x)=−2 csc
2
x(1 + cotx)
f
ffff
(x) = 2 csc
2
x

3 cot
2
x+ 2 cotx+1

asymptote:x=0

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 193
51.f(x) = 2 tanx−sec
2
x, x∈(0,π/2)
=−(1−tanx)
2
f

(x) = 2 sec
2
x(1−tanx)
f
ffff
(x)=−2 sec
2
x

3 tan
2
x−2 tanx+1

asymptote:x=
1
2
π
52.f(x) = 2 cosx+ sin
2
x
f

(x) = 2 sinx(cosx−1)
f
ffff
(x) = 2(2 cos
2
x−cosx−1)
53.f(x)=
sinx
1−sinx
,x∈(−π, π)
f

(x)=
cosx
(1−sinx)
2
f
ffff
(x)=
1−sinx+ cos
2
x
(1−sinx)
3
asymptote:x=
1
2
π

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
194 SECTION 4.8
54.f(x)=
1
1−cosx
,x∈(−π, π)
f

(x)=
−sinx
(1−cosx)
2
f
ffff
(x)=
2−cosx−cos
2
x
(1−cosx)
3
asymptote:x=0
55.(a)fincreases on (−∞,−1]∪(0,1]∪[3,∞);
fdecreases on [−1,0)∪[1,3]; critical points:x=−1,0,1,3.
(b) concave up on ( −∞,−3)∪(2,∞)
concave down on (−3,0)∪(0,2).
(c) The graph does not necessarily have
a horizontal asymptote.
56.(a)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.8 195
(b) (c)
(d)Fis discontinuous at 0; lim
x→0
sin(1/x) does not exist
Gis continuous at 0:|xsin(1/x)|=|x||sin(1/x)|≤|x|→0,
so that lim
x→0
G(x)=0=G(0).
His continuous at 0:

x
2
sin(1/x)

=|x|
2
|sin(1/x)|≤|x|
2
→0,
so that lim
x→0
H(x)=0=H(0).
(e)Fis not differentiable at 0 since it is not continuous at 0.
Gis not differentiable at 0: lim
h→0
G(h)−G(0)
h
= lim
h→0
sin(1/h) does not exist.
His differentiable at 0:H

(0) = lim
h→0
H(h)−H(0)
h
= lim
h→0
hsin(1/h)=0.
57.f(x)−x
2
=
x
3
−x
1/3
x
−x
2
=
x
3
−x
1/3
−x
3
x
=−
1
x
2/3
→0asx→±∞.
The figure shows the graphs offandg(x)=x
2
forx>0. Sincefandgare even functions,
the graphs are symmetric about they-axis.
x
y
58.(a)
−a a
x
b
y
(b)
b
a
Ł
x
2
−a
2
=
b
a
x

1−
a
2
x
2

b
a
xasx→∞. Therefore,
b
a
Ł
x
2
−a
2

b
a
x→0asx→∞.
(c) Ifx<0, then the second quadrant arc is given byy=−
b
a
x

1−
a
2
x
2
→−
b
a
xasx→−∞.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
196 SECTION 4.9
SECTION 4.9
1.x(5) =−6;v(t)=3−2tsov(5) =−7 and speed = 7;a(t)=−2soa(5) =−2.
2.x(3) =−12;v(t)=5−3t
2
sov(3) =−22 and speed = 22;a(t)=−6tsoa(3) =−18.
3.x(1) = 6;v(t)=−18/(t+2)
2
sov(1) =−2 and speed = 2,
a(t)=36/(t+2)
3
soa(1) = 4/3.
4.x(3) = 1;v(t)=
6
(t+3)
2
sov(3) = 1/6 = speed;a(t)=−12/(t+3)
3
soa(3) =−1/18.
5.x(1) = 0,v(t)=4t
3
+18t
2
+6t−10 sov(1) = 18 and speed = 18,
a(t)=12t
2
+36t+6soa(1) = 54.
6.x(2) =−20;v(t)=4t
3
−18tsov(2) =−4 and speed = 4,
a(t)=12t
2
−18 soa(2) = 30.
7.x(t)=5t+1,x

(t)=v(t)=5,x
ffff
(t)=a(t)=0.
v(t)δ=0,a(t) = 0 for allt.
8.x(t)=4t
2
−t+3,x

(t)=v(t)=8t−1,x
ffff
(t)=a(t)=8.
v(t)=0 att=1/8;a(t)δ= 0 for allt.
9.x(t)=t
3
−6t
2
+9t−1,x

(t)=v(t)=3t
2
−12t+9,x
ffff
(t)=a(t)=6t−12.
v(t)=3(t−1)(t−3),v(t)=0 att=1,3;a(t)=0 att=2.
10.x(t)=t
4
−4t
3
+4t
2
+2,x

(t)=v(t)=4t
3
−12t
2
+8t, x
ffff
(t)=a(t)=12t
2
−24t+8.
v(t)=4t(t−1)(t−2),v(t)=0 att=0,1,2;a(t)=0 att=1+

3/3.
11.A 12.C 13.A 14.C 15.AandB
16.B 17.A 18.A 19.AandC 20.B
21.The object is moving right whenv(t)>0. Here,
v(t)=4t
3
−36t
2
+56t=4t(t−2)(t−7);v(t)>0 when 0<t<2 and 7<t.
22.The object is moving left whenv(t)<0. Here,
v(t)=3t
2
−24t+21=3(t−7)(t−1);v(t)<0 when 1<t<7.
23.The object is speeding up whenv(t) anda(t) have the same sign.
v(t)=5t
3
(4−t) sign of v(t):
a(t)=20t
2
(3−t) sign of a(t):
Thus, 0<t<3 and 4<t.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.9 197
24.The object is slowing down whenv(t) anda(t) have opposite sign.
v(t)=12t−4t
3
=4t(3−t
2
) sign of v(t):
a(t) = 12(1−t) sign of a(t):
Thus, 1<t<

3.
25.The object is moving left and slowing down whenv(t)<0 anda(t)>0.
v(t)=3(t−5)(t+ 1) sign of v(t):
a(t)=6(t−2) sign of a(t):
Thus, 2<t<5.
26.The object is moving right and slowing down whenv(t)>0 anda(t)<0.
v(t)=3(t−5)(t+ 1) sign of v(t):
a(t)=6(t−2) sign of a(t):
This never happens.
27.The object is moving right and speeding up whenv(t)>0 anda(t)>0.
v(t)=4t(t−2)(t−4) sign of v(t):
a(t) = 4(3t
2
−12t+ 8) sign of a(t):
Thus, 0<t<2−
2
3

3 and 4<t.
28.The object is moving left and speeding up whenv(t)<0 anda(t)<0.
v(t)=4t(t−2)(t−4) sign of v(t):
a(t) = 4(3t
2
−12t+ 8) sign of a(t):
Thus, 2<t<2+
2
3

3.
29.x(t)=(t+1)
2
(t−9)
3
,x

(t)=v(t)=3(t+1)
2
(t−9)
2
+2(t+ 1)(t−9)
3
=5(t+ 1)(t−9)
2
(t−3).
The object changes direction at timet=3.
30.x(t)=t(t−8)
3
,x

(t)=v(t)=(t−8)
3
+3t(t−8)
2
=4(t−8)
2
(t−2).
The object changes direction at timet=2.
31.x(t)=(t
3
−12t)
4
,x/(t)=v(t)=4(t
3
−12t)
3
(3t
2
−12) = 12t
3
(t+2

3)
3
(t−2

3)
3
(t+ 2)(t−2).
The object changes direction at timest=2,2

3.
32.x(t)=(t
2
−8t+ 15)
3
,x

(t)=v(t)=3(t
2
−8t+ 15)
2
(2t−8) = 6(t
2
−8t+ 15)
2
(t−4).
The object changes direction at timet=4.
Exercises 33–38.The object is moving right with increasing speed when bothv(t) anda(t) are positive.
33.x(t) = sin 3t, x

(t)=v(t) = 3 cos 3t, x
ffff
(t)=a(t)=−9 sin 3t.
v(t)>0on(0,π/6)∪(π/2,5π/6)∪(7π/6,3π/2)∪(11π/6,2π).
a(t)>0on(π/3,2π/3)∪(π,4π/3)∪(5π/3,2π).
v(t) anda(t) are positive on (π/2,2π/3)∪(7π/6,4π/3)∪(11π/6,2π).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
198 SECTION 4.9
34.x(t) = cos 2t, x

(t)=v(t)=−2 sin 2t, x
ffff
(t)=a(t)=−4 cos 2t.
v(t)>0on(π/2,π)∪(3π/2,2π);a(t)>0on(π/4,3π/4)∪(5π/4,7π/4).
v(t) anda(t) are positive on (π/2,3π/4)∪(3π/2,7π/4).
35.x(t) = sint−cost, x

(t)=v(t) = cost+ sint, x
ffff
(t)=a(t)=−sint+ cost.
v(t)>0on(0,3π/4)∪(7π/4,2π);a(t)>0on(0,π/4)∪(5π/4,2π).
v(t) anda(t) are positive on (0,π/4)∪(7π/4,2π).
36.x(t) = sint+ cost, x

(t)=v(t) = cost−sint, x
ffff
(t)=a(t)=−sint−cost.
v(t)>0on(0,π/4)∪(5π/4,2π);a(t)>0on(3π/4,7π/4).
v(t) anda(t) are positive on (5π/4,7π/4).
37.x(t)=t+ 2 cost, x

(t)=v(t)=1−2 sint, x
ffff
(t)=a(t)=−2 cost.
v(t)>0on(0,π/6)∪(5π/6,2π);a(t)>0on(π/2,3π/2).
v(t) anda(t) are positive on (5π/6,3π/2).
38.x(t)=t−

2 sint, x

(t)=v(t)=1−

2 cost, x
ffff
(t)=a(t)=

2 sint.
v(t)>0on(π/4,7π/4);a(t)>0on(0,π).
v(t) anda(t) are positive on (π/4,π).
39.Sincev0= 0 the equation of motion is
y(t)=−16t
2
+y0.
We want to findy0so thaty(6) = 0. From
0=−16(6)
2
+y0
we gety0= 576 feet.
40.The equation of motion is:y(t)=−4.9t
2
+y0.Therefore, the velocity is given byv(t)=−9.8t.
Since the object hits the ground at 98 m/sec., we have−9.8t=−98,andt=10.
Therefore,y(10) = 0 =−4.9(10)
2
+y0andy0= 490 meters.
41.The object’s height and velocity at timetare given by
y(t)=−
1
2
gt
2
+v0tand v(t)=−gt+v0
Since the object’s velocity at its maximum height is 0,it takesv0/gseconds to reach
maximum height, and
y(v0/g)=−
1
2
g(v0/g)
2
+v0(v0/g)=v
2
0/2gorv
2
0/19.6 (meters)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.9 199
42.Sincey0=0,we havey(t)=−16t
2
+v0t=t(−16t+v0).Now,
y(8) = 0 =⇒v0= (16)8 = 128 =⇒the initial velocity was 128 ft/sec.
43.At timet,the object’s height isy(t)=−
1
2
gt
2
+v0t+y0,and its velocity isv(t)=−gt+v0.Suppose
thaty(t1)=y(t2),t1δ=t2.Then

1
2
gt
2
1+v0t1+y0=−
1
2
gt
2
2+v0t2+y0
1
2
g(t
2
2−t
2
1)=v0(t2−t1)
gt2+gt1=2v0
From this equation, we get−(−gt1+v0)=−gt2+v0and so|v(t1)|=|v(t2)|.
44.Sincey0=0,we havey(t)=−4.9t
2
+v0t=t(v0−4.9t) The object hits the ground att=v0/4.9 sec.,
that is, the object is in the air forv0/4.9 sec. At its maximum height, the velocity of the object is 0.
Sincev(t)=−9.8t+v0,we have−9.8t+v0= 0 andt=v0/9.8=
1
2
(v0/4.9).The result follows from
this.
45.In the equation
y(t)=−16t
2
+v0t+y0
we takev0=−80 andy0= 224. The ball first strikes the ground when
−16t
2
−80t+ 224 = 0;
that is, att= 2. Since
v(t)=y

(t)=−32t−80,
we havev(2) =−144 so that the speed of the ball the first time it strikes the
ground is 144 ft/sec. Thus, the speed of the ball the third time it strikes the
ground is
1
4

1
4
(144)

= 9 ft/sec.
46.Sincey0=0,we havey(t)=−16t
2
+v0t.
y(2) = 64 =⇒− 16(2)
2
+2v0=64 =⇒v0= 64 andy(t)=−16t
2
+64t
Now, at the maximum height,v(t)=−32t+64=0 = ⇒t=2.We already know
the height att=2,namely 64 ft.
47.The equation isy(t)=−16t
2
+32t. (Herey0= 0 andv0= 32.)
(a) We solvey(t) = 0 to find that the stone strikes the ground att= 2 seconds.
(b) The stone attains its maximum height whenv(t) = 0. Solving
v(t)=−32t+ 32 = 0, we gett= 1 and, thus, the maximum height isy(1) = 16 feet.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
200 SECTION 4.9
(c) We want to choosev0in
y(t)=−16t
2
+v0t
so thaty(t0) = 36 when v(t0) = 0 for some timet0.
Fromv(t)=−32t+v0= 0 we get t0=v0/32 so that
−16
ν
v0
32
ω
2
+v0
ν
v0
32
ω
=36,or
v0
2
64
=36.
Thus,v0= 48 ft/sec.
48.(a) Measuring height from the water surface, we havey(t)=−16t
2
+y0,sincev0(0) = 0.
If the stone hits the water 3 seconds later, theny(3) =−16(3)
2
+y0=0.soy0= 144.
(b) It takesy0/1080 seconds for the sound of the splash to reach the man so the stone hits the
at timet=3−y0/1080.Thus,
y(t)=−16
ν
3−
y0
1080
ω
2
+y0=0 =⇒y0

=132.47 ft.
49.For all three parts of the problem the basic equation is
y(t)=−16t
2
+v0t+y0
with
(∗) y(t0) = 100 andy(t0+2)=16
for some timet0>0.
We are asked to findy0for a given value ofv0.
From (∗)weget
16−100 =y(t0+2)−y(t0)
=[−16(t0+2)
2
+v0(t0+2)+y0]−[−16t0
2
+v0t0+y0]
=−64t0−64+2v0
so that
t0=
1
32
(v0+ 10).
Substituting this result in the basic equation and noting thaty(t0) = 100, we have
−16
Δ
v0+10
32
θ
2
+v0
Δ
v0+10
32
θ
+y0= 100
and therefore
(∗∗) y0= 100−
v0
2
64
+
25
16
.
We use (∗∗) to find the answer to each part of the problem.
(a)v0=0soy0=
1625
16
ft (b) v0=−5soy0=
6475
64
ft (c) v0=10soy0= 100 ft

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.9 201
50.Letv0>0 be the initial velocity. The equation of motion prior to the impact is:y(t)=−16t
2
−v0t+4.
The ball hits the ground at timet=

v
2
0
+ 256−v0
32
with velocityv=

v
2
0
+ 256.The equation of
motion following the impact is:y(t)=−16t
2
+

v
2
0
+ 256
2
t.It reaches its maximum height at time
T=

v
2
0
+ 256
64
.Now,y(T)=4 =⇒v0=16

3.
51.Lety0>0 be the initial height. The equation of motion becomes:
0=−16(8)
2
+ 5(8) +y0,soy0= 984 ft.
52.Using 0 =−16t
2
−5t+ 984,yieldst=
123
16
or about 7.7 sec.
53.Letf1(t) andf2(t) be the positions of the horses at timet.Considerf(t)=f1(t)−f2(t).LetTbe
the time the horses finish the race. Thenf(0) =f(T) = 0. By the mean-value theorem there is acin
(0,T) such thatf

(c)=0.Hencef

1(t)=f

2(t),so the horses had the same speed at timec.
54.Apply the argument given in Exercise 53 to the velocity functionsv1(t),v2(t).
55.The driver must have exceeded the speed limit at some time during the trip. Lets(t) denote the car’s
position at timet, withs(0) = 0 ands(5/3) = 120. Then, by the mean-value theorem, there exists at
least one number (time)csuch that
v(c)=s

(c)=
s(5/3)−s(0)
5
3
−0
=
120
5
3
=
360
5
= 72 mi./hr.
56.Letf(t) be the function that gives the car’s velocity afterthours. Thenf(0) = 30 andf(
1
4
)=60.f
is differentiable on (1,
1
4
) and continuous on [1,
1
4
],so by the mean-value theorem there is acin (1,
1
4
)
such thatf

(c)=
60−30
0−t1
= 120.i.e. The acceleration at timecwas 120 mph.
57.If the speeds(t) of the car is less than 60 mi/hr= 1 mi/min, then the distance traveled in 20 minutes
is less than 20 miles. Therefore, the car must have gone at least 1 mi/min at some timet<20. Let
t1be the first instant the car’s speed is 1 mi/min. Then the speeds(t) is less than 1 mi/min on the
interval [0,t1) and the distancertraveled int1minutes is less thant1miles. Now, by the mean-value
theorem, there is a timec∈[t1,20] such that
s

(c)=
20−r
20−t1
>
20−t1
20−t1
= 1 (= 60 mi/hr).
58.Lets(t) denote the distance that the car has traveled intseconds since applying the brakes, 0≤t≤6.
Thens(0) = 0 ands(6) = 280.Assume thatsis differentiable on (0,6) and continuous on [0,6].Then,
by the mean-value theorem, there exists a timec∈(0,6) such that
s

(c)=v(c)=
s(6)−s(0)
6−0
=
280
6

=46.67 ft/sec
Nowv(0)≥v(c)=46.7 ft/sec. Thus, the driver must have been exceeding the speed limit (44 ft/sec)
at the instant he applied his brakes.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
202 SECTION 4.9
59.y(t)=Asin(ωt+φ0),y

(t)=v(t)=ωAcos(ωt+φ0),y
ffff
(t)=a(t)=−ω
2
Asin(ωt+φ0)
(a)y
ffff
(t)+ω
2
y(t)=−ω
2
Asin(ωt+φ0)+ω
2
Asin(ωt+φ0)=0.
(b)v

(t)=a(t)=−ω
2
Asin(ωt+φ0) = 0 whenωt+φ0=nπ;t=
nπ−φ0
ω
.
The extreme values ofvoccur at these times. Now
y
Δ
nπ−φ0
ω
θ
=Asin
Δ
ω
nπ−φ0
ω
+φ0
θ
=Asin(nπ)=0.
The bob attains maximum speed at the equilibrium position.
(c)a

(t)−ω
3
Acos(ωt+φ0) = 0 whenωt+φ0=(2n−1)π/2;t=
(2n−1)π/2−φ0
ω
.
The extreme values ofaoccur at these times. Now
a
Δ
(2n−1)π/2−φ0
ω
θ
=−ω
2
Asin
Δ
(2n−1)π/2−φ0
ω
+φ0
θ
=±ω
2
A.
The bob attains these values at
y
Δ
(2n−1)π/2−φ0
ω
θ
=Asin
Δ
ω
(2n−1)π/2−φ0
ω
+φ0
θ
=Asin (2n−1)π/2=±A.
60.(a)x(t)=t
3
−7t
2
+10t+5,v(t)=3t
2
−14t+10,0≤t≤5
(b) The object is moving to the right when 0<t<0.88 and when 3.79<t<5.
The object is moving to the left when 0.88<t<3.79
(c) The object stops at timest

=0.88 andt

=3.79.
The maximum speed isv

=6.33 att

=2.33.
(d)a(t)=6t−14
The object is speeding up whenv(t) anda(t) have
the same sign: 0.88<t<2.33 and 3.79<t<5.
The object is slowing down whenv(t) anda(t) have
opposite sign: 0<t<0.88 and 2.33<t<3.79.
PROJECT 4.9a
1.length of arc =rθ, speed =
d
dt
[rθ]=r

dt
=rω
2.v=rωsoKE=
1
2
mr
2
ω
2
.
3.We know thatdθ/dt=ωand, at timet=0,θ=θ0.Thereforeθ=ωt+θ0.It follows that
x(t)=rcos (ωt+θ0)and y(t)=rsin (ωt+θ0).
x(t)=rcos(ωt+θ0),y(t)=rsin(ωt+θ0)
v(t)=x

(t)=−rωsin(ωt+θ0)=−ωy(t)
a(t)=−rω
2
cos(ωt+θ0)=−ω
2
x(t)
v(t)=y

(t)=rωcos(ωt+θ0)=ωx(t)
a(t)=−rω
2
sin(ωt+θ0)=−ω
2
y(t)

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.10 203
4.For the sectorA=
1
2
r
2
θ,
dA
dt
=
1
2
r
2

dt
=
1
2
r
2
ωis constant.
For triangleT
A=
1
2
(2rsin
1
2
θ)(rcos
1
2
θ)
=
1
2
r
2
(2 sin
1
2
θcos
1
2
θ)=
1
2
r
2
sinθ,
dA
dt
=
1
2
r
2
cosθ

dt
=
1
2
r
2
ωcosθvaries withθ.
For segmentS
A=
1
2
r
2
θ−
1
2
r
2
sinθ=
1
2
r
2
(θ−sinθ),
dA
dt
=
1
2
r
2
Δ

dt
−cos

dt
θ
=
1
2
r
2
ω(1−cosθ) varies withθ.
5.From Exercise 4,
dAT
dt
=
1
2
r
2
ωcosθand
dAS
dt
=
1
2
r
2
ω−
1
2
r
2
ωcosθ
Now,
1
2
r
2
ωcosθ=
1
2
r
2
ω−
1
2
r
2
ωcosθ=⇒cosθ=
1
2
=⇒θ=
π
3
.
PROJECT 4.9B
1.
d
dt

mgy+
1
2
mv
2

=mg
dy
dt
+
1
2
m
d
dt
(v
2
)
=mgv+
1
2
m

2v
dv
dt

=mgv+mv
dv
dt
=mgv+mv(−g) (sincedv/dt=a=−g)
=mgv−mgv=0
2.By Problem 1,mgy+
1
2
mv
2
=C(constant). Sincev= 0 at heighty=y0,we haveC=mgy0.
Thus,
mgy0=mgy+
1
2
mv
2
and|v|=

2g(y0−y)
3.y(t)=−
1
2
gt
2
+y0=⇒gt=

2g(y0−y)
v(t)=y

(t)=−gtTherefore,|v(t)|=

2g(y0−y).
SECTION 4.10
1.x+2y=2,
dx
dt
+2
dy
dt
=0
(a) If
dx
dt
= 4, then
dy
dt
=−2 units/sec. (b) If
dy
dt
=−2, then
dx
dt
= 4 units/sec.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
204 SECTION 4.10
2.x
2
+y
2
=25,2x
dx
dt
+2y
dy
dt
= 0 and
dx
dt
=−
y
x
dy
dt
.
At the point (3,4),
dy
dt
=−2.Therefore,
dx
dt
=
8
3
; the x-coordinate is
increasing at the rate of 8/3 units per second.
3.y
2
=4(x+2),2y
dy
dt
=4
dx
dt
and
dx
dt
=
1
2
y
dy
dt
At the point (7,6),
dy
dt
=3.Therefore
dx
dt
=
1
2
·6·3 = 9 units/sec.
4.We are given
dx
dt
=2.Also 4y=(x+2)
2
so 4
dy
dt
=2(x+2)
dx
dt
or
dy
dt
=
1
2
(x+2)
dx
dt
.
Atx=2,
dy
dt
=4.The distance from a point on the parabola to the point (−2,0) is given by
S=

(x+2)
2
+y
2
=

4y+y
2
since (x+2)
2
=4y.Now
dS
dt
=
1
2
(4y+y
2
)
−1/2
(4+2y)
dy
dt
=
2+y

4y+y
2
dy
dt
.
Therefore, at the point (2,4),
dS
dt
=
6

32
4=3

2.
5.Lets=

x
2
+y
2
denote the distance to the origin at timet.Sincex= 4 costandy= 2 sint,
we have
s(t)=

16 cos
2
t+ 4 sin
2
t=

12 cos
2
t+4
ds
dt
=
1
2
(12 cos
2
t+4)
−1/2
(−24 costsint)
=
−12 costsint

12 cos
2
t+4
Att=π/4,
ds
dt
=
−12 cos(π/4) sin(π/4)

12 cos
2
(π/4)+4
=−
3
5

10.
6.y=x

x=x
3/2
;
dy
dt
=
3
2
x
1/2
dx
dt
.
Now
dx
dt
=
dy
dt
=zδ=0,=⇒
3
2
x
1/2
=1 =⇒x=
4
9
andy=
8
27
.
Both coordinates are changing at the same rate at the point (4/9,8/27).
7.Find
dx
dt
and
dS
dt
whenV= 27m
3
given that
dV
dt
=−2m
3
/min.
(∗)V=x
3
,S=6x
2
Differentiation of equations (∗) gives
dV
dt
=3x
2
dx
dt
and
dS
dt
=12x
dx
dt
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.10 205
WhenV=27,x= 3. Substitutingx= 3 anddV/dt=−2, we get
−2=27
dx
dt
so that
dx
dt
=−2/27 and
dS
dt
= 12(3)
Δ
−2
27
θ
=−8/3.
The rate of change of an edge is−2/27 m/min; the rate of change of the surface area is
−8/3m
2
/min.
8. Find
dr
dt
and
dS
dt
whenr=10ft
given that
dV
dt
=8ft
3
/min.
(∗)V=
4
3
πr
3
,S=4πr
2
Differentiation of equations (∗) with respect totgives
dV
dt
=4πr
2
dr
dt
and
dS
dt
=8πr
dr
dt
.
Substitutingr= 10 anddV/dt= 8, we get
8=4π(10)
2
dr
dt
so that
dr
dt
=
1
50π
and
dS
dt
=8π(10)
1
50π
=
8
5
.
The radius is increasing
1
50π
ft/min; the surface area is increasing
8
5
ft
2
/min.
9.The area of an equilateral triangle of sidexis given by
A=
1
2
x

x

3
2

=

3
4
x
2
.Thus
dA
dt
=

3
2
x
dx
dt
.
Whenx=α,
dx
dt
=k,and
dA
dt
=

3
2
αkcm
2
/min.
10.We have 2x+2y=24,orx+y=12.Thus,A=xy=x(12−x)=12x−x
2
.
WhenA=32,x=4orx=8,and it follows that
dA
dt
= (12−2x)
dx
dt
=±4
dx
dt
.
11. Find
dA
dt
whenl= 6 in.
given that
dl
dt
=−2 in./sec.
By the Pythagorean theorem
l
2
+w
2
= 100.
Also,A=lw. Thus,A=l

100−l
2
. Differentiation with respect totgives
dA
dt
=l
Δ
−l

100−l
2
θ
dl
dt
+

100−l
2
dl
dt
.
Substitutingl= 6 anddl/dt=−2, we get
dA
dt
=6
Δ
−6
8
θ
(−2) + (8)(−2) =−7.
The area is decreasing at the rate of 7 in.
2
/sec.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
206 SECTION 4.10
12. x
2
+6
2
=y
2
;2x
dx
dt
=2y
dy
dt
Ify= 30 ft and
dx
dt
= 8 ft/min,then
dy
dt
=
x
y
dy
dt
=

(30)
2
−36
30
8=
16
5

6 ft/min
13. Compare
dy
dt
to
dx
dt
=−13 mph
given thatz= 16 and
dz
dt
=−17
whenx=y.
By the Pythagorean theoremx
2
+y
2
=z
2
.Thus,
2x
dx
dt
+2y
dy
dt
=2z
dz
dt
.
Sincex=ywhenz= 16, we havex=y=8

2 and
2(8

2)(−13) + 2(8

2)
dy
dt
= 2(16)(−17).
Solving fordy/dt,weget
−13

2+

2
dy
dt
=−34 or
dy
dt
=
1

2
(13

2−34)

=−11.
Thus, boatAwins the race.
14.V=
4
3
πr
3
,so
dV
dt
=4πr
2
dr
dt
=4πr
2
(−
1
5
).Thus atr= 12 we have
dV
dt
=−
576
5
πcm
3
/min.
15.We want to find
dA
dt
when
dx
dt
= 2 andx= 12.
A=
1
2
x

169−x
2
,so
dA
dt
=

1
2

169−x
2

x
2
2

169−x
2

dx
dt
When
dx
dt
= 2 andx= 12,
dA
dt
=−
119
5
ft
2
/sec.
16. x
2
+y
2
= (13)
2
;2x
dx
dt
+2y
dy
dt
= 0 and
dy
dt
=−
x
2y
since
dx
dt
=0.5.Whenx=5,y= 12 and
dy
dt
=−
5
24
; the top of the ladder is
dropping 5/24 ft/sec.
17.We want to finddV/dtwhenV= 1000 ft
3
andP= 5 lb/in.
2
given thatdP/dt=−0.05 lb/in.
2
/hr.
DifferentiatingPV=Cwith respect tot, we get
P
dV
dt
+V
dP
dt
= 0 so that 5
dV
dt
+ 1000(−0.05) = 0.Thus,
dV
dt
=10.
The volume increases at the rate of 10 ft
3
/hr.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.10 207
18.PV
1.4
=C;V
1.4
dP
dt
+(1.4)PV
0.4
dV
dt
= 0 and
dP
dt
=−
1.4P
V
dV
dt
.
WithV=10,P= 50 and
dV
dt
=−1,we have
dP
dt
=−
(1.4)50
10
(−1) = 7
The pressure is increasing 7 lb/in
2
/sec.
19. Find
ds
dt
whenx= 3 ft (ands= 4 ft)
given that
dx
dt
= 400 ft/min.
By similar triangles
L
x+s
=
6
s
.
Substitution ofx= 3 ands= 4 gives us
L
7
=
6
4
so that the lamp post is
L=10.5 ft tall. Rewriting
10.5
x+s
=
6
s
ass=
4
3
x
and differentiating with respect tot, we find that
ds
dt
=
4
3
dx
dt
=
1600
3
.
The shadow lengthens at the rate of 1600/3 ft/min.
If the tip of his shadow is at the pointz, then
z=x+sand
dz
dt
=
dx
dt
+
ds
dt
= 400 +
1600
3
=
2800
3
.
The tip of his shadow is moving at the rate of 2800/3 ft./min.
20. y(t)=64−16t
2
;
dy
dt
=−32t
By similar triangles,
y
x
=
64
20 +x
.
Thus,y=
64x
20 +x
.
Now,
dy
dt
=
(20 +x)(64)−64x
(20 +x)
2
dx
dt
=
1280
(20 +x)
2
=⇒
dx
dt
=
(20 +x)
2
1280
dy
dt
.
Att=1,y=48,x=60,and
dy
dt
=−32.Therefore,
dx
dt
=
(80)
2
1280
(−32) =−160 ft/sec.
21.LetW(t) = 150

1+
1
4000
r

−2
.We want to finddW/dtwhenr= 400 given that
dr/dt= 10 mi/sec. Differentiating with respect tot,we get
dW
dt
=−300
Δ
1+
1
4000
r
θ
−3Δ
1
4000
θ
dr
dt
Now setr= 400 anddr/dt=10.Then
dW
dt
=−300
Δ
1+
400
4000
θ
−3
10
4000

=−0.5634 lbs/sec

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
208 SECTION 4.10
22.M=
m

1−v
2
/c
2
;
dM
dt
=m


1
2

1−v
2
/c
2

−3/2
−2v/c
2
dv
dt
=
mv
c
2
(1−v
2
/c
2
)
3/2
dv
dt
.
Ifv=
c
2
and
dv
dt
=
c
100
,then
dM
dt
=
m(c/2)
c
2
(1−c
2
/4c
2
)
3/2
c
100
=

3
225
m.
23. Find
dh
dt
whenh= 3 in.
given that
dV
dt
=−
1
2
cu in./min.
By similar triangles
r=
1
3
h.
ThusV=
1
3
πr
2
h=
1
27
πh
3
. Differentiating with respect tot,weget
dV
dt
=
1
9
πh
2
dh
dt
.
Whenh=3,

1
2
=
1
9
π(9)
dh
dt
and
dh
dt
=−
1

.
The water level is dropping at the rate of 1/2πinches per minute.
24. V=
1
3
πr
2
hand
r
h
=
4
6
(similar triangles)
soV=
4
27
πh
3
.Thus
dV
dt
=
4
9
πh
2
dh
dt
,
so at
dh
dt
=0.5 andh=2,
dV
dt
=

9
cubic ft per sec.
25.
dV
dt
=4πr
2
dr
dt
and
dSA
dt
=8πr
dr
dt
.Thus when
dSA
dt
= 4 and
dr
dt
=0.1
we getr=
5
π
and
dV
dt
=
10
π
cm
3
/min.
26.V=πrh
2

1
3
πh
3
;
dV
dt
=2πrh
dh
dt
−πh
2
dh
dt
,and
dh
dt
=
2
π(14h−h
2
)
sincer= 7 and
dV
dt
=2.
(a) Whenh=7/2,
dh
dt
=
8
147π
in./sec. (b) Whenh=7,
dh
dt
=
2
49π
in./sec.
27. Find

dt
whenx=4ft
given that
dx
dt
= 2 in./min.
(∗) tan
θ
2
=
3
x
Differentiation of (∗) with respect totgives
1
2
sec
2
θ
2

dt
=−
3
x
2
dx
dt
or

dt
=−
6
x
2
cos
2
θ
2
dx
dt
.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.10 209
Note thatdx/dt= 2 in./min=1/6 ft/min. Whenx= 4, we have cosθ/2=4/5 and thus

dt
=−
6
16
Δ
4
5
θ

1
6
θ
=−
1
25
.
The vertex angle decreases at the rate of 0.04 rad/min.
28. tanα=
60
x
; sec
2
α

dt
=−
60
x
2
dx
dt
Now, sec
2
α=
ν
y
x
ω
2
so

dt
=−
60
y
2
dx
dt
.
Withy= 100,and
dx
dt
=−10,we have

dt
=−
60
(100)
2
(−10) = 0.06 rad/min.
29. Find
dx
dt
whenx=1mi
given that

dt
=2πrad/min.
(∗) tanθ=
x
1/2
=2x
Differentiation of (∗) with respect totgives
sec
2
θ

dt
=2
dx
dt
.
Whenx= 1, we get secθ=

5 and thus
dx
dt
=5π.
The light is traveling at 5πmi/min.
30.(a) We have tanθ=x,so sec
2
θ

dt
=
dx
dt
.Switching to radians,

dt
=4π.
Thus atθ=
π
4
,
dx
dt
=8πmi/min.
(b) Atθ=0,
dx
dt
=4πmi/min.
31.We have tanθ=
x
40
,so sec
2
θ

dt
=
1
40
dx
dt
,and
dx
dt
=4.
Att=15,x= 60 and secθ=

5200
40
,so

dt
=
2
65

=0.031 rad/sec.
32.We haveV=hπr
2
,soV= 500πcm
3
.Thush=
500
r
2
,and
dh
dt
=
−1000
r
3
dr
dt
.
Atr= 5 and
dr
dt
=
1
2
,we have
dh
dt
=−4 cm/sec.
33.We have sinθ=
4
5
so tanθ=
4
3
=
x
h
.Thusx=
4
3
h. V=12
Δ
3+2x+3
2
h
θ
=36h+16h
2
.
Thus
dV
dt
=(36+32h)
dh
dt
,so at
dV
dt
= 10 andh=2,
dh
dt
=
1
10
ft/min.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
210 SECTION 4.10
34.tanα=
y
x
; sec
2
α

dt
=
x
dy
dt
−y
dx
dt
x
2

dt
=
x
dy
dt
−y
dx
dt
x
2
·
x
2
x
2
+y
2
=
x
dy
dt
−y
dx
dt
x
2
+y
2
Now
dx
dt
=−30 mph =−44 ft/sec and
dy
dt
=−22.5 mph =−33 ft/sec.
Atx= 300,y= 400,we have

dt
=
300(−33)−400(−44)
(300)
2
+ (400)
2
=0.0308 the angle is increasing 0.0308 rad/sec.
35.Find

dt
wheny=4ft
given that
dx
dt
= 3 ft/sec.
tanθ=
16
x
,x
2
+ (16)
2
= (16 +y)
2
Differentiating tanθ=16/xwith respect tot, we obtain
sec
2
θ

dt
=
−16
x
2
dx
dt
and thus

dt
=
−16
x
2
cos
2
θ
dx
dt
.
Fromx
2
+ (16)
2
= (16 +y)
2
we conclude thatx= 12, wheny=4.Thus
cosθ=
x
16 +y
=
12
20
=
3
5
and

dt
=
−16
(12)
2
Δ
3
5
θ
2
(3) =
−3
25
.
The angle decreases at the rate of 0.12 rad/sec.
36.tan(α/2) =
3
x
; sec
2
(α/2)
1
2

dt
=−
3
x
2
dx
dt
,
and

dt
=−
6
y
2
dx
dt
Initially,y=5sox=4.8 seconds laterx=12soy=

(12)
2
+ (3)
2
=

153.Therefore,

dt
=−
6
y
2
dx
dt
=−
6
153
(1) =−
6
153
; the angle is decreasing−6/153 rad/sec.
37.Find

dt
whent= 6 min.
tanθ=
100t
500+75t
=
4t
20+3t
Differentiation with respect totgives
sec
2
θ

dt
=
(20+3t)4−4t(3)
(20+3t)
2
=
80
(20+3t)
2
.
Whent=6
tanθ=
24
38
=
12
19
and sec
2
θ=1+

12
19

2
=
505
361

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.10 211
so that

dt
=
80
(20+3t)
2
·
1
sec
2
θ
=
80
(38)
2
·
361
505
=
4
101
.
The angle increases at the rate of 4/101 rad/min.
38.tanα=
x
H
; sec
2
α

dt
=
1
H
dx
dt

dt
=
1
H
dx
dt
cos
2
α=
H
H
2
+x
2
dx
dt
We haveH= 2 mi. and
dx
dt
= 400 mph.After 2 seconds,x= 400
Δ
2
3600
θ
=
2
9
miles.

dt
=
2
2
2
+(2/9)
2
(400) =
200(81)
82
rad/hr =
9
164
rad/sec.
39.Letxbe the distance from third base to the player. Then the distance from home plate to the player
is given by:y=

(90)
2
+x
2
. Differentiation with respect totgives
dy
dt
=
x

(90)
2
+x
2
dx
dt
We are given thatdx/dt=−15. Therefore,
dy
dt
=−
15x

(90)
2
+x
2
and
dy
dt




x=10
=
−15

82

=1.66
The distance between home plate to the player is decreasing 1.66 ft./sec.
40.The plane is flying at an altitude 6 miles. Ifydenotes the horizontal distance between the radar station
and the plane, then
tanθ=
6
y
=⇒sec
2
θ

dt
=
−6
y
dy
dt
Therefore,
dy
dt
=
y
2
sec
2
θ
−6

dt
At the instant the plane is 12 miles from the station,y=

108,θ=
1
6
πand the speed is




dy
dt




=




108
−6
4
3
π
360




=

60
mi/sec.

=754 mi/hr.
41.Letxbe the position of the runner on the track, letybe the distance between the runner and the
spectator, and letθbe the central angle indicated in the figure. The runner’s speed is 5 meters per
second so
50

dt
= 5 and

dt
=
1
10
.
By the law of cosines:

R
y
2
= (50)
2
+ (200)
2
−2(50)(200) cosθ.
Differentiating with respect tot, we get
2y
dy
dt
=20,000 sinθ

dt

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
212 SECTION 4.11
dy
dt
=
10,000 sinθ
y
1
10
dy
dt
=
1,000
y
sinθ
Now,
dy
dt




y=200
=5

(200)
2
−(25)
2
200
=5

39375
200
=4.96.
The runner is approaching the spectator at the rate of 4.96 meters per second.
42.
dx
dt
=
23
4
43.
dx
dt
=4 44.
dy
dt
=−
1
2

3
SECTION 4.11
1. ΔV=(x+h)
3
−x
3
=(x
3
+3x
2
h+3xh
2
+h
3
)−x
3
=3x
2
h+3xh
2
+h
3
,
dV=3x
2
h,
ΔV−dV=3xh
2
+h
3
(see figure)
2.The area of the ring can be thought of as the increase of the area of a disk as the radius increases from
rtor+h.
A=πr
2
;sodA=2πr dr=2πrh
The exact area is:π(r+h)
2
−πr
2
=π(r
2
+2rh+h
2
)−πr
2
=2πrh+πh
2
.
3.f(x)=x
1/3
,x= 1000,h=2,f

(x)=
1
3
x
−2/3
3

1002 =f(x+h)

=f(x)+hf

(x)=
3

1000 + 2

1
3
(1000

−2/3
] = 10 +
1
150

=10.0067
4.f(x)=
1

x
,x=25,h=−0.5,f

(x)=
−1
2x
3/2
1

24.5
=f(x+h)

=f(x)+hf

(x)=
1
5
+(−
1
2
)
−1
2(5)
3
=
101
500
=0.202
5.f(x)=x
1/4
,x=16,h=−0.5,f

(x)=
1
4
x
−3/4
(15.5)
1/4
=f(x+h)

=f(x)+hf

(x) = (16)
1/4
+(−0.5)

1
4
(16)
−3/4

=1
63
64

=1.9844
6.f(x)=x
2/3
,x=27,h=−1,f

(x)=
2
3
x
−1/3
(26)
2/3
=f(x+h)

=f(x)+hf

(x) = (27)
2/3
+(−1)

2
3
(27)
−1/3

=
79
9

=8.778

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.11 213
7.f(x)=x
3/5
,x=32,h=1,f

(x)=
3
5
x
−2/5
(33)
3/5
=f(x+h)

=f(x)+hf

(x) = (32)
3/5
+ (1)

3
5
(32)
−2/5

=8.15
8.f(x)=x
−1/5
,x=32,h=1,f

(x)=−
1
5
x
−6/5
(33)
−1/5
=f(x+h)

=f(x)+hf

(x) = (32)
−1/5
−(1)

1
5
(32)
−6/5

=
159
320

=0.497
9.f(x) = sinx, x=
π
4
,h=
π
180
,f

(x) = cosx
sin 46

=f(x+h)

=f(x)+hf

(x) = sin
π
4
+
π
180
cos
π
4
=

2
2
ν
1+
π
180
ω

=0.719
10.f(x) = cosx, x=
π
3
,h=
π
90
,f

(x)=−sinx
cos 62

=f(x+h)

=f(x)+hf

(x) = cos
π
3
+
π
90
ν
−sin
π
3
ω
=
1
2

ν
π
90
ω
ff√
3
2


=0.470
11.f(x) = tanx, x=
π
6
,h=
−π
90
,f

(x) = sec
2
x
tan 28

=f(x+h)

=f(x)+hf

(x) = tan
π
6
+
Δ
−π
90
∈√
4
3
θ
=

3
3


135

=0.531
12.f(x) = sinx, x=
π
4
,h=−
π
90
,f

(x) = cosx
sin 43

=f(x+h)

=f(x)+hf

(x) = sin
π
4
+
ν

π
180
ω
cos
π
4
=

2
2

ν
π
180
ω
ff√
2
2


=0.682
13.f(2.8)

=f(3)+(−0.2)f

(3) = 2 + (−0.2)(2) = 1.6
14.f(5.4)

=f(5)+(0.4)f

(5) = 1 + (0.4)(3) = 2.2
15.V(r)=πr
2
h; volume =V(r+t)−V(r)

=tV

(r)=2πrht
16.Error in diameter = 0.3=⇒error in radius = 0.15.
(a)dS=8πrh=8π(8)(0.15)

=9.6πcm
2
(b)dV=4πr
2
h=4π(8)
2
(0.15)

=38.4cm
3
17.V(x)=x
3
,V

(x)=3x
2
,ΔV

=dV=V

(10)h= 300h
|dV|≤3=⇒|300h|≤3=⇒|h|≤0.01,error≤0.01 feet
18.(a) Letf(x)=

x.Thenf

(x)=
1
2

x
and

x+1−

x

=(1)f

(x)=
1
2

x
.
Now,
1
2

x
<0.01 =
1
100
=⇒

x>50 =⇒x>2500.
(b) Letf(x)=x
1/4
.Thenf

(x)=
1
4
x
−3/4
and
4

x+1−
4

x

=(1)f

(x)=
1
4
x
−3/4
.
Now,
1
4
x
−3/4
<0.002 =
2
1000
=⇒x
3/4
>125 =⇒x>625.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
214 SECTION 4.11
19.V(r)=
2
3
πr
3
anddr=0.01.
V(r+0.01)−V(r)

=V

(r)(0.01) = 2πr
2
(0.01)
=2π(600)
2
(0.01) (50 ft = 600 in)
= 22619.5in
3
or 98 gallons (approx.)
20.V(r)=
4
3
πr
3
;
dV
dr
=4πr
2
.
Now,V(r+h)−V(r)=8×(10)6

=
dV
dr
h=4πr
2
h.Therefore,
h=
8×(10)
6
4π(4000)
2

=0.0398 (miles)

=210 (feet)
21.P=2π

L
g
impliesP
2
=4π
2
L
g
Differentiating with respect tot,we have
2P
dP
dt
=

2
g
·
dL
dt
=
P
2
L
·
dL
dt
since
P
2
L
=

2
g
.
Thus
dP
P
=
1
2
·
dL
L
22.
dP
P
=−15 sec/hour =−
15
3600
.By Exercise 21,
1
2
dL
L
=−
15
3600
anddL=−
30
3600
L=−
1
120
L
WithL=90,we havedL=−90/120 =−0.75; the pendulum should be shortened
0.75 cm to 89.25 cm.
23.L=3.26 ft,P= 2 sec, anddL=0.01 ft
dP
P
=
1
2
·
dL
L
dP=
1
2
·
dL
L
·P=
1
2
·
0.01
3.26
·2dP

=0.00307 sec
24.Each edge increases by 0.1%; takeh=0.001x.
S=6x
2
,dS=12xh,and
dS
S
=
12x(0.001x)
6x
2
=0.002 = 0.2%.
A=x
3
,dA=3x
2
h,and
dA
A
=
3x
2
(0.001x)
x
3
=0.003 = 0.3%.
25.A(x)=
1
4
πx
2
,dA=
1
2
πxh,
dA
A
=2
h
x
dA
A
≤0.01⇐⇒ 2
h
x
≤0.01⇐⇒
h
x
≤0.005 within
1
2
%

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.11 215
26.(a) Lety=x
n
.Thendy=nx
n−1
h.
To get
dy
y
=
nx
n−1
h
x
n
<0.01,we need
h
x
<
0.01
n
,that is, within
1
n
%.
(b) Lety=x
1/n
.Thendy=
1
n
x
(1−n)/n
h.
To get
dy
y
=
1
n
x
(1−n)/n
h
x
1/n
<0.01,we need
h
x
<(0.01)n,that is, withinn%.
27.(a) and (b) 28.lim
h→0
g(h) = lim
h→0
g(h)
h
·h=
Δ
lim
h→0
g(h)
h
∈√
lim
h→0
h
θ
=0
29.lim
h→0
g1(h)+g2(h)
h
= lim
h→0
g1(h)
h
+ lim
h→0
g2(h)
h
=0+0=0
lim
h→0
g1(h)g2(h)
h
= lim
h→0
h
g1(h)g2(h)
h
2
=
Δ
lim
h→0
h
∈√
lim
h→0
g1(h)
h
∈√
lim
h→0
g2(h)
h
θ
= (0)(0)(0) = 0
30.(a)g(h)=f(x+h)−f(x)−mh.
(b) lim
h→0
g(h)
h
= lim
h→0

f(x+h)−f(x)
h
−m

=f

(x)−m=0 iffm=f

(x).
31.Suppose thatfis differentiable atx. Then there is a numbermsuch that
lim
h→0
f(x+h)−f(x)
h
=m or lim
h→0
f(x+h)−f(x)
h
−m=0.
Letg(h)=f(x+h)−f(x)−mh. Then
g(h)
h
=
f(x+h)−f(x)
h
−m and lim
h→0
g(h)
h
= lim
h→0
f(x+h)−f(x)
h
−m=0.
Now suppose thatf(x+h)−f(x)−mh=g(h) whereg(h)=o(h). Then
lim
h→0
Δ
f(x+h)−f(x)
h
−m
θ
= lim
h→0
g(h)
h
=0.
Therefore
lim
h→0
f(x+h)−f(x)
h
=m
andfis differentiable atx.m=f

(x).

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
216 SECTION 4.11
PROJECT 4.11
1.C(x) = 2000 + 50x−
x
2
20
.
Marginal cost:C

(x)=50−
x
10
;C

(20) = 48
Exact cost of the 21st component:C(21)−C(20) = 3027.95−2980 = 47.95.
2.Profit function:P(x)=R(x)−C(x) = 650x−5x
2
−(12,000+30x) = 620x−5x
2
−12000.
Breakeven points:P(x)=0,impliesx
2
−124x+ 2400 = (x−24)(x−100) = 0;x= 24,x= 100
units.
Maximum profit:P

(x) = 620−10x;P

(x)=0 atx= 62 units.
3.(a) Profit function:P(x)=R(x)−C(x)=20x−
x
2
50
−(4x+ 1400) = 16x−
x
2
50
−1400.
Break-even points: 16x−
x
2
50
−1400 = 0 orx
2
−800x+70,000 = 0
Thusx= 100,orx= 700 units.
(b)P

(x)=16−
x
25
;P

(x)=0 atx= 400 units.
(c)
4.(a) (b)
Break-even points atx=81.11 andx= 631.19 Maximum profit at x= 336.11 units
5.(a) (b) P(x)=
10x
1+0.25x
2
−4−0.75x
Breakeven points atx

=0.46,andx

=4.53 Maximum profit at 175 units
6.A(x)=
C(x)
x
,A

(x)=
xC

(x)−C(x)
x
2
.
A

(x) = 0 impliesxC

(x)−C(x)=0 or C

(x)=
C(x)
x
=A(x). The critical points ofAare
the points whereC

(x)=C(x)/x.
A
ffff
(x)=
x
2
[xC
ffff
(x)]−[xC

(x)−C(x)](2x)
x
4
At the points wherexC

(x)−C(x)=0,A
ffff
(x)=
C
ffff
(x)
x
.IfC
ffff
(x)>0 at such a point, thenA(x)
is a minimum.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
SECTION 4.12 217
7.B(x)=
R(x)
x
,B

(x)=
xP

(x)−P(x)
x
2
.
B

(x) = 0 impliesxP

(x)−P(x)=0 or P

(x)=
P(x)
x
=B(x). The critical points ofBare
the points whereP

(x)=P(x)/x.
B
ffff
(x)=
x
2
[xP
ffff
(x)]−[xP

(x)−P(x)](2x)
x
4
At the points wherexP

(x)−P(x)=0,B
ffff
(x)=
P
ffff
(x)
x
.IfP
ffff
(x)<0 at such a point, thenB(x)
is a maximum.
SECTION 4.12
1.(a)xn+1=
1
2
xn+12
Δ
1
xn
θ
(b)x4

=4.89898
2.(a)xn+1=
2x
3
n−1
3x
2
n−4
(b)x4

=1.86081
3.(a)xn+1=
2
3
xn+
25
3
Δ
1
xn
θ
2
(b)x4

=2.92402
4.(a)xn+1=
4
5
xn+6
Δ
1
xn
θ
4
(b)x4

=1.97435
5.(a)xn+1=
xnsinxn+ cosxn
sinxn+1
(b)x4

=0.73909
6.(a)xn+1=
xncosxn−sinxn−x
2
n
cosxn−2xn
(b)x4

=0.87673
7.(a)xn+1=
6+xn
2

xn+3−1
(b)x4

=2.30278
8.(a)xn+1=
xnsec
2
xn−tanxn
1 + sec
2
xn
(b)x4

=2.30278
9.Letf(x)=x
1/3
.Thenf

(x)=
1
3
x
−2/3
.The Newton-Raphson method applied to
this function gives:
xn+1=xn−
f(xn)
f

(xn)
=xn−
x
1/3
n
1
3
x
−2/3
n
=−2xn.
Choose anyx1δ=0.Thenx2=−2x1,x3=−2x2=4x1,···,
xn=−2xn−1=(−1)
n−1
2
n
x1,···.
10.xn+1=xnfor alln.
11.(a)fis a continuous function, andf(1) =−2<0,f(2) = 3>0.Thus,fhasarootin(1,2).
(b)f

(x)=6x
2
−6xandf

(1) = 0.Therefore,x1= 1 will fail to generate values that
will approach the root in (1,2).
(c)xn+1=xn−
2x
3
n−3x
2
n−1
6x
2
n−6xn
;
x1=2,x2=1.75,x3=1.68254,x4=1.67768,f(x4)

=0.00020.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
218 SECTION 4.12
12.(a) Letf(x)=x
4
−2x
2

17
16
.Thenf

(x)=4x
3
−4x.The Newton-Raphson method applied to this
function gives:
xn+1=xn−
x
4
n−2x
2
n−
17
16
4x
3
n−4xn
Ifx1=
1
2
,thenx2=−
1
2
,x3=
1
2
,···xn=(−1)
n−11
2
,···.
(b)x1=2,x2=1.71094,x3=1.58569,x4=1.56165;f(x4)=0.00748
13.(a)f(x)=x
2
−a;f

(x)=2x.Substituting into (4.12.1), we have
xn+1=xn−
x
2
n−a
2xn
=
x
2
n+a
2xn
=
1
2
Δ
xn+
a
xn
θ
,n≥1
(b) Leta=5,x1=2,andxn+1=
1
2
Δ
xn+
a
xn
θ
,n≥1.
Thenx2=2.25,x3=2.23611,x4=2.23607,andf(x4)

=0.000009045.
14.(a) Letf(x)=x
k
−a.Thenf

(x)=kx
k−1
.The Newton-Raphson method applied to this function
gives:
xn+1=xn−
x
k
n−a
kx
k−1
n
=xn−
1
k
xn+
1
k
a
x
k−1
n
=
1
k

(k−1)xn+
a
x
k−1
n

(b) Leta=23,k= 3 andx1=3.Then
x1=3,x2=2.85185,x3=2.84389,x4=2.84382;f(x4)=−0.00114
15.(a) Letf(x)=
1
x
−a.Thenf

(x)=−
1
x
2.The Newton-Raphson method applied to
this function gives:
xn+1=xn−
1
xn
−a

1
x
2
n
=xn+xn−ax
2
n=2xn−ax
2
n
(b) Leta=2.7153,andx1=0.3.Then
x2=0.35562,x3=0.36785,x4=x5=0.36828,
Thus
1
2.7153
⎨0.36828.
16.(a)f(x)=x
4
−7x
2
−8x−3,f

(x)=4x
3
−14x−8,f
ffff
(x)=12x
2
−14.
f

(2) =−4<0 andf

(3)=58>0;f

has a zero in (2,3).
f
ffff
(x)=12x
2
−14>0on(2,3). Therefore,f

has exactly one zero in this interval.
(b)xn+1=xn−
4x
3
n−14xn−8
12x
2
n−14
=
4x
3
n+4
6x
2
n−7
;x3

=2.1091. Sincef
ffff
(x3)>0,fhas a local mini-
mum atc.
17.(a)f(x) = sinx+
1
2
x
2
−2x, f

(x) = cosx+x−2,f
ffff
(x)=−sinx+1.
f

(2) = cos 2

=−0.4161<0 andf

(3) = cos 3 + 1

=0.0100>0;f

has a zero in (2,3).
f
ffff
(x)=−sinx+1>0on(2,3). Therefore,f

has exactly one zero in this interval.
(b)xn+1=xn−
cosxn+xn−2
1−sinxn
=
2−xnsinxn−cosxn
1−sinxn
;x3

=2.9883. Sincef
ffff
(x3)>0,
fhas a local minimum atc.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
REVIEW EXERCISES 219
18.(a)xn+1=xn−
sinxn
cos xn
=xn−tanxn,x1=3;x4

=3.14159
(b)x4

=6.28319
19.(a)xn+1=xn−
xn+ tanxn
1+sec
2
xn
,x1=2π/3;r1

=2.029
(b)x1=5π/3;r2

=4.913
REVIEW EXERCISES
1.fis differentiable on (−1,1) and continuous on [−1,1];f(1) =f(−1) = 0.
f

(x)=3x
2
−1; 3c
2
−1=0 =⇒c=±

3
3
.
2.fis differentiable on (0,2π) and continuous on [0,2π];f(0) =f(2π)=0.
f

(x) = cosx−sinx; cosc−sinc=0 =⇒c=
1
4
π,
5
4
π.
3.fis differentiable on (−2,3) and continuous on [−2,3].
f

(c)=3c
2
−2=
f(3)−f(−2)
5
=5 =⇒3c
2
=7 =⇒c=±

7
3
4.fis differentiable on (2,5) and continuous on [2,5].
f

(c)=
1
2

c−1
=
f(5)−f(2)
3
=
1
3
=⇒c=
13
4
.
5.fis differentiable on (2,4) and continuous on [2,4].
f

(c)=−
2
(c−1)
2
=
f(4)−f(2)
2
=−
2
3
=⇒c=1+

3.
6.fis differentiable on (0,16) and continuous on [0,16].
f

(c)=
3
4c
1/4
=
f(16)−f(0)
16
=
1
2
=⇒c=
81
16
.
7.f

(x)=
1+x
2/3
3x
2/3
δ= 0 for allx∈(−1,1).f

(0) does not exist. Thereforefis not differentiable on
(−1,1).
8.f

(x)=
−3
(x−2)
2
<0 for allx∈(1,4);
f(4)−f(1)
3
=
9
6
>0.f

(2) does not exist. Thereforefis
not differentiable on (1,4).
9.No. Reason: If such a function did exist, then, by the mean-value theorem, there is a numberc∈(1,4)
such thatf

(c)=−
4
3
<−1.
10.(a)f

(x)=3x
2
−3=3(x
2
−1)<0on(−1,1). Therefore, by Rolle’s theorem,fcan have at most
one zero in [−1,1].
(b) Sincefdecreases on [−1,1], we must havef(−1) =−1+3+k≥0 andf(1) = 1−3+k≤0.
These conditions imply thatk∈[−2,2].

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
220 REVIEW EXERCISES
11.f

(x)=6x(x+ 1).
fincreases on (−∞,−1]∪[0,∞) and decreases on [−1,0].
The critical points arex=−1,0;f(−1) = 2 is a local max andf(0) = 1 is a local min.
12.f

(x)=4(x−1)(x
2
+x+ 1).
fincreases on [1,∞) and decreases on (−∞,1]. The critical point isx=1;f(1) = 0 is a local min.
13.f

=(x+ 2)(x−1)
2
(5x+ 4).
fincreases on (−∞,−2]∪[−
4
5
,∞) and decreases on [−2,−
4
5
].
The critical points arex=−2,1,−
4
5
.f(−2) = 0 is a local max andf(−
4
5
)

=−8.981 is a local min.
14.f

(x)=1−
8
x
3
=
x
3
−8
x
3
.
fincreases on (−∞,0)∪[2,∞) and decreases on (0,2].x= 2 is the only critical point; 0 is not a
critical point.f(2) = 3 is a local min.
15.f

(x)=
1−x
2
(1 +x
2
)
2
.
fincreases on [−1,1] and decreases on (−∞,−1]∪[1,∞). The critical points arex=−1,1.f(−1) =

1
2
is a local min andf(1) =
1
2
is a local max.
16.f

(x) = sinx+ cosx.
fincreases on [0,

4
]∪[

4
,2π] and decreases on [

4
,

4
]. The critical points arex=

4
,

4
.f(

4
)=

2 is a local max andf(

4
)=−

2 is a local min.
17.f

(x)=3x
2
+4x+1=(3x+ 1)(x+ 1); critical points:x=−
1
3
,−1.
f(−2) =−1 endpoint and abs. min;f(−1) = 1 local max;f(−
1
3
)=
23
27
local min;f(1) = 5 endpoint
and abs. max.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
REVIEW EXERCISES 221
18.f

(x)=4x
3
−16x=4x(x−2)(x+ 2); critical points:x=0,2.
f(−1) =−5 endpoint min;f(0) = 2 local max;f(2) =−14 local and abs. min;f(3) = 11 endpoint
and abs. max.
19.f

(x)=2x−
8
x
3
=
2(x
4
−4)
x
3
; critical point:x=4
1/4
=

2.
f(1) = 5 endpoint max;f(

2) = 4 local and abs. min;f(4) =
65
4
endpoint and abs. max.
20.f

(x) = cosx(1−2 sinx); critical points:x=
π
6
,
π
2
,

6
,

2
.
f(0) = 1 endpoint min;f(
π
6
)=5/4 local and abs. max;f(
π
2
) = 1 local min;f(

6
)=
5
4
local and abs.
max;f(

2
)=−1 local and abs. min;f(2π) = 1 endpoint max.
21.f

(x)=
−x
2

1−x
+

1−x=
2−3x
2

1−x
; critical point:x=
2
3
.
f(1) = 0 endpoint min;f(
2
3
)=
2

3
9
local and abs. max.
22.f

(x)=
(x−2)2x−x
2
(x−2)
2
=
x(x−4)
(x−2)
2
; critical point:x=4;
f(4) = 8 local and abs. min.
23.f(x)=
3x(x−3)
(x−4)(x+3)
. Vertical asymptotes:x=−3 andx= 4; horizontal asymptote:y=3.
24.f(x)=
(x−2)(x+2)
(x−2)(x−3)
=
x+2
x−3
,xδ= 2. Vertical asymptote:x= 3; horizontal asymptote:y=1.
25.f(x)=x−
x
(x−1)(x
2
+x+1)
. Vertical asymptote:x= 1; oblique asymptote:y=x.
26.f

(x)=
3
5(x−1)
2/5
, vertical tangent.
27.f

(x)=x
2/5
−2x
−3/5
=
x−2
x
3/5
, vertical cusp.
28.f

(x)=2x
−2/3
+4x
1/3
=
2+4x
x
2/3
, vertical tangent.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
222 REVIEW EXERCISES
29.f(x)=6+4x
3
−3x
4
, domain: (−∞,∞)
f

(x)=12x
2
(1−x)
critical pts.x=0,1
f
ffff
(x)=12x(2−3x)
f

(x)>0on(−∞,1),
f

(x)<0on(1,∞)
f
ffff
(x)>0on(0,2/3)
f
ffff
(x)<0on(−∞,0)∪(2/3,∞) −1 1
x
2
4
6
y
30.f(x)=3x
5
−5x
3
+ 1, domain: (−∞,∞)
f

(x)=15x
2
(x−1)(x+1)
critical pts.x=−1,0,1
f
ffff
(x)=30x

2x
2
−1

f

(x)>0on(−∞,−1)∪(1,∞)
f

(x)<0on(−1,1)
f
ffff
(x)>0on
ν


2
2
,0
ω

ν√
2
2
,∞
ω
f
ffff
(x)<0on
ν
−∞,−

2
2
ω

ν
0,

2
2
ω
−1 1
x
−1
1
3
5
y
31.f(x)=
2x
x
2
+4
, domain: (−∞,∞)
symmetric with respect to the origin.
f

(x)=
2

4−x
2

(x
2
+4)
2
critical pts.x=2,x=−2
f
ffff
(x)=
4x

x
2
−12

(x
2
+4)
3
f

(x)>0on(−2,2),
f

(x)<0on(−∞,2)∪(2,∞)
f
ffff
(x)>0on



12,0



12,∞

f
ffff
(x)<0on

−∞,−

12



0,

12

−2 2
x
0.5
−0.5
y

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
REVIEW EXERCISES 223
32.f(x)=x
2/3
(x−10), domain: (−∞,∞)
f

(x)=
5(x−4)
3x
1/3
critical pts.x=4,x=0
f
ffff
(x)=
10(x+2)
9x
4/3
f

(x)>0on(−∞,0)∪(4,∞),
f

(x)<0on(0,4)
f
ffff
(x)>0on(−2,0)∪(0,∞)
f
ffff
(x)<0on(−∞,−2)
−2 4 10
x
−10
10
y
33.f(x)=x

4−x, domain: (−∞,4]
f

(x)=
8−3x
2

4−x
f
ffff
(x)=
3x−16
4(4−x)
3/2
f

(x)>0on

−∞,
8
3

,
f

(x)<0on

8
3
,4

f
ffff
(x)<0on(−∞,4)
−2 2 4
x
−2
2
y
34.f(x)=x
4
−2x
2
+ 3, domain (−∞,∞);
symmetric with respect to they-axis
f

(x)=4x
3
−4x=4x(x−1)(x+1)
critical pts.x=−1,0,1
f
ffff
(x)=12x
2
−4 = 12(x−1/

3)(x+1/

3)
f

(x)>0on[−1,0]∪[1,∞)
f

(x)<0on(−∞,−1]∪[0,1]
f
ffff
(x)>0on(∞,−1/

3)∪(1/

3,∞)
f
ffff
(x)<0on[−1/

3,1/

3)
-2 -1 1 2
x
1
2
3
y
35.f(x) = sinx+

3 cosx, domain [0,2π]
f

(x) = cosx−

3 sinx
critical pts.x=
1
6
π, x=
7
6
π
f
ffff
(x)=−sinx−

3 cosx
f

(x)>0on[0,π/6)∪(7π/6,2π]
f

(x)<0on(π/6,7π/6)
f
ffff
(x)>0on(2π/3,5π/3)
f
ffff
(x)<0on[0,π/3)∪(5π/3,2π]
π 2π
x
−2
2
y

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
224 REVIEW EXERCISES
36.f(x) = sin
2
x−cosx, x∈[0,2π]
f

(x) = 2 sinxcosx+ sinx
critical pts.x=
2
3
π, π,
4
3
π
f
ffff
(x) = 4 cos
2
x+ cosx−2
f

(x)>0on

0,
2
3
π



π,
4
3
π

,
f

(x)<0on

2
3
π, π



4
3
π,2π

123456
x
-1
1
y
37.
−1 2
x
y
38.Letrbe the radius of the sphere andxthe side length of the cube. Then the sum of the surface areas
equals constant implies
4πr
2
+6x
2
=C=⇒x=

C−4πr
2
6
.
The sum of the volumes is:
V=
4
3
πr
3
+
Δ
C−4πr
2
6
θ
3/2
,0≤r≤

C

.
Now
V

=4πr
2
+
3
2
Δ
C−4πr
2
6
θ
1/2Δ

4
3
πr
θ
=4πr
2
−2πr
Δ
C−4πr
2
6
θ
1/2
SetV

(r)=0:
2r=
Δ
C−4πr
2
6
θ
1/2
=⇒4r
2
=
C−4πr
2
6
=⇒r=

C
24 + 4π
,andx=2

C
24 + 4π
.
Without loss of generality, setC= 1. Then
V(0) = (1/6)
3/2∼
=0.07,V(1/

24+4π)

=0.055,V(1/

4π)

=0.09.
Thus, the sum of the volumes is a minimum when the side length of the cube equals the diameter of
the sphere. The sum of the volumes is a maximum when the side length of the cube is 0.
39.Letxbe the side length of the square base. Then, since the volume is 27, the heighty=27/x
2
. The
conditions:x
2
≤18,0≤y≤4 imply
3

3
2
≤x≤3

2. Thus, the surface areaSof the box is

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
REVIEW EXERCISES 225
given by
S(x)=2x
2
+
108
x
,
3

3
2
≤x≤3

2
S

(x)=4x−
108
x
2
;S

(x)=0 =⇒4x
3
=27 =⇒x=3
Now,
S
ν
3

3
2
ω
=
27
2
+24

3

=55.07,
S(3) = 54
S(3

2)=36+18

2

=61.46
(a) The minimal surface area is 54 sq. ft. atx=3.
(b) The maximal surface area is 61.46 sq. ft. (approx.) atx=3

2.
40.An equation for the line withx-interceptaandy-interceptbis:
x
a
+
y
b
=1
Since the line passes through (1,2),
1
a
+
2
b
=1 =⇒b=
2a
a−1
The area of the right triangleOABis:S=
1
2
ab=
a
2
a−1
Now,
S

(a)=
a
2
−2a
(a−1)
2
andS

(a)=0 ata=0,a=2
The triangleOABwill have minimum area whenA=(2,0) andB=(0,4).
41.Introduce a rectangular coordinate system so that the rectangle is in the first quadrant and the base
and left side lie on the coordinate axes. Letxdenote the length of the base, andythe height. Let
P=2x+2ybe the given perimeter. If the rectangle is rotated about they-axis, then the volumeV
is given by:
V(x)=
πP
2
x
2
−πx
3
,0≤x≤P/2.
Now,
V

(x)=πPx−3πx
2
andV

(x)=0 =⇒x=0orx=
1
3
P.
Atx=0,V=0; atx=P/3,y=P/6,V=πP
3
/54; atx=P/2,V= 0. The dimensions that
generate the cylinder of maximum volume arex=P/3,y=P/6.
42.Letxbe the width of the page andythe height. Thenxy= 80. The area available for print is:
A=(x−2)(y−2.5)=(x−2)
Δ
80
x
−2.5
θ
=85−2.5x−
160
x
,0<x<∞.
A

(x)=−2.5+
160
x
2
;A

(x)=0: 2.5x
2
= 160,x
2
=64,x=8

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
226 REVIEW EXERCISES
SinceA
ffff
(x)<0,Ahas an absolute maximum atx= 8. The dimensions of the page that will maximize
the printed area are: width 8, height 10.
43.x

(t)=1−2 sint, x
ffff
(t)=−2 cost.
The object is slowing down whenx

(t)x
ffff
(t)<0=⇒t∈[0,
1
6
π)∪(
1
2
π,
5
6
π)∪(
3
2
π,2π].
44.x(t)=(4t−1)(t−1)
2
,t≥0;x

(t)=v(t) = 2(4t−1)(t−1)+4(t−1)
2
= 6(2t
2
−3t+1)
= 6(2t−1)(t−1)
(a) The object is moving to the right:v(t)>0 when 0≤t<
1
2
and whent>1; moving to the
left:v(t)<0 when
1
2
<t<1; the object changes direction att=
1
2
andt=1.
(b) Speed when moving left:ν=|v|= 6(3t−2t
2
−1) on

1
2
,1

.dν/dt= 6(3−4t);dν/dt=0 at
t=3/4. The maximum speed when moving left isν(3/4) = 3/4 units per unit time.
45.(a)x(t)=

t+1
x

(t)=v(t)=
1
2

t+1
x
ffff
(t)=a(t)=−
1
4(t+1)
3/2
=−2[v(t)]
3
,
x
ffffff
(t)=a

(t)=
3
8(t+1)
5/2
(b) Position:x(17) =x(15+2)

=x(15) + 2x

(15) = 4.25;
Velocity:v(17) =v(15+2)

=v(15) + 2v

(15) =
15
128

=0.1172;
Acceleration:a(17) =a(15+2)

=a(15) + 2a

(15)

=0.0032.
46.The height of the rocket at timetis given by:y(t) = 128t−16t
2
.
(a) At maximum height,v(t)=y

(t) = 128−32t=0 =⇒t= 4. The rocket reaches its
maximum height at 4 seconds; the maximum height is:y(4) = 256 feet.
(b)y(t)=0 =⇒16t(8−t)=0 =⇒t=0,t= 8; the rocket hits the ground att=8
seconds;v(8) =−128 ft/sec.
47.The height at timetis:y(t)=−16t
2
+8t+y0.y(10) = 0 =−1600 + 80 +y0=⇒y0= 1520 ft.
48.The height at timetis:y(t)=−16t
2
+v0t.y(1) = 24 =−16 +v0=⇒v0= 40. Therefore,
y(t)=−16t
2
+40t. The ball achieves maximum height at the instantv(t)=−32t+40=0 = ⇒
t=
5
4
. The maximum height isy(5/4) =−16(5/4)
2
+ 40(5/4) = 25.
49.Letxbe the position of the boy and letybe the length of his shadow. Then
dx
dt
= 168 and
x+y
12
=
y
5
=⇒7y=5xandy=
5
7
x
Differentiating implicitly with respect tot, we get
7
dy
dt
=5
dx
dt
=⇒
dy
dt
=
Δ
5
7
θ
(168) = 120
The shadow is lengthening at the rate of 120 ft/min.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
REVIEW EXERCISES 227
50.V=
1
3
πr
2
h,Vconstant
0=
d
dt
V=
d
dt
Δ
1
3
πr
2
h
θ
=
2πrh
3
dr
dt
+
πr
2
3
dh
dt
Solving for
dh
dt
we get:
dh
dt
=−
2h
r
·
dr
dt
.
At the instantr= 4 andh=15,
dh
dt
=−
30
4
(0.3) =−2.25; the height is decreasing at the rate of
2.25 in/min.
51.Letxbe the position of the locomotive at timetand letybe the position of the car. By the law of
cosines the distance between the locomotive and the car is given by
s
2
=x
2
+y
2
−2xycos 60

=x
2
+y
2
−xy.
Differentiating with respect tot,weget
2s
ds
dt
=2x
dx
dt
+2y
dy
dt
−x
dy
dt
−y
dx
dt
.
Settingdx/dt=60, dy/dt=−30 and converting to feet, gives
2s
ds
dt
=2x(60)(5280)−2y(30)(5280) +x(30)(5280)−y(60)(5280) = 5280(150x−120y).
Whenx=y= 500,s= 500 and
2(500)
ds
dt
= 5280(30)(500) =⇒
ds
dt
= 15(5280).
The distance between the locomotive and the car is increasing at the rate of 15 miles per hour.
52.Letrbe the radius of the circle. Thendr/dt= 5. The square has side lengthr

2 and areaA=2r
2
.
Differentiating with respect tot,weget
dA
dt
=4r
dr
dt
=20r; and
dA
dt




r=10
= 200.
53.The cross-section of the water at timetis an isosceles triangle with basexand heightywherexand
yare related by
1
2
x
y
=
1
2
(similar triangles). Thusx=y.
The volume of water in the trough at timetis
V= 12(
1
2
xy)=6y
2
.
Differentiating with respect totgives
dV
dt
=12y
dy
dt
=⇒
dy
dt
=
1
12y
dV
dt
.
SincedV/dt=−3,
dy
dt
=−
1
4y
and
dy
dt




t=1.5
=−
1
6
. The water level is falling at the rate of
1/6 feet per minute.
54.f(3.8)

=f(4) +f

(4)(−0.2)=2+2(−0.2) = 1.6.

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
228 REVIEW EXERCISES
55.f(x)=

x+1/

x, f

(x)=
1
2
x
−1/2

1
2
x
−3/2
f(4.2)

=f(4) +f

(4)(0.2) =
5
2
+
3
16
(0.2) = 2.5375.
56.f(x)=x
1/4
,f

(x)=
1
4
x
−3/4
f(83)

=f(81) +f

(81)(2) = 3 +
1
54

=3.01852.
57.f(x) = tanx, f

(x) = sec
2
x
f(43

)=f(
1
4
π−
1
90
π)

=f(π/4) +f

(π/4)(−π/90)=1−2(π/90) = 1−(π/45)

=0.9302.
58.V=
4
3
πr
3
,dV=4πr
2
dr. CalculatedVatr= 10 ft. anddr=0.05 in.

=0.00417 ft.
dV|
r=10,dr=0.00417
=4π(10)
2
(0.00417)

=5.240 cu. ft. = 9055.025 cu. in.;
= 9055.025/231

=39.20 gal.
59.f(x)=x
3
−10
(a)xn+1=xn−
x
3
n−10
3x
2
n
=
2x
3
n+10
3x
2
n
(b)x4

=2.15443;f(2.15443)

=−0.00007
60.f(x)=xsinx−cosx
(a)xn+1=
x
2
ncosxn+xnsinxn+ cosxn
2 sinxn+xncosxn
(b)x4

=0.86057;f(0.86057)

=0.00049
Tags