CIEM5311 - LW 2 - Wheel-rail dynamic interactions (2).pdf

JavierFuertes13 26 views 29 slides May 04, 2024
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

Don't waste your time


Slide Content

1
CIEM5311-Week 1
(2023/2024 Q1)
Wheel-rail dynamic
contact/interactions and
consequences
Lecturer: Zhen Yang
Room S2 2.35
[email protected]

2
CONTENTS
Part 1: Wheel-rail contact mechanics
•1.1 Introduction
•1.2 Normal contact (Hertzianvs Non-Hertzian)
•1.3 Tangential contact (sliding vs rolling)
Part 2: Wheel-rail dynamic
contact/interactions and consequences
•2.1 Contact vs dynamic interactions
•2.2 Impact
•2.3 Wheel slip/sliding
•2.4 Rolling contact fatigue

3
CONTENTS
Part 1: Wheel-rail contact mechanics
•1.1 Introduction
•1.2 Normal contact (Hertzianvs Non-Hertzian)
•1.3 Tangential contact (sliding vs rolling)
Part 2: Wheel-rail dynamic
contact/interactions and consequences
•2.1 Contact vs dynamic interactions
•2.2 Impact
•2.3 Wheel slip/sliding
•2.4 Rolling contact fatigue

4
1.1 Intro to wheel-rail contact
•A complex & imperfect link transferring
train load to track

5
1.2.1 HertzianContact
Solution is semi-ellipsoidal pressure
distribution on an elliptical contact area,
if the following assumptions stand:
•1. Linear elastic (ε<<R)
•2. Non-conforming (‘1 point’, 2
nd
-order
polynomial)
•3. Half-space (a<<R, a<<l)
•4. Frictionless
Discussion: can we
assume wheel-rail contact
as Hertizancontact?

6
1.2.1 Calculate HertzianContact
https://www.tribology-abc.com/sub10.htm(Then ‘elliptic contact’)
Input:
•Material (E=210MPa, r=0.3)
•Geometry (Rw=460 mm, Rr=300 mm)
•Normal load (100 kN)
Output:
•Max pressure
•Contact area shape & size

7
1.2.2 Non-HertzianContact
elliptical contact patch
‘egg-shaped’ contact patch
Elastic vs Plastic
•Shape & size
•Pressure amplitude
•Peak pressure position

8
1.2.2 Non-HertzianContact
Non-conforming vsConforming

9
1.2.2 Non-HertzianContact
Joint wear due to stress concentration
New joint used joint

10
Δv
1.3.1 Sliding vs Rolling
Sliding: relative translation velocity between two contact surfaces.
Rolling: motion that combines rotation and translation of one
object with respect to a surface.
v
ω
ωr
ωr
v+ωr
=v-ωr
v

11
1.3.2 Creepage
•Creepage(creep ratio) ??????= Δv/ v

12
1.3.3 Creepagevs friction force
•Creepage(creep ratio) ??????= Δv/ v
Coefficient of
friction

13
1.3.4 Calculate tangential contact
•Numerical (Fastsim, BEM, FEM)
•Analytical (Carter’s, V&J, Strip, etc.)
FEM
BEM

14
CONTENTS
Part 1: Wheel-rail contact mechanics
•1.1 Introduction
•1.2 Normal contact (Hertzianvs Non-Hertzian)
•1.3 Tangential contact (sliding vs rolling)
Part 2: Wheel-rail dynamic
contact/interactions and consequences
•2.1 Contact vs dynamic interactions
•2.2 Impact
•2.3 Wheel slip/sliding
•2.4 Rolling contact fatigue

15
2.1 Contact vs dynamic interaction
Dynamic effects:
inertia of material elements influence the stress field
because they “flow” through the deforming region

16
2.2.1 Impact generation
Joint Squat
Wheel
flat
Switch &
Crossing

17
2.2.2 wheel-rail impact load
Normal
load

18
2.2.2 wheel-rail impact load
Normal
load
Simulation 1
(elastic & new)
Simulation 2
(plastic & new)
Simulation 3
(plastic & used)

19
2.2.3 impact-induced problems
Interface deterioration
Structural degradation
Vibration & Noise

20
2.3.1 wheel slip/sliding generation
•Accelerating
•Braking
•Curving
•Contamination (rain,
snow, leaves)

21
2.3.2 Slip-induced problems: wear
rail gauge wear wheel tread wear
wheel burn

22
2.3.2 Slip-induced problems: squeal
noise

23
2.3.3 stick-slip contact during curving

24
2.4 Rolling contact fatigue (RCF)
Squat Head Check
Hatfield rail
crash (2000)
https://en.wikipedia.org/
wiki/Hatfield_rail_crash

25
Wrap-up
➢Wheel-rail contact & dynamic interactions
➢Hertziancontact (assumptions &
calculations)
➢Sliding vs rolling (creepage)
➢Problems induced by dynamic interactions

26
Literature (available on Brightspace)
•[1] Johnson KL. Contact Mechanics:
Cambridge university press; 1985. Chapter 4
Hertz theory
•[2] Yang Z, et. al. Numerical study of wheel-
rail impact contact solutions at an insulated
rail joint. IntJ MechSci. 2018;138-139:310-
22. doi:10.1016/j.ijmecsci.2018.02.025
•[3] Yang Z, et. al. Numerical modeling of
wheel-rail squeal-exciting contact. IntJ Mech
Sci. 2019;153-154:490-9.
doi:10.1016/j.ijmecsci.2019.02.012

27
Relevant MSc thesis topics
•Track dynamics under extreme loading
conditions
•Degradation of embedded rail system
under wheel-rail dynamic load
•Performance of ‘anti-impact’ insulated rail
joints
•Dynamic behavior of tracks with hanging
sleepers

28
Post-lecture questions
•To be uploaded to Brightspace

29
End
Tags