P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU
JWDD027-04 JWDD027-Salas-v1 November 25, 2006 15:57
168 SECTION 4.6
14.f
ff
(x)=
6(1−x
2
)
(x
2
+1)
2
,f
ffff
(x)=
12x(x
2
−3)
(x
2
+1)
3
;
concave down on
−∞,−
√
3
and
0,
√
3
,concave up on
−
√
3,0
and
√
3,∞
;
pts of inflection
−
√
3,−
3
2
√
3
,(0,0),
√
3,
3
2
√
3
15.f
ff
(x)=
−1
√
x(1 +
√
x)
2
,f
ffff
(x)=
1+3
√
x
2x
√
x(1 +
√
x)
3
;
concave up on (0,∞); no pts of inflection
16.f
ff
(x)=
1
5
(x−3)
−4/5
,f
ffff
(x)=−
4
25
(x−3)
−9/5
;
concave up on (−∞,3), concave down on (3,∞); pt of inflection (3,0)
17.f
ff
(x)=
5
3
(x+2)
2/3
,f
ffff
(x)=
10
9
(x+2)
−1/3
;
concave down on (−∞,−2), concave up on (−2,∞); pt of inflection (−2,0)
18.f
ff
(x)=
4−2x
2
(4−x
2
)
1/2
,f
ffff
(x)=
2x(x
2
−6)
(4−x
2
)
3/2
Note: dom (f)=[−2,2]
concave up on (−2,0),concave down on (0,2); pt of inflection (0,0)
19.f
ff
(x) = 2 sinxcosx= sin 2x, f
ffff
(x) = 2 cos 2x;
concave up on
0,
1
4
π
and
3
4
π, π
, concave down on
1
4
π,
3
4
π
;
pts of inflection
1
4
π,
1
2
and
3
4
π,
1
2
20.f
ff
(x)=−4 cosxsinx−2x, f
ffff
(x)=−4(cos
2
x−sin
2
x)−2=−4 cos 2x−2;
concave down on
0,
1
3
π
and
2
3
π, π
, concave up on
1
3
π,
2
3
π
;
pts of inflection
Δ
1
3
π,
9−2π
2
18
θ
and
Δ
2
3
π,
9−8π
2
18
θ
21.f
ff
(x)=2x+ 2 cos 2x, f
ffff
(x)=2−4 sin 2x;
concave up on
0,
1
12
π
and on
5
12
π, π
, concave down on
1
12
π,
5
12
π
;
pts of inflection
Δ
1
12
π,
72 +π
2
144
θ
and
Δ
5
12
π,
72+25π
2
144
θ
22.f
ff
(x) = 4 sin
3
xcosx, f
ffff
(x) = 4 sin
2
x[3 cos
2
x−sin
2
x];
concave up on
0,
1
3
π
and
2
3
π, π
, concave down on
1
3
π,
2
3
π
;
pts of inflection
1
3
π,
9
16
and
2
3
π,
9
16
23.points of inflection: (±3.94822,10.39228)
24.f
ffff
(x)=0atx
∼
=±0.94,±2.57,±3.71,±5.35
25.points of inflection: (−3,0),(−2.11652,2,39953),(−0.28349,−18.43523)
26.f
ffff
(x)>0 for allx∈domf